MIPS: BCM1480: Remove checks for CONFIG_SIBYTE_BCM1480_PROF
[linux/fpc-iii.git] / kernel / trace / ring_buffer.c
blobc634868c2921ca39837c3a36773c36fa4a3273d5
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
28 #include <asm/local.h>
30 static void update_pages_handler(struct work_struct *work);
33 * The ring buffer header is special. We must manually up keep it.
35 int ring_buffer_print_entry_header(struct trace_seq *s)
37 int ret;
39 ret = trace_seq_puts(s, "# compressed entry header\n");
40 ret = trace_seq_puts(s, "\ttype_len : 5 bits\n");
41 ret = trace_seq_puts(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_puts(s, "\tarray : 32 bits\n");
43 ret = trace_seq_putc(s, '\n');
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
51 return ret;
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
68 * Here's some silly ASCII art.
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
118 * We will be using cmpxchg soon to make all this lockless.
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
151 enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
156 enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF (1 << 20)
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
169 * tracing_off_permanent - permanently disable ring buffers
171 * This function, once called, will disable all ring buffers
172 * permanently.
174 void tracing_off_permanent(void)
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT 4U
181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT 0
186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT 1
189 # define RB_ARCH_ALIGNMENT 8U
190 #endif
192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
197 enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
202 #define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
205 static inline int rb_null_event(struct ring_buffer_event *event)
207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
210 static void rb_event_set_padding(struct ring_buffer_event *event)
212 /* padding has a NULL time_delta */
213 event->type_len = RINGBUF_TYPE_PADDING;
214 event->time_delta = 0;
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
220 unsigned length;
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
237 switch (event->type_len) {
238 case RINGBUF_TYPE_PADDING:
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
242 return event->array[0] + RB_EVNT_HDR_SIZE;
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
250 case RINGBUF_TYPE_DATA:
251 return rb_event_data_length(event);
252 default:
253 BUG();
255 /* not hit */
256 return 0;
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
266 unsigned len = 0;
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
273 return len + rb_event_length(event);
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
288 unsigned length;
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
293 length = rb_event_length(event);
294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310 /* If length is in len field, then array[0] has the data */
311 if (event->type_len)
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
323 return rb_event_data(event);
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
327 #define for_each_buffer_cpu(buffer, cpu) \
328 for_each_cpu(cpu, buffer->cpumask)
330 #define TS_SHIFT 27
331 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST (~TS_MASK)
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED (1 << 30)
339 struct buffer_data_page {
340 u64 time_stamp; /* page time stamp */
341 local_t commit; /* write committed index */
342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
353 struct buffer_page {
354 struct list_head list; /* list of buffer pages */
355 local_t write; /* index for next write */
356 unsigned read; /* index for next read */
357 local_t entries; /* entries on this page */
358 unsigned long real_end; /* real end of data */
359 struct buffer_data_page *page; /* Actual data page */
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
372 * The counter is 20 bits, and the state data is 12.
374 #define RB_WRITE_MASK 0xfffff
375 #define RB_WRITE_INTCNT (1 << 20)
377 static void rb_init_page(struct buffer_data_page *bpage)
379 local_set(&bpage->commit, 0);
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
386 * Returns the amount of data on the page, including buffer page header.
388 size_t ring_buffer_page_len(void *page)
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
398 static void free_buffer_page(struct buffer_page *bpage)
400 free_page((unsigned long)bpage->page);
401 kfree(bpage);
405 * We need to fit the time_stamp delta into 27 bits.
407 static inline int test_time_stamp(u64 delta)
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
419 int ring_buffer_print_page_header(struct trace_seq *s)
421 struct buffer_data_page field;
422 int ret;
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field), commit),
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
439 (unsigned int)is_signed_type(long));
441 ret = trace_seq_printf(s, "\tfield: char data;\t"
442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 (unsigned int)offsetof(typeof(field), data),
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
447 return ret;
450 struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
457 * head_page == tail_page && head == tail then buffer is empty.
459 struct ring_buffer_per_cpu {
460 int cpu;
461 atomic_t record_disabled;
462 struct ring_buffer *buffer;
463 raw_spinlock_t reader_lock; /* serialize readers */
464 arch_spinlock_t lock;
465 struct lock_class_key lock_key;
466 unsigned int nr_pages;
467 struct list_head *pages;
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
470 struct buffer_page *commit_page; /* committed pages */
471 struct buffer_page *reader_page;
472 unsigned long lost_events;
473 unsigned long last_overrun;
474 local_t entries_bytes;
475 local_t entries;
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
479 local_t committing;
480 local_t commits;
481 unsigned long read;
482 unsigned long read_bytes;
483 u64 write_stamp;
484 u64 read_stamp;
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
488 struct work_struct update_pages_work;
489 struct completion update_done;
491 struct rb_irq_work irq_work;
494 struct ring_buffer {
495 unsigned flags;
496 int cpus;
497 atomic_t record_disabled;
498 atomic_t resize_disabled;
499 cpumask_var_t cpumask;
501 struct lock_class_key *reader_lock_key;
503 struct mutex mutex;
505 struct ring_buffer_per_cpu **buffers;
507 #ifdef CONFIG_HOTPLUG_CPU
508 struct notifier_block cpu_notify;
509 #endif
510 u64 (*clock)(void);
512 struct rb_irq_work irq_work;
515 struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
521 u64 read_stamp;
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
530 static void rb_wake_up_waiters(struct irq_work *work)
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
534 wake_up_all(&rbwork->waiters);
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
546 void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
560 cpu_buffer = buffer->buffers[cpu];
561 work = &cpu_buffer->irq_work;
565 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568 * The events can happen in critical sections where
569 * checking a work queue can cause deadlocks.
570 * After adding a task to the queue, this flag is set
571 * only to notify events to try to wake up the queue
572 * using irq_work.
574 * We don't clear it even if the buffer is no longer
575 * empty. The flag only causes the next event to run
576 * irq_work to do the work queue wake up. The worse
577 * that can happen if we race with !trace_empty() is that
578 * an event will cause an irq_work to try to wake up
579 * an empty queue.
581 * There's no reason to protect this flag either, as
582 * the work queue and irq_work logic will do the necessary
583 * synchronization for the wake ups. The only thing
584 * that is necessary is that the wake up happens after
585 * a task has been queued. It's OK for spurious wake ups.
587 work->waiters_pending = true;
589 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
590 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
591 schedule();
593 finish_wait(&work->waiters, &wait);
597 * ring_buffer_poll_wait - poll on buffer input
598 * @buffer: buffer to wait on
599 * @cpu: the cpu buffer to wait on
600 * @filp: the file descriptor
601 * @poll_table: The poll descriptor
603 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
604 * as data is added to any of the @buffer's cpu buffers. Otherwise
605 * it will wait for data to be added to a specific cpu buffer.
607 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
608 * zero otherwise.
610 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
611 struct file *filp, poll_table *poll_table)
613 struct ring_buffer_per_cpu *cpu_buffer;
614 struct rb_irq_work *work;
616 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
617 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
618 return POLLIN | POLLRDNORM;
620 if (cpu == RING_BUFFER_ALL_CPUS)
621 work = &buffer->irq_work;
622 else {
623 if (!cpumask_test_cpu(cpu, buffer->cpumask))
624 return -EINVAL;
626 cpu_buffer = buffer->buffers[cpu];
627 work = &cpu_buffer->irq_work;
630 work->waiters_pending = true;
631 poll_wait(filp, &work->waiters, poll_table);
633 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
634 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
635 return POLLIN | POLLRDNORM;
636 return 0;
639 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
640 #define RB_WARN_ON(b, cond) \
641 ({ \
642 int _____ret = unlikely(cond); \
643 if (_____ret) { \
644 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
645 struct ring_buffer_per_cpu *__b = \
646 (void *)b; \
647 atomic_inc(&__b->buffer->record_disabled); \
648 } else \
649 atomic_inc(&b->record_disabled); \
650 WARN_ON(1); \
652 _____ret; \
655 /* Up this if you want to test the TIME_EXTENTS and normalization */
656 #define DEBUG_SHIFT 0
658 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
660 /* shift to debug/test normalization and TIME_EXTENTS */
661 return buffer->clock() << DEBUG_SHIFT;
664 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
666 u64 time;
668 preempt_disable_notrace();
669 time = rb_time_stamp(buffer);
670 preempt_enable_no_resched_notrace();
672 return time;
674 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
676 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
677 int cpu, u64 *ts)
679 /* Just stupid testing the normalize function and deltas */
680 *ts >>= DEBUG_SHIFT;
682 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
685 * Making the ring buffer lockless makes things tricky.
686 * Although writes only happen on the CPU that they are on,
687 * and they only need to worry about interrupts. Reads can
688 * happen on any CPU.
690 * The reader page is always off the ring buffer, but when the
691 * reader finishes with a page, it needs to swap its page with
692 * a new one from the buffer. The reader needs to take from
693 * the head (writes go to the tail). But if a writer is in overwrite
694 * mode and wraps, it must push the head page forward.
696 * Here lies the problem.
698 * The reader must be careful to replace only the head page, and
699 * not another one. As described at the top of the file in the
700 * ASCII art, the reader sets its old page to point to the next
701 * page after head. It then sets the page after head to point to
702 * the old reader page. But if the writer moves the head page
703 * during this operation, the reader could end up with the tail.
705 * We use cmpxchg to help prevent this race. We also do something
706 * special with the page before head. We set the LSB to 1.
708 * When the writer must push the page forward, it will clear the
709 * bit that points to the head page, move the head, and then set
710 * the bit that points to the new head page.
712 * We also don't want an interrupt coming in and moving the head
713 * page on another writer. Thus we use the second LSB to catch
714 * that too. Thus:
716 * head->list->prev->next bit 1 bit 0
717 * ------- -------
718 * Normal page 0 0
719 * Points to head page 0 1
720 * New head page 1 0
722 * Note we can not trust the prev pointer of the head page, because:
724 * +----+ +-----+ +-----+
725 * | |------>| T |---X--->| N |
726 * | |<------| | | |
727 * +----+ +-----+ +-----+
728 * ^ ^ |
729 * | +-----+ | |
730 * +----------| R |----------+ |
731 * | |<-----------+
732 * +-----+
734 * Key: ---X--> HEAD flag set in pointer
735 * T Tail page
736 * R Reader page
737 * N Next page
739 * (see __rb_reserve_next() to see where this happens)
741 * What the above shows is that the reader just swapped out
742 * the reader page with a page in the buffer, but before it
743 * could make the new header point back to the new page added
744 * it was preempted by a writer. The writer moved forward onto
745 * the new page added by the reader and is about to move forward
746 * again.
748 * You can see, it is legitimate for the previous pointer of
749 * the head (or any page) not to point back to itself. But only
750 * temporarially.
753 #define RB_PAGE_NORMAL 0UL
754 #define RB_PAGE_HEAD 1UL
755 #define RB_PAGE_UPDATE 2UL
758 #define RB_FLAG_MASK 3UL
760 /* PAGE_MOVED is not part of the mask */
761 #define RB_PAGE_MOVED 4UL
764 * rb_list_head - remove any bit
766 static struct list_head *rb_list_head(struct list_head *list)
768 unsigned long val = (unsigned long)list;
770 return (struct list_head *)(val & ~RB_FLAG_MASK);
774 * rb_is_head_page - test if the given page is the head page
776 * Because the reader may move the head_page pointer, we can
777 * not trust what the head page is (it may be pointing to
778 * the reader page). But if the next page is a header page,
779 * its flags will be non zero.
781 static inline int
782 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
783 struct buffer_page *page, struct list_head *list)
785 unsigned long val;
787 val = (unsigned long)list->next;
789 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
790 return RB_PAGE_MOVED;
792 return val & RB_FLAG_MASK;
796 * rb_is_reader_page
798 * The unique thing about the reader page, is that, if the
799 * writer is ever on it, the previous pointer never points
800 * back to the reader page.
802 static int rb_is_reader_page(struct buffer_page *page)
804 struct list_head *list = page->list.prev;
806 return rb_list_head(list->next) != &page->list;
810 * rb_set_list_to_head - set a list_head to be pointing to head.
812 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
813 struct list_head *list)
815 unsigned long *ptr;
817 ptr = (unsigned long *)&list->next;
818 *ptr |= RB_PAGE_HEAD;
819 *ptr &= ~RB_PAGE_UPDATE;
823 * rb_head_page_activate - sets up head page
825 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
827 struct buffer_page *head;
829 head = cpu_buffer->head_page;
830 if (!head)
831 return;
834 * Set the previous list pointer to have the HEAD flag.
836 rb_set_list_to_head(cpu_buffer, head->list.prev);
839 static void rb_list_head_clear(struct list_head *list)
841 unsigned long *ptr = (unsigned long *)&list->next;
843 *ptr &= ~RB_FLAG_MASK;
847 * rb_head_page_dactivate - clears head page ptr (for free list)
849 static void
850 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
852 struct list_head *hd;
854 /* Go through the whole list and clear any pointers found. */
855 rb_list_head_clear(cpu_buffer->pages);
857 list_for_each(hd, cpu_buffer->pages)
858 rb_list_head_clear(hd);
861 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
862 struct buffer_page *head,
863 struct buffer_page *prev,
864 int old_flag, int new_flag)
866 struct list_head *list;
867 unsigned long val = (unsigned long)&head->list;
868 unsigned long ret;
870 list = &prev->list;
872 val &= ~RB_FLAG_MASK;
874 ret = cmpxchg((unsigned long *)&list->next,
875 val | old_flag, val | new_flag);
877 /* check if the reader took the page */
878 if ((ret & ~RB_FLAG_MASK) != val)
879 return RB_PAGE_MOVED;
881 return ret & RB_FLAG_MASK;
884 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
885 struct buffer_page *head,
886 struct buffer_page *prev,
887 int old_flag)
889 return rb_head_page_set(cpu_buffer, head, prev,
890 old_flag, RB_PAGE_UPDATE);
893 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
894 struct buffer_page *head,
895 struct buffer_page *prev,
896 int old_flag)
898 return rb_head_page_set(cpu_buffer, head, prev,
899 old_flag, RB_PAGE_HEAD);
902 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
903 struct buffer_page *head,
904 struct buffer_page *prev,
905 int old_flag)
907 return rb_head_page_set(cpu_buffer, head, prev,
908 old_flag, RB_PAGE_NORMAL);
911 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
912 struct buffer_page **bpage)
914 struct list_head *p = rb_list_head((*bpage)->list.next);
916 *bpage = list_entry(p, struct buffer_page, list);
919 static struct buffer_page *
920 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
922 struct buffer_page *head;
923 struct buffer_page *page;
924 struct list_head *list;
925 int i;
927 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
928 return NULL;
930 /* sanity check */
931 list = cpu_buffer->pages;
932 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
933 return NULL;
935 page = head = cpu_buffer->head_page;
937 * It is possible that the writer moves the header behind
938 * where we started, and we miss in one loop.
