MIPS: BCM1480: Remove checks for CONFIG_SIBYTE_BCM1480_PROF
[linux/fpc-iii.git] / drivers / usb / host / xhci-ring.c
blob7a0e3c720c005faed89e3caa55eeff73f1fd113c
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 #include "xhci-trace.h"
72 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
73 struct xhci_virt_device *virt_dev,
74 struct xhci_event_cmd *event);
77 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
78 * address of the TRB.
80 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
81 union xhci_trb *trb)
83 unsigned long segment_offset;
85 if (!seg || !trb || trb < seg->trbs)
86 return 0;
87 /* offset in TRBs */
88 segment_offset = trb - seg->trbs;
89 if (segment_offset > TRBS_PER_SEGMENT)
90 return 0;
91 return seg->dma + (segment_offset * sizeof(*trb));
94 /* Does this link TRB point to the first segment in a ring,
95 * or was the previous TRB the last TRB on the last segment in the ERST?
97 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
98 struct xhci_segment *seg, union xhci_trb *trb)
100 if (ring == xhci->event_ring)
101 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
102 (seg->next == xhci->event_ring->first_seg);
103 else
104 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
107 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
108 * segment? I.e. would the updated event TRB pointer step off the end of the
109 * event seg?
111 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
112 struct xhci_segment *seg, union xhci_trb *trb)
114 if (ring == xhci->event_ring)
115 return trb == &seg->trbs[TRBS_PER_SEGMENT];
116 else
117 return TRB_TYPE_LINK_LE32(trb->link.control);
120 static int enqueue_is_link_trb(struct xhci_ring *ring)
122 struct xhci_link_trb *link = &ring->enqueue->link;
123 return TRB_TYPE_LINK_LE32(link->control);
126 union xhci_trb *xhci_find_next_enqueue(struct xhci_ring *ring)
128 /* Enqueue pointer can be left pointing to the link TRB,
129 * we must handle that
131 if (TRB_TYPE_LINK_LE32(ring->enqueue->link.control))
132 return ring->enq_seg->next->trbs;
133 return ring->enqueue;
136 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
137 * TRB is in a new segment. This does not skip over link TRBs, and it does not
138 * effect the ring dequeue or enqueue pointers.
140 static void next_trb(struct xhci_hcd *xhci,
141 struct xhci_ring *ring,
142 struct xhci_segment **seg,
143 union xhci_trb **trb)
145 if (last_trb(xhci, ring, *seg, *trb)) {
146 *seg = (*seg)->next;
147 *trb = ((*seg)->trbs);
148 } else {
149 (*trb)++;
154 * See Cycle bit rules. SW is the consumer for the event ring only.
155 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
157 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
159 ring->deq_updates++;
162 * If this is not event ring, and the dequeue pointer
163 * is not on a link TRB, there is one more usable TRB
165 if (ring->type != TYPE_EVENT &&
166 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
167 ring->num_trbs_free++;
169 do {
171 * Update the dequeue pointer further if that was a link TRB or
172 * we're at the end of an event ring segment (which doesn't have
173 * link TRBS)
175 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
176 if (ring->type == TYPE_EVENT &&
177 last_trb_on_last_seg(xhci, ring,
178 ring->deq_seg, ring->dequeue)) {
179 ring->cycle_state ^= 1;
181 ring->deq_seg = ring->deq_seg->next;
182 ring->dequeue = ring->deq_seg->trbs;
183 } else {
184 ring->dequeue++;
186 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
190 * See Cycle bit rules. SW is the consumer for the event ring only.
191 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
193 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
194 * chain bit is set), then set the chain bit in all the following link TRBs.
195 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
196 * have their chain bit cleared (so that each Link TRB is a separate TD).
198 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
199 * set, but other sections talk about dealing with the chain bit set. This was
200 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
201 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
203 * @more_trbs_coming: Will you enqueue more TRBs before calling
204 * prepare_transfer()?
206 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
207 bool more_trbs_coming)
209 u32 chain;
210 union xhci_trb *next;
212 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
213 /* If this is not event ring, there is one less usable TRB */
214 if (ring->type != TYPE_EVENT &&
215 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
216 ring->num_trbs_free--;
217 next = ++(ring->enqueue);
219 ring->enq_updates++;
220 /* Update the dequeue pointer further if that was a link TRB or we're at
221 * the end of an event ring segment (which doesn't have link TRBS)
223 while (last_trb(xhci, ring, ring->enq_seg, next)) {
224 if (ring->type != TYPE_EVENT) {
226 * If the caller doesn't plan on enqueueing more
227 * TDs before ringing the doorbell, then we
228 * don't want to give the link TRB to the
229 * hardware just yet. We'll give the link TRB
230 * back in prepare_ring() just before we enqueue
231 * the TD at the top of the ring.
233 if (!chain && !more_trbs_coming)
234 break;
236 /* If we're not dealing with 0.95 hardware or
237 * isoc rings on AMD 0.96 host,
238 * carry over the chain bit of the previous TRB
239 * (which may mean the chain bit is cleared).
241 if (!(ring->type == TYPE_ISOC &&
242 (xhci->quirks & XHCI_AMD_0x96_HOST))
243 && !xhci_link_trb_quirk(xhci)) {
244 next->link.control &=
245 cpu_to_le32(~TRB_CHAIN);
246 next->link.control |=
247 cpu_to_le32(chain);
249 /* Give this link TRB to the hardware */
250 wmb();
251 next->link.control ^= cpu_to_le32(TRB_CYCLE);
253 /* Toggle the cycle bit after the last ring segment. */
254 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
255 ring->cycle_state = (ring->cycle_state ? 0 : 1);
258 ring->enq_seg = ring->enq_seg->next;
259 ring->enqueue = ring->enq_seg->trbs;
260 next = ring->enqueue;
265 * Check to see if there's room to enqueue num_trbs on the ring and make sure
266 * enqueue pointer will not advance into dequeue segment. See rules above.
268 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
269 unsigned int num_trbs)
271 int num_trbs_in_deq_seg;
273 if (ring->num_trbs_free < num_trbs)
274 return 0;
276 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
277 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
278 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
279 return 0;
282 return 1;
285 /* Ring the host controller doorbell after placing a command on the ring */
286 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
288 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
289 return;
291 xhci_dbg(xhci, "// Ding dong!\n");
292 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
293 /* Flush PCI posted writes */
294 readl(&xhci->dba->doorbell[0]);
297 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
299 u64 temp_64;
300 int ret;
302 xhci_dbg(xhci, "Abort command ring\n");
304 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) {
305 xhci_dbg(xhci, "The command ring isn't running, "
306 "Have the command ring been stopped?\n");
307 return 0;
310 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
311 if (!(temp_64 & CMD_RING_RUNNING)) {
312 xhci_dbg(xhci, "Command ring had been stopped\n");
313 return 0;
315 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
316 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
317 &xhci->op_regs->cmd_ring);
319 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
320 * time the completion od all xHCI commands, including
321 * the Command Abort operation. If software doesn't see
322 * CRR negated in a timely manner (e.g. longer than 5
323 * seconds), then it should assume that the there are
324 * larger problems with the xHC and assert HCRST.
326 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring,
327 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
328 if (ret < 0) {
329 xhci_err(xhci, "Stopped the command ring failed, "
330 "maybe the host is dead\n");
331 xhci->xhc_state |= XHCI_STATE_DYING;
332 xhci_quiesce(xhci);
333 xhci_halt(xhci);
334 return -ESHUTDOWN;
337 return 0;
340 static int xhci_queue_cd(struct xhci_hcd *xhci,
341 struct xhci_command *command,
342 union xhci_trb *cmd_trb)
344 struct xhci_cd *cd;
345 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC);
346 if (!cd)
347 return -ENOMEM;
348 INIT_LIST_HEAD(&cd->cancel_cmd_list);
350 cd->command = command;
351 cd->cmd_trb = cmd_trb;
352 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list);
354 return 0;
358 * Cancel the command which has issue.
360 * Some commands may hang due to waiting for acknowledgement from
361 * usb device. It is outside of the xHC's ability to control and
362 * will cause the command ring is blocked. When it occurs software
363 * should intervene to recover the command ring.
364 * See Section 4.6.1.1 and 4.6.1.2
366 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command,
367 union xhci_trb *cmd_trb)
369 int retval = 0;
370 unsigned long flags;
372 spin_lock_irqsave(&xhci->lock, flags);
374 if (xhci->xhc_state & XHCI_STATE_DYING) {
375 xhci_warn(xhci, "Abort the command ring,"
376 " but the xHCI is dead.\n");
377 retval = -ESHUTDOWN;
378 goto fail;
381 /* queue the cmd desriptor to cancel_cmd_list */
382 retval = xhci_queue_cd(xhci, command, cmd_trb);
383 if (retval) {
384 xhci_warn(xhci, "Queuing command descriptor failed.\n");
385 goto fail;
388 /* abort command ring */
389 retval = xhci_abort_cmd_ring(xhci);
390 if (retval) {
391 xhci_err(xhci, "Abort command ring failed\n");
392 if (unlikely(retval == -ESHUTDOWN)) {
393 spin_unlock_irqrestore(&xhci->lock, flags);
394 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
395 xhci_dbg(xhci, "xHCI host controller is dead.\n");
396 return retval;
400 fail:
401 spin_unlock_irqrestore(&xhci->lock, flags);
402 return retval;
405 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
406 unsigned int slot_id,
407 unsigned int ep_index,
408 unsigned int stream_id)
410 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
411 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
412 unsigned int ep_state = ep->ep_state;
414 /* Don't ring the doorbell for this endpoint if there are pending
415 * cancellations because we don't want to interrupt processing.
416 * We don't want to restart any stream rings if there's a set dequeue
417 * pointer command pending because the device can choose to start any
418 * stream once the endpoint is on the HW schedule.
419 * FIXME - check all the stream rings for pending cancellations.
421 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
422 (ep_state & EP_HALTED))
423 return;
424 writel(DB_VALUE(ep_index, stream_id), db_addr);
425 /* The CPU has better things to do at this point than wait for a
426 * write-posting flush. It'll get there soon enough.
430 /* Ring the doorbell for any rings with pending URBs */
431 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
432 unsigned int slot_id,
433 unsigned int ep_index)
435 unsigned int stream_id;
436 struct xhci_virt_ep *ep;
438 ep = &xhci->devs[slot_id]->eps[ep_index];
440 /* A ring has pending URBs if its TD list is not empty */
441 if (!(ep->ep_state & EP_HAS_STREAMS)) {
442 if (ep->ring && !(list_empty(&ep->ring->td_list)))
443 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
444 return;
447 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
448 stream_id++) {
449 struct xhci_stream_info *stream_info = ep->stream_info;
450 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
451 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
452 stream_id);
457 * Find the segment that trb is in. Start searching in start_seg.
458 * If we must move past a segment that has a link TRB with a toggle cycle state
459 * bit set, then we will toggle the value pointed at by cycle_state.
461 static struct xhci_segment *find_trb_seg(
462 struct xhci_segment *start_seg,
463 union xhci_trb *trb, int *cycle_state)
465 struct xhci_segment *cur_seg = start_seg;
466 struct xhci_generic_trb *generic_trb;
468 while (cur_seg->trbs > trb ||
469 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
470 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
471 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
472 *cycle_state ^= 0x1;
473 cur_seg = cur_seg->next;
474 if (cur_seg == start_seg)
475 /* Looped over the entire list. Oops! */
476 return NULL;
478 return cur_seg;
482 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
483 unsigned int slot_id, unsigned int ep_index,
484 unsigned int stream_id)
486 struct xhci_virt_ep *ep;
488 ep = &xhci->devs[slot_id]->eps[ep_index];
489 /* Common case: no streams */
490 if (!(ep->ep_state & EP_HAS_STREAMS))
491 return ep->ring;
493 if (stream_id == 0) {
494 xhci_warn(xhci,
495 "WARN: Slot ID %u, ep index %u has streams, "
496 "but URB has no stream ID.\n",
497 slot_id, ep_index);
498 return NULL;
501 if (stream_id < ep->stream_info->num_streams)
502 return ep->stream_info->stream_rings[stream_id];
504 xhci_warn(xhci,
505 "WARN: Slot ID %u, ep index %u has "
506 "stream IDs 1 to %u allocated, "
507 "but stream ID %u is requested.\n",
508 slot_id, ep_index,
509 ep->stream_info->num_streams - 1,
510 stream_id);
511 return NULL;
514 /* Get the right ring for the given URB.
515 * If the endpoint supports streams, boundary check the URB's stream ID.
516 * If the endpoint doesn't support streams, return the singular endpoint ring.
518 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
519 struct urb *urb)
521 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
522 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
526 * Move the xHC's endpoint ring dequeue pointer past cur_td.
527 * Record the new state of the xHC's endpoint ring dequeue segment,
528 * dequeue pointer, and new consumer cycle state in state.
529 * Update our internal representation of the ring's dequeue pointer.
531 * We do this in three jumps:
532 * - First we update our new ring state to be the same as when the xHC stopped.
533 * - Then we traverse the ring to find the segment that contains
534 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
535 * any link TRBs with the toggle cycle bit set.
536 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
537 * if we've moved it past a link TRB with the toggle cycle bit set.
539 * Some of the uses of xhci_generic_trb are grotty, but if they're done
540 * with correct __le32 accesses they should work fine. Only users of this are
541 * in here.
543 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
544 unsigned int slot_id, unsigned int ep_index,
545 unsigned int stream_id, struct xhci_td *cur_td,
546 struct xhci_dequeue_state *state)
548 struct xhci_virt_device *dev = xhci->devs[slot_id];
549 struct xhci_virt_ep *ep = &dev->eps[ep_index];
550 struct xhci_ring *ep_ring;
551 struct xhci_generic_trb *trb;
552 dma_addr_t addr;
553 u64 hw_dequeue;
555 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
556 ep_index, stream_id);
557 if (!ep_ring) {
558 xhci_warn(xhci, "WARN can't find new dequeue state "
559 "for invalid stream ID %u.\n",
560 stream_id);
561 return;
564 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
565 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
566 "Finding endpoint context");
567 /* 4.6.9 the css flag is written to the stream context for streams */
568 if (ep->ep_state & EP_HAS_STREAMS) {
569 struct xhci_stream_ctx *ctx =
570 &ep->stream_info->stream_ctx_array[stream_id];
571 hw_dequeue = le64_to_cpu(ctx->stream_ring);
572 } else {
573 struct xhci_ep_ctx *ep_ctx
574 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
575 hw_dequeue = le64_to_cpu(ep_ctx->deq);
578 /* Find virtual address and segment of hardware dequeue pointer */
579 state->new_deq_seg = ep_ring->deq_seg;
580 state->new_deq_ptr = ep_ring->dequeue;
581 while (xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr)
582 != (dma_addr_t)(hw_dequeue & ~0xf)) {
583 next_trb(xhci, ep_ring, &state->new_deq_seg,
584 &state->new_deq_ptr);
585 if (state->new_deq_ptr == ep_ring->dequeue) {
586 WARN_ON(1);
587 return;
591 * Find cycle state for last_trb, starting at old cycle state of
592 * hw_dequeue. If there is only one segment ring, find_trb_seg() will
593 * return immediately and cannot toggle the cycle state if this search
594 * wraps around, so add one more toggle manually in that case.