939 * A second loop should grab the header, but we'll do
940 * three loops just because I'm paranoid.
942 for (i = 0; i < 3; i++) {
943 do {
944 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
945 cpu_buffer->head_page = page;
946 return page;
948 rb_inc_page(cpu_buffer, &page);
949 } while (page != head);
952 RB_WARN_ON(cpu_buffer, 1);
954 return NULL;
957 static int rb_head_page_replace(struct buffer_page *old,
958 struct buffer_page *new)
960 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
961 unsigned long val;
962 unsigned long ret;
964 val = *ptr & ~RB_FLAG_MASK;
965 val |= RB_PAGE_HEAD;
967 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
969 return ret == val;
973 * rb_tail_page_update - move the tail page forward
975 * Returns 1 if moved tail page, 0 if someone else did.
977 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
978 struct buffer_page *tail_page,
979 struct buffer_page *next_page)
981 struct buffer_page *old_tail;
982 unsigned long old_entries;
983 unsigned long old_write;
984 int ret = 0;
987 * The tail page now needs to be moved forward.
989 * We need to reset the tail page, but without messing
990 * with possible erasing of data brought in by interrupts
991 * that have moved the tail page and are currently on it.
993 * We add a counter to the write field to denote this.
995 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
996 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
999 * Just make sure we have seen our old_write and synchronize
1000 * with any interrupts that come in.
1002 barrier();
1005 * If the tail page is still the same as what we think
1006 * it is, then it is up to us to update the tail
1007 * pointer.
1009 if (tail_page == cpu_buffer->tail_page) {
1010 /* Zero the write counter */
1011 unsigned long val = old_write & ~RB_WRITE_MASK;
1012 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1015 * This will only succeed if an interrupt did
1016 * not come in and change it. In which case, we
1017 * do not want to modify it.
1019 * We add (void) to let the compiler know that we do not care
1020 * about the return value of these functions. We use the
1021 * cmpxchg to only update if an interrupt did not already
1022 * do it for us. If the cmpxchg fails, we don't care.
1024 (void)local_cmpxchg(&next_page->write, old_write, val);
1025 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1028 * No need to worry about races with clearing out the commit.
1029 * it only can increment when a commit takes place. But that
1030 * only happens in the outer most nested commit.
1032 local_set(&next_page->page->commit, 0);
1034 old_tail = cmpxchg(&cpu_buffer->tail_page,
1035 tail_page, next_page);
1037 if (old_tail == tail_page)
1038 ret = 1;
1041 return ret;
1044 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1045 struct buffer_page *bpage)
1047 unsigned long val = (unsigned long)bpage;
1049 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1050 return 1;
1052 return 0;
1056 * rb_check_list - make sure a pointer to a list has the last bits zero
1058 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1059 struct list_head *list)
1061 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1062 return 1;
1063 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1064 return 1;
1065 return 0;
1069 * rb_check_pages - integrity check of buffer pages
1070 * @cpu_buffer: CPU buffer with pages to test
1072 * As a safety measure we check to make sure the data pages have not
1073 * been corrupted.
1075 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1077 struct list_head *head = cpu_buffer->pages;
1078 struct buffer_page *bpage, *tmp;
1080 /* Reset the head page if it exists */
1081 if (cpu_buffer->head_page)
1082 rb_set_head_page(cpu_buffer);
1084 rb_head_page_deactivate(cpu_buffer);
1086 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1087 return -1;
1088 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1089 return -1;
1091 if (rb_check_list(cpu_buffer, head))
1092 return -1;
1094 list_for_each_entry_safe(bpage, tmp, head, list) {
1095 if (RB_WARN_ON(cpu_buffer,
1096 bpage->list.next->prev != &bpage->list))
1097 return -1;
1098 if (RB_WARN_ON(cpu_buffer,
1099 bpage->list.prev->next != &bpage->list))
1100 return -1;
1101 if (rb_check_list(cpu_buffer, &bpage->list))
1102 return -1;
1105 rb_head_page_activate(cpu_buffer);
1107 return 0;
1110 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1112 int i;
1113 struct buffer_page *bpage, *tmp;
1115 for (i = 0; i < nr_pages; i++) {
1116 struct page *page;
1118 * __GFP_NORETRY flag makes sure that the allocation fails
1119 * gracefully without invoking oom-killer and the system is
1120 * not destabilized.
1122 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1123 GFP_KERNEL | __GFP_NORETRY,
1124 cpu_to_node(cpu));
1125 if (!bpage)
1126 goto free_pages;
1128 list_add(&bpage->list, pages);
1130 page = alloc_pages_node(cpu_to_node(cpu),
1131 GFP_KERNEL | __GFP_NORETRY, 0);
1132 if (!page)
1133 goto free_pages;
1134 bpage->page = page_address(page);
1135 rb_init_page(bpage->page);
1138 return 0;
1140 free_pages:
1141 list_for_each_entry_safe(bpage, tmp, pages, list) {
1142 list_del_init(&bpage->list);
1143 free_buffer_page(bpage);
1146 return -ENOMEM;
1149 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1150 unsigned nr_pages)
1152 LIST_HEAD(pages);
1154 WARN_ON(!nr_pages);
1156 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1157 return -ENOMEM;
1160 * The ring buffer page list is a circular list that does not
1161 * start and end with a list head. All page list items point to
1162 * other pages.
1164 cpu_buffer->pages = pages.next;
1165 list_del(&pages);
1167 cpu_buffer->nr_pages = nr_pages;
1169 rb_check_pages(cpu_buffer);
1171 return 0;
1174 static struct ring_buffer_per_cpu *
1175 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1177 struct ring_buffer_per_cpu *cpu_buffer;
1178 struct buffer_page *bpage;
1179 struct page *page;
1180 int ret;
1182 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1183 GFP_KERNEL, cpu_to_node(cpu));
1184 if (!cpu_buffer)
1185 return NULL;
1187 cpu_buffer->cpu = cpu;
1188 cpu_buffer->buffer = buffer;
1189 raw_spin_lock_init(&cpu_buffer->reader_lock);
1190 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1191 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1192 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1193 init_completion(&cpu_buffer->update_done);
1194 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1195 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1197 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1198 GFP_KERNEL, cpu_to_node(cpu));
1199 if (!bpage)
1200 goto fail_free_buffer;
1202 rb_check_bpage(cpu_buffer, bpage);
1204 cpu_buffer->reader_page = bpage;
1205 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1206 if (!page)
1207 goto fail_free_reader;
1208 bpage->page = page_address(page);
1209 rb_init_page(bpage->page);
1211 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1212 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1214 ret = rb_allocate_pages(cpu_buffer, nr_pages);
1215 if (ret < 0)
1216 goto fail_free_reader;
1218 cpu_buffer->head_page
1219 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1220 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1222 rb_head_page_activate(cpu_buffer);
1224 return cpu_buffer;
1226 fail_free_reader:
1227 free_buffer_page(cpu_buffer->reader_page);
1229 fail_free_buffer:
1230 kfree(cpu_buffer);
1231 return NULL;
1234 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1236 struct list_head *head = cpu_buffer->pages;
1237 struct buffer_page *bpage, *tmp;
1239 free_buffer_page(cpu_buffer->reader_page);
1241 rb_head_page_deactivate(cpu_buffer);
1243 if (head) {
1244 list_for_each_entry_safe(bpage, tmp, head, list) {
1245 list_del_init(&bpage->list);
1246 free_buffer_page(bpage);
1248 bpage = list_entry(head, struct buffer_page, list);
1249 free_buffer_page(bpage);
1252 kfree(cpu_buffer);
1255 #ifdef CONFIG_HOTPLUG_CPU
1256 static int rb_cpu_notify(struct notifier_block *self,
1257 unsigned long action, void *hcpu);
1258 #endif
1261 * __ring_buffer_alloc - allocate a new ring_buffer
1262 * @size: the size in bytes per cpu that is needed.
1263 * @flags: attributes to set for the ring buffer.
1265 * Currently the only flag that is available is the RB_FL_OVERWRITE
1266 * flag. This flag means that the buffer will overwrite old data
1267 * when the buffer wraps. If this flag is not set, the buffer will
1268 * drop data when the tail hits the head.
1270 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1271 struct lock_class_key *key)
1273 struct ring_buffer *buffer;
1274 int bsize;
1275 int cpu, nr_pages;
1277 /* keep it in its own cache line */
1278 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1279 GFP_KERNEL);
1280 if (!buffer)
1281 return NULL;
1283 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1284 goto fail_free_buffer;
1286 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1287 buffer->flags = flags;
1288 buffer->clock = trace_clock_local;
1289 buffer->reader_lock_key = key;
1291 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1292 init_waitqueue_head(&buffer->irq_work.waiters);
1294 /* need at least two pages */
1295 if (nr_pages < 2)
1296 nr_pages = 2;
1299 * In case of non-hotplug cpu, if the ring-buffer is allocated
1300 * in early initcall, it will not be notified of secondary cpus.
1301 * In that off case, we need to allocate for all possible cpus.
1303 #ifdef CONFIG_HOTPLUG_CPU
1304 cpu_notifier_register_begin();
1305 cpumask_copy(buffer->cpumask, cpu_online_mask);
1306 #else
1307 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1308 #endif
1309 buffer->cpus = nr_cpu_ids;
1311 bsize = sizeof(void *) * nr_cpu_ids;
1312 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1313 GFP_KERNEL);
1314 if (!buffer->buffers)
1315 goto fail_free_cpumask;
1317 for_each_buffer_cpu(buffer, cpu) {
1318 buffer->buffers[cpu] =
1319 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1320 if (!buffer->buffers[cpu])
1321 goto fail_free_buffers;
1324 #ifdef CONFIG_HOTPLUG_CPU
1325 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1326 buffer->cpu_notify.priority = 0;
1327 __register_cpu_notifier(&buffer->cpu_notify);
1328 cpu_notifier_register_done();
1329 #endif
1331 mutex_init(&buffer->mutex);
1333 return buffer;
1335 fail_free_buffers:
1336 for_each_buffer_cpu(buffer, cpu) {
1337 if (buffer->buffers[cpu])
1338 rb_free_cpu_buffer(buffer->buffers[cpu]);
1340 kfree(buffer->buffers);
1342 fail_free_cpumask:
1343 free_cpumask_var(buffer->cpumask);
1344 #ifdef CONFIG_HOTPLUG_CPU
1345 cpu_notifier_register_done();
1346 #endif
1348 fail_free_buffer:
1349 kfree(buffer);
1350 return NULL;
1352 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1355 * ring_buffer_free - free a ring buffer.
1356 * @buffer: the buffer to free.
1358 void
1359 ring_buffer_free(struct ring_buffer *buffer)
1361 int cpu;
1363 #ifdef CONFIG_HOTPLUG_CPU
1364 cpu_notifier_register_begin();
1365 __unregister_cpu_notifier(&buffer->cpu_notify);
1366 #endif
1368 for_each_buffer_cpu(buffer, cpu)
1369 rb_free_cpu_buffer(buffer->buffers[cpu]);
1371 #ifdef CONFIG_HOTPLUG_CPU
1372 cpu_notifier_register_done();
1373 #endif
1375 kfree(buffer->buffers);
1376 free_cpumask_var(buffer->cpumask);
1378 kfree(buffer);
1380 EXPORT_SYMBOL_GPL(ring_buffer_free);
1382 void ring_buffer_set_clock(struct ring_buffer *buffer,
1383 u64 (*clock)(void))
1385 buffer->clock = clock;
1388 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1390 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1392 return local_read(&bpage->entries) & RB_WRITE_MASK;
1395 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1397 return local_read(&bpage->write) & RB_WRITE_MASK;
1400 static int
1401 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1403 struct list_head *tail_page, *to_remove, *next_page;
1404 struct buffer_page *to_remove_page, *tmp_iter_page;
1405 struct buffer_page *last_page, *first_page;
1406 unsigned int nr_removed;
1407 unsigned long head_bit;
1408 int page_entries;
1410 head_bit = 0;
1412 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1413 atomic_inc(&cpu_buffer->record_disabled);
1415 * We don't race with the readers since we have acquired the reader
1416 * lock. We also don't race with writers after disabling recording.
1417 * This makes it easy to figure out the first and the last page to be
1418 * removed from the list. We unlink all the pages in between including
1419 * the first and last pages. This is done in a busy loop so that we
1420 * lose the least number of traces.
1421 * The pages are freed after we restart recording and unlock readers.
1423 tail_page = &cpu_buffer->tail_page->list;
1426 * tail page might be on reader page, we remove the next page
1427 * from the ring buffer
1429 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1430 tail_page = rb_list_head(tail_page->next);
1431 to_remove = tail_page;
1433 /* start of pages to remove */
1434 first_page = list_entry(rb_list_head(to_remove->next),
1435 struct buffer_page, list);
1437 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1438 to_remove = rb_list_head(to_remove)->next;
1439 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1442 next_page = rb_list_head(to_remove)->next;
1445 * Now we remove all pages between tail_page and next_page.
1446 * Make sure that we have head_bit value preserved for the
1447 * next page
1449 tail_page->next = (struct list_head *)((unsigned long)next_page |
1450 head_bit);
1451 next_page = rb_list_head(next_page);
1452 next_page->prev = tail_page;
1454 /* make sure pages points to a valid page in the ring buffer */
1455 cpu_buffer->pages = next_page;
1457 /* update head page */
1458 if (head_bit)
1459 cpu_buffer->head_page = list_entry(next_page,
1460 struct buffer_page, list);
1463 * change read pointer to make sure any read iterators reset
1464 * themselves
1466 cpu_buffer->read = 0;
1468 /* pages are removed, resume tracing and then free the pages */
1469 atomic_dec(&cpu_buffer->record_disabled);
1470 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1472 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1474 /* last buffer page to remove */
1475 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1476 list);
1477 tmp_iter_page = first_page;
1479 do {
1480 to_remove_page = tmp_iter_page;
1481 rb_inc_page(cpu_buffer, &tmp_iter_page);
1483 /* update the counters */
1484 page_entries = rb_page_entries(to_remove_page);
1485 if (page_entries) {
1487 * If something was added to this page, it was full
1488 * since it is not the tail page. So we deduct the
1489 * bytes consumed in ring buffer from here.
1490 * Increment overrun to account for the lost events.
1492 local_add(page_entries, &cpu_buffer->overrun);
1493 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1497 * We have already removed references to this list item, just
1498 * free up the buffer_page and its page
1500 free_buffer_page(to_remove_page);
1501 nr_removed--;
1503 } while (to_remove_page != last_page);
1505 RB_WARN_ON(cpu_buffer, nr_removed);
1507 return nr_removed == 0;
1510 static int
1511 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1513 struct list_head *pages = &cpu_buffer->new_pages;
1514 int retries, success;
1516 raw_spin_lock_irq(&cpu_buffer->reader_lock);
1518 * We are holding the reader lock, so the reader page won't be swapped
1519 * in the ring buffer. Now we are racing with the writer trying to
1520 * move head page and the tail page.
1521 * We are going to adapt the reader page update process where:
1522 * 1. We first splice the start and end of list of new pages between
1523 * the head page and its previous page.
1524 * 2. We cmpxchg the prev_page->next to point from head page to the
1525 * start of new pages list.
1526 * 3. Finally, we update the head->prev to the end of new list.
1528 * We will try this process 10 times, to make sure that we don't keep
1529 * spinning.
1531 retries = 10;
1532 success = 0;
1533 while (retries--) {
1534 struct list_head *head_page, *prev_page, *r;
1535 struct list_head *last_page, *first_page;
1536 struct list_head *head_page_with_bit;
1538 head_page = &rb_set_head_page(cpu_buffer)->list;
1539 if (!head_page)
1540 break;
1541 prev_page = head_page->prev;
1543 first_page = pages->next;
1544 last_page = pages->prev;
1546 head_page_with_bit = (struct list_head *)
1547 ((unsigned long)head_page | RB_PAGE_HEAD);
1549 last_page->next = head_page_with_bit;
1550 first_page->prev = prev_page;
1552 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1554 if (r == head_page_with_bit) {
1556 * yay, we replaced the page pointer to our new list,
1557 * now, we just have to update to head page's prev
1558 * pointer to point to end of list
1560 head_page->prev = last_page;
1561 success = 1;
1562 break;
1566 if (success)
1567 INIT_LIST_HEAD(pages);
1569 * If we weren't successful in adding in new pages, warn and stop
1570 * tracing
1572 RB_WARN_ON(cpu_buffer, !success);
1573 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1575 /* free pages if they weren't inserted */
1576 if (!success) {
1577 struct buffer_page *bpage, *tmp;
1578 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1579 list) {
1580 list_del_init(&bpage->list);
1581 free_buffer_page(bpage);
1584 return success;
1587 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1589 int success;
1591 if (cpu_buffer->nr_pages_to_update > 0)
1592 success = rb_insert_pages(cpu_buffer);
1593 else
1594 success = rb_remove_pages(cpu_buffer,
1595 -cpu_buffer->nr_pages_to_update);
1597 if (success)
1598 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1601 static void update_pages_handler(struct work_struct *work)
1603 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1604 struct ring_buffer_per_cpu, update_pages_work);
1605 rb_update_pages(cpu_buffer);
1606 complete(&cpu_buffer->update_done);
1610 * ring_buffer_resize - resize the ring buffer
1611 * @buffer: the buffer to resize.
1612 * @size: the new size.
1613 * @cpu_id: the cpu buffer to resize
1615 * Minimum size is 2 * BUF_PAGE_SIZE.
1617 * Returns 0 on success and < 0 on failure.
1619 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1620 int cpu_id)
1622 struct ring_buffer_per_cpu *cpu_buffer;
1623 unsigned nr_pages;
1624 int cpu, err = 0;
1627 * Always succeed at resizing a non-existent buffer:
1629 if (!buffer)
1630 return size;
1632 /* Make sure the requested buffer exists */
1633 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1634 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1635 return size;
1637 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1638 size *= BUF_PAGE_SIZE;
1640 /* we need a minimum of two pages */
1641 if (size < BUF_PAGE_SIZE * 2)
1642 size = BUF_PAGE_SIZE * 2;
1644 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1647 * Don't succeed if resizing is disabled, as a reader might be
1648 * manipulating the ring buffer and is expecting a sane state while
1649 * this is true.
1651 if (atomic_read(&buffer->resize_disabled))
1652 return -EBUSY;
1654 /* prevent another thread from changing buffer sizes */
1655 mutex_lock(&buffer->mutex);
1657 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1658 /* calculate the pages to update */
1659 for_each_buffer_cpu(buffer, cpu) {
1660 cpu_buffer = buffer->buffers[cpu];
1662 cpu_buffer->nr_pages_to_update = nr_pages -
1663 cpu_buffer->nr_pages;
1665 * nothing more to do for removing pages or no update
1667 if (cpu_buffer->nr_pages_to_update <= 0)
1668 continue;
1670 * to add pages, make sure all new pages can be
1671 * allocated without receiving ENOMEM
1673 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1674 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1675 &cpu_buffer->new_pages, cpu)) {
1676 /* not enough memory for new pages */
1677 err = -ENOMEM;
1678 goto out_err;
1682 get_online_cpus();
1684 * Fire off all the required work handlers
1685 * We can't schedule on offline CPUs, but it's not necessary
1686 * since we can change their buffer sizes without any race.
1688 for_each_buffer_cpu(buffer, cpu) {
1689 cpu_buffer = buffer->buffers[cpu];
1690 if (!cpu_buffer->nr_pages_to_update)
1691 continue;
1693 /* The update must run on the CPU that is being updated. */
1694 preempt_disable();
1695 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1696 rb_update_pages(cpu_buffer);
1697 cpu_buffer->nr_pages_to_update = 0;
1698 } else {
1700 * Can not disable preemption for schedule_work_on()
1701 * on PREEMPT_RT.
1703 preempt_enable();
1704 schedule_work_on(cpu,
1705 &cpu_buffer->update_pages_work);
1706 preempt_disable();
1708 preempt_enable();
1711 /* wait for all the updates to complete */
1712 for_each_buffer_cpu(buffer, cpu) {
1713 cpu_buffer = buffer->buffers[cpu];
1714 if (!cpu_buffer->nr_pages_to_update)
1715 continue;
1717 if (cpu_online(cpu))
1718 wait_for_completion(&cpu_buffer->update_done);
1719 cpu_buffer->nr_pages_to_update = 0;
1722 put_online_cpus();
1723 } else {
1724 /* Make sure this CPU has been intitialized */
1725 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1726 goto out;
1728 cpu_buffer = buffer->buffers[cpu_id];
1730 if (nr_pages == cpu_buffer->nr_pages)
1731 goto out;
1733 cpu_buffer->nr_pages_to_update = nr_pages -
1734 cpu_buffer->nr_pages;
1736 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1737 if (cpu_buffer->nr_pages_to_update > 0 &&
1738 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1739 &cpu_buffer->new_pages, cpu_id)) {
1740 err = -ENOMEM;
1741 goto out_err;
1744 get_online_cpus();
1746 preempt_disable();
1747 /* The update must run on the CPU that is being updated. */
1748 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1749 rb_update_pages(cpu_buffer);
1750 else {
1752 * Can not disable preemption for schedule_work_on()
1753 * on PREEMPT_RT.
1755 preempt_enable();
1756 schedule_work_on(cpu_id,
1757 &cpu_buffer->update_pages_work);
1758 wait_for_completion(&cpu_buffer->update_done);
1759 preempt_disable();
1761 preempt_enable();
1763 cpu_buffer->nr_pages_to_update = 0;
1764 put_online_cpus();
1767 out:
1769 * The ring buffer resize can happen with the ring buffer
1770 * enabled, so that the update disturbs the tracing as little
1771 * as possible. But if the buffer is disabled, we do not need
1772 * to worry about that, and we can take the time to verify
1773 * that the buffer is not corrupt.
1775 if (atomic_read(&buffer->record_disabled)) {
1776 atomic_inc(&buffer->record_disabled);
1778 * Even though the buffer was disabled, we must make sure
1779 * that it is truly disabled before calling rb_check_pages.
1780 * There could have been a race between checking
1781 * record_disable and incrementing it.
1783 synchronize_sched();
1784 for_each_buffer_cpu(buffer, cpu) {
1785 cpu_buffer = buffer->buffers[cpu];
1786 rb_check_pages(cpu_buffer);
1788 atomic_dec(&buffer->record_disabled);
1791 mutex_unlock(&buffer->mutex);
1792 return size;
1794 out_err:
1795 for_each_buffer_cpu(buffer, cpu) {
1796 struct buffer_page *bpage, *tmp;
1798 cpu_buffer = buffer->buffers[cpu];
1799 cpu_buffer->nr_pages_to_update = 0;
1801 if (list_empty(&cpu_buffer->new_pages))
1802 continue;
1804 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1805 list) {
1806 list_del_init(&bpage->list);
1807 free_buffer_page(bpage);
1810 mutex_unlock(&buffer->mutex);
1811 return err;
1813 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1815 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1817 mutex_lock(&buffer->mutex);
1818 if (val)
1819 buffer->flags |= RB_FL_OVERWRITE;
1820 else
1821 buffer->flags &= ~RB_FL_OVERWRITE;
1822 mutex_unlock(&buffer->mutex);
1824 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1826 static inline void *
1827 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1829 return bpage->data + index;
1832 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1834 return bpage->page->data + index;
1837 static inline struct ring_buffer_event *
1838 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1840 return __rb_page_index(cpu_buffer->reader_page,
1841 cpu_buffer->reader_page->read);
1844 static inline struct ring_buffer_event *
1845 rb_iter_head_event(struct ring_buffer_iter *iter)
1847 return __rb_page_index(iter->head_page, iter->head);
1850 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1852 return local_read(&bpage->page->commit);
1855 /* Size is determined by what has been committed */
1856 static inline unsigned rb_page_size(struct buffer_page *bpage)
1858 return rb_page_commit(bpage);
1861 static inline unsigned
1862 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1864 return rb_page_commit(cpu_buffer->commit_page);
1867 static inline unsigned
1868 rb_event_index(struct ring_buffer_event *event)
1870 unsigned long addr = (unsigned long)event;
1872 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1875 static inline int
1876 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1877 struct ring_buffer_event *event)
1879 unsigned long addr = (unsigned long)event;
1880 unsigned long index;
1882 index = rb_event_index(event);
1883 addr &= PAGE_MASK;
1885 return cpu_buffer->commit_page->page == (void *)addr &&
1886 rb_commit_index(cpu_buffer) == index;
1889 static void
1890 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1892 unsigned long max_count;
1895 * We only race with interrupts and NMIs on this CPU.
1896 * If we own the commit event, then we can commit
1897 * all others that interrupted us, since the interruptions
1898 * are in stack format (they finish before they come
1899 * back to us). This allows us to do a simple loop to
1900 * assign the commit to the tail.
1902 again:
1903 max_count = cpu_buffer->nr_pages * 100;
1905 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1906 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1907 return;
1908 if (RB_WARN_ON(cpu_buffer,
1909 rb_is_reader_page(cpu_buffer->tail_page)))
1910 return;
1911 local_set(&cpu_buffer->commit_page->page->commit,
1912 rb_page_write(cpu_buffer->commit_page));
1913 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1914 cpu_buffer->write_stamp =
1915 cpu_buffer->commit_page->page->time_stamp;
1916 /* add barrier to keep gcc from optimizing too much */
1917 barrier();
1919 while (rb_commit_index(cpu_buffer) !=
1920 rb_page_write(cpu_buffer->commit_page)) {
1922 local_set(&cpu_buffer->commit_page->page->commit,
1923 rb_page_write(cpu_buffer->commit_page));
1924 RB_WARN_ON(cpu_buffer,
1925 local_read(&cpu_buffer->commit_page->page->commit) &
1926 ~RB_WRITE_MASK);
1927 barrier();
1930 /* again, keep gcc from optimizing */
1931 barrier();
1934 * If an interrupt came in just after the first while loop
1935 * and pushed the tail page forward, we will be left with
1936 * a dangling commit that will never go forward.
1938 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1939 goto again;
1942 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1944 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1945 cpu_buffer->reader_page->read = 0;
1948 static void rb_inc_iter(struct ring_buffer_iter *iter)
1950 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1953 * The iterator could be on the reader page (it starts there).
1954 * But the head could have moved, since the reader was
1955 * found. Check for this case and assign the iterator
1956 * to the head page instead of next.
1958 if (iter->head_page == cpu_buffer->reader_page)
1959 iter->head_page = rb_set_head_page(cpu_buffer);
1960 else
1961 rb_inc_page(cpu_buffer, &iter->head_page);
1963 iter->read_stamp = iter->head_page->page->time_stamp;
1964 iter->head = 0;
1967 /* Slow path, do not inline */
1968 static noinline struct ring_buffer_event *
1969 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1971 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1973 /* Not the first event on the page? */
1974 if (rb_event_index(event)) {
1975 event->time_delta = delta & TS_MASK;
1976 event->array[0] = delta >> TS_SHIFT;
1977 } else {
1978 /* nope, just zero it */
1979 event->time_delta = 0;
1980 event->array[0] = 0;
1983 return skip_time_extend(event);
1987 * rb_update_event - update event type and data
1988 * @event: the even to update
1989 * @type: the type of event
1990 * @length: the size of the event field in the ring buffer
1992 * Update the type and data fields of the event. The length
1993 * is the actual size that is written to the ring buffer,
1994 * and with this, we can determine what to place into the
1995 * data field.
1997 static void
1998 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1999 struct ring_buffer_event *event, unsigned length,
2000 int add_timestamp, u64 delta)
2002 /* Only a commit updates the timestamp */
2003 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2004 delta = 0;
2007 * If we need to add a timestamp, then we
2008 * add it to the start of the resevered space.