596 state->new_cycle_state = hw_dequeue & 0x1;
597 if (ep_ring->first_seg == ep_ring->first_seg->next &&
598 cur_td->last_trb < state->new_deq_ptr)
599 state->new_cycle_state ^= 0x1;
601 state->new_deq_ptr = cur_td->last_trb;
602 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
603 "Finding segment containing last TRB in TD.");
604 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
605 state->new_deq_ptr, &state->new_cycle_state);
606 if (!state->new_deq_seg) {
607 WARN_ON(1);
608 return;
611 /* Increment to find next TRB after last_trb. Cycle if appropriate. */
612 trb = &state->new_deq_ptr->generic;
613 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
614 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
615 state->new_cycle_state ^= 0x1;
616 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
618 /* Don't update the ring cycle state for the producer (us). */
619 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
620 "Cycle state = 0x%x", state->new_cycle_state);
622 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
623 "New dequeue segment = %p (virtual)",
624 state->new_deq_seg);
625 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
626 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
627 "New dequeue pointer = 0x%llx (DMA)",
628 (unsigned long long) addr);
631 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
632 * (The last TRB actually points to the ring enqueue pointer, which is not part
633 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
635 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
636 struct xhci_td *cur_td, bool flip_cycle)
638 struct xhci_segment *cur_seg;
639 union xhci_trb *cur_trb;
641 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
642 true;
643 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
644 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
645 /* Unchain any chained Link TRBs, but
646 * leave the pointers intact.
648 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
649 /* Flip the cycle bit (link TRBs can't be the first
650 * or last TRB).
652 if (flip_cycle)
653 cur_trb->generic.field[3] ^=
654 cpu_to_le32(TRB_CYCLE);
655 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
656 "Cancel (unchain) link TRB");
657 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
658 "Address = %p (0x%llx dma); "
659 "in seg %p (0x%llx dma)",
660 cur_trb,
661 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
662 cur_seg,
663 (unsigned long long)cur_seg->dma);
664 } else {
665 cur_trb->generic.field[0] = 0;
666 cur_trb->generic.field[1] = 0;
667 cur_trb->generic.field[2] = 0;
668 /* Preserve only the cycle bit of this TRB */
669 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
670 /* Flip the cycle bit except on the first or last TRB */
671 if (flip_cycle && cur_trb != cur_td->first_trb &&
672 cur_trb != cur_td->last_trb)
673 cur_trb->generic.field[3] ^=
674 cpu_to_le32(TRB_CYCLE);
675 cur_trb->generic.field[3] |= cpu_to_le32(
676 TRB_TYPE(TRB_TR_NOOP));
677 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
678 "TRB to noop at offset 0x%llx",
679 (unsigned long long)
680 xhci_trb_virt_to_dma(cur_seg, cur_trb));
682 if (cur_trb == cur_td->last_trb)
683 break;
687 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
688 unsigned int ep_index, unsigned int stream_id,
689 struct xhci_segment *deq_seg,
690 union xhci_trb *deq_ptr, u32 cycle_state);
692 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
693 unsigned int slot_id, unsigned int ep_index,
694 unsigned int stream_id,
695 struct xhci_dequeue_state *deq_state)
697 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
699 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
700 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
701 "new deq ptr = %p (0x%llx dma), new cycle = %u",
702 deq_state->new_deq_seg,
703 (unsigned long long)deq_state->new_deq_seg->dma,
704 deq_state->new_deq_ptr,
705 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
706 deq_state->new_cycle_state);
707 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
708 deq_state->new_deq_seg,
709 deq_state->new_deq_ptr,
710 (u32) deq_state->new_cycle_state);
711 /* Stop the TD queueing code from ringing the doorbell until
712 * this command completes. The HC won't set the dequeue pointer
713 * if the ring is running, and ringing the doorbell starts the
714 * ring running.
716 ep->ep_state |= SET_DEQ_PENDING;
719 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
720 struct xhci_virt_ep *ep)
722 ep->ep_state &= ~EP_HALT_PENDING;
723 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
724 * timer is running on another CPU, we don't decrement stop_cmds_pending
725 * (since we didn't successfully stop the watchdog timer).
727 if (del_timer(&ep->stop_cmd_timer))
728 ep->stop_cmds_pending--;
731 /* Must be called with xhci->lock held in interrupt context */
732 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
733 struct xhci_td *cur_td, int status)
735 struct usb_hcd *hcd;
736 struct urb *urb;
737 struct urb_priv *urb_priv;
739 urb = cur_td->urb;
740 urb_priv = urb->hcpriv;
741 urb_priv->td_cnt++;
742 hcd = bus_to_hcd(urb->dev->bus);
744 /* Only giveback urb when this is the last td in urb */
745 if (urb_priv->td_cnt == urb_priv->length) {
746 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
747 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
748 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
749 if (xhci->quirks & XHCI_AMD_PLL_FIX)
750 usb_amd_quirk_pll_enable();
753 usb_hcd_unlink_urb_from_ep(hcd, urb);
755 spin_unlock(&xhci->lock);
756 usb_hcd_giveback_urb(hcd, urb, status);
757 xhci_urb_free_priv(xhci, urb_priv);
758 spin_lock(&xhci->lock);
763 * When we get a command completion for a Stop Endpoint Command, we need to
764 * unlink any cancelled TDs from the ring. There are two ways to do that:
766 * 1. If the HW was in the middle of processing the TD that needs to be
767 * cancelled, then we must move the ring's dequeue pointer past the last TRB
768 * in the TD with a Set Dequeue Pointer Command.
769 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
770 * bit cleared) so that the HW will skip over them.
772 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
773 union xhci_trb *trb, struct xhci_event_cmd *event)
775 unsigned int ep_index;
776 struct xhci_virt_device *virt_dev;
777 struct xhci_ring *ep_ring;
778 struct xhci_virt_ep *ep;
779 struct list_head *entry;
780 struct xhci_td *cur_td = NULL;
781 struct xhci_td *last_unlinked_td;
783 struct xhci_dequeue_state deq_state;
785 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
786 virt_dev = xhci->devs[slot_id];
787 if (virt_dev)
788 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
789 event);
790 else
791 xhci_warn(xhci, "Stop endpoint command "
792 "completion for disabled slot %u\n",
793 slot_id);
794 return;
797 memset(&deq_state, 0, sizeof(deq_state));
798 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
799 ep = &xhci->devs[slot_id]->eps[ep_index];
801 if (list_empty(&ep->cancelled_td_list)) {
802 xhci_stop_watchdog_timer_in_irq(xhci, ep);
803 ep->stopped_td = NULL;
804 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
805 return;
808 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
809 * We have the xHCI lock, so nothing can modify this list until we drop
810 * it. We're also in the event handler, so we can't get re-interrupted
811 * if another Stop Endpoint command completes
813 list_for_each(entry, &ep->cancelled_td_list) {
814 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
815 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
816 "Removing canceled TD starting at 0x%llx (dma).",
817 (unsigned long long)xhci_trb_virt_to_dma(
818 cur_td->start_seg, cur_td->first_trb));
819 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
820 if (!ep_ring) {
821 /* This shouldn't happen unless a driver is mucking
822 * with the stream ID after submission. This will
823 * leave the TD on the hardware ring, and the hardware
824 * will try to execute it, and may access a buffer
825 * that has already been freed. In the best case, the
826 * hardware will execute it, and the event handler will
827 * ignore the completion event for that TD, since it was
828 * removed from the td_list for that endpoint. In
829 * short, don't muck with the stream ID after
830 * submission.
832 xhci_warn(xhci, "WARN Cancelled URB %p "
833 "has invalid stream ID %u.\n",
834 cur_td->urb,
835 cur_td->urb->stream_id);
836 goto remove_finished_td;
839 * If we stopped on the TD we need to cancel, then we have to
840 * move the xHC endpoint ring dequeue pointer past this TD.
842 if (cur_td == ep->stopped_td)
843 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
844 cur_td->urb->stream_id,
845 cur_td, &deq_state);
846 else
847 td_to_noop(xhci, ep_ring, cur_td, false);
848 remove_finished_td:
850 * The event handler won't see a completion for this TD anymore,
851 * so remove it from the endpoint ring's TD list. Keep it in
852 * the cancelled TD list for URB completion later.
854 list_del_init(&cur_td->td_list);
856 last_unlinked_td = cur_td;
857 xhci_stop_watchdog_timer_in_irq(xhci, ep);
859 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
860 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
861 xhci_queue_new_dequeue_state(xhci,
862 slot_id, ep_index,
863 ep->stopped_td->urb->stream_id,
864 &deq_state);
865 xhci_ring_cmd_db(xhci);
866 } else {
867 /* Otherwise ring the doorbell(s) to restart queued transfers */
868 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
871 /* Clear stopped_td if endpoint is not halted */
872 if (!(ep->ep_state & EP_HALTED))
873 ep->stopped_td = NULL;
876 * Drop the lock and complete the URBs in the cancelled TD list.
877 * New TDs to be cancelled might be added to the end of the list before
878 * we can complete all the URBs for the TDs we already unlinked.
879 * So stop when we've completed the URB for the last TD we unlinked.
881 do {
882 cur_td = list_entry(ep->cancelled_td_list.next,
883 struct xhci_td, cancelled_td_list);
884 list_del_init(&cur_td->cancelled_td_list);
886 /* Clean up the cancelled URB */
887 /* Doesn't matter what we pass for status, since the core will
888 * just overwrite it (because the URB has been unlinked).
890 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
892 /* Stop processing the cancelled list if the watchdog timer is
893 * running.
895 if (xhci->xhc_state & XHCI_STATE_DYING)
896 return;
897 } while (cur_td != last_unlinked_td);
899 /* Return to the event handler with xhci->lock re-acquired */
902 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
904 struct xhci_td *cur_td;
906 while (!list_empty(&ring->td_list)) {
907 cur_td = list_first_entry(&ring->td_list,
908 struct xhci_td, td_list);
909 list_del_init(&cur_td->td_list);
910 if (!list_empty(&cur_td->cancelled_td_list))
911 list_del_init(&cur_td->cancelled_td_list);
912 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
916 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
917 int slot_id, int ep_index)
919 struct xhci_td *cur_td;
920 struct xhci_virt_ep *ep;
921 struct xhci_ring *ring;
923 ep = &xhci->devs[slot_id]->eps[ep_index];
924 if ((ep->ep_state & EP_HAS_STREAMS) ||
925 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
926 int stream_id;
928 for (stream_id = 0; stream_id < ep->stream_info->num_streams;
929 stream_id++) {
930 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
931 "Killing URBs for slot ID %u, ep index %u, stream %u",
932 slot_id, ep_index, stream_id + 1);
933 xhci_kill_ring_urbs(xhci,
934 ep->stream_info->stream_rings[stream_id]);
936 } else {
937 ring = ep->ring;
938 if (!ring)
939 return;
940 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
941 "Killing URBs for slot ID %u, ep index %u",
942 slot_id, ep_index);
943 xhci_kill_ring_urbs(xhci, ring);
945 while (!list_empty(&ep->cancelled_td_list)) {
946 cur_td = list_first_entry(&ep->cancelled_td_list,
947 struct xhci_td, cancelled_td_list);
948 list_del_init(&cur_td->cancelled_td_list);
949 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
953 /* Watchdog timer function for when a stop endpoint command fails to complete.
954 * In this case, we assume the host controller is broken or dying or dead. The
955 * host may still be completing some other events, so we have to be careful to
956 * let the event ring handler and the URB dequeueing/enqueueing functions know
957 * through xhci->state.
959 * The timer may also fire if the host takes a very long time to respond to the
960 * command, and the stop endpoint command completion handler cannot delete the
961 * timer before the timer function is called. Another endpoint cancellation may
962 * sneak in before the timer function can grab the lock, and that may queue
963 * another stop endpoint command and add the timer back. So we cannot use a
964 * simple flag to say whether there is a pending stop endpoint command for a
965 * particular endpoint.
967 * Instead we use a combination of that flag and a counter for the number of
968 * pending stop endpoint commands. If the timer is the tail end of the last
969 * stop endpoint command, and the endpoint's command is still pending, we assume
970 * the host is dying.
972 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
974 struct xhci_hcd *xhci;
975 struct xhci_virt_ep *ep;
976 int ret, i, j;
977 unsigned long flags;
979 ep = (struct xhci_virt_ep *) arg;
980 xhci = ep->xhci;
982 spin_lock_irqsave(&xhci->lock, flags);
984 ep->stop_cmds_pending--;
985 if (xhci->xhc_state & XHCI_STATE_DYING) {
986 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
987 "Stop EP timer ran, but another timer marked "
988 "xHCI as DYING, exiting.");
989 spin_unlock_irqrestore(&xhci->lock, flags);
990 return;
992 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
993 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
994 "Stop EP timer ran, but no command pending, "
995 "exiting.");
996 spin_unlock_irqrestore(&xhci->lock, flags);
997 return;
1000 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
1001 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
1002 /* Oops, HC is dead or dying or at least not responding to the stop
1003 * endpoint command.
1005 xhci->xhc_state |= XHCI_STATE_DYING;
1006 /* Disable interrupts from the host controller and start halting it */
1007 xhci_quiesce(xhci);
1008 spin_unlock_irqrestore(&xhci->lock, flags);
1010 ret = xhci_halt(xhci);
1012 spin_lock_irqsave(&xhci->lock, flags);
1013 if (ret < 0) {
1014 /* This is bad; the host is not responding to commands and it's
1015 * not allowing itself to be halted. At least interrupts are
1016 * disabled. If we call usb_hc_died(), it will attempt to
1017 * disconnect all device drivers under this host. Those
1018 * disconnect() methods will wait for all URBs to be unlinked,
1019 * so we must complete them.
1021 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
1022 xhci_warn(xhci, "Completing active URBs anyway.\n");
1023 /* We could turn all TDs on the rings to no-ops. This won't
1024 * help if the host has cached part of the ring, and is slow if
1025 * we want to preserve the cycle bit. Skip it and hope the host
1026 * doesn't touch the memory.
1029 for (i = 0; i < MAX_HC_SLOTS; i++) {
1030 if (!xhci->devs[i])
1031 continue;
1032 for (j = 0; j < 31; j++)
1033 xhci_kill_endpoint_urbs(xhci, i, j);
1035 spin_unlock_irqrestore(&xhci->lock, flags);
1036 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1037 "Calling usb_hc_died()");
1038 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1039 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1040 "xHCI host controller is dead.");
1044 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
1045 struct xhci_virt_device *dev,
1046 struct xhci_ring *ep_ring,
1047 unsigned int ep_index)
1049 union xhci_trb *dequeue_temp;
1050 int num_trbs_free_temp;
1051 bool revert = false;
1053 num_trbs_free_temp = ep_ring->num_trbs_free;
1054 dequeue_temp = ep_ring->dequeue;
1056 /* If we get two back-to-back stalls, and the first stalled transfer
1057 * ends just before a link TRB, the dequeue pointer will be left on
1058 * the link TRB by the code in the while loop. So we have to update
1059 * the dequeue pointer one segment further, or we'll jump off
1060 * the segment into la-la-land.