2010 if (unlikely(add_timestamp)) {
2011 event = rb_add_time_stamp(event, delta);
2012 length -= RB_LEN_TIME_EXTEND;
2013 delta = 0;
2016 event->time_delta = delta;
2017 length -= RB_EVNT_HDR_SIZE;
2018 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2019 event->type_len = 0;
2020 event->array[0] = length;
2021 } else
2022 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2026 * rb_handle_head_page - writer hit the head page
2028 * Returns: +1 to retry page
2029 * 0 to continue
2030 * -1 on error
2032 static int
2033 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2034 struct buffer_page *tail_page,
2035 struct buffer_page *next_page)
2037 struct buffer_page *new_head;
2038 int entries;
2039 int type;
2040 int ret;
2042 entries = rb_page_entries(next_page);
2045 * The hard part is here. We need to move the head
2046 * forward, and protect against both readers on
2047 * other CPUs and writers coming in via interrupts.
2049 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2050 RB_PAGE_HEAD);
2053 * type can be one of four:
2054 * NORMAL - an interrupt already moved it for us
2055 * HEAD - we are the first to get here.
2056 * UPDATE - we are the interrupt interrupting
2057 * a current move.
2058 * MOVED - a reader on another CPU moved the next
2059 * pointer to its reader page. Give up
2060 * and try again.
2063 switch (type) {
2064 case RB_PAGE_HEAD:
2066 * We changed the head to UPDATE, thus
2067 * it is our responsibility to update
2068 * the counters.
2070 local_add(entries, &cpu_buffer->overrun);
2071 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2074 * The entries will be zeroed out when we move the
2075 * tail page.
2078 /* still more to do */
2079 break;
2081 case RB_PAGE_UPDATE:
2083 * This is an interrupt that interrupt the
2084 * previous update. Still more to do.
2086 break;
2087 case RB_PAGE_NORMAL:
2089 * An interrupt came in before the update
2090 * and processed this for us.
2091 * Nothing left to do.
2093 return 1;
2094 case RB_PAGE_MOVED:
2096 * The reader is on another CPU and just did
2097 * a swap with our next_page.
2098 * Try again.
2100 return 1;
2101 default:
2102 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2103 return -1;
2107 * Now that we are here, the old head pointer is
2108 * set to UPDATE. This will keep the reader from
2109 * swapping the head page with the reader page.
2110 * The reader (on another CPU) will spin till
2111 * we are finished.
2113 * We just need to protect against interrupts
2114 * doing the job. We will set the next pointer
2115 * to HEAD. After that, we set the old pointer
2116 * to NORMAL, but only if it was HEAD before.
2117 * otherwise we are an interrupt, and only
2118 * want the outer most commit to reset it.
2120 new_head = next_page;
2121 rb_inc_page(cpu_buffer, &new_head);
2123 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2124 RB_PAGE_NORMAL);
2127 * Valid returns are:
2128 * HEAD - an interrupt came in and already set it.
2129 * NORMAL - One of two things:
2130 * 1) We really set it.
2131 * 2) A bunch of interrupts came in and moved
2132 * the page forward again.
2134 switch (ret) {
2135 case RB_PAGE_HEAD:
2136 case RB_PAGE_NORMAL:
2137 /* OK */
2138 break;
2139 default:
2140 RB_WARN_ON(cpu_buffer, 1);
2141 return -1;
2145 * It is possible that an interrupt came in,
2146 * set the head up, then more interrupts came in
2147 * and moved it again. When we get back here,
2148 * the page would have been set to NORMAL but we
2149 * just set it back to HEAD.
2151 * How do you detect this? Well, if that happened
2152 * the tail page would have moved.
2154 if (ret == RB_PAGE_NORMAL) {
2156 * If the tail had moved passed next, then we need
2157 * to reset the pointer.
2159 if (cpu_buffer->tail_page != tail_page &&
2160 cpu_buffer->tail_page != next_page)
2161 rb_head_page_set_normal(cpu_buffer, new_head,
2162 next_page,
2163 RB_PAGE_HEAD);
2167 * If this was the outer most commit (the one that
2168 * changed the original pointer from HEAD to UPDATE),
2169 * then it is up to us to reset it to NORMAL.
2171 if (type == RB_PAGE_HEAD) {
2172 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2173 tail_page,
2174 RB_PAGE_UPDATE);
2175 if (RB_WARN_ON(cpu_buffer,
2176 ret != RB_PAGE_UPDATE))
2177 return -1;
2180 return 0;
2183 static unsigned rb_calculate_event_length(unsigned length)
2185 struct ring_buffer_event event; /* Used only for sizeof array */
2187 /* zero length can cause confusions */
2188 if (!length)
2189 length = 1;
2191 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2192 length += sizeof(event.array[0]);
2194 length += RB_EVNT_HDR_SIZE;
2195 length = ALIGN(length, RB_ARCH_ALIGNMENT);
2197 return length;
2200 static inline void
2201 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2202 struct buffer_page *tail_page,
2203 unsigned long tail, unsigned long length)
2205 struct ring_buffer_event *event;
2208 * Only the event that crossed the page boundary
2209 * must fill the old tail_page with padding.
2211 if (tail >= BUF_PAGE_SIZE) {
2213 * If the page was filled, then we still need
2214 * to update the real_end. Reset it to zero
2215 * and the reader will ignore it.
2217 if (tail == BUF_PAGE_SIZE)
2218 tail_page->real_end = 0;
2220 local_sub(length, &tail_page->write);
2221 return;
2224 event = __rb_page_index(tail_page, tail);
2225 kmemcheck_annotate_bitfield(event, bitfield);
2227 /* account for padding bytes */
2228 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2231 * Save the original length to the meta data.
2232 * This will be used by the reader to add lost event
2233 * counter.
2235 tail_page->real_end = tail;
2238 * If this event is bigger than the minimum size, then
2239 * we need to be careful that we don't subtract the
2240 * write counter enough to allow another writer to slip
2241 * in on this page.
2242 * We put in a discarded commit instead, to make sure
2243 * that this space is not used again.
2245 * If we are less than the minimum size, we don't need to
2246 * worry about it.
2248 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2249 /* No room for any events */
2251 /* Mark the rest of the page with padding */
2252 rb_event_set_padding(event);
2254 /* Set the write back to the previous setting */
2255 local_sub(length, &tail_page->write);
2256 return;
2259 /* Put in a discarded event */
2260 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2261 event->type_len = RINGBUF_TYPE_PADDING;
2262 /* time delta must be non zero */
2263 event->time_delta = 1;
2265 /* Set write to end of buffer */
2266 length = (tail + length) - BUF_PAGE_SIZE;
2267 local_sub(length, &tail_page->write);
2271 * This is the slow path, force gcc not to inline it.
2273 static noinline struct ring_buffer_event *
2274 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2275 unsigned long length, unsigned long tail,
2276 struct buffer_page *tail_page, u64 ts)
2278 struct buffer_page *commit_page = cpu_buffer->commit_page;
2279 struct ring_buffer *buffer = cpu_buffer->buffer;
2280 struct buffer_page *next_page;
2281 int ret;
2283 next_page = tail_page;
2285 rb_inc_page(cpu_buffer, &next_page);
2288 * If for some reason, we had an interrupt storm that made
2289 * it all the way around the buffer, bail, and warn
2290 * about it.
2292 if (unlikely(next_page == commit_page)) {
2293 local_inc(&cpu_buffer->commit_overrun);
2294 goto out_reset;
2298 * This is where the fun begins!
2300 * We are fighting against races between a reader that
2301 * could be on another CPU trying to swap its reader
2302 * page with the buffer head.
2304 * We are also fighting against interrupts coming in and
2305 * moving the head or tail on us as well.
2307 * If the next page is the head page then we have filled
2308 * the buffer, unless the commit page is still on the
2309 * reader page.
2311 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2314 * If the commit is not on the reader page, then
2315 * move the header page.
2317 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2319 * If we are not in overwrite mode,
2320 * this is easy, just stop here.
2322 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2323 local_inc(&cpu_buffer->dropped_events);
2324 goto out_reset;
2327 ret = rb_handle_head_page(cpu_buffer,
2328 tail_page,
2329 next_page);
2330 if (ret < 0)
2331 goto out_reset;
2332 if (ret)
2333 goto out_again;
2334 } else {
2336 * We need to be careful here too. The
2337 * commit page could still be on the reader
2338 * page. We could have a small buffer, and
2339 * have filled up the buffer with events
2340 * from interrupts and such, and wrapped.
2342 * Note, if the tail page is also the on the
2343 * reader_page, we let it move out.
2345 if (unlikely((cpu_buffer->commit_page !=
2346 cpu_buffer->tail_page) &&
2347 (cpu_buffer->commit_page ==
2348 cpu_buffer->reader_page))) {
2349 local_inc(&cpu_buffer->commit_overrun);
2350 goto out_reset;
2355 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2356 if (ret) {
2358 * Nested commits always have zero deltas, so
2359 * just reread the time stamp
2361 ts = rb_time_stamp(buffer);
2362 next_page->page->time_stamp = ts;
2365 out_again:
2367 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2369 /* fail and let the caller try again */
2370 return ERR_PTR(-EAGAIN);
2372 out_reset:
2373 /* reset write */
2374 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2376 return NULL;
2379 static struct ring_buffer_event *
2380 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2381 unsigned long length, u64 ts,
2382 u64 delta, int add_timestamp)
2384 struct buffer_page *tail_page;
2385 struct ring_buffer_event *event;
2386 unsigned long tail, write;
2389 * If the time delta since the last event is too big to
2390 * hold in the time field of the event, then we append a
2391 * TIME EXTEND event ahead of the data event.
2393 if (unlikely(add_timestamp))
2394 length += RB_LEN_TIME_EXTEND;
2396 tail_page = cpu_buffer->tail_page;
2397 write = local_add_return(length, &tail_page->write);
2399 /* set write to only the index of the write */
2400 write &= RB_WRITE_MASK;
2401 tail = write - length;
2404 * If this is the first commit on the page, then it has the same
2405 * timestamp as the page itself.
2407 if (!tail)
2408 delta = 0;
2410 /* See if we shot pass the end of this buffer page */
2411 if (unlikely(write > BUF_PAGE_SIZE))
2412 return rb_move_tail(cpu_buffer, length, tail,
2413 tail_page, ts);
2415 /* We reserved something on the buffer */
2417 event = __rb_page_index(tail_page, tail);
2418 kmemcheck_annotate_bitfield(event, bitfield);
2419 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2421 local_inc(&tail_page->entries);
2424 * If this is the first commit on the page, then update
2425 * its timestamp.
2427 if (!tail)
2428 tail_page->page->time_stamp = ts;
2430 /* account for these added bytes */
2431 local_add(length, &cpu_buffer->entries_bytes);
2433 return event;
2436 static inline int
2437 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2438 struct ring_buffer_event *event)
2440 unsigned long new_index, old_index;
2441 struct buffer_page *bpage;
2442 unsigned long index;
2443 unsigned long addr;
2445 new_index = rb_event_index(event);
2446 old_index = new_index + rb_event_ts_length(event);
2447 addr = (unsigned long)event;
2448 addr &= PAGE_MASK;
2450 bpage = cpu_buffer->tail_page;
2452 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2453 unsigned long write_mask =
2454 local_read(&bpage->write) & ~RB_WRITE_MASK;
2455 unsigned long event_length = rb_event_length(event);
2457 * This is on the tail page. It is possible that
2458 * a write could come in and move the tail page
2459 * and write to the next page. That is fine
2460 * because we just shorten what is on this page.
2462 old_index += write_mask;
2463 new_index += write_mask;
2464 index = local_cmpxchg(&bpage->write, old_index, new_index);
2465 if (index == old_index) {
2466 /* update counters */
2467 local_sub(event_length, &cpu_buffer->entries_bytes);
2468 return 1;
2472 /* could not discard */
2473 return 0;
2476 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2478 local_inc(&cpu_buffer->committing);
2479 local_inc(&cpu_buffer->commits);
2482 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2484 unsigned long commits;
2486 if (RB_WARN_ON(cpu_buffer,
2487 !local_read(&cpu_buffer->committing)))
2488 return;
2490 again:
2491 commits = local_read(&cpu_buffer->commits);
2492 /* synchronize with interrupts */
2493 barrier();
2494 if (local_read(&cpu_buffer->committing) == 1)
2495 rb_set_commit_to_write(cpu_buffer);
2497 local_dec(&cpu_buffer->committing);
2499 /* synchronize with interrupts */
2500 barrier();
2503 * Need to account for interrupts coming in between the
2504 * updating of the commit page and the clearing of the
2505 * committing counter.
2507 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2508 !local_read(&cpu_buffer->committing)) {
2509 local_inc(&cpu_buffer->committing);
2510 goto again;
2514 static struct ring_buffer_event *
2515 rb_reserve_next_event(struct ring_buffer *buffer,
2516 struct ring_buffer_per_cpu *cpu_buffer,
2517 unsigned long length)
2519 struct ring_buffer_event *event;
2520 u64 ts, delta;
2521 int nr_loops = 0;
2522 int add_timestamp;
2523 u64 diff;
2525 rb_start_commit(cpu_buffer);
2527 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2529 * Due to the ability to swap a cpu buffer from a buffer
2530 * it is possible it was swapped before we committed.
2531 * (committing stops a swap). We check for it here and
2532 * if it happened, we have to fail the write.
2534 barrier();
2535 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2536 local_dec(&cpu_buffer->committing);
2537 local_dec(&cpu_buffer->commits);
2538 return NULL;
2540 #endif
2542 length = rb_calculate_event_length(length);
2543 again:
2544 add_timestamp = 0;
2545 delta = 0;
2548 * We allow for interrupts to reenter here and do a trace.
2549 * If one does, it will cause this original code to loop
2550 * back here. Even with heavy interrupts happening, this
2551 * should only happen a few times in a row. If this happens
2552 * 1000 times in a row, there must be either an interrupt
2553 * storm or we have something buggy.
2554 * Bail!