1062 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
1063 ep_ring->deq_seg = ep_ring->deq_seg->next;
1064 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1067 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1068 /* We have more usable TRBs */
1069 ep_ring->num_trbs_free++;
1070 ep_ring->dequeue++;
1071 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
1072 ep_ring->dequeue)) {
1073 if (ep_ring->dequeue ==
1074 dev->eps[ep_index].queued_deq_ptr)
1075 break;
1076 ep_ring->deq_seg = ep_ring->deq_seg->next;
1077 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1079 if (ep_ring->dequeue == dequeue_temp) {
1080 revert = true;
1081 break;
1085 if (revert) {
1086 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1087 ep_ring->num_trbs_free = num_trbs_free_temp;
1092 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1093 * we need to clear the set deq pending flag in the endpoint ring state, so that
1094 * the TD queueing code can ring the doorbell again. We also need to ring the
1095 * endpoint doorbell to restart the ring, but only if there aren't more
1096 * cancellations pending.
1098 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1099 union xhci_trb *trb, u32 cmd_comp_code)
1101 unsigned int ep_index;
1102 unsigned int stream_id;
1103 struct xhci_ring *ep_ring;
1104 struct xhci_virt_device *dev;
1105 struct xhci_virt_ep *ep;
1106 struct xhci_ep_ctx *ep_ctx;
1107 struct xhci_slot_ctx *slot_ctx;
1109 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1110 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1111 dev = xhci->devs[slot_id];
1112 ep = &dev->eps[ep_index];
1114 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1115 if (!ep_ring) {
1116 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1117 stream_id);
1118 /* XXX: Harmless??? */
1119 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1120 return;
1123 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1124 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1126 if (cmd_comp_code != COMP_SUCCESS) {
1127 unsigned int ep_state;
1128 unsigned int slot_state;
1130 switch (cmd_comp_code) {
1131 case COMP_TRB_ERR:
1132 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1133 break;
1134 case COMP_CTX_STATE:
1135 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1136 ep_state = le32_to_cpu(ep_ctx->ep_info);
1137 ep_state &= EP_STATE_MASK;
1138 slot_state = le32_to_cpu(slot_ctx->dev_state);
1139 slot_state = GET_SLOT_STATE(slot_state);
1140 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1141 "Slot state = %u, EP state = %u",
1142 slot_state, ep_state);
1143 break;
1144 case COMP_EBADSLT:
1145 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1146 slot_id);
1147 break;
1148 default:
1149 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1150 cmd_comp_code);
1151 break;
1153 /* OK what do we do now? The endpoint state is hosed, and we
1154 * should never get to this point if the synchronization between
1155 * queueing, and endpoint state are correct. This might happen
1156 * if the device gets disconnected after we've finished
1157 * cancelling URBs, which might not be an error...
1159 } else {
1160 u64 deq;
1161 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1162 if (ep->ep_state & EP_HAS_STREAMS) {
1163 struct xhci_stream_ctx *ctx =
1164 &ep->stream_info->stream_ctx_array[stream_id];
1165 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1166 } else {
1167 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1169 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1170 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1171 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1172 ep->queued_deq_ptr) == deq) {
1173 /* Update the ring's dequeue segment and dequeue pointer
1174 * to reflect the new position.
1176 update_ring_for_set_deq_completion(xhci, dev,
1177 ep_ring, ep_index);
1178 } else {
1179 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1180 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1181 ep->queued_deq_seg, ep->queued_deq_ptr);
1185 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1186 dev->eps[ep_index].queued_deq_seg = NULL;
1187 dev->eps[ep_index].queued_deq_ptr = NULL;
1188 /* Restart any rings with pending URBs */
1189 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1192 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1193 union xhci_trb *trb, u32 cmd_comp_code)
1195 unsigned int ep_index;
1197 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1198 /* This command will only fail if the endpoint wasn't halted,
1199 * but we don't care.
1201 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1202 "Ignoring reset ep completion code of %u", cmd_comp_code);
1204 /* HW with the reset endpoint quirk needs to have a configure endpoint
1205 * command complete before the endpoint can be used. Queue that here
1206 * because the HW can't handle two commands being queued in a row.
1208 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1209 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1210 "Queueing configure endpoint command");
1211 xhci_queue_configure_endpoint(xhci,
1212 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1213 false);
1214 xhci_ring_cmd_db(xhci);
1215 } else {
1216 /* Clear our internal halted state and restart the ring(s) */
1217 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1218 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1222 /* Complete the command and detele it from the devcie's command queue.
1224 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1225 struct xhci_command *command, u32 status)
1227 command->status = status;
1228 list_del(&command->cmd_list);
1229 if (command->completion)
1230 complete(command->completion);
1231 else
1232 xhci_free_command(xhci, command);
1236 /* Check to see if a command in the device's command queue matches this one.
1237 * Signal the completion or free the command, and return 1. Return 0 if the
1238 * completed command isn't at the head of the command list.
1240 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1241 struct xhci_virt_device *virt_dev,
1242 struct xhci_event_cmd *event)
1244 struct xhci_command *command;
1246 if (list_empty(&virt_dev->cmd_list))
1247 return 0;
1249 command = list_entry(virt_dev->cmd_list.next,
1250 struct xhci_command, cmd_list);
1251 if (xhci->cmd_ring->dequeue != command->command_trb)
1252 return 0;
1254 xhci_complete_cmd_in_cmd_wait_list(xhci, command,
1255 GET_COMP_CODE(le32_to_cpu(event->status)));
1256 return 1;
1260 * Finding the command trb need to be cancelled and modifying it to
1261 * NO OP command. And if the command is in device's command wait
1262 * list, finishing and freeing it.
1264 * If we can't find the command trb, we think it had already been
1265 * executed.
1267 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd)
1269 struct xhci_segment *cur_seg;
1270 union xhci_trb *cmd_trb;
1271 u32 cycle_state;
1273 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1274 return;
1276 /* find the current segment of command ring */
1277 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg,
1278 xhci->cmd_ring->dequeue, &cycle_state);
1280 if (!cur_seg) {
1281 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n",
1282 xhci->cmd_ring->dequeue,
1283 (unsigned long long)
1284 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1285 xhci->cmd_ring->dequeue));
1286 xhci_debug_ring(xhci, xhci->cmd_ring);
1287 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
1288 return;
1291 /* find the command trb matched by cd from command ring */
1292 for (cmd_trb = xhci->cmd_ring->dequeue;
1293 cmd_trb != xhci->cmd_ring->enqueue;
1294 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) {
1295 /* If the trb is link trb, continue */
1296 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3]))
1297 continue;
1299 if (cur_cd->cmd_trb == cmd_trb) {
1301 /* If the command in device's command list, we should
1302 * finish it and free the command structure.
1304 if (cur_cd->command)
1305 xhci_complete_cmd_in_cmd_wait_list(xhci,
1306 cur_cd->command, COMP_CMD_STOP);
1308 /* get cycle state from the origin command trb */
1309 cycle_state = le32_to_cpu(cmd_trb->generic.field[3])
1310 & TRB_CYCLE;
1312 /* modify the command trb to NO OP command */
1313 cmd_trb->generic.field[0] = 0;
1314 cmd_trb->generic.field[1] = 0;
1315 cmd_trb->generic.field[2] = 0;
1316 cmd_trb->generic.field[3] = cpu_to_le32(
1317 TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1318 break;
1323 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci)
1325 struct xhci_cd *cur_cd, *next_cd;
1327 if (list_empty(&xhci->cancel_cmd_list))
1328 return;
1330 list_for_each_entry_safe(cur_cd, next_cd,
1331 &xhci->cancel_cmd_list, cancel_cmd_list) {
1332 xhci_cmd_to_noop(xhci, cur_cd);
1333 list_del(&cur_cd->cancel_cmd_list);
1334 kfree(cur_cd);
1339 * traversing the cancel_cmd_list. If the command descriptor according
1340 * to cmd_trb is found, the function free it and return 1, otherwise
1341 * return 0.
1343 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci,
1344 union xhci_trb *cmd_trb)
1346 struct xhci_cd *cur_cd, *next_cd;
1348 if (list_empty(&xhci->cancel_cmd_list))
1349 return 0;
1351 list_for_each_entry_safe(cur_cd, next_cd,
1352 &xhci->cancel_cmd_list, cancel_cmd_list) {
1353 if (cur_cd->cmd_trb == cmd_trb) {
1354 if (cur_cd->command)
1355 xhci_complete_cmd_in_cmd_wait_list(xhci,
1356 cur_cd->command, COMP_CMD_STOP);
1357 list_del(&cur_cd->cancel_cmd_list);
1358 kfree(cur_cd);
1359 return 1;
1363 return 0;
1367 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the
1368 * trb pointed by the command ring dequeue pointer is the trb we want to
1369 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will
1370 * traverse the cancel_cmd_list to trun the all of the commands according
1371 * to command descriptor to NO-OP trb.
1373 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1374 int cmd_trb_comp_code)
1376 int cur_trb_is_good = 0;
1378 /* Searching the cmd trb pointed by the command ring dequeue
1379 * pointer in command descriptor list. If it is found, free it.
1381 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci,
1382 xhci->cmd_ring->dequeue);
1384 if (cmd_trb_comp_code == COMP_CMD_ABORT)
1385 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1386 else if (cmd_trb_comp_code == COMP_CMD_STOP) {
1387 /* traversing the cancel_cmd_list and canceling
1388 * the command according to command descriptor
1390 xhci_cancel_cmd_in_cd_list(xhci);
1392 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1394 * ring command ring doorbell again to restart the
1395 * command ring
1397 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue)
1398 xhci_ring_cmd_db(xhci);
1400 return cur_trb_is_good;
1403 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1404 u32 cmd_comp_code)
1406 if (cmd_comp_code == COMP_SUCCESS)
1407 xhci->slot_id = slot_id;
1408 else
1409 xhci->slot_id = 0;
1410 complete(&xhci->addr_dev);
1413 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1415 struct xhci_virt_device *virt_dev;
1417 virt_dev = xhci->devs[slot_id];
1418 if (!virt_dev)
1419 return;
1420 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1421 /* Delete default control endpoint resources */
1422 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1423 xhci_free_virt_device(xhci, slot_id);
1426 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1427 struct xhci_event_cmd *event, u32 cmd_comp_code)
1429 struct xhci_virt_device *virt_dev;
1430 struct xhci_input_control_ctx *ctrl_ctx;
1431 unsigned int ep_index;
1432 unsigned int ep_state;
1433 u32 add_flags, drop_flags;
1435 virt_dev = xhci->devs[slot_id];
1436 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1437 return;
1439 * Configure endpoint commands can come from the USB core
1440 * configuration or alt setting changes, or because the HW
1441 * needed an extra configure endpoint command after a reset
1442 * endpoint command or streams were being configured.
1443 * If the command was for a halted endpoint, the xHCI driver
1444 * is not waiting on the configure endpoint command.
1446 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1447 if (!ctrl_ctx) {
1448 xhci_warn(xhci, "Could not get input context, bad type.\n");
1449 return;
1452 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1453 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1454 /* Input ctx add_flags are the endpoint index plus one */
1455 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1457 /* A usb_set_interface() call directly after clearing a halted
1458 * condition may race on this quirky hardware. Not worth
1459 * worrying about, since this is prototype hardware. Not sure
1460 * if this will work for streams, but streams support was
1461 * untested on this prototype.
1463 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1464 ep_index != (unsigned int) -1 &&
1465 add_flags - SLOT_FLAG == drop_flags) {
1466 ep_state = virt_dev->eps[ep_index].ep_state;
1467 if (!(ep_state & EP_HALTED))
1468 goto bandwidth_change;
1469 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1470 "Completed config ep cmd - "
1471 "last ep index = %d, state = %d",
1472 ep_index, ep_state);
1473 /* Clear internal halted state and restart ring(s) */
1474 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1475 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1476 return;
1478 bandwidth_change:
1479 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1480 "Completed config ep cmd");
1481 virt_dev->cmd_status = cmd_comp_code;
1482 complete(&virt_dev->cmd_completion);
1483 return;
1486 static void xhci_handle_cmd_eval_ctx(struct xhci_hcd *xhci, int slot_id,
1487 struct xhci_event_cmd *event, u32 cmd_comp_code)
1489 struct xhci_virt_device *virt_dev;
1491 virt_dev = xhci->devs[slot_id];
1492 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1493 return;
1494 virt_dev->cmd_status = cmd_comp_code;
1495 complete(&virt_dev->cmd_completion);
1498 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id,
1499 u32 cmd_comp_code)
1501 xhci->devs[slot_id]->cmd_status = cmd_comp_code;
1502 complete(&xhci->addr_dev);
1505 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1506 struct xhci_event_cmd *event)
1508 struct xhci_virt_device *virt_dev;
1510 xhci_dbg(xhci, "Completed reset device command.\n");
1511 virt_dev = xhci->devs[slot_id];
1512 if (virt_dev)
1513 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1514 else
1515 xhci_warn(xhci, "Reset device command completion "
1516 "for disabled slot %u\n", slot_id);
1519 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1520 struct xhci_event_cmd *event)
1522 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1523 xhci->error_bitmask |= 1 << 6;
1524 return;
1526 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1527 "NEC firmware version %2x.%02x",
1528 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1529 NEC_FW_MINOR(le32_to_cpu(event->status)));
1532 static void handle_cmd_completion(struct xhci_hcd *xhci,
1533 struct xhci_event_cmd *event)
1535 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1536 u64 cmd_dma;
1537 dma_addr_t cmd_dequeue_dma;
1538 u32 cmd_comp_code;
1539 union xhci_trb *cmd_trb;
1540 u32 cmd_type;
1542 cmd_dma = le64_to_cpu(event->cmd_trb);
1543 cmd_trb = xhci->cmd_ring->dequeue;
1544 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1545 cmd_trb);
1546 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1547 if (cmd_dequeue_dma == 0) {
1548 xhci->error_bitmask |= 1 << 4;
1549 return;
1551 /* Does the DMA address match our internal dequeue pointer address? */
1552 if (cmd_dma != (u64) cmd_dequeue_dma) {
1553 xhci->error_bitmask |= 1 << 5;
1554 return;
1557 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
1559 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1560 if (cmd_comp_code == COMP_CMD_ABORT || cmd_comp_code == COMP_CMD_STOP) {
1561 /* If the return value is 0, we think the trb pointed by
1562 * command ring dequeue pointer is a good trb. The good
1563 * trb means we don't want to cancel the trb, but it have
1564 * been stopped by host. So we should handle it normally.
1565 * Otherwise, driver should invoke inc_deq() and return.