2556 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2557 goto out_fail;
2559 ts = rb_time_stamp(cpu_buffer->buffer);
2560 diff = ts - cpu_buffer->write_stamp;
2562 /* make sure this diff is calculated here */
2563 barrier();
2565 /* Did the write stamp get updated already? */
2566 if (likely(ts >= cpu_buffer->write_stamp)) {
2567 delta = diff;
2568 if (unlikely(test_time_stamp(delta))) {
2569 int local_clock_stable = 1;
2570 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2571 local_clock_stable = sched_clock_stable();
2572 #endif
2573 WARN_ONCE(delta > (1ULL << 59),
2574 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2575 (unsigned long long)delta,
2576 (unsigned long long)ts,
2577 (unsigned long long)cpu_buffer->write_stamp,
2578 local_clock_stable ? "" :
2579 "If you just came from a suspend/resume,\n"
2580 "please switch to the trace global clock:\n"
2581 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2582 add_timestamp = 1;
2586 event = __rb_reserve_next(cpu_buffer, length, ts,
2587 delta, add_timestamp);
2588 if (unlikely(PTR_ERR(event) == -EAGAIN))
2589 goto again;
2591 if (!event)
2592 goto out_fail;
2594 return event;
2596 out_fail:
2597 rb_end_commit(cpu_buffer);
2598 return NULL;
2601 #ifdef CONFIG_TRACING
2604 * The lock and unlock are done within a preempt disable section.
2605 * The current_context per_cpu variable can only be modified
2606 * by the current task between lock and unlock. But it can
2607 * be modified more than once via an interrupt. To pass this
2608 * information from the lock to the unlock without having to
2609 * access the 'in_interrupt()' functions again (which do show
2610 * a bit of overhead in something as critical as function tracing,
2611 * we use a bitmask trick.
2613 * bit 0 = NMI context
2614 * bit 1 = IRQ context
2615 * bit 2 = SoftIRQ context
2616 * bit 3 = normal context.
2618 * This works because this is the order of contexts that can
2619 * preempt other contexts. A SoftIRQ never preempts an IRQ
2620 * context.
2622 * When the context is determined, the corresponding bit is
2623 * checked and set (if it was set, then a recursion of that context
2624 * happened).
2626 * On unlock, we need to clear this bit. To do so, just subtract
2627 * 1 from the current_context and AND it to itself.
2629 * (binary)
2630 * 101 - 1 = 100
2631 * 101 & 100 = 100 (clearing bit zero)
2633 * 1010 - 1 = 1001
2634 * 1010 & 1001 = 1000 (clearing bit 1)
2636 * The least significant bit can be cleared this way, and it
2637 * just so happens that it is the same bit corresponding to
2638 * the current context.
2640 static DEFINE_PER_CPU(unsigned int, current_context);
2642 static __always_inline int trace_recursive_lock(void)
2644 unsigned int val = this_cpu_read(current_context);
2645 int bit;
2647 if (in_interrupt()) {
2648 if (in_nmi())
2649 bit = 0;
2650 else if (in_irq())
2651 bit = 1;
2652 else
2653 bit = 2;
2654 } else
2655 bit = 3;
2657 if (unlikely(val & (1 << bit)))
2658 return 1;
2660 val |= (1 << bit);
2661 this_cpu_write(current_context, val);
2663 return 0;
2666 static __always_inline void trace_recursive_unlock(void)
2668 unsigned int val = this_cpu_read(current_context);
2670 val--;
2671 val &= this_cpu_read(current_context);
2672 this_cpu_write(current_context, val);
2675 #else
2677 #define trace_recursive_lock() (0)
2678 #define trace_recursive_unlock() do { } while (0)
2680 #endif
2683 * ring_buffer_lock_reserve - reserve a part of the buffer
2684 * @buffer: the ring buffer to reserve from
2685 * @length: the length of the data to reserve (excluding event header)
2687 * Returns a reseverd event on the ring buffer to copy directly to.
2688 * The user of this interface will need to get the body to write into
2689 * and can use the ring_buffer_event_data() interface.
2691 * The length is the length of the data needed, not the event length
2692 * which also includes the event header.
2694 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2695 * If NULL is returned, then nothing has been allocated or locked.
2697 struct ring_buffer_event *
2698 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2700 struct ring_buffer_per_cpu *cpu_buffer;
2701 struct ring_buffer_event *event;
2702 int cpu;
2704 if (ring_buffer_flags != RB_BUFFERS_ON)
2705 return NULL;
2707 /* If we are tracing schedule, we don't want to recurse */
2708 preempt_disable_notrace();
2710 if (atomic_read(&buffer->record_disabled))
2711 goto out_nocheck;
2713 if (trace_recursive_lock())
2714 goto out_nocheck;
2716 cpu = raw_smp_processor_id();
2718 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2719 goto out;
2721 cpu_buffer = buffer->buffers[cpu];
2723 if (atomic_read(&cpu_buffer->record_disabled))
2724 goto out;
2726 if (length > BUF_MAX_DATA_SIZE)
2727 goto out;
2729 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2730 if (!event)
2731 goto out;
2733 return event;
2735 out:
2736 trace_recursive_unlock();
2738 out_nocheck:
2739 preempt_enable_notrace();
2740 return NULL;
2742 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2744 static void
2745 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2746 struct ring_buffer_event *event)
2748 u64 delta;
2751 * The event first in the commit queue updates the
2752 * time stamp.
2754 if (rb_event_is_commit(cpu_buffer, event)) {
2756 * A commit event that is first on a page
2757 * updates the write timestamp with the page stamp
2759 if (!rb_event_index(event))
2760 cpu_buffer->write_stamp =
2761 cpu_buffer->commit_page->page->time_stamp;
2762 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2763 delta = event->array[0];
2764 delta <<= TS_SHIFT;
2765 delta += event->time_delta;
2766 cpu_buffer->write_stamp += delta;
2767 } else
2768 cpu_buffer->write_stamp += event->time_delta;
2772 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2773 struct ring_buffer_event *event)
2775 local_inc(&cpu_buffer->entries);
2776 rb_update_write_stamp(cpu_buffer, event);
2777 rb_end_commit(cpu_buffer);
2780 static __always_inline void
2781 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2783 if (buffer->irq_work.waiters_pending) {
2784 buffer->irq_work.waiters_pending = false;
2785 /* irq_work_queue() supplies it's own memory barriers */
2786 irq_work_queue(&buffer->irq_work.work);
2789 if (cpu_buffer->irq_work.waiters_pending) {
2790 cpu_buffer->irq_work.waiters_pending = false;
2791 /* irq_work_queue() supplies it's own memory barriers */
2792 irq_work_queue(&cpu_buffer->irq_work.work);
2797 * ring_buffer_unlock_commit - commit a reserved
2798 * @buffer: The buffer to commit to
2799 * @event: The event pointer to commit.
2801 * This commits the data to the ring buffer, and releases any locks held.
2803 * Must be paired with ring_buffer_lock_reserve.
2805 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2806 struct ring_buffer_event *event)
2808 struct ring_buffer_per_cpu *cpu_buffer;
2809 int cpu = raw_smp_processor_id();
2811 cpu_buffer = buffer->buffers[cpu];
2813 rb_commit(cpu_buffer, event);
2815 rb_wakeups(buffer, cpu_buffer);
2817 trace_recursive_unlock();
2819 preempt_enable_notrace();
2821 return 0;
2823 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2825 static inline void rb_event_discard(struct ring_buffer_event *event)
2827 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2828 event = skip_time_extend(event);
2830 /* array[0] holds the actual length for the discarded event */
2831 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2832 event->type_len = RINGBUF_TYPE_PADDING;
2833 /* time delta must be non zero */
2834 if (!event->time_delta)
2835 event->time_delta = 1;
2839 * Decrement the entries to the page that an event is on.
2840 * The event does not even need to exist, only the pointer
2841 * to the page it is on. This may only be called before the commit
2842 * takes place.
2844 static inline void
2845 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2846 struct ring_buffer_event *event)
2848 unsigned long addr = (unsigned long)event;
2849 struct buffer_page *bpage = cpu_buffer->commit_page;
2850 struct buffer_page *start;
2852 addr &= PAGE_MASK;
2854 /* Do the likely case first */
2855 if (likely(bpage->page == (void *)addr)) {
2856 local_dec(&bpage->entries);
2857 return;
2861 * Because the commit page may be on the reader page we
2862 * start with the next page and check the end loop there.
2864 rb_inc_page(cpu_buffer, &bpage);
2865 start = bpage;
2866 do {
2867 if (bpage->page == (void *)addr) {
2868 local_dec(&bpage->entries);
2869 return;
2871 rb_inc_page(cpu_buffer, &bpage);
2872 } while (bpage != start);
2874 /* commit not part of this buffer?? */
2875 RB_WARN_ON(cpu_buffer, 1);
2879 * ring_buffer_commit_discard - discard an event that has not been committed
2880 * @buffer: the ring buffer
2881 * @event: non committed event to discard
2883 * Sometimes an event that is in the ring buffer needs to be ignored.
2884 * This function lets the user discard an event in the ring buffer
2885 * and then that event will not be read later.
2887 * This function only works if it is called before the the item has been
2888 * committed. It will try to free the event from the ring buffer
2889 * if another event has not been added behind it.
2891 * If another event has been added behind it, it will set the event
2892 * up as discarded, and perform the commit.
2894 * If this function is called, do not call ring_buffer_unlock_commit on
2895 * the event.
2897 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2898 struct ring_buffer_event *event)
2900 struct ring_buffer_per_cpu *cpu_buffer;
2901 int cpu;
2903 /* The event is discarded regardless */
2904 rb_event_discard(event);
2906 cpu = smp_processor_id();
2907 cpu_buffer = buffer->buffers[cpu];
2910 * This must only be called if the event has not been
2911 * committed yet. Thus we can assume that preemption
2912 * is still disabled.
2914 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2916 rb_decrement_entry(cpu_buffer, event);
2917 if (rb_try_to_discard(cpu_buffer, event))
2918 goto out;
2921 * The commit is still visible by the reader, so we
2922 * must still update the timestamp.
2924 rb_update_write_stamp(cpu_buffer, event);
2925 out:
2926 rb_end_commit(cpu_buffer);
2928 trace_recursive_unlock();
2930 preempt_enable_notrace();
2933 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2936 * ring_buffer_write - write data to the buffer without reserving
2937 * @buffer: The ring buffer to write to.
2938 * @length: The length of the data being written (excluding the event header)
2939 * @data: The data to write to the buffer.
2941 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2942 * one function. If you already have the data to write to the buffer, it
2943 * may be easier to simply call this function.
2945 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2946 * and not the length of the event which would hold the header.
2948 int ring_buffer_write(struct ring_buffer *buffer,
2949 unsigned long length,
2950 void *data)
2952 struct ring_buffer_per_cpu *cpu_buffer;
2953 struct ring_buffer_event *event;
2954 void *body;
2955 int ret = -EBUSY;
2956 int cpu;
2958 if (ring_buffer_flags != RB_BUFFERS_ON)
2959 return -EBUSY;
2961 preempt_disable_notrace();
2963 if (atomic_read(&buffer->record_disabled))
2964 goto out;
2966 cpu = raw_smp_processor_id();
2968 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2969 goto out;
2971 cpu_buffer = buffer->buffers[cpu];
2973 if (atomic_read(&cpu_buffer->record_disabled))
2974 goto out;
2976 if (length > BUF_MAX_DATA_SIZE)
2977 goto out;
2979 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2980 if (!event)
2981 goto out;
2983 body = rb_event_data(event);
2985 memcpy(body, data, length);
2987 rb_commit(cpu_buffer, event);
2989 rb_wakeups(buffer, cpu_buffer);
2991 ret = 0;
2992 out:
2993 preempt_enable_notrace();
2995 return ret;
2997 EXPORT_SYMBOL_GPL(ring_buffer_write);
2999 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3001 struct buffer_page *reader = cpu_buffer->reader_page;
3002 struct buffer_page *head = rb_set_head_page(cpu_buffer);
3003 struct buffer_page *commit = cpu_buffer->commit_page;
3005 /* In case of error, head will be NULL */
3006 if (unlikely(!head))
3007 return 1;
3009 return reader->read == rb_page_commit(reader) &&
3010 (commit == reader ||
3011 (commit == head &&
3012 head->read == rb_page_commit(commit)));
3016 * ring_buffer_record_disable - stop all writes into the buffer
3017 * @buffer: The ring buffer to stop writes to.
3019 * This prevents all writes to the buffer. Any attempt to write
3020 * to the buffer after this will fail and return NULL.
3022 * The caller should call synchronize_sched() after this.
3024 void ring_buffer_record_disable(struct ring_buffer *buffer)
3026 atomic_inc(&buffer->record_disabled);
3028 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3031 * ring_buffer_record_enable - enable writes to the buffer
3032 * @buffer: The ring buffer to enable writes
3034 * Note, multiple disables will need the same number of enables
3035 * to truly enable the writing (much like preempt_disable).
3037 void ring_buffer_record_enable(struct ring_buffer *buffer)
3039 atomic_dec(&buffer->record_disabled);
3041 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3044 * ring_buffer_record_off - stop all writes into the buffer
3045 * @buffer: The ring buffer to stop writes to.
3047 * This prevents all writes to the buffer. Any attempt to write
3048 * to the buffer after this will fail and return NULL.
3050 * This is different than ring_buffer_record_disable() as
3051 * it works like an on/off switch, where as the disable() version
3052 * must be paired with a enable().
3054 void ring_buffer_record_off(struct ring_buffer *buffer)
3056 unsigned int rd;
3057 unsigned int new_rd;
3059 do {
3060 rd = atomic_read(&buffer->record_disabled);
3061 new_rd = rd | RB_BUFFER_OFF;
3062 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3064 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3067 * ring_buffer_record_on - restart writes into the buffer
3068 * @buffer: The ring buffer to start writes to.
3070 * This enables all writes to the buffer that was disabled by
3071 * ring_buffer_record_off().
3073 * This is different than ring_buffer_record_enable() as
3074 * it works like an on/off switch, where as the enable() version
3075 * must be paired with a disable().
3077 void ring_buffer_record_on(struct ring_buffer *buffer)
3079 unsigned int rd;
3080 unsigned int new_rd;
3082 do {
3083 rd = atomic_read(&buffer->record_disabled);
3084 new_rd = rd & ~RB_BUFFER_OFF;
3085 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3087 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3090 * ring_buffer_record_is_on - return true if the ring buffer can write
3091 * @buffer: The ring buffer to see if write is enabled
3093 * Returns true if the ring buffer is in a state that it accepts writes.
3095 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3097 return !atomic_read(&buffer->record_disabled);
3101 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3102 * @buffer: The ring buffer to stop writes to.