1567 if (handle_stopped_cmd_ring(xhci, cmd_comp_code)) {
1568 inc_deq(xhci, xhci->cmd_ring);
1569 return;
1571 /* There is no command to handle if we get a stop event when the
1572 * command ring is empty, event->cmd_trb points to the next
1573 * unset command
1575 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1576 return;
1579 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1580 switch (cmd_type) {
1581 case TRB_ENABLE_SLOT:
1582 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code);
1583 break;
1584 case TRB_DISABLE_SLOT:
1585 xhci_handle_cmd_disable_slot(xhci, slot_id);
1586 break;
1587 case TRB_CONFIG_EP:
1588 xhci_handle_cmd_config_ep(xhci, slot_id, event, cmd_comp_code);
1589 break;
1590 case TRB_EVAL_CONTEXT:
1591 xhci_handle_cmd_eval_ctx(xhci, slot_id, event, cmd_comp_code);
1592 break;
1593 case TRB_ADDR_DEV:
1594 xhci_handle_cmd_addr_dev(xhci, slot_id, cmd_comp_code);
1595 break;
1596 case TRB_STOP_RING:
1597 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1598 le32_to_cpu(cmd_trb->generic.field[3])));
1599 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1600 break;
1601 case TRB_SET_DEQ:
1602 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1603 le32_to_cpu(cmd_trb->generic.field[3])));
1604 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1605 break;
1606 case TRB_CMD_NOOP:
1607 break;
1608 case TRB_RESET_EP:
1609 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1610 le32_to_cpu(cmd_trb->generic.field[3])));
1611 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1612 break;
1613 case TRB_RESET_DEV:
1614 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1615 le32_to_cpu(cmd_trb->generic.field[3])));
1616 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1617 break;
1618 case TRB_NEC_GET_FW:
1619 xhci_handle_cmd_nec_get_fw(xhci, event);
1620 break;
1621 default:
1622 /* Skip over unknown commands on the event ring */
1623 xhci->error_bitmask |= 1 << 6;
1624 break;
1626 inc_deq(xhci, xhci->cmd_ring);
1629 static void handle_vendor_event(struct xhci_hcd *xhci,
1630 union xhci_trb *event)
1632 u32 trb_type;
1634 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1635 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1636 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1637 handle_cmd_completion(xhci, &event->event_cmd);
1640 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1641 * port registers -- USB 3.0 and USB 2.0).
1643 * Returns a zero-based port number, which is suitable for indexing into each of
1644 * the split roothubs' port arrays and bus state arrays.
1645 * Add one to it in order to call xhci_find_slot_id_by_port.
1647 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1648 struct xhci_hcd *xhci, u32 port_id)
1650 unsigned int i;
1651 unsigned int num_similar_speed_ports = 0;
1653 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1654 * and usb2_ports are 0-based indexes. Count the number of similar
1655 * speed ports, up to 1 port before this port.
1657 for (i = 0; i < (port_id - 1); i++) {
1658 u8 port_speed = xhci->port_array[i];
1661 * Skip ports that don't have known speeds, or have duplicate
1662 * Extended Capabilities port speed entries.
1664 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1665 continue;
1668 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1669 * 1.1 ports are under the USB 2.0 hub. If the port speed
1670 * matches the device speed, it's a similar speed port.
1672 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1673 num_similar_speed_ports++;
1675 return num_similar_speed_ports;
1678 static void handle_device_notification(struct xhci_hcd *xhci,
1679 union xhci_trb *event)
1681 u32 slot_id;
1682 struct usb_device *udev;
1684 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1685 if (!xhci->devs[slot_id]) {
1686 xhci_warn(xhci, "Device Notification event for "
1687 "unused slot %u\n", slot_id);
1688 return;
1691 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1692 slot_id);
1693 udev = xhci->devs[slot_id]->udev;
1694 if (udev && udev->parent)
1695 usb_wakeup_notification(udev->parent, udev->portnum);
1698 static void handle_port_status(struct xhci_hcd *xhci,
1699 union xhci_trb *event)
1701 struct usb_hcd *hcd;
1702 u32 port_id;
1703 u32 temp, temp1;
1704 int max_ports;
1705 int slot_id;
1706 unsigned int faked_port_index;
1707 u8 major_revision;
1708 struct xhci_bus_state *bus_state;
1709 __le32 __iomem **port_array;
1710 bool bogus_port_status = false;
1712 /* Port status change events always have a successful completion code */
1713 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1714 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1715 xhci->error_bitmask |= 1 << 8;
1717 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1718 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1720 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1721 if ((port_id <= 0) || (port_id > max_ports)) {
1722 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1723 inc_deq(xhci, xhci->event_ring);
1724 return;
1727 /* Figure out which usb_hcd this port is attached to:
1728 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1730 major_revision = xhci->port_array[port_id - 1];
1732 /* Find the right roothub. */
1733 hcd = xhci_to_hcd(xhci);
1734 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1735 hcd = xhci->shared_hcd;
1737 if (major_revision == 0) {
1738 xhci_warn(xhci, "Event for port %u not in "
1739 "Extended Capabilities, ignoring.\n",
1740 port_id);
1741 bogus_port_status = true;
1742 goto cleanup;
1744 if (major_revision == DUPLICATE_ENTRY) {
1745 xhci_warn(xhci, "Event for port %u duplicated in"
1746 "Extended Capabilities, ignoring.\n",
1747 port_id);
1748 bogus_port_status = true;
1749 goto cleanup;
1753 * Hardware port IDs reported by a Port Status Change Event include USB
1754 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1755 * resume event, but we first need to translate the hardware port ID
1756 * into the index into the ports on the correct split roothub, and the
1757 * correct bus_state structure.
1759 bus_state = &xhci->bus_state[hcd_index(hcd)];
1760 if (hcd->speed == HCD_USB3)
1761 port_array = xhci->usb3_ports;
1762 else
1763 port_array = xhci->usb2_ports;
1764 /* Find the faked port hub number */
1765 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1766 port_id);
1768 temp = readl(port_array[faked_port_index]);
1769 if (hcd->state == HC_STATE_SUSPENDED) {
1770 xhci_dbg(xhci, "resume root hub\n");
1771 usb_hcd_resume_root_hub(hcd);
1774 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1775 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1777 temp1 = readl(&xhci->op_regs->command);
1778 if (!(temp1 & CMD_RUN)) {
1779 xhci_warn(xhci, "xHC is not running.\n");
1780 goto cleanup;
1783 if (DEV_SUPERSPEED(temp)) {
1784 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1785 /* Set a flag to say the port signaled remote wakeup,
1786 * so we can tell the difference between the end of
1787 * device and host initiated resume.
1789 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1790 xhci_test_and_clear_bit(xhci, port_array,
1791 faked_port_index, PORT_PLC);
1792 xhci_set_link_state(xhci, port_array, faked_port_index,
1793 XDEV_U0);
1794 /* Need to wait until the next link state change
1795 * indicates the device is actually in U0.
1797 bogus_port_status = true;
1798 goto cleanup;
1799 } else {
1800 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1801 bus_state->resume_done[faked_port_index] = jiffies +
1802 msecs_to_jiffies(20);
1803 set_bit(faked_port_index, &bus_state->resuming_ports);
1804 mod_timer(&hcd->rh_timer,
1805 bus_state->resume_done[faked_port_index]);
1806 /* Do the rest in GetPortStatus */
1810 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1811 DEV_SUPERSPEED(temp)) {
1812 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1813 /* We've just brought the device into U0 through either the
1814 * Resume state after a device remote wakeup, or through the
1815 * U3Exit state after a host-initiated resume. If it's a device
1816 * initiated remote wake, don't pass up the link state change,
1817 * so the roothub behavior is consistent with external
1818 * USB 3.0 hub behavior.
1820 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1821 faked_port_index + 1);
1822 if (slot_id && xhci->devs[slot_id])
1823 xhci_ring_device(xhci, slot_id);
1824 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1825 bus_state->port_remote_wakeup &=
1826 ~(1 << faked_port_index);
1827 xhci_test_and_clear_bit(xhci, port_array,
1828 faked_port_index, PORT_PLC);
1829 usb_wakeup_notification(hcd->self.root_hub,
1830 faked_port_index + 1);
1831 bogus_port_status = true;
1832 goto cleanup;
1837 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1838 * RExit to a disconnect state). If so, let the the driver know it's
1839 * out of the RExit state.
1841 if (!DEV_SUPERSPEED(temp) &&
1842 test_and_clear_bit(faked_port_index,
1843 &bus_state->rexit_ports)) {
1844 complete(&bus_state->rexit_done[faked_port_index]);
1845 bogus_port_status = true;
1846 goto cleanup;
1849 if (hcd->speed != HCD_USB3)
1850 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1851 PORT_PLC);
1853 cleanup:
1854 /* Update event ring dequeue pointer before dropping the lock */
1855 inc_deq(xhci, xhci->event_ring);
1857 /* Don't make the USB core poll the roothub if we got a bad port status
1858 * change event. Besides, at that point we can't tell which roothub
1859 * (USB 2.0 or USB 3.0) to kick.
1861 if (bogus_port_status)
1862 return;
1865 * xHCI port-status-change events occur when the "or" of all the
1866 * status-change bits in the portsc register changes from 0 to 1.
1867 * New status changes won't cause an event if any other change
1868 * bits are still set. When an event occurs, switch over to
1869 * polling to avoid losing status changes.
1871 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1872 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1873 spin_unlock(&xhci->lock);
1874 /* Pass this up to the core */
1875 usb_hcd_poll_rh_status(hcd);
1876 spin_lock(&xhci->lock);
1880 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1881 * at end_trb, which may be in another segment. If the suspect DMA address is a
1882 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1883 * returns 0.
1885 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1886 union xhci_trb *start_trb,
1887 union xhci_trb *end_trb,
1888 dma_addr_t suspect_dma)
1890 dma_addr_t start_dma;
1891 dma_addr_t end_seg_dma;
1892 dma_addr_t end_trb_dma;
1893 struct xhci_segment *cur_seg;
1895 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1896 cur_seg = start_seg;
1898 do {
1899 if (start_dma == 0)
1900 return NULL;
1901 /* We may get an event for a Link TRB in the middle of a TD */
1902 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1903 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1904 /* If the end TRB isn't in this segment, this is set to 0 */
1905 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1907 if (end_trb_dma > 0) {
1908 /* The end TRB is in this segment, so suspect should be here */
1909 if (start_dma <= end_trb_dma) {
1910 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1911 return cur_seg;
1912 } else {
1913 /* Case for one segment with
1914 * a TD wrapped around to the top
1916 if ((suspect_dma >= start_dma &&
1917 suspect_dma <= end_seg_dma) ||
1918 (suspect_dma >= cur_seg->dma &&
1919 suspect_dma <= end_trb_dma))
1920 return cur_seg;
1922 return NULL;
1923 } else {
1924 /* Might still be somewhere in this segment */
1925 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1926 return cur_seg;
1928 cur_seg = cur_seg->next;
1929 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1930 } while (cur_seg != start_seg);
1932 return NULL;
1935 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1936 unsigned int slot_id, unsigned int ep_index,
1937 unsigned int stream_id,
1938 struct xhci_td *td, union xhci_trb *event_trb)
1940 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1941 ep->ep_state |= EP_HALTED;
1942 ep->stopped_td = td;
1943 ep->stopped_stream = stream_id;
1945 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1946 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1948 ep->stopped_td = NULL;
1949 ep->stopped_stream = 0;
1951 xhci_ring_cmd_db(xhci);
1954 /* Check if an error has halted the endpoint ring. The class driver will
1955 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1956 * However, a babble and other errors also halt the endpoint ring, and the class
1957 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1958 * Ring Dequeue Pointer command manually.
1960 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1961 struct xhci_ep_ctx *ep_ctx,
1962 unsigned int trb_comp_code)
1964 /* TRB completion codes that may require a manual halt cleanup */
1965 if (trb_comp_code == COMP_TX_ERR ||
1966 trb_comp_code == COMP_BABBLE ||
1967 trb_comp_code == COMP_SPLIT_ERR)
1968 /* The 0.96 spec says a babbling control endpoint
1969 * is not halted. The 0.96 spec says it is. Some HW
1970 * claims to be 0.95 compliant, but it halts the control
1971 * endpoint anyway. Check if a babble halted the
1972 * endpoint.
1974 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1975 cpu_to_le32(EP_STATE_HALTED))
1976 return 1;
1978 return 0;
1981 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1983 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1984 /* Vendor defined "informational" completion code,
1985 * treat as not-an-error.
1987 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1988 trb_comp_code);
1989 xhci_dbg(xhci, "Treating code as success.\n");
1990 return 1;
1992 return 0;
1996 * Finish the td processing, remove the td from td list;
1997 * Return 1 if the urb can be given back.
1999 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
2000 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2001 struct xhci_virt_ep *ep, int *status, bool skip)
2003 struct xhci_virt_device *xdev;
2004 struct xhci_ring *ep_ring;
2005 unsigned int slot_id;
2006 int ep_index;
2007 struct urb *urb = NULL;
2008 struct xhci_ep_ctx *ep_ctx;
2009 int ret = 0;
2010 struct urb_priv *urb_priv;
2011 u32 trb_comp_code;
2013 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2014 xdev = xhci->devs[slot_id];
2015 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2016 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2017 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2018 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2020 if (skip)
2021 goto td_cleanup;
2023 if (trb_comp_code == COMP_STOP_INVAL ||
2024 trb_comp_code == COMP_STOP) {
2025 /* The Endpoint Stop Command completion will take care of any
2026 * stopped TDs. A stopped TD may be restarted, so don't update
2027 * the ring dequeue pointer or take this TD off any lists yet.
2029 ep->stopped_td = td;
2030 return 0;
2031 } else {
2032 if (trb_comp_code == COMP_STALL) {
2033 /* The transfer is completed from the driver's
2034 * perspective, but we need to issue a set dequeue
2035 * command for this stalled endpoint to move the dequeue
2036 * pointer past the TD. We can't do that here because
2037 * the halt condition must be cleared first. Let the
2038 * USB class driver clear the stall later.
2040 ep->stopped_td = td;
2041 ep->stopped_stream = ep_ring->stream_id;
2042 } else if (xhci_requires_manual_halt_cleanup(xhci,
2043 ep_ctx, trb_comp_code)) {
2044 /* Other types of errors halt the endpoint, but the
2045 * class driver doesn't call usb_reset_endpoint() unless
2046 * the error is -EPIPE. Clear the halted status in the
2047 * xHCI hardware manually.
2049 xhci_cleanup_halted_endpoint(xhci,
2050 slot_id, ep_index, ep_ring->stream_id,
2051 td, event_trb);
2052 } else {
2053 /* Update ring dequeue pointer */
2054 while (ep_ring->dequeue != td->last_trb)
2055 inc_deq(xhci, ep_ring);
2056 inc_deq(xhci, ep_ring);
2059 td_cleanup:
2060 /* Clean up the endpoint's TD list */
2061 urb = td->urb;
2062 urb_priv = urb->hcpriv;
2064 /* Do one last check of the actual transfer length.
2065 * If the host controller said we transferred more data than
2066 * the buffer length, urb->actual_length will be a very big
2067 * number (since it's unsigned). Play it safe and say we didn't
2068 * transfer anything.