3103 * @cpu: The CPU buffer to stop
3105 * This prevents all writes to the buffer. Any attempt to write
3106 * to the buffer after this will fail and return NULL.
3108 * The caller should call synchronize_sched() after this.
3110 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3112 struct ring_buffer_per_cpu *cpu_buffer;
3114 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3115 return;
3117 cpu_buffer = buffer->buffers[cpu];
3118 atomic_inc(&cpu_buffer->record_disabled);
3120 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3123 * ring_buffer_record_enable_cpu - enable writes to the buffer
3124 * @buffer: The ring buffer to enable writes
3125 * @cpu: The CPU to enable.
3127 * Note, multiple disables will need the same number of enables
3128 * to truly enable the writing (much like preempt_disable).
3130 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3132 struct ring_buffer_per_cpu *cpu_buffer;
3134 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3135 return;
3137 cpu_buffer = buffer->buffers[cpu];
3138 atomic_dec(&cpu_buffer->record_disabled);
3140 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3143 * The total entries in the ring buffer is the running counter
3144 * of entries entered into the ring buffer, minus the sum of
3145 * the entries read from the ring buffer and the number of
3146 * entries that were overwritten.
3148 static inline unsigned long
3149 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3151 return local_read(&cpu_buffer->entries) -
3152 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3156 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3157 * @buffer: The ring buffer
3158 * @cpu: The per CPU buffer to read from.
3160 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3162 unsigned long flags;
3163 struct ring_buffer_per_cpu *cpu_buffer;
3164 struct buffer_page *bpage;
3165 u64 ret = 0;
3167 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3168 return 0;
3170 cpu_buffer = buffer->buffers[cpu];
3171 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3173 * if the tail is on reader_page, oldest time stamp is on the reader
3174 * page
3176 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3177 bpage = cpu_buffer->reader_page;
3178 else
3179 bpage = rb_set_head_page(cpu_buffer);
3180 if (bpage)
3181 ret = bpage->page->time_stamp;
3182 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3184 return ret;
3186 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3189 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3190 * @buffer: The ring buffer
3191 * @cpu: The per CPU buffer to read from.
3193 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3195 struct ring_buffer_per_cpu *cpu_buffer;
3196 unsigned long ret;
3198 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3199 return 0;
3201 cpu_buffer = buffer->buffers[cpu];
3202 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3204 return ret;
3206 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3209 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3210 * @buffer: The ring buffer
3211 * @cpu: The per CPU buffer to get the entries from.
3213 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3215 struct ring_buffer_per_cpu *cpu_buffer;
3217 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3218 return 0;
3220 cpu_buffer = buffer->buffers[cpu];
3222 return rb_num_of_entries(cpu_buffer);
3224 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3227 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3228 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3229 * @buffer: The ring buffer
3230 * @cpu: The per CPU buffer to get the number of overruns from
3232 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3234 struct ring_buffer_per_cpu *cpu_buffer;
3235 unsigned long ret;
3237 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3238 return 0;
3240 cpu_buffer = buffer->buffers[cpu];
3241 ret = local_read(&cpu_buffer->overrun);
3243 return ret;
3245 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3248 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3249 * commits failing due to the buffer wrapping around while there are uncommitted
3250 * events, such as during an interrupt storm.
3251 * @buffer: The ring buffer
3252 * @cpu: The per CPU buffer to get the number of overruns from
3254 unsigned long
3255 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3257 struct ring_buffer_per_cpu *cpu_buffer;
3258 unsigned long ret;
3260 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3261 return 0;
3263 cpu_buffer = buffer->buffers[cpu];
3264 ret = local_read(&cpu_buffer->commit_overrun);
3266 return ret;
3268 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3271 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3272 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3273 * @buffer: The ring buffer
3274 * @cpu: The per CPU buffer to get the number of overruns from
3276 unsigned long
3277 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3279 struct ring_buffer_per_cpu *cpu_buffer;
3280 unsigned long ret;
3282 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3283 return 0;
3285 cpu_buffer = buffer->buffers[cpu];
3286 ret = local_read(&cpu_buffer->dropped_events);
3288 return ret;
3290 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3293 * ring_buffer_read_events_cpu - get the number of events successfully read
3294 * @buffer: The ring buffer
3295 * @cpu: The per CPU buffer to get the number of events read
3297 unsigned long
3298 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3300 struct ring_buffer_per_cpu *cpu_buffer;
3302 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3303 return 0;
3305 cpu_buffer = buffer->buffers[cpu];
3306 return cpu_buffer->read;
3308 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3311 * ring_buffer_entries - get the number of entries in a buffer
3312 * @buffer: The ring buffer
3314 * Returns the total number of entries in the ring buffer
3315 * (all CPU entries)
3317 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3319 struct ring_buffer_per_cpu *cpu_buffer;
3320 unsigned long entries = 0;
3321 int cpu;
3323 /* if you care about this being correct, lock the buffer */
3324 for_each_buffer_cpu(buffer, cpu) {
3325 cpu_buffer = buffer->buffers[cpu];
3326 entries += rb_num_of_entries(cpu_buffer);
3329 return entries;
3331 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3334 * ring_buffer_overruns - get the number of overruns in buffer
3335 * @buffer: The ring buffer
3337 * Returns the total number of overruns in the ring buffer
3338 * (all CPU entries)
3340 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3342 struct ring_buffer_per_cpu *cpu_buffer;
3343 unsigned long overruns = 0;
3344 int cpu;
3346 /* if you care about this being correct, lock the buffer */
3347 for_each_buffer_cpu(buffer, cpu) {
3348 cpu_buffer = buffer->buffers[cpu];
3349 overruns += local_read(&cpu_buffer->overrun);
3352 return overruns;
3354 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3356 static void rb_iter_reset(struct ring_buffer_iter *iter)
3358 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3360 /* Iterator usage is expected to have record disabled */
3361 if (list_empty(&cpu_buffer->reader_page->list)) {
3362 iter->head_page = rb_set_head_page(cpu_buffer);
3363 if (unlikely(!iter->head_page))
3364 return;
3365 iter->head = iter->head_page->read;
3366 } else {
3367 iter->head_page = cpu_buffer->reader_page;
3368 iter->head = cpu_buffer->reader_page->read;
3370 if (iter->head)
3371 iter->read_stamp = cpu_buffer->read_stamp;
3372 else
3373 iter->read_stamp = iter->head_page->page->time_stamp;
3374 iter->cache_reader_page = cpu_buffer->reader_page;
3375 iter->cache_read = cpu_buffer->read;
3379 * ring_buffer_iter_reset - reset an iterator
3380 * @iter: The iterator to reset
3382 * Resets the iterator, so that it will start from the beginning
3383 * again.
3385 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3387 struct ring_buffer_per_cpu *cpu_buffer;
3388 unsigned long flags;
3390 if (!iter)
3391 return;
3393 cpu_buffer = iter->cpu_buffer;
3395 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3396 rb_iter_reset(iter);
3397 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3399 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3402 * ring_buffer_iter_empty - check if an iterator has no more to read
3403 * @iter: The iterator to check
3405 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3407 struct ring_buffer_per_cpu *cpu_buffer;
3409 cpu_buffer = iter->cpu_buffer;
3411 return iter->head_page == cpu_buffer->commit_page &&
3412 iter->head == rb_commit_index(cpu_buffer);
3414 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3416 static void
3417 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3418 struct ring_buffer_event *event)
3420 u64 delta;
3422 switch (event->type_len) {
3423 case RINGBUF_TYPE_PADDING:
3424 return;
3426 case RINGBUF_TYPE_TIME_EXTEND:
3427 delta = event->array[0];
3428 delta <<= TS_SHIFT;
3429 delta += event->time_delta;
3430 cpu_buffer->read_stamp += delta;
3431 return;
3433 case RINGBUF_TYPE_TIME_STAMP:
3434 /* FIXME: not implemented */
3435 return;
3437 case RINGBUF_TYPE_DATA:
3438 cpu_buffer->read_stamp += event->time_delta;
3439 return;
3441 default:
3442 BUG();
3444 return;
3447 static void
3448 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3449 struct ring_buffer_event *event)
3451 u64 delta;
3453 switch (event->type_len) {
3454 case RINGBUF_TYPE_PADDING:
3455 return;
3457 case RINGBUF_TYPE_TIME_EXTEND:
3458 delta = event->array[0];
3459 delta <<= TS_SHIFT;
3460 delta += event->time_delta;
3461 iter->read_stamp += delta;
3462 return;
3464 case RINGBUF_TYPE_TIME_STAMP:
3465 /* FIXME: not implemented */
3466 return;
3468 case RINGBUF_TYPE_DATA:
3469 iter->read_stamp += event->time_delta;
3470 return;
3472 default:
3473 BUG();
3475 return;
3478 static struct buffer_page *
3479 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3481 struct buffer_page *reader = NULL;
3482 unsigned long overwrite;
3483 unsigned long flags;
3484 int nr_loops = 0;
3485 int ret;
3487 local_irq_save(flags);
3488 arch_spin_lock(&cpu_buffer->lock);
3490 again:
3492 * This should normally only loop twice. But because the
3493 * start of the reader inserts an empty page, it causes
3494 * a case where we will loop three times. There should be no
3495 * reason to loop four times (that I know of).
3497 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3498 reader = NULL;
3499 goto out;
3502 reader = cpu_buffer->reader_page;
3504 /* If there's more to read, return this page */
3505 if (cpu_buffer->reader_page->read < rb_page_size(reader))
3506 goto out;
3508 /* Never should we have an index greater than the size */
3509 if (RB_WARN_ON(cpu_buffer,
3510 cpu_buffer->reader_page->read > rb_page_size(reader)))
3511 goto out;
3513 /* check if we caught up to the tail */
3514 reader = NULL;
3515 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3516 goto out;
3518 /* Don't bother swapping if the ring buffer is empty */
3519 if (rb_num_of_entries(cpu_buffer) == 0)
3520 goto out;
3523 * Reset the reader page to size zero.
3525 local_set(&cpu_buffer->reader_page->write, 0);
3526 local_set(&cpu_buffer->reader_page->entries, 0);
3527 local_set(&cpu_buffer->reader_page->page->commit, 0);
3528 cpu_buffer->reader_page->real_end = 0;
3530 spin:
3532 * Splice the empty reader page into the list around the head.
3534 reader = rb_set_head_page(cpu_buffer);
3535 if (!reader)
3536 goto out;
3537 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3538 cpu_buffer->reader_page->list.prev = reader->list.prev;
3541 * cpu_buffer->pages just needs to point to the buffer, it
3542 * has no specific buffer page to point to. Lets move it out
3543 * of our way so we don't accidentally swap it.
3545 cpu_buffer->pages = reader->list.prev;
3547 /* The reader page will be pointing to the new head */
3548 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3551 * We want to make sure we read the overruns after we set up our
3552 * pointers to the next object. The writer side does a
3553 * cmpxchg to cross pages which acts as the mb on the writer
3554 * side. Note, the reader will constantly fail the swap
3555 * while the writer is updating the pointers, so this
3556 * guarantees that the overwrite recorded here is the one we
3557 * want to compare with the last_overrun.
3559 smp_mb();
3560 overwrite = local_read(&(cpu_buffer->overrun));
3563 * Here's the tricky part.
3565 * We need to move the pointer past the header page.
3566 * But we can only do that if a writer is not currently
3567 * moving it. The page before the header page has the
3568 * flag bit '1' set if it is pointing to the page we want.
3569 * but if the writer is in the process of moving it
3570 * than it will be '2' or already moved '0'.
3573 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3576 * If we did not convert it, then we must try again.
3578 if (!ret)
3579 goto spin;
3582 * Yeah! We succeeded in replacing the page.
3584 * Now make the new head point back to the reader page.
3586 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3587 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3589 /* Finally update the reader page to the new head */
3590 cpu_buffer->reader_page = reader;
3591 rb_reset_reader_page(cpu_buffer);
3593 if (overwrite != cpu_buffer->last_overrun) {
3594 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3595 cpu_buffer->last_overrun = overwrite;
3598 goto again;
3600 out:
3601 arch_spin_unlock(&cpu_buffer->lock);
3602 local_irq_restore(flags);
3604 return reader;
3607 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3609 struct ring_buffer_event *event;
3610 struct buffer_page *reader;
3611 unsigned length;
3613 reader = rb_get_reader_page(cpu_buffer);
3615 /* This function should not be called when buffer is empty */
3616 if (RB_WARN_ON(cpu_buffer, !reader))
3617 return;
3619 event = rb_reader_event(cpu_buffer);
3621 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3622 cpu_buffer->read++;
3624 rb_update_read_stamp(cpu_buffer, event);
3626 length = rb_event_length(event);
3627 cpu_buffer->reader_page->read += length;
3630 static void rb_advance_iter(struct ring_buffer_iter *iter)
3632 struct ring_buffer_per_cpu *cpu_buffer;
3633 struct ring_buffer_event *event;
3634 unsigned length;
3636 cpu_buffer = iter->cpu_buffer;
3639 * Check if we are at the end of the buffer.
3641 if (iter->head >= rb_page_size(iter->head_page)) {
3642 /* discarded commits can make the page empty */
3643 if (iter->head_page == cpu_buffer->commit_page)
3644 return;
3645 rb_inc_iter(iter);
3646 return;
3649 event = rb_iter_head_event(iter);
3651 length = rb_event_length(event);
3654 * This should not be called to advance the header if we are
3655 * at the tail of the buffer.
3657 if (RB_WARN_ON(cpu_buffer,
3658 (iter->head_page == cpu_buffer->commit_page) &&
3659 (iter->head + length > rb_commit_index(cpu_buffer))))
3660 return;
3662 rb_update_iter_read_stamp(iter, event);
3664 iter->head += length;
3666 /* check for end of page padding */
3667 if ((iter->head >= rb_page_size(iter->head_page)) &&
3668 (iter->head_page != cpu_buffer->commit_page))
3669 rb_inc_iter(iter);
3672 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3674 return cpu_buffer->lost_events;
3677 static struct ring_buffer_event *
3678 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3679 unsigned long *lost_events)
3681 struct ring_buffer_event *event;
3682 struct buffer_page *reader;
3683 int nr_loops = 0;
3685 again:
3687 * We repeat when a time extend is encountered.
3688 * Since the time extend is always attached to a data event,
3689 * we should never loop more than once.
3690 * (We never hit the following condition more than twice).
3692 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3693 return NULL;
3695 reader = rb_get_reader_page(cpu_buffer);
3696 if (!reader)
3697 return NULL;
3699 event = rb_reader_event(cpu_buffer);
3701 switch (event->type_len) {
3702 case RINGBUF_TYPE_PADDING:
3703 if (rb_null_event(event))
3704 RB_WARN_ON(cpu_buffer, 1);
3706 * Because the writer could be discarding every
3707 * event it creates (which would probably be bad)
3708 * if we were to go back to "again" then we may never
3709 * catch up, and will trigger the warn on, or lock
3710 * the box. Return the padding, and we will release
3711 * the current locks, and try again.
3713 return event;
3715 case RINGBUF_TYPE_TIME_EXTEND:
3716 /* Internal data, OK to advance */
3717 rb_advance_reader(cpu_buffer);
3718 goto again;
3720 case RINGBUF_TYPE_TIME_STAMP:
3721 /* FIXME: not implemented */
3722 rb_advance_reader(cpu_buffer);
3723 goto again;
3725 case RINGBUF_TYPE_DATA:
3726 if (ts) {
3727 *ts = cpu_buffer->read_stamp + event->time_delta;
3728 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3729 cpu_buffer->cpu, ts);
3731 if (lost_events)
3732 *lost_events = rb_lost_events(cpu_buffer);
3733 return event;
3735 default:
3736 BUG();
3739 return NULL;
3741 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3743 static struct ring_buffer_event *
3744 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3746 struct ring_buffer *buffer;
3747 struct ring_buffer_per_cpu *cpu_buffer;
3748 struct ring_buffer_event *event;
3749 int nr_loops = 0;
3751 cpu_buffer = iter->cpu_buffer;
3752 buffer = cpu_buffer->buffer;
3755 * Check if someone performed a consuming read to
3756 * the buffer. A consuming read invalidates the iterator
3757 * and we need to reset the iterator in this case.
3759 if (unlikely(iter->cache_read != cpu_buffer->read ||
3760 iter->cache_reader_page != cpu_buffer->reader_page))
3761 rb_iter_reset(iter);
3763 again:
3764 if (ring_buffer_iter_empty(iter))
3765 return NULL;
3768 * We repeat when a time extend is encountered.
3769 * Since the time extend is always attached to a data event,
3770 * we should never loop more than once.
3771 * (We never hit the following condition more than twice).
3773 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3774 return NULL;
3776 if (rb_per_cpu_empty(cpu_buffer))
3777 return NULL;
3779 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3780 rb_inc_iter(iter);
3781 goto again;
3784 event = rb_iter_head_event(iter);
3786 switch (event->type_len) {
3787 case RINGBUF_TYPE_PADDING:
3788 if (rb_null_event(event)) {
3789 rb_inc_iter(iter);
3790 goto again;
3792 rb_advance_iter(iter);
3793 return event;
3795 case RINGBUF_TYPE_TIME_EXTEND:
3796 /* Internal data, OK to advance */
3797 rb_advance_iter(iter);
3798 goto again;
3800 case RINGBUF_TYPE_TIME_STAMP:
3801 /* FIXME: not implemented */
3802 rb_advance_iter(iter);
3803 goto again;
3805 case RINGBUF_TYPE_DATA:
3806 if (ts) {
3807 *ts = iter->read_stamp + event->time_delta;
3808 ring_buffer_normalize_time_stamp(buffer,
3809 cpu_buffer->cpu, ts);
3811 return event;
3813 default:
3814 BUG();
3817 return NULL;
3819 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3821 static inline int rb_ok_to_lock(void)
3824 * If an NMI die dumps out the content of the ring buffer
3825 * do not grab locks. We also permanently disable the ring
3826 * buffer too. A one time deal is all you get from reading
3827 * the ring buffer from an NMI.
3829 if (likely(!in_nmi()))
3830 return 1;
3832 tracing_off_permanent();
3833 return 0;
3837 * ring_buffer_peek - peek at the next event to be read
3838 * @buffer: The ring buffer to read
3839 * @cpu: The cpu to peak at
3840 * @ts: The timestamp counter of this event.
3841 * @lost_events: a variable to store if events were lost (may be NULL)
3843 * This will return the event that will be read next, but does
3844 * not consume the data.
3846 struct ring_buffer_event *
3847 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3848 unsigned long *lost_events)
3850 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3851 struct ring_buffer_event *event;
3852 unsigned long flags;
3853 int dolock;
3855 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3856 return NULL;
3858 dolock = rb_ok_to_lock();
3859 again:
3860 local_irq_save(flags);
3861 if (dolock)
3862 raw_spin_lock(&cpu_buffer->reader_lock);
3863 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3864 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3865 rb_advance_reader(cpu_buffer);
3866 if (dolock)
3867 raw_spin_unlock(&cpu_buffer->reader_lock);
3868 local_irq_restore(flags);
3870 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3871 goto again;
3873 return event;
3877 * ring_buffer_iter_peek - peek at the next event to be read
3878 * @iter: The ring buffer iterator
3879 * @ts: The timestamp counter of this event.
3881 * This will return the event that will be read next, but does
3882 * not increment the iterator.
3884 struct ring_buffer_event *
3885 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3887 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3888 struct ring_buffer_event *event;
3889 unsigned long flags;
3891 again:
3892 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3893 event = rb_iter_peek(iter, ts);
3894 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3896 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3897 goto again;
3899 return event;
3903 * ring_buffer_consume - return an event and consume it
3904 * @buffer: The ring buffer to get the next event from
3905 * @cpu: the cpu to read the buffer from
3906 * @ts: a variable to store the timestamp (may be NULL)
3907 * @lost_events: a variable to store if events were lost (may be NULL)
3909 * Returns the next event in the ring buffer, and that event is consumed.
3910 * Meaning, that sequential reads will keep returning a different event,
3911 * and eventually empty the ring buffer if the producer is slower.
3913 struct ring_buffer_event *
3914 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3915 unsigned long *lost_events)
3917 struct ring_buffer_per_cpu *cpu_buffer;
3918 struct ring_buffer_event *event = NULL;
3919 unsigned long flags;
3920 int dolock;
3922 dolock = rb_ok_to_lock();
3924 again:
3925 /* might be called in atomic */
3926 preempt_disable();
3928 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3929 goto out;
3931 cpu_buffer = buffer->buffers[cpu];
3932 local_irq_save(flags);
3933 if (dolock)
3934 raw_spin_lock(&cpu_buffer->reader_lock);
3936 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3937 if (event) {
3938 cpu_buffer->lost_events = 0;
3939 rb_advance_reader(cpu_buffer);
3942 if (dolock)
3943 raw_spin_unlock(&cpu_buffer->reader_lock);
3944 local_irq_restore(flags);
3946 out:
3947 preempt_enable();
3949 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3950 goto again;
3952 return event;
3954 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3957 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3958 * @buffer: The ring buffer to read from
3959 * @cpu: The cpu buffer to iterate over
3961 * This performs the initial preparations necessary to iterate
3962 * through the buffer. Memory is allocated, buffer recording
3963 * is disabled, and the iterator pointer is returned to the caller.
3965 * Disabling buffer recordng prevents the reading from being
3966 * corrupted. This is not a consuming read, so a producer is not
3967 * expected.
3969 * After a sequence of ring_buffer_read_prepare calls, the user is
3970 * expected to make at least one call to ring_buffer_read_prepare_sync.
3971 * Afterwards, ring_buffer_read_start is invoked to get things going
3972 * for real.
3974 * This overall must be paired with ring_buffer_read_finish.
3976 struct ring_buffer_iter *
3977 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3979 struct ring_buffer_per_cpu *cpu_buffer;
3980 struct ring_buffer_iter *iter;
3982 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3983 return NULL;
3985 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3986 if (!iter)
3987 return NULL;
3989 cpu_buffer = buffer->buffers[cpu];
3991 iter->cpu_buffer = cpu_buffer;
3993 atomic_inc(&buffer->resize_disabled);
3994 atomic_inc(&cpu_buffer->record_disabled);
3996 return iter;
3998 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4001 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4003 * All previously invoked ring_buffer_read_prepare calls to prepare
4004 * iterators will be synchronized. Afterwards, read_buffer_read_start
4005 * calls on those iterators are allowed.
4007 void
4008 ring_buffer_read_prepare_sync(void)
4010 synchronize_sched();
4012 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4015 * ring_buffer_read_start - start a non consuming read of the buffer
4016 * @iter: The iterator returned by ring_buffer_read_prepare
4018 * This finalizes the startup of an iteration through the buffer.
4019 * The iterator comes from a call to ring_buffer_read_prepare and
4020 * an intervening ring_buffer_read_prepare_sync must have been
4021 * performed.
4023 * Must be paired with ring_buffer_read_finish.
4025 void
4026 ring_buffer_read_start(struct ring_buffer_iter *iter)
4028 struct ring_buffer_per_cpu *cpu_buffer;
4029 unsigned long flags;
4031 if (!iter)
4032 return;
4034 cpu_buffer = iter->cpu_buffer;
4036 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4037 arch_spin_lock(&cpu_buffer->lock);
4038 rb_iter_reset(iter);
4039 arch_spin_unlock(&cpu_buffer->lock);
4040 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4042 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4045 * ring_buffer_read_finish - finish reading the iterator of the buffer
4046 * @iter: The iterator retrieved by ring_buffer_start
4048 * This re-enables the recording to the buffer, and frees the
4049 * iterator.
4051 void
4052 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4054 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4055 unsigned long flags;
4058 * Ring buffer is disabled from recording, here's a good place
4059 * to check the integrity of the ring buffer.
4060 * Must prevent readers from trying to read, as the check
4061 * clears the HEAD page and readers require it.
4063 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4064 rb_check_pages(cpu_buffer);
4065 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4067 atomic_dec(&cpu_buffer->record_disabled);
4068 atomic_dec(&cpu_buffer->buffer->resize_disabled);
4069 kfree(iter);
4071 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4074 * ring_buffer_read - read the next item in the ring buffer by the iterator
4075 * @iter: The ring buffer iterator
4076 * @ts: The time stamp of the event read.
4078 * This reads the next event in the ring buffer and increments the iterator.
4080 struct ring_buffer_event *
4081 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4083 struct ring_buffer_event *event;
4084 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4085 unsigned long flags;
4087 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4088 again:
4089 event = rb_iter_peek(iter, ts);
4090 if (!event)
4091 goto out;
4093 if (event->type_len == RINGBUF_TYPE_PADDING)
4094 goto again;
4096 rb_advance_iter(iter);
4097 out:
4098 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4100 return event;
4102 EXPORT_SYMBOL_GPL(ring_buffer_read);
4105 * ring_buffer_size - return the size of the ring buffer (in bytes)
4106 * @buffer: The ring buffer.
4108 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4111 * Earlier, this method returned
4112 * BUF_PAGE_SIZE * buffer->nr_pages
4113 * Since the nr_pages field is now removed, we have converted this to
4114 * return the per cpu buffer value.
4116 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4117 return 0;
4119 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4121 EXPORT_SYMBOL_GPL(ring_buffer_size);
4123 static void
4124 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4126 rb_head_page_deactivate(cpu_buffer);
4128 cpu_buffer->head_page
4129 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4130 local_set(&cpu_buffer->head_page->write, 0);
4131 local_set(&cpu_buffer->head_page->entries, 0);
4132 local_set(&cpu_buffer->head_page->page->commit, 0);
4134 cpu_buffer->head_page->read = 0;
4136 cpu_buffer->tail_page = cpu_buffer->head_page;
4137 cpu_buffer->commit_page = cpu_buffer->head_page;
4139 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4140 INIT_LIST_HEAD(&cpu_buffer->new_pages);
4141 local_set(&cpu_buffer->reader_page->write, 0);
4142 local_set(&cpu_buffer->reader_page->entries, 0);
4143 local_set(&cpu_buffer->reader_page->page->commit, 0);
4144 cpu_buffer->reader_page->read = 0;
4146 local_set(&cpu_buffer->entries_bytes, 0);
4147 local_set(&cpu_buffer->overrun, 0);
4148 local_set(&cpu_buffer->commit_overrun, 0);
4149 local_set(&cpu_buffer->dropped_events, 0);
4150 local_set(&cpu_buffer->entries, 0);
4151 local_set(&cpu_buffer->committing, 0);
4152 local_set(&cpu_buffer->commits, 0);
4153 cpu_buffer->read = 0;
4154 cpu_buffer->read_bytes = 0;
4156 cpu_buffer->write_stamp = 0;
4157 cpu_buffer->read_stamp = 0;
4159 cpu_buffer->lost_events = 0;
4160 cpu_buffer->last_overrun = 0;
4162 rb_head_page_activate(cpu_buffer);
4166 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4167 * @buffer: The ring buffer to reset a per cpu buffer of
4168 * @cpu: The CPU buffer to be reset
4170 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4172 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4173 unsigned long flags;
4175 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4176 return;
4178 atomic_inc(&buffer->resize_disabled);
4179 atomic_inc(&cpu_buffer->record_disabled);
4181 /* Make sure all commits have finished */
4182 synchronize_sched();
4184 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4186 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4187 goto out;
4189 arch_spin_lock(&cpu_buffer->lock);
4191 rb_reset_cpu(cpu_buffer);
4193 arch_spin_unlock(&cpu_buffer->lock);
4195 out:
4196 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4198 atomic_dec(&cpu_buffer->record_disabled);
4199 atomic_dec(&buffer->resize_disabled);
4201 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4204 * ring_buffer_reset - reset a ring buffer
4205 * @buffer: The ring buffer to reset all cpu buffers
4207 void ring_buffer_reset(struct ring_buffer *buffer)
4209 int cpu;
4211 for_each_buffer_cpu(buffer, cpu)
4212 ring_buffer_reset_cpu(buffer, cpu);
4214 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4217 * rind_buffer_empty - is the ring buffer empty?