2070 if (urb->actual_length > urb->transfer_buffer_length) {
2071 xhci_warn(xhci, "URB transfer length is wrong, "
2072 "xHC issue? req. len = %u, "
2073 "act. len = %u\n",
2074 urb->transfer_buffer_length,
2075 urb->actual_length);
2076 urb->actual_length = 0;
2077 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2078 *status = -EREMOTEIO;
2079 else
2080 *status = 0;
2082 list_del_init(&td->td_list);
2083 /* Was this TD slated to be cancelled but completed anyway? */
2084 if (!list_empty(&td->cancelled_td_list))
2085 list_del_init(&td->cancelled_td_list);
2087 urb_priv->td_cnt++;
2088 /* Giveback the urb when all the tds are completed */
2089 if (urb_priv->td_cnt == urb_priv->length) {
2090 ret = 1;
2091 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2092 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
2093 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
2094 == 0) {
2095 if (xhci->quirks & XHCI_AMD_PLL_FIX)
2096 usb_amd_quirk_pll_enable();
2102 return ret;
2106 * Process control tds, update urb status and actual_length.
2108 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2109 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2110 struct xhci_virt_ep *ep, int *status)
2112 struct xhci_virt_device *xdev;
2113 struct xhci_ring *ep_ring;
2114 unsigned int slot_id;
2115 int ep_index;
2116 struct xhci_ep_ctx *ep_ctx;
2117 u32 trb_comp_code;
2119 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2120 xdev = xhci->devs[slot_id];
2121 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2122 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2123 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2124 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2126 switch (trb_comp_code) {
2127 case COMP_SUCCESS:
2128 if (event_trb == ep_ring->dequeue) {
2129 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
2130 "without IOC set??\n");
2131 *status = -ESHUTDOWN;
2132 } else if (event_trb != td->last_trb) {
2133 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
2134 "without IOC set??\n");
2135 *status = -ESHUTDOWN;
2136 } else {
2137 *status = 0;
2139 break;
2140 case COMP_SHORT_TX:
2141 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2142 *status = -EREMOTEIO;
2143 else
2144 *status = 0;
2145 break;
2146 case COMP_STOP_INVAL:
2147 case COMP_STOP:
2148 return finish_td(xhci, td, event_trb, event, ep, status, false);
2149 default:
2150 if (!xhci_requires_manual_halt_cleanup(xhci,
2151 ep_ctx, trb_comp_code))
2152 break;
2153 xhci_dbg(xhci, "TRB error code %u, "
2154 "halted endpoint index = %u\n",
2155 trb_comp_code, ep_index);
2156 /* else fall through */
2157 case COMP_STALL:
2158 /* Did we transfer part of the data (middle) phase? */
2159 if (event_trb != ep_ring->dequeue &&
2160 event_trb != td->last_trb)
2161 td->urb->actual_length =
2162 td->urb->transfer_buffer_length -
2163 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2164 else
2165 td->urb->actual_length = 0;
2167 xhci_cleanup_halted_endpoint(xhci,
2168 slot_id, ep_index, 0, td, event_trb);
2169 return finish_td(xhci, td, event_trb, event, ep, status, true);
2172 * Did we transfer any data, despite the errors that might have
2173 * happened? I.e. did we get past the setup stage?
2175 if (event_trb != ep_ring->dequeue) {
2176 /* The event was for the status stage */
2177 if (event_trb == td->last_trb) {
2178 if (td->urb->actual_length != 0) {
2179 /* Don't overwrite a previously set error code
2181 if ((*status == -EINPROGRESS || *status == 0) &&
2182 (td->urb->transfer_flags
2183 & URB_SHORT_NOT_OK))
2184 /* Did we already see a short data
2185 * stage? */
2186 *status = -EREMOTEIO;
2187 } else {
2188 td->urb->actual_length =
2189 td->urb->transfer_buffer_length;
2191 } else {
2192 /* Maybe the event was for the data stage? */
2193 td->urb->actual_length =
2194 td->urb->transfer_buffer_length -
2195 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2196 xhci_dbg(xhci, "Waiting for status "
2197 "stage event\n");
2198 return 0;
2202 return finish_td(xhci, td, event_trb, event, ep, status, false);
2206 * Process isochronous tds, update urb packet status and actual_length.
2208 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2209 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2210 struct xhci_virt_ep *ep, int *status)
2212 struct xhci_ring *ep_ring;
2213 struct urb_priv *urb_priv;
2214 int idx;
2215 int len = 0;
2216 union xhci_trb *cur_trb;
2217 struct xhci_segment *cur_seg;
2218 struct usb_iso_packet_descriptor *frame;
2219 u32 trb_comp_code;
2220 bool skip_td = false;
2222 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2223 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2224 urb_priv = td->urb->hcpriv;
2225 idx = urb_priv->td_cnt;
2226 frame = &td->urb->iso_frame_desc[idx];
2228 /* handle completion code */
2229 switch (trb_comp_code) {
2230 case COMP_SUCCESS:
2231 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2232 frame->status = 0;
2233 break;
2235 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2236 trb_comp_code = COMP_SHORT_TX;
2237 case COMP_SHORT_TX:
2238 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2239 -EREMOTEIO : 0;
2240 break;
2241 case COMP_BW_OVER:
2242 frame->status = -ECOMM;
2243 skip_td = true;
2244 break;
2245 case COMP_BUFF_OVER:
2246 case COMP_BABBLE:
2247 frame->status = -EOVERFLOW;
2248 skip_td = true;
2249 break;
2250 case COMP_DEV_ERR:
2251 case COMP_STALL:
2252 case COMP_TX_ERR:
2253 frame->status = -EPROTO;
2254 skip_td = true;
2255 break;
2256 case COMP_STOP:
2257 case COMP_STOP_INVAL:
2258 break;
2259 default:
2260 frame->status = -1;
2261 break;
2264 if (trb_comp_code == COMP_SUCCESS || skip_td) {
2265 frame->actual_length = frame->length;
2266 td->urb->actual_length += frame->length;
2267 } else {
2268 for (cur_trb = ep_ring->dequeue,
2269 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2270 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2271 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2272 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2273 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2275 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2276 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2278 if (trb_comp_code != COMP_STOP_INVAL) {
2279 frame->actual_length = len;
2280 td->urb->actual_length += len;
2284 return finish_td(xhci, td, event_trb, event, ep, status, false);
2287 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2288 struct xhci_transfer_event *event,
2289 struct xhci_virt_ep *ep, int *status)
2291 struct xhci_ring *ep_ring;
2292 struct urb_priv *urb_priv;
2293 struct usb_iso_packet_descriptor *frame;
2294 int idx;
2296 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2297 urb_priv = td->urb->hcpriv;
2298 idx = urb_priv->td_cnt;
2299 frame = &td->urb->iso_frame_desc[idx];
2301 /* The transfer is partly done. */
2302 frame->status = -EXDEV;
2304 /* calc actual length */
2305 frame->actual_length = 0;
2307 /* Update ring dequeue pointer */
2308 while (ep_ring->dequeue != td->last_trb)
2309 inc_deq(xhci, ep_ring);
2310 inc_deq(xhci, ep_ring);
2312 return finish_td(xhci, td, NULL, event, ep, status, true);
2316 * Process bulk and interrupt tds, update urb status and actual_length.
2318 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2319 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2320 struct xhci_virt_ep *ep, int *status)
2322 struct xhci_ring *ep_ring;
2323 union xhci_trb *cur_trb;
2324 struct xhci_segment *cur_seg;
2325 u32 trb_comp_code;
2327 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2328 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2330 switch (trb_comp_code) {
2331 case COMP_SUCCESS:
2332 /* Double check that the HW transferred everything. */
2333 if (event_trb != td->last_trb ||
2334 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2335 xhci_warn(xhci, "WARN Successful completion "
2336 "on short TX\n");
2337 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2338 *status = -EREMOTEIO;
2339 else
2340 *status = 0;
2341 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2342 trb_comp_code = COMP_SHORT_TX;
2343 } else {
2344 *status = 0;
2346 break;
2347 case COMP_SHORT_TX:
2348 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2349 *status = -EREMOTEIO;
2350 else
2351 *status = 0;
2352 break;
2353 default:
2354 /* Others already handled above */
2355 break;
2357 if (trb_comp_code == COMP_SHORT_TX)
2358 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2359 "%d bytes untransferred\n",
2360 td->urb->ep->desc.bEndpointAddress,
2361 td->urb->transfer_buffer_length,
2362 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2363 /* Fast path - was this the last TRB in the TD for this URB? */
2364 if (event_trb == td->last_trb) {
2365 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2366 td->urb->actual_length =
2367 td->urb->transfer_buffer_length -
2368 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2369 if (td->urb->transfer_buffer_length <
2370 td->urb->actual_length) {
2371 xhci_warn(xhci, "HC gave bad length "
2372 "of %d bytes left\n",
2373 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2374 td->urb->actual_length = 0;
2375 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2376 *status = -EREMOTEIO;
2377 else
2378 *status = 0;
2380 /* Don't overwrite a previously set error code */
2381 if (*status == -EINPROGRESS) {
2382 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2383 *status = -EREMOTEIO;
2384 else
2385 *status = 0;
2387 } else {
2388 td->urb->actual_length =
2389 td->urb->transfer_buffer_length;
2390 /* Ignore a short packet completion if the
2391 * untransferred length was zero.
2393 if (*status == -EREMOTEIO)
2394 *status = 0;
2396 } else {
2397 /* Slow path - walk the list, starting from the dequeue
2398 * pointer, to get the actual length transferred.
2400 td->urb->actual_length = 0;
2401 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2402 cur_trb != event_trb;
2403 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2404 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2405 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2406 td->urb->actual_length +=
2407 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2409 /* If the ring didn't stop on a Link or No-op TRB, add
2410 * in the actual bytes transferred from the Normal TRB
2412 if (trb_comp_code != COMP_STOP_INVAL)
2413 td->urb->actual_length +=
2414 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2415 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2418 return finish_td(xhci, td, event_trb, event, ep, status, false);
2422 * If this function returns an error condition, it means it got a Transfer
2423 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2424 * At this point, the host controller is probably hosed and should be reset.
2426 static int handle_tx_event(struct xhci_hcd *xhci,
2427 struct xhci_transfer_event *event)
2428 __releases(&xhci->lock)
2429 __acquires(&xhci->lock)
2431 struct xhci_virt_device *xdev;
2432 struct xhci_virt_ep *ep;
2433 struct xhci_ring *ep_ring;
2434 unsigned int slot_id;
2435 int ep_index;
2436 struct xhci_td *td = NULL;
2437 dma_addr_t event_dma;
2438 struct xhci_segment *event_seg;
2439 union xhci_trb *event_trb;
2440 struct urb *urb = NULL;
2441 int status = -EINPROGRESS;
2442 struct urb_priv *urb_priv;
2443 struct xhci_ep_ctx *ep_ctx;
2444 struct list_head *tmp;
2445 u32 trb_comp_code;
2446 int ret = 0;
2447 int td_num = 0;
2449 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2450 xdev = xhci->devs[slot_id];
2451 if (!xdev) {
2452 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2453 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2454 (unsigned long long) xhci_trb_virt_to_dma(
2455 xhci->event_ring->deq_seg,
2456 xhci->event_ring->dequeue),
2457 lower_32_bits(le64_to_cpu(event->buffer)),
2458 upper_32_bits(le64_to_cpu(event->buffer)),
2459 le32_to_cpu(event->transfer_len),
2460 le32_to_cpu(event->flags));
2461 xhci_dbg(xhci, "Event ring:\n");
2462 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2463 return -ENODEV;
2466 /* Endpoint ID is 1 based, our index is zero based */
2467 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2468 ep = &xdev->eps[ep_index];
2469 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2470 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2471 if (!ep_ring ||
2472 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2473 EP_STATE_DISABLED) {
2474 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2475 "or incorrect stream ring\n");
2476 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2477 (unsigned long long) xhci_trb_virt_to_dma(
2478 xhci->event_ring->deq_seg,
2479 xhci->event_ring->dequeue),
2480 lower_32_bits(le64_to_cpu(event->buffer)),
2481 upper_32_bits(le64_to_cpu(event->buffer)),
2482 le32_to_cpu(event->transfer_len),
2483 le32_to_cpu(event->flags));
2484 xhci_dbg(xhci, "Event ring:\n");
2485 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2486 return -ENODEV;
2489 /* Count current td numbers if ep->skip is set */
2490 if (ep->skip) {
2491 list_for_each(tmp, &ep_ring->td_list)
2492 td_num++;
2495 event_dma = le64_to_cpu(event->buffer);
2496 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2497 /* Look for common error cases */
2498 switch (trb_comp_code) {
2499 /* Skip codes that require special handling depending on
2500 * transfer type
2502 case COMP_SUCCESS:
2503 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2504 break;
2505 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2506 trb_comp_code = COMP_SHORT_TX;
2507 else
2508 xhci_warn_ratelimited(xhci,
2509 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2510 case COMP_SHORT_TX:
2511 break;
2512 case COMP_STOP:
2513 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2514 break;
2515 case COMP_STOP_INVAL:
2516 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2517 break;
2518 case COMP_STALL:
2519 xhci_dbg(xhci, "Stalled endpoint\n");
2520 ep->ep_state |= EP_HALTED;
2521 status = -EPIPE;
2522 break;
2523 case COMP_TRB_ERR:
2524 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2525 status = -EILSEQ;
2526 break;
2527 case COMP_SPLIT_ERR:
2528 case COMP_TX_ERR:
2529 xhci_dbg(xhci, "Transfer error on endpoint\n");
2530 status = -EPROTO;
2531 break;
2532 case COMP_BABBLE:
2533 xhci_dbg(xhci, "Babble error on endpoint\n");
2534 status = -EOVERFLOW;
2535 break;
2536 case COMP_DB_ERR:
2537 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2538 status = -ENOSR;
2539 break;
2540 case COMP_BW_OVER:
2541 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2542 break;
2543 case COMP_BUFF_OVER:
2544 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2545 break;
2546 case COMP_UNDERRUN:
2548 * When the Isoch ring is empty, the xHC will generate
2549 * a Ring Overrun Event for IN Isoch endpoint or Ring
2550 * Underrun Event for OUT Isoch endpoint.
2552 xhci_dbg(xhci, "underrun event on endpoint\n");
2553 if (!list_empty(&ep_ring->td_list))
2554 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2555 "still with TDs queued?\n",
2556 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2557 ep_index);
2558 goto cleanup;
2559 case COMP_OVERRUN:
2560 xhci_dbg(xhci, "overrun event on endpoint\n");
2561 if (!list_empty(&ep_ring->td_list))
2562 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2563 "still with TDs queued?\n",
2564 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2565 ep_index);
2566 goto cleanup;
2567 case COMP_DEV_ERR:
2568 xhci_warn(xhci, "WARN: detect an incompatible device");
2569 status = -EPROTO;
2570 break;
2571 case COMP_MISSED_INT:
2573 * When encounter missed service error, one or more isoc tds
2574 * may be missed by xHC.
2575 * Set skip flag of the ep_ring; Complete the missed tds as
2576 * short transfer when process the ep_ring next time.
2578 ep->skip = true;
2579 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2580 goto cleanup;
2581 default:
2582 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2583 status = 0;
2584 break;
2586 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2587 "busted\n");
2588 goto cleanup;
2591 do {
2592 /* This TRB should be in the TD at the head of this ring's
2593 * TD list.
2595 if (list_empty(&ep_ring->td_list)) {
2597 * A stopped endpoint may generate an extra completion
2598 * event if the device was suspended. Don't print
2599 * warnings.