4218 * @buffer: The ring buffer to test
4220 int ring_buffer_empty(struct ring_buffer *buffer)
4222 struct ring_buffer_per_cpu *cpu_buffer;
4223 unsigned long flags;
4224 int dolock;
4225 int cpu;
4226 int ret;
4228 dolock = rb_ok_to_lock();
4230 /* yes this is racy, but if you don't like the race, lock the buffer */
4231 for_each_buffer_cpu(buffer, cpu) {
4232 cpu_buffer = buffer->buffers[cpu];
4233 local_irq_save(flags);
4234 if (dolock)
4235 raw_spin_lock(&cpu_buffer->reader_lock);
4236 ret = rb_per_cpu_empty(cpu_buffer);
4237 if (dolock)
4238 raw_spin_unlock(&cpu_buffer->reader_lock);
4239 local_irq_restore(flags);
4241 if (!ret)
4242 return 0;
4245 return 1;
4247 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4250 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4251 * @buffer: The ring buffer
4252 * @cpu: The CPU buffer to test
4254 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4256 struct ring_buffer_per_cpu *cpu_buffer;
4257 unsigned long flags;
4258 int dolock;
4259 int ret;
4261 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4262 return 1;
4264 dolock = rb_ok_to_lock();
4266 cpu_buffer = buffer->buffers[cpu];
4267 local_irq_save(flags);
4268 if (dolock)
4269 raw_spin_lock(&cpu_buffer->reader_lock);
4270 ret = rb_per_cpu_empty(cpu_buffer);
4271 if (dolock)
4272 raw_spin_unlock(&cpu_buffer->reader_lock);
4273 local_irq_restore(flags);
4275 return ret;
4277 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4279 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4281 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4282 * @buffer_a: One buffer to swap with
4283 * @buffer_b: The other buffer to swap with
4285 * This function is useful for tracers that want to take a "snapshot"
4286 * of a CPU buffer and has another back up buffer lying around.
4287 * it is expected that the tracer handles the cpu buffer not being
4288 * used at the moment.
4290 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4291 struct ring_buffer *buffer_b, int cpu)
4293 struct ring_buffer_per_cpu *cpu_buffer_a;
4294 struct ring_buffer_per_cpu *cpu_buffer_b;
4295 int ret = -EINVAL;
4297 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4298 !cpumask_test_cpu(cpu, buffer_b->cpumask))
4299 goto out;
4301 cpu_buffer_a = buffer_a->buffers[cpu];
4302 cpu_buffer_b = buffer_b->buffers[cpu];
4304 /* At least make sure the two buffers are somewhat the same */
4305 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4306 goto out;
4308 ret = -EAGAIN;
4310 if (ring_buffer_flags != RB_BUFFERS_ON)
4311 goto out;
4313 if (atomic_read(&buffer_a->record_disabled))
4314 goto out;
4316 if (atomic_read(&buffer_b->record_disabled))
4317 goto out;
4319 if (atomic_read(&cpu_buffer_a->record_disabled))
4320 goto out;
4322 if (atomic_read(&cpu_buffer_b->record_disabled))
4323 goto out;
4326 * We can't do a synchronize_sched here because this
4327 * function can be called in atomic context.
4328 * Normally this will be called from the same CPU as cpu.
4329 * If not it's up to the caller to protect this.
4331 atomic_inc(&cpu_buffer_a->record_disabled);
4332 atomic_inc(&cpu_buffer_b->record_disabled);
4334 ret = -EBUSY;
4335 if (local_read(&cpu_buffer_a->committing))
4336 goto out_dec;
4337 if (local_read(&cpu_buffer_b->committing))
4338 goto out_dec;
4340 buffer_a->buffers[cpu] = cpu_buffer_b;
4341 buffer_b->buffers[cpu] = cpu_buffer_a;
4343 cpu_buffer_b->buffer = buffer_a;
4344 cpu_buffer_a->buffer = buffer_b;
4346 ret = 0;
4348 out_dec:
4349 atomic_dec(&cpu_buffer_a->record_disabled);
4350 atomic_dec(&cpu_buffer_b->record_disabled);
4351 out:
4352 return ret;
4354 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4355 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4358 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4359 * @buffer: the buffer to allocate for.
4360 * @cpu: the cpu buffer to allocate.
4362 * This function is used in conjunction with ring_buffer_read_page.
4363 * When reading a full page from the ring buffer, these functions
4364 * can be used to speed up the process. The calling function should
4365 * allocate a few pages first with this function. Then when it
4366 * needs to get pages from the ring buffer, it passes the result
4367 * of this function into ring_buffer_read_page, which will swap
4368 * the page that was allocated, with the read page of the buffer.
4370 * Returns:
4371 * The page allocated, or NULL on error.
4373 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4375 struct buffer_data_page *bpage;
4376 struct page *page;
4378 page = alloc_pages_node(cpu_to_node(cpu),
4379 GFP_KERNEL | __GFP_NORETRY, 0);
4380 if (!page)
4381 return NULL;
4383 bpage = page_address(page);
4385 rb_init_page(bpage);
4387 return bpage;
4389 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4392 * ring_buffer_free_read_page - free an allocated read page
4393 * @buffer: the buffer the page was allocate for
4394 * @data: the page to free
4396 * Free a page allocated from ring_buffer_alloc_read_page.
4398 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4400 free_page((unsigned long)data);
4402 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4405 * ring_buffer_read_page - extract a page from the ring buffer
4406 * @buffer: buffer to extract from
4407 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4408 * @len: amount to extract
4409 * @cpu: the cpu of the buffer to extract
4410 * @full: should the extraction only happen when the page is full.
4412 * This function will pull out a page from the ring buffer and consume it.
4413 * @data_page must be the address of the variable that was returned
4414 * from ring_buffer_alloc_read_page. This is because the page might be used
4415 * to swap with a page in the ring buffer.
4417 * for example:
4418 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4419 * if (!rpage)
4420 * return error;
4421 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4422 * if (ret >= 0)
4423 * process_page(rpage, ret);
4425 * When @full is set, the function will not return true unless
4426 * the writer is off the reader page.
4428 * Note: it is up to the calling functions to handle sleeps and wakeups.
4429 * The ring buffer can be used anywhere in the kernel and can not
4430 * blindly call wake_up. The layer that uses the ring buffer must be
4431 * responsible for that.
4433 * Returns:
4434 * >=0 if data has been transferred, returns the offset of consumed data.
4435 * <0 if no data has been transferred.
4437 int ring_buffer_read_page(struct ring_buffer *buffer,
4438 void **data_page, size_t len, int cpu, int full)
4440 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4441 struct ring_buffer_event *event;
4442 struct buffer_data_page *bpage;
4443 struct buffer_page *reader;
4444 unsigned long missed_events;
4445 unsigned long flags;
4446 unsigned int commit;
4447 unsigned int read;
4448 u64 save_timestamp;
4449 int ret = -1;
4451 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4452 goto out;
4455 * If len is not big enough to hold the page header, then
4456 * we can not copy anything.
4458 if (len <= BUF_PAGE_HDR_SIZE)
4459 goto out;
4461 len -= BUF_PAGE_HDR_SIZE;
4463 if (!data_page)
4464 goto out;
4466 bpage = *data_page;
4467 if (!bpage)
4468 goto out;
4470 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4472 reader = rb_get_reader_page(cpu_buffer);
4473 if (!reader)
4474 goto out_unlock;
4476 event = rb_reader_event(cpu_buffer);
4478 read = reader->read;
4479 commit = rb_page_commit(reader);
4481 /* Check if any events were dropped */
4482 missed_events = cpu_buffer->lost_events;
4485 * If this page has been partially read or
4486 * if len is not big enough to read the rest of the page or
4487 * a writer is still on the page, then
4488 * we must copy the data from the page to the buffer.
4489 * Otherwise, we can simply swap the page with the one passed in.
4491 if (read || (len < (commit - read)) ||
4492 cpu_buffer->reader_page == cpu_buffer->commit_page) {
4493 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4494 unsigned int rpos = read;
4495 unsigned int pos = 0;
4496 unsigned int size;
4498 if (full)
4499 goto out_unlock;
4501 if (len > (commit - read))
4502 len = (commit - read);
4504 /* Always keep the time extend and data together */
4505 size = rb_event_ts_length(event);
4507 if (len < size)
4508 goto out_unlock;
4510 /* save the current timestamp, since the user will need it */
4511 save_timestamp = cpu_buffer->read_stamp;
4513 /* Need to copy one event at a time */
4514 do {
4515 /* We need the size of one event, because
4516 * rb_advance_reader only advances by one event,
4517 * whereas rb_event_ts_length may include the size of
4518 * one or two events.
4519 * We have already ensured there's enough space if this
4520 * is a time extend. */
4521 size = rb_event_length(event);
4522 memcpy(bpage->data + pos, rpage->data + rpos, size);
4524 len -= size;
4526 rb_advance_reader(cpu_buffer);
4527 rpos = reader->read;
4528 pos += size;
4530 if (rpos >= commit)
4531 break;
4533 event = rb_reader_event(cpu_buffer);
4534 /* Always keep the time extend and data together */
4535 size = rb_event_ts_length(event);
4536 } while (len >= size);
4538 /* update bpage */
4539 local_set(&bpage->commit, pos);
4540 bpage->time_stamp = save_timestamp;
4542 /* we copied everything to the beginning */
4543 read = 0;
4544 } else {
4545 /* update the entry counter */
4546 cpu_buffer->read += rb_page_entries(reader);
4547 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4549 /* swap the pages */
4550 rb_init_page(bpage);
4551 bpage = reader->page;
4552 reader->page = *data_page;
4553 local_set(&reader->write, 0);
4554 local_set(&reader->entries, 0);
4555 reader->read = 0;
4556 *data_page = bpage;
4559 * Use the real_end for the data size,
4560 * This gives us a chance to store the lost events
4561 * on the page.
4563 if (reader->real_end)
4564 local_set(&bpage->commit, reader->real_end);
4566 ret = read;
4568 cpu_buffer->lost_events = 0;
4570 commit = local_read(&bpage->commit);
4572 * Set a flag in the commit field if we lost events
4574 if (missed_events) {
4575 /* If there is room at the end of the page to save the
4576 * missed events, then record it there.
4578 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4579 memcpy(&bpage->data[commit], &missed_events,
4580 sizeof(missed_events));
4581 local_add(RB_MISSED_STORED, &bpage->commit);
4582 commit += sizeof(missed_events);
4584 local_add(RB_MISSED_EVENTS, &bpage->commit);
4588 * This page may be off to user land. Zero it out here.
4590 if (commit < BUF_PAGE_SIZE)
4591 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4593 out_unlock:
4594 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4596 out:
4597 return ret;
4599 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4601 #ifdef CONFIG_HOTPLUG_CPU
4602 static int rb_cpu_notify(struct notifier_block *self,
4603 unsigned long action, void *hcpu)
4605 struct ring_buffer *buffer =
4606 container_of(self, struct ring_buffer, cpu_notify);
4607 long cpu = (long)hcpu;
4608 int cpu_i, nr_pages_same;
4609 unsigned int nr_pages;
4611 switch (action) {
4612 case CPU_UP_PREPARE:
4613 case CPU_UP_PREPARE_FROZEN:
4614 if (cpumask_test_cpu(cpu, buffer->cpumask))
4615 return NOTIFY_OK;
4617 nr_pages = 0;
4618 nr_pages_same = 1;
4619 /* check if all cpu sizes are same */
4620 for_each_buffer_cpu(buffer, cpu_i) {
4621 /* fill in the size from first enabled cpu */
4622 if (nr_pages == 0)
4623 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4624 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4625 nr_pages_same = 0;
4626 break;
4629 /* allocate minimum pages, user can later expand it */
4630 if (!nr_pages_same)
4631 nr_pages = 2;
4632 buffer->buffers[cpu] =
4633 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4634 if (!buffer->buffers[cpu]) {
4635 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4636 cpu);
4637 return NOTIFY_OK;
4639 smp_wmb();
4640 cpumask_set_cpu(cpu, buffer->cpumask);
4641 break;
4642 case CPU_DOWN_PREPARE:
4643 case CPU_DOWN_PREPARE_FROZEN:
4645 * Do nothing.
4646 * If we were to free the buffer, then the user would
4647 * lose any trace that was in the buffer.
4649 break;
4650 default:
4651 break;
4653 return NOTIFY_OK;
4655 #endif
4657 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4659 * This is a basic integrity check of the ring buffer.
4660 * Late in the boot cycle this test will run when configured in.
4661 * It will kick off a thread per CPU that will go into a loop
4662 * writing to the per cpu ring buffer various sizes of data.
4663 * Some of the data will be large items, some small.
4665 * Another thread is created that goes into a spin, sending out
4666 * IPIs to the other CPUs to also write into the ring buffer.
4667 * this is to test the nesting ability of the buffer.
4669 * Basic stats are recorded and reported. If something in the
4670 * ring buffer should happen that's not expected, a big warning
4671 * is displayed and all ring buffers are disabled.
4673 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4675 struct rb_test_data {
4676 struct ring_buffer *buffer;
4677 unsigned long events;
4678 unsigned long bytes_written;
4679 unsigned long bytes_alloc;
4680 unsigned long bytes_dropped;
4681 unsigned long events_nested;
4682 unsigned long bytes_written_nested;
4683 unsigned long bytes_alloc_nested;
4684 unsigned long bytes_dropped_nested;
4685 int min_size_nested;
4686 int max_size_nested;
4687 int max_size;
4688 int min_size;
4689 int cpu;
4690 int cnt;
4693 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4695 /* 1 meg per cpu */
4696 #define RB_TEST_BUFFER_SIZE 1048576
4698 static char rb_string[] __initdata =
4699 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4700 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4701 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4703 static bool rb_test_started __initdata;
4705 struct rb_item {
4706 int size;
4707 char str[];
4710 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4712 struct ring_buffer_event *event;
4713 struct rb_item *item;
4714 bool started;
4715 int event_len;
4716 int size;
4717 int len;
4718 int cnt;
4720 /* Have nested writes different that what is written */
4721 cnt = data->cnt + (nested ? 27 : 0);
4723 /* Multiply cnt by ~e, to make some unique increment */
4724 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4726 len = size + sizeof(struct rb_item);
4728 started = rb_test_started;
4729 /* read rb_test_started before checking buffer enabled */
4730 smp_rmb();
4732 event = ring_buffer_lock_reserve(data->buffer, len);
4733 if (!event) {
4734 /* Ignore dropped events before test starts. */
4735 if (started) {
4736 if (nested)
4737 data->bytes_dropped += len;
4738 else
4739 data->bytes_dropped_nested += len