2601 if (!(trb_comp_code == COMP_STOP ||
2602 trb_comp_code == COMP_STOP_INVAL)) {
2603 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2604 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2605 ep_index);
2606 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2607 (le32_to_cpu(event->flags) &
2608 TRB_TYPE_BITMASK)>>10);
2609 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2611 if (ep->skip) {
2612 ep->skip = false;
2613 xhci_dbg(xhci, "td_list is empty while skip "
2614 "flag set. Clear skip flag.\n");
2616 ret = 0;
2617 goto cleanup;
2620 /* We've skipped all the TDs on the ep ring when ep->skip set */
2621 if (ep->skip && td_num == 0) {
2622 ep->skip = false;
2623 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2624 "Clear skip flag.\n");
2625 ret = 0;
2626 goto cleanup;
2629 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2630 if (ep->skip)
2631 td_num--;
2633 /* Is this a TRB in the currently executing TD? */
2634 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2635 td->last_trb, event_dma);
2638 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2639 * is not in the current TD pointed by ep_ring->dequeue because
2640 * that the hardware dequeue pointer still at the previous TRB
2641 * of the current TD. The previous TRB maybe a Link TD or the
2642 * last TRB of the previous TD. The command completion handle
2643 * will take care the rest.
2645 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2646 ret = 0;
2647 goto cleanup;
2650 if (!event_seg) {
2651 if (!ep->skip ||
2652 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2653 /* Some host controllers give a spurious
2654 * successful event after a short transfer.
2655 * Ignore it.
2657 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2658 ep_ring->last_td_was_short) {
2659 ep_ring->last_td_was_short = false;
2660 ret = 0;
2661 goto cleanup;
2663 /* HC is busted, give up! */
2664 xhci_err(xhci,
2665 "ERROR Transfer event TRB DMA ptr not "
2666 "part of current TD\n");
2667 return -ESHUTDOWN;
2670 ret = skip_isoc_td(xhci, td, event, ep, &status);
2671 goto cleanup;
2673 if (trb_comp_code == COMP_SHORT_TX)
2674 ep_ring->last_td_was_short = true;
2675 else
2676 ep_ring->last_td_was_short = false;
2678 if (ep->skip) {
2679 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2680 ep->skip = false;
2683 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2684 sizeof(*event_trb)];
2686 * No-op TRB should not trigger interrupts.
2687 * If event_trb is a no-op TRB, it means the
2688 * corresponding TD has been cancelled. Just ignore
2689 * the TD.
2691 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2692 xhci_dbg(xhci,
2693 "event_trb is a no-op TRB. Skip it\n");
2694 goto cleanup;
2697 /* Now update the urb's actual_length and give back to
2698 * the core
2700 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2701 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2702 &status);
2703 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2704 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2705 &status);
2706 else
2707 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2708 ep, &status);
2710 cleanup:
2712 * Do not update event ring dequeue pointer if ep->skip is set.
2713 * Will roll back to continue process missed tds.
2715 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2716 inc_deq(xhci, xhci->event_ring);
2719 if (ret) {
2720 urb = td->urb;
2721 urb_priv = urb->hcpriv;
2722 /* Leave the TD around for the reset endpoint function
2723 * to use(but only if it's not a control endpoint,
2724 * since we already queued the Set TR dequeue pointer
2725 * command for stalled control endpoints).
2727 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2728 (trb_comp_code != COMP_STALL &&
2729 trb_comp_code != COMP_BABBLE))
2730 xhci_urb_free_priv(xhci, urb_priv);
2731 else
2732 kfree(urb_priv);
2734 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2735 if ((urb->actual_length != urb->transfer_buffer_length &&
2736 (urb->transfer_flags &
2737 URB_SHORT_NOT_OK)) ||
2738 (status != 0 &&
2739 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2740 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2741 "expected = %d, status = %d\n",
2742 urb, urb->actual_length,
2743 urb->transfer_buffer_length,
2744 status);
2745 spin_unlock(&xhci->lock);
2746 /* EHCI, UHCI, and OHCI always unconditionally set the
2747 * urb->status of an isochronous endpoint to 0.
2749 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2750 status = 0;
2751 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2752 spin_lock(&xhci->lock);
2756 * If ep->skip is set, it means there are missed tds on the
2757 * endpoint ring need to take care of.
2758 * Process them as short transfer until reach the td pointed by
2759 * the event.
2761 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2763 return 0;
2767 * This function handles all OS-owned events on the event ring. It may drop
2768 * xhci->lock between event processing (e.g. to pass up port status changes).
2769 * Returns >0 for "possibly more events to process" (caller should call again),
2770 * otherwise 0 if done. In future, <0 returns should indicate error code.
2772 static int xhci_handle_event(struct xhci_hcd *xhci)
2774 union xhci_trb *event;
2775 int update_ptrs = 1;
2776 int ret;
2778 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2779 xhci->error_bitmask |= 1 << 1;
2780 return 0;
2783 event = xhci->event_ring->dequeue;
2784 /* Does the HC or OS own the TRB? */
2785 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2786 xhci->event_ring->cycle_state) {
2787 xhci->error_bitmask |= 1 << 2;
2788 return 0;
2792 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2793 * speculative reads of the event's flags/data below.
2795 rmb();
2796 /* FIXME: Handle more event types. */
2797 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2798 case TRB_TYPE(TRB_COMPLETION):
2799 handle_cmd_completion(xhci, &event->event_cmd);
2800 break;
2801 case TRB_TYPE(TRB_PORT_STATUS):
2802 handle_port_status(xhci, event);
2803 update_ptrs = 0;
2804 break;
2805 case TRB_TYPE(TRB_TRANSFER):
2806 ret = handle_tx_event(xhci, &event->trans_event);
2807 if (ret < 0)
2808 xhci->error_bitmask |= 1 << 9;
2809 else
2810 update_ptrs = 0;
2811 break;
2812 case TRB_TYPE(TRB_DEV_NOTE):
2813 handle_device_notification(xhci, event);
2814 break;
2815 default:
2816 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2817 TRB_TYPE(48))
2818 handle_vendor_event(xhci, event);
2819 else
2820 xhci->error_bitmask |= 1 << 3;
2822 /* Any of the above functions may drop and re-acquire the lock, so check
2823 * to make sure a watchdog timer didn't mark the host as non-responsive.
2825 if (xhci->xhc_state & XHCI_STATE_DYING) {
2826 xhci_dbg(xhci, "xHCI host dying, returning from "
2827 "event handler.\n");
2828 return 0;
2831 if (update_ptrs)
2832 /* Update SW event ring dequeue pointer */
2833 inc_deq(xhci, xhci->event_ring);
2835 /* Are there more items on the event ring? Caller will call us again to
2836 * check.
2838 return 1;
2842 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2843 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2844 * indicators of an event TRB error, but we check the status *first* to be safe.
2846 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2848 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2849 u32 status;
2850 u64 temp_64;
2851 union xhci_trb *event_ring_deq;
2852 dma_addr_t deq;
2854 spin_lock(&xhci->lock);
2855 /* Check if the xHC generated the interrupt, or the irq is shared */
2856 status = readl(&xhci->op_regs->status);
2857 if (status == 0xffffffff)
2858 goto hw_died;
2860 if (!(status & STS_EINT)) {
2861 spin_unlock(&xhci->lock);
2862 return IRQ_NONE;
2864 if (status & STS_FATAL) {
2865 xhci_warn(xhci, "WARNING: Host System Error\n");
2866 xhci_halt(xhci);
2867 hw_died:
2868 spin_unlock(&xhci->lock);
2869 return -ESHUTDOWN;
2873 * Clear the op reg interrupt status first,
2874 * so we can receive interrupts from other MSI-X interrupters.
2875 * Write 1 to clear the interrupt status.
2877 status |= STS_EINT;
2878 writel(status, &xhci->op_regs->status);
2879 /* FIXME when MSI-X is supported and there are multiple vectors */
2880 /* Clear the MSI-X event interrupt status */
2882 if (hcd->irq) {
2883 u32 irq_pending;
2884 /* Acknowledge the PCI interrupt */
2885 irq_pending = readl(&xhci->ir_set->irq_pending);
2886 irq_pending |= IMAN_IP;
2887 writel(irq_pending, &xhci->ir_set->irq_pending);
2890 if (xhci->xhc_state & XHCI_STATE_DYING) {
2891 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2892 "Shouldn't IRQs be disabled?\n");
2893 /* Clear the event handler busy flag (RW1C);
2894 * the event ring should be empty.
2896 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2897 xhci_write_64(xhci, temp_64 | ERST_EHB,
2898 &xhci->ir_set->erst_dequeue);
2899 spin_unlock(&xhci->lock);
2901 return IRQ_HANDLED;
2904 event_ring_deq = xhci->event_ring->dequeue;
2905 /* FIXME this should be a delayed service routine
2906 * that clears the EHB.
2908 while (xhci_handle_event(xhci) > 0) {}
2910 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2911 /* If necessary, update the HW's version of the event ring deq ptr. */
2912 if (event_ring_deq != xhci->event_ring->dequeue) {
2913 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2914 xhci->event_ring->dequeue);
2915 if (deq == 0)
2916 xhci_warn(xhci, "WARN something wrong with SW event "
2917 "ring dequeue ptr.\n");
2918 /* Update HC event ring dequeue pointer */
2919 temp_64 &= ERST_PTR_MASK;
2920 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2923 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2924 temp_64 |= ERST_EHB;
2925 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2927 spin_unlock(&xhci->lock);
2929 return IRQ_HANDLED;
2932 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2934 return xhci_irq(hcd);
2937 /**** Endpoint Ring Operations ****/
2940 * Generic function for queueing a TRB on a ring.
2941 * The caller must have checked to make sure there's room on the ring.
2943 * @more_trbs_coming: Will you enqueue more TRBs before calling
2944 * prepare_transfer()?
2946 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2947 bool more_trbs_coming,
2948 u32 field1, u32 field2, u32 field3, u32 field4)
2950 struct xhci_generic_trb *trb;
2952 trb = &ring->enqueue->generic;
2953 trb->field[0] = cpu_to_le32(field1);
2954 trb->field[1] = cpu_to_le32(field2);
2955 trb->field[2] = cpu_to_le32(field3);
2956 trb->field[3] = cpu_to_le32(field4);
2957 inc_enq(xhci, ring, more_trbs_coming);
2961 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2962 * FIXME allocate segments if the ring is full.
2964 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2965 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2967 unsigned int num_trbs_needed;
2969 /* Make sure the endpoint has been added to xHC schedule */
2970 switch (ep_state) {
2971 case EP_STATE_DISABLED:
2973 * USB core changed config/interfaces without notifying us,
2974 * or hardware is reporting the wrong state.
2976 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2977 return -ENOENT;
2978 case EP_STATE_ERROR:
2979 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2980 /* FIXME event handling code for error needs to clear it */
2981 /* XXX not sure if this should be -ENOENT or not */
2982 return -EINVAL;
2983 case EP_STATE_HALTED:
2984 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2985 case EP_STATE_STOPPED:
2986 case EP_STATE_RUNNING:
2987 break;
2988 default:
2989 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2991 * FIXME issue Configure Endpoint command to try to get the HC
2992 * back into a known state.
2994 return -EINVAL;
2997 while (1) {
2998 if (room_on_ring(xhci, ep_ring, num_trbs))
2999 break;
3001 if (ep_ring == xhci->cmd_ring) {
3002 xhci_err(xhci, "Do not support expand command ring\n");
3003 return -ENOMEM;
3006 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
3007 "ERROR no room on ep ring, try ring expansion");
3008 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
3009 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
3010 mem_flags)) {
3011 xhci_err(xhci, "Ring expansion failed\n");
3012 return -ENOMEM;
3016 if (enqueue_is_link_trb(ep_ring)) {
3017 struct xhci_ring *ring = ep_ring;
3018 union xhci_trb *next;
3020 next = ring->enqueue;
3022 while (last_trb(xhci, ring, ring->enq_seg, next)) {
3023 /* If we're not dealing with 0.95 hardware or isoc rings
3024 * on AMD 0.96 host, clear the chain bit.
3026 if (!xhci_link_trb_quirk(xhci) &&
3027 !(ring->type == TYPE_ISOC &&
3028 (xhci->quirks & XHCI_AMD_0x96_HOST)))
3029 next->link.control &= cpu_to_le32(~TRB_CHAIN);
3030 else
3031 next->link.control |= cpu_to_le32(TRB_CHAIN);
3033 wmb();
3034 next->link.control ^= cpu_to_le32(TRB_CYCLE);
3036 /* Toggle the cycle bit after the last ring segment. */
3037 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
3038 ring->cycle_state = (ring->cycle_state ? 0 : 1);
3040 ring->enq_seg = ring->enq_seg->next;
3041 ring->enqueue = ring->enq_seg->trbs;
3042 next = ring->enqueue;
3046 return 0;
3049 static int prepare_transfer(struct xhci_hcd *xhci,
3050 struct xhci_virt_device *xdev,
3051 unsigned int ep_index,
3052 unsigned int stream_id,
3053 unsigned int num_trbs,
3054 struct urb *urb,
3055 unsigned int td_index,
3056 gfp_t mem_flags)
3058 int ret;
3059 struct urb_priv *urb_priv;
3060 struct xhci_td *td;
3061 struct xhci_ring *ep_ring;
3062 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3064 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
3065 if (!ep_ring) {
3066 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
3067 stream_id);
3068 return -EINVAL;
3071 ret = prepare_ring(xhci, ep_ring,
3072 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3073 num_trbs, mem_flags);
3074 if (ret)
3075 return ret;
3077 urb_priv = urb->hcpriv;
3078 td = urb_priv->td[td_index];
3080 INIT_LIST_HEAD(&td->td_list);
3081 INIT_LIST_HEAD(&td->cancelled_td_list);
3083 if (td_index == 0) {
3084 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
3085 if (unlikely(ret))
3086 return ret;
3089 td->urb = urb;
3090 /* Add this TD to the tail of the endpoint ring's TD list */
3091 list_add_tail(&td->td_list, &ep_ring->td_list);
3092 td->start_seg = ep_ring->enq_seg;
3093 td->first_trb = ep_ring->enqueue;
3095 urb_priv->td[td_index] = td;
3097 return 0;
3100 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
3102 int num_sgs, num_trbs, running_total, temp, i;
3103 struct scatterlist *sg;
3105 sg = NULL;
3106 num_sgs = urb->num_mapped_sgs;
3107 temp = urb->transfer_buffer_length;
3109 num_trbs = 0;
3110 for_each_sg(urb->sg, sg, num_sgs, i) {
3111 unsigned int len = sg_dma_len(sg);
3113 /* Scatter gather list entries may cross 64KB boundaries */
3114 running_total = TRB_MAX_BUFF_SIZE -
3115 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
3116 running_total &= TRB_MAX_BUFF_SIZE - 1;
3117 if (running_total != 0)
3118 num_trbs++;
3120 /* How many more 64KB chunks to transfer, how many more TRBs? */
3121 while (running_total < sg_dma_len(sg) && running_total < temp) {
3122 num_trbs++;
3123 running_total += TRB_MAX_BUFF_SIZE;
3125 len = min_t(int, len, temp);
3126 temp -= len;
3127 if (temp == 0)
3128 break;
3130 return num_trbs;
3133 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
3135 if (num_trbs != 0)
3136 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
3137 "TRBs, %d left\n", __func__,
3138 urb->ep->desc.bEndpointAddress, num_trbs);
3139 if (running_total != urb->transfer_buffer_length)
3140 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3141 "queued %#x (%d), asked for %#x (%d)\n",
3142 __func__,
3143 urb->ep->desc.bEndpointAddress,
3144 running_total, running_total,
3145 urb->transfer_buffer_length,
3146 urb->transfer_buffer_length);
3149 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3150 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3151 struct xhci_generic_trb *start_trb)
3154 * Pass all the TRBs to the hardware at once and make sure this write
3155 * isn't reordered.
3157 wmb();
3158 if (start_cycle)
3159 start_trb->field[3] |= cpu_to_le32(start_cycle);
3160 else
3161 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3162 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3166 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3167 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3168 * (comprised of sg list entries) can take several service intervals to
3169 * transmit.
3171 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3172 struct urb *urb, int slot_id, unsigned int ep_index)
3174 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3175 xhci->devs[slot_id]->out_ctx, ep_index);
3176 int xhci_interval;
3177 int ep_interval;
3179 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3180 ep_interval = urb->interval;
3181 /* Convert to microframes */
3182 if (urb->dev->speed == USB_SPEED_LOW ||
3183 urb->dev->speed == USB_SPEED_FULL)
3184 ep_interval *= 8;
3185 /* FIXME change this to a warning and a suggestion to use the new API
3186 * to set the polling interval (once the API is added).
3188 if (xhci_interval != ep_interval) {
3189 dev_dbg_ratelimited(&urb->dev->dev,
3190 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3191 ep_interval, ep_interval == 1 ? "" : "s",
3192 xhci_interval, xhci_interval == 1 ? "" : "s");
3193 urb->interval = xhci_interval;
3194 /* Convert back to frames for LS/FS devices */
3195 if (urb->dev->speed == USB_SPEED_LOW ||
3196 urb->dev->speed == USB_SPEED_FULL)
3197 urb->interval /= 8;
3199 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3203 * The TD size is the number of bytes remaining in the TD (including this TRB),
3204 * right shifted by 10.
3205 * It must fit in bits 21:17, so it can't be bigger than 31.
3207 static u32 xhci_td_remainder(unsigned int remainder)
3209 u32 max = (1 << (21 - 17 + 1)) - 1;
3211 if ((remainder >> 10) >= max)
3212 return max << 17;
3213 else
3214 return (remainder >> 10) << 17;
3218 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3219 * packets remaining in the TD (*not* including this TRB).
3221 * Total TD packet count = total_packet_count =
3222 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3224 * Packets transferred up to and including this TRB = packets_transferred =
3225 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3227 * TD size = total_packet_count - packets_transferred
3229 * It must fit in bits 21:17, so it can't be bigger than 31.
3230 * The last TRB in a TD must have the TD size set to zero.
3232 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3233 unsigned int total_packet_count, struct urb *urb,
3234 unsigned int num_trbs_left)
3236 int packets_transferred;
3238 /* One TRB with a zero-length data packet. */
3239 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
3240 return 0;
3242 /* All the TRB queueing functions don't count the current TRB in
3243 * running_total.
3245 packets_transferred = (running_total + trb_buff_len) /
3246 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3248 if ((total_packet_count - packets_transferred) > 31)
3249 return 31 << 17;
3250 return (total_packet_count - packets_transferred) << 17;
3253 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3254 struct urb *urb, int slot_id, unsigned int ep_index)
3256 struct xhci_ring *ep_ring;
3257 unsigned int num_trbs;
3258 struct urb_priv *urb_priv;
3259 struct xhci_td *td;
3260 struct scatterlist *sg;
3261 int num_sgs;
3262 int trb_buff_len, this_sg_len, running_total;
3263 unsigned int total_packet_count;
3264 bool first_trb;
3265 u64 addr;
3266 bool more_trbs_coming;
3268 struct xhci_generic_trb *start_trb;
3269 int start_cycle;
3271 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3272 if (!ep_ring)
3273 return -EINVAL;
3275 num_trbs = count_sg_trbs_needed(xhci, urb);
3276 num_sgs = urb->num_mapped_sgs;
3277 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3278 usb_endpoint_maxp(&urb->ep->desc));
3280 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
3281 ep_index, urb->stream_id,
3282 num_trbs, urb, 0, mem_flags);
3283 if (trb_buff_len < 0)
3284 return trb_buff_len;
3286 urb_priv = urb->hcpriv;
3287 td = urb_priv->td[0];
3290 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3291 * until we've finished creating all the other TRBs. The ring's cycle
3292 * state may change as we enqueue the other TRBs, so save it too.
3294 start_trb = &ep_ring->enqueue->generic;
3295 start_cycle = ep_ring->cycle_state;
3297 running_total = 0;
3299 * How much data is in the first TRB?
3301 * There are three forces at work for TRB buffer pointers and lengths:
3302 * 1. We don't want to walk off the end of this sg-list entry buffer.
3303 * 2. The transfer length that the driver requested may be smaller than
3304 * the amount of memory allocated for this scatter-gather list.
3305 * 3. TRBs buffers can't cross 64KB boundaries.
3307 sg = urb->sg;
3308 addr = (u64) sg_dma_address(sg);
3309 this_sg_len = sg_dma_len(sg);
3310 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3311 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3312 if (trb_buff_len > urb->transfer_buffer_length)
3313 trb_buff_len = urb->transfer_buffer_length;
3315 first_trb = true;
3316 /* Queue the first TRB, even if it's zero-length */
3317 do {
3318 u32 field = 0;
3319 u32 length_field = 0;
3320 u32 remainder = 0;
3322 /* Don't change the cycle bit of the first TRB until later */
3323 if (first_trb) {
3324 first_trb = false;
3325 if (start_cycle == 0)
3326 field |= 0x1;
3327 } else
3328 field |= ep_ring->cycle_state;
3330 /* Chain all the TRBs together; clear the chain bit in the last
3331 * TRB to indicate it's the last TRB in the chain.
3333 if (num_trbs > 1) {
3334 field |= TRB_CHAIN;
3335 } else {
3336 /* FIXME - add check for ZERO_PACKET flag before this */
3337 td->last_trb = ep_ring->enqueue;
3338 field |= TRB_IOC;
3341 /* Only set interrupt on short packet for IN endpoints */
3342 if (usb_urb_dir_in(urb))
3343 field |= TRB_ISP;
3345 if (TRB_MAX_BUFF_SIZE -
3346 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3347 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3348 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3349 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3350 (unsigned int) addr + trb_buff_len);
3353 /* Set the TRB length, TD size, and interrupter fields. */
3354 if (xhci->hci_version < 0x100) {
3355 remainder = xhci_td_remainder(
3356 urb->transfer_buffer_length -
3357 running_total);
3358 } else {
3359 remainder = xhci_v1_0_td_remainder(running_total,
3360 trb_buff_len, total_packet_count, urb,
3361 num_trbs - 1);
3363 length_field = TRB_LEN(trb_buff_len) |
3364 remainder |
3365 TRB_INTR_TARGET(0);
3367 if (num_trbs > 1)
3368 more_trbs_coming = true;
3369 else
3370 more_trbs_coming = false;
3371 queue_trb(xhci, ep_ring, more_trbs_coming,
3372 lower_32_bits(addr),
3373 upper_32_bits(addr),
3374 length_field,
3375 field | TRB_TYPE(TRB_NORMAL));
3376 --num_trbs;
3377 running_total += trb_buff_len;
3379 /* Calculate length for next transfer --
3380 * Are we done queueing all the TRBs for this sg entry?
3382 this_sg_len -= trb_buff_len;
3383 if (this_sg_len == 0) {
3384 --num_sgs;
3385 if (num_sgs == 0)
3386 break;
3387 sg = sg_next(sg);
3388 addr = (u64) sg_dma_address(sg);
3389 this_sg_len = sg_dma_len(sg);
3390 } else {
3391 addr += trb_buff_len;
3394 trb_buff_len = TRB_MAX_BUFF_SIZE -
3395 (addr & (TRB_MAX_BUFF_SIZE - 1));
3396 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3397 if (running_total + trb_buff_len > urb->transfer_buffer_length)
3398 trb_buff_len =
3399 urb->transfer_buffer_length - running_total;
3400 } while (running_total < urb->transfer_buffer_length);
3402 check_trb_math(urb, num_trbs, running_total);
3403 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3404 start_cycle, start_trb);
3405 return 0;
3408 /* This is very similar to what ehci-q.c qtd_fill() does */
3409 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3410 struct urb *urb, int slot_id, unsigned int ep_index)
3412 struct xhci_ring *ep_ring;
3413 struct urb_priv *urb_priv;
3414 struct xhci_td *td;
3415 int num_trbs;
3416 struct xhci_generic_trb *start_trb;
3417 bool first_trb;
3418 bool more_trbs_coming;
3419 int start_cycle;
3420 u32 field, length_field;
3422 int running_total, trb_buff_len, ret;
3423 unsigned int total_packet_count;
3424 u64 addr;
3426 if (urb->num_sgs)
3427 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3429 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3430 if (!ep_ring)
3431 return -EINVAL;
3433 num_trbs = 0;
3434 /* How much data is (potentially) left before the 64KB boundary? */
3435 running_total = TRB_MAX_BUFF_SIZE -
3436 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3437 running_total &= TRB_MAX_BUFF_SIZE - 1;
3439 /* If there's some data on this 64KB chunk, or we have to send a
3440 * zero-length transfer, we need at least one TRB
3442 if (running_total != 0 || urb->transfer_buffer_length == 0)
3443 num_trbs++;
3444 /* How many more 64KB chunks to transfer, how many more TRBs? */
3445 while (running_total < urb->transfer_buffer_length) {
3446 num_trbs++;
3447 running_total += TRB_MAX_BUFF_SIZE;
3449 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3451 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3452 ep_index, urb->stream_id,
3453 num_trbs, urb, 0, mem_flags);
3454 if (ret < 0)
3455 return ret;
3457 urb_priv = urb->hcpriv;
3458 td = urb_priv->td[0];
3461 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3462 * until we've finished creating all the other TRBs. The ring's cycle
3463 * state may change as we enqueue the other TRBs, so save it too.
3465 start_trb = &ep_ring->enqueue->generic;
3466 start_cycle = ep_ring->cycle_state;
3468 running_total = 0;
3469 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3470 usb_endpoint_maxp(&urb->ep->desc));
3471 /* How much data is in the first TRB? */
3472 addr = (u64) urb->transfer_dma;
3473 trb_buff_len = TRB_MAX_BUFF_SIZE -
3474 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3475 if (trb_buff_len > urb->transfer_buffer_length)
3476 trb_buff_len = urb->transfer_buffer_length;
3478 first_trb = true;
3480 /* Queue the first TRB, even if it's zero-length */
3481 do {
3482 u32 remainder = 0;
3483 field = 0;
3485 /* Don't change the cycle bit of the first TRB until later */
3486 if (first_trb) {
3487 first_trb = false;
3488 if (start_cycle == 0)
3489 field |= 0x1;
3490 } else
3491 field |= ep_ring->cycle_state;
3493 /* Chain all the TRBs together; clear the chain bit in the last
3494 * TRB to indicate it's the last TRB in the chain.
3496 if (num_trbs > 1) {
3497 field |= TRB_CHAIN;
3498 } else {
3499 /* FIXME - add check for ZERO_PACKET flag before this */
3500 td->last_trb = ep_ring->enqueue;
3501 field |= TRB_IOC;
3504 /* Only set interrupt on short packet for IN endpoints */
3505 if (usb_urb_dir_in(urb))
3506 field |= TRB_ISP;
3508 /* Set the TRB length, TD size, and interrupter fields. */
3509 if (xhci->hci_version < 0x100) {
3510 remainder = xhci_td_remainder(
3511 urb->transfer_buffer_length -
3512 running_total);
3513 } else {
3514 remainder = xhci_v1_0_td_remainder(running_total,
3515 trb_buff_len, total_packet_count, urb,
3516 num_trbs - 1);
3518 length_field = TRB_LEN(trb_buff_len) |
3519 remainder |
3520 TRB_INTR_TARGET(0);
3522 if (num_trbs > 1)
3523 more_trbs_coming = true;
3524 else
3525 more_trbs_coming = false;
3526 queue_trb(xhci, ep_ring, more_trbs_coming,
3527 lower_32_bits(addr),
3528 upper_32_bits(addr),
3529 length_field,
3530 field | TRB_TYPE(TRB_NORMAL));
3531 --num_trbs;
3532 running_total += trb_buff_len;
3534 /* Calculate length for next transfer */
3535 addr += trb_buff_len;
3536 trb_buff_len = urb->transfer_buffer_length - running_total;
3537 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3538 trb_buff_len = TRB_MAX_BUFF_SIZE;
3539 } while (running_total < urb->transfer_buffer_length);
3541 check_trb_math(urb, num_trbs, running_total);
3542 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3543 start_cycle, start_trb);
3544 return 0;
3547 /* Caller must have locked xhci->lock */
3548 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3549 struct urb *urb, int slot_id, unsigned int ep_index)
3551 struct xhci_ring *ep_ring;
3552 int num_trbs;
3553 int ret;
3554 struct usb_ctrlrequest *setup;
3555 struct xhci_generic_trb *start_trb;
3556 int start_cycle;
3557 u32 field, length_field;
3558 struct urb_priv *urb_priv;
3559 struct xhci_td *td;
3561 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3562 if (!ep_ring)
3563 return -EINVAL;
3566 * Need to copy setup packet into setup TRB, so we can't use the setup
3567 * DMA address.
3569 if (!urb->setup_packet)
3570 return -EINVAL;
3572 /* 1 TRB for setup, 1 for status */
3573 num_trbs = 2;
3575 * Don't need to check if we need additional event data and normal TRBs,
3576 * since data in control transfers will never get bigger than 16MB
3577 * XXX: can we get a buffer that crosses 64KB boundaries?
3579 if (urb->transfer_buffer_length > 0)
3580 num_trbs++;
3581 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3582 ep_index, urb->stream_id,
3583 num_trbs, urb, 0, mem_flags);
3584 if (ret < 0)
3585 return ret;
3587 urb_priv = urb->hcpriv;
3588 td = urb_priv->td[0];
3591 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3592 * until we've finished creating all the other TRBs. The ring's cycle
3593 * state may change as we enqueue the other TRBs, so save it too.
3595 start_trb = &ep_ring->enqueue->generic;
3596 start_cycle = ep_ring->cycle_state;
3598 /* Queue setup TRB - see section 6.4.1.2.1 */
3599 /* FIXME better way to translate setup_packet into two u32 fields? */
3600 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3601 field = 0;
3602 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3603 if (start_cycle == 0)
3604 field |= 0x1;
3606 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3607 if (xhci->hci_version == 0x100) {
3608 if (urb->transfer_buffer_length > 0) {
3609 if (setup->bRequestType & USB_DIR_IN)
3610 field |= TRB_TX_TYPE(TRB_DATA_IN);
3611 else
3612 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3616 queue_trb(xhci, ep_ring, true,
3617 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3618 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3619 TRB_LEN(8) | TRB_INTR_TARGET(0),
3620 /* Immediate data in pointer */
3621 field);
3623 /* If there's data, queue data TRBs */
3624 /* Only set interrupt on short packet for IN endpoints */
3625 if (usb_urb_dir_in(urb))
3626 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3627 else
3628 field = TRB_TYPE(TRB_DATA);
3630 length_field = TRB_LEN(urb->transfer_buffer_length) |
3631 xhci_td_remainder(urb->transfer_buffer_length) |
3632 TRB_INTR_TARGET(0);
3633 if (urb->transfer_buffer_length > 0) {
3634 if (setup->bRequestType & USB_DIR_IN)
3635 field |= TRB_DIR_IN;
3636 queue_trb(xhci, ep_ring, true,
3637 lower_32_bits(urb->transfer_dma),
3638 upper_32_bits(urb->transfer_dma),
3639 length_field,
3640 field | ep_ring->cycle_state);
3643 /* Save the DMA address of the last TRB in the TD */
3644 td->last_trb = ep_ring->enqueue;
3646 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3647 /* If the device sent data, the status stage is an OUT transfer */
3648 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3649 field = 0;
3650 else
3651 field = TRB_DIR_IN;
3652 queue_trb(xhci, ep_ring, false,
3655 TRB_INTR_TARGET(0),
3656 /* Event on completion */
3657 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3659 giveback_first_trb(xhci, slot_id, ep_index, 0,
3660 start_cycle, start_trb);
3661 return 0;
3664 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3665 struct urb *urb, int i)
3667 int num_trbs = 0;
3668 u64 addr, td_len;
3670 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3671 td_len = urb->iso_frame_desc[i].length;
3673 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3674 TRB_MAX_BUFF_SIZE);
3675 if (num_trbs == 0)
3676 num_trbs++;
3678 return num_trbs;
3682 * The transfer burst count field of the isochronous TRB defines the number of
3683 * bursts that are required to move all packets in this TD. Only SuperSpeed
3684 * devices can burst up to bMaxBurst number of packets per service interval.
3685 * This field is zero based, meaning a value of zero in the field means one
3686 * burst. Basically, for everything but SuperSpeed devices, this field will be
3687 * zero. Only xHCI 1.0 host controllers support this field.
3689 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3690 struct usb_device *udev,
3691 struct urb *urb, unsigned int total_packet_count)
3693 unsigned int max_burst;
3695 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3696 return 0;
3698 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3699 return roundup(total_packet_count, max_burst + 1) - 1;
3703 * Returns the number of packets in the last "burst" of packets. This field is
3704 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3705 * the last burst packet count is equal to the total number of packets in the
3706 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3707 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3708 * contain 1 to (bMaxBurst + 1) packets.
3710 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3711 struct usb_device *udev,
3712 struct urb *urb, unsigned int total_packet_count)
3714 unsigned int max_burst;
3715 unsigned int residue;
3717 if (xhci->hci_version < 0x100)
3718 return 0;
3720 switch (udev->speed) {
3721 case USB_SPEED_SUPER:
3722 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3723 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3724 residue = total_packet_count % (max_burst + 1);
3725 /* If residue is zero, the last burst contains (max_burst + 1)
3726 * number of packets, but the TLBPC field is zero-based.
3728 if (residue == 0)
3729 return max_burst;
3730 return residue - 1;
3731 default:
3732 if (total_packet_count == 0)
3733 return 0;
3734 return total_packet_count - 1;
3738 /* This is for isoc transfer */
3739 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3740 struct urb *urb, int slot_id, unsigned int ep_index)
3742 struct xhci_ring *ep_ring;
3743 struct urb_priv *urb_priv;
3744 struct xhci_td *td;
3745 int num_tds, trbs_per_td;
3746 struct xhci_generic_trb *start_trb;
3747 bool first_trb;
3748 int start_cycle;
3749 u32 field, length_field;
3750 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3751 u64 start_addr, addr;
3752 int i, j;
3753 bool more_trbs_coming;
3755 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3757 num_tds = urb->number_of_packets;
3758 if (num_tds < 1) {
3759 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3760 return -EINVAL;
3763 start_addr = (u64) urb->transfer_dma;
3764 start_trb = &ep_ring->enqueue->generic;
3765 start_cycle = ep_ring->cycle_state;
3767 urb_priv = urb->hcpriv;
3768 /* Queue the first TRB, even if it's zero-length */
3769 for (i = 0; i < num_tds; i++) {
3770 unsigned int total_packet_count;
3771 unsigned int burst_count;
3772 unsigned int residue;
3774 first_trb = true;
3775 running_total = 0;
3776 addr = start_addr + urb->iso_frame_desc[i].offset;
3777 td_len = urb->iso_frame_desc[i].length;
3778 td_remain_len = td_len;
3779 total_packet_count = DIV_ROUND_UP(td_len,
3780 GET_MAX_PACKET(
3781 usb_endpoint_maxp(&urb->ep->desc)));
3782 /* A zero-length transfer still involves at least one packet. */
3783 if (total_packet_count == 0)
3784 total_packet_count++;
3785 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3786 total_packet_count);
3787 residue = xhci_get_last_burst_packet_count(xhci,
3788 urb->dev, urb, total_packet_count);
3790 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3792 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3793 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3794 if (ret < 0) {
3795 if (i == 0)
3796 return ret;
3797 goto cleanup;
3800 td = urb_priv->td[i];
3801 for (j = 0; j < trbs_per_td; j++) {
3802 u32 remainder = 0;
3803 field = 0;
3805 if (first_trb) {
3806 field = TRB_TBC(burst_count) |
3807 TRB_TLBPC(residue);
3808 /* Queue the isoc TRB */
3809 field |= TRB_TYPE(TRB_ISOC);
3810 /* Assume URB_ISO_ASAP is set */
3811 field |= TRB_SIA;
3812 if (i == 0) {
3813 if (start_cycle == 0)
3814 field |= 0x1;
3815 } else
3816 field |= ep_ring->cycle_state;
3817 first_trb = false;
3818 } else {
3819 /* Queue other normal TRBs */
3820 field |= TRB_TYPE(TRB_NORMAL);
3821 field |= ep_ring->cycle_state;
3824 /* Only set interrupt on short packet for IN EPs */
3825 if (usb_urb_dir_in(urb))
3826 field |= TRB_ISP;
3828 /* Chain all the TRBs together; clear the chain bit in
3829 * the last TRB to indicate it's the last TRB in the
3830 * chain.
3832 if (j < trbs_per_td - 1) {
3833 field |= TRB_CHAIN;
3834 more_trbs_coming = true;
3835 } else {
3836 td->last_trb = ep_ring->enqueue;
3837 field |= TRB_IOC;
3838 if (xhci->hci_version == 0x100 &&
3839 !(xhci->quirks &
3840 XHCI_AVOID_BEI)) {
3841 /* Set BEI bit except for the last td */
3842 if (i < num_tds - 1)
3843 field |= TRB_BEI;
3845 more_trbs_coming = false;
3848 /* Calculate TRB length */
3849 trb_buff_len = TRB_MAX_BUFF_SIZE -
3850 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3851 if (trb_buff_len > td_remain_len)
3852 trb_buff_len = td_remain_len;
3854 /* Set the TRB length, TD size, & interrupter fields. */
3855 if (xhci->hci_version < 0x100) {
3856 remainder = xhci_td_remainder(
3857 td_len - running_total);
3858 } else {
3859 remainder = xhci_v1_0_td_remainder(
3860 running_total, trb_buff_len,
3861 total_packet_count, urb,
3862 (trbs_per_td - j - 1));
3864 length_field = TRB_LEN(trb_buff_len) |
3865 remainder |
3866 TRB_INTR_TARGET(0);
3868 queue_trb(xhci, ep_ring, more_trbs_coming,
3869 lower_32_bits(addr),
3870 upper_32_bits(addr),
3871 length_field,
3872 field);
3873 running_total += trb_buff_len;
3875 addr += trb_buff_len;
3876 td_remain_len -= trb_buff_len;
3879 /* Check TD length */
3880 if (running_total != td_len) {
3881 xhci_err(xhci, "ISOC TD length unmatch\n");
3882 ret = -EINVAL;
3883 goto cleanup;
3887 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3888 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3889 usb_amd_quirk_pll_disable();
3891 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3893 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3894 start_cycle, start_trb);
3895 return 0;
3896 cleanup:
3897 /* Clean up a partially enqueued isoc transfer. */
3899 for (i--; i >= 0; i--)
3900 list_del_init(&urb_priv->td[i]->td_list);
3902 /* Use the first TD as a temporary variable to turn the TDs we've queued
3903 * into No-ops with a software-owned cycle bit. That way the hardware
3904 * won't accidentally start executing bogus TDs when we partially
3905 * overwrite them. td->first_trb and td->start_seg are already set.
3907 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3908 /* Every TRB except the first & last will have its cycle bit flipped. */
3909 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3911 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3912 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3913 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3914 ep_ring->cycle_state = start_cycle;
3915 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3916 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3917 return ret;
3921 * Check transfer ring to guarantee there is enough room for the urb.
3922 * Update ISO URB start_frame and interval.
3923 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3924 * update the urb->start_frame by now.
3925 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3927 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3928 struct urb *urb, int slot_id, unsigned int ep_index)
3930 struct xhci_virt_device *xdev;
3931 struct xhci_ring *ep_ring;
3932 struct xhci_ep_ctx *ep_ctx;
3933 int start_frame;
3934 int xhci_interval;
3935 int ep_interval;
3936 int num_tds, num_trbs, i;
3937 int ret;
3939 xdev = xhci->devs[slot_id];
3940 ep_ring = xdev->eps[ep_index].ring;
3941 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3943 num_trbs = 0;
3944 num_tds = urb->number_of_packets;
3945 for (i = 0; i < num_tds; i++)
3946 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3948 /* Check the ring to guarantee there is enough room for the whole urb.
3949 * Do not insert any td of the urb to the ring if the check failed.
3951 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3952 num_trbs, mem_flags);
3953 if (ret)
3954 return ret;
3956 start_frame = readl(&xhci->run_regs->microframe_index);
3957 start_frame &= 0x3fff;
3959 urb->start_frame = start_frame;
3960 if (urb->dev->speed == USB_SPEED_LOW ||
3961 urb->dev->speed == USB_SPEED_FULL)
3962 urb->start_frame >>= 3;
3964 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3965 ep_interval = urb->interval;
3966 /* Convert to microframes */
3967 if (urb->dev->speed == USB_SPEED_LOW ||
3968 urb->dev->speed == USB_SPEED_FULL)
3969 ep_interval *= 8;
3970 /* FIXME change this to a warning and a suggestion to use the new API
3971 * to set the polling interval (once the API is added).
3973 if (xhci_interval != ep_interval) {
3974 dev_dbg_ratelimited(&urb->dev->dev,
3975 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3976 ep_interval, ep_interval == 1 ? "" : "s",
3977 xhci_interval, xhci_interval == 1 ? "" : "s");
3978 urb->interval = xhci_interval;
3979 /* Convert back to frames for LS/FS devices */
3980 if (urb->dev->speed == USB_SPEED_LOW ||
3981 urb->dev->speed == USB_SPEED_FULL)
3982 urb->interval /= 8;
3984 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3986 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3989 /**** Command Ring Operations ****/
3991 /* Generic function for queueing a command TRB on the command ring.
3992 * Check to make sure there's room on the command ring for one command TRB.
3993 * Also check that there's room reserved for commands that must not fail.
3994 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3995 * then only check for the number of reserved spots.
3996 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3997 * because the command event handler may want to resubmit a failed command.
3999 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
4000 u32 field3, u32 field4, bool command_must_succeed)
4002 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
4003 int ret;
4005 if (!command_must_succeed)
4006 reserved_trbs++;
4008 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
4009 reserved_trbs, GFP_ATOMIC);
4010 if (ret < 0) {
4011 xhci_err(xhci, "ERR: No room for command on command ring\n");
4012 if (command_must_succeed)
4013 xhci_err(xhci, "ERR: Reserved TRB counting for "
4014 "unfailable commands failed.\n");
4015 return ret;
4017 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
4018 field4 | xhci->cmd_ring->cycle_state);
4019 return 0;
4022 /* Queue a slot enable or disable request on the command ring */
4023 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
4025 return queue_command(xhci, 0, 0, 0,
4026 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
4029 /* Queue an address device command TRB */
4030 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4031 u32 slot_id, enum xhci_setup_dev setup)
4033 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4034 upper_32_bits(in_ctx_ptr), 0,
4035 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
4036 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
4039 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
4040 u32 field1, u32 field2, u32 field3, u32 field4)
4042 return queue_command(xhci, field1, field2, field3, field4, false);
4045 /* Queue a reset device command TRB */
4046 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
4048 return queue_command(xhci, 0, 0, 0,
4049 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
4050 false);
4053 /* Queue a configure endpoint command TRB */
4054 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4055 u32 slot_id, bool command_must_succeed)
4057 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4058 upper_32_bits(in_ctx_ptr), 0,
4059 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
4060 command_must_succeed);
4063 /* Queue an evaluate context command TRB */
4064 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4065 u32 slot_id, bool command_must_succeed)
4067 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4068 upper_32_bits(in_ctx_ptr), 0,
4069 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
4070 command_must_succeed);
4074 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4075 * activity on an endpoint that is about to be suspended.
4077 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
4078 unsigned int ep_index, int suspend)
4080 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4081 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4082 u32 type = TRB_TYPE(TRB_STOP_RING);
4083 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4085 return queue_command(xhci, 0, 0, 0,
4086 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4089 /* Set Transfer Ring Dequeue Pointer command.
4090 * This should not be used for endpoints that have streams enabled.
4092 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
4093 unsigned int ep_index, unsigned int stream_id,
4094 struct xhci_segment *deq_seg,
4095 union xhci_trb *deq_ptr, u32 cycle_state)
4097 dma_addr_t addr;
4098 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4099 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4100 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
4101 u32 trb_sct = 0;
4102 u32 type = TRB_TYPE(TRB_SET_DEQ);
4103 struct xhci_virt_ep *ep;
4105 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
4106 if (addr == 0) {
4107 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4108 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4109 deq_seg, deq_ptr);
4110 return 0;
4112 ep = &xhci->devs[slot_id]->eps[ep_index];
4113 if ((ep->ep_state & SET_DEQ_PENDING)) {
4114 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4115 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4116 return 0;
4118 ep->queued_deq_seg = deq_seg;
4119 ep->queued_deq_ptr = deq_ptr;
4120 if (stream_id)
4121 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4122 return queue_command(xhci, lower_32_bits(addr) | trb_sct | cycle_state,
4123 upper_32_bits(addr), trb_stream_id,
4124 trb_slot_id | trb_ep_index | type, false);
4127 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
4128 unsigned int ep_index)
4130 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4131 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4132 u32 type = TRB_TYPE(TRB_RESET_EP);
4134 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
4135 false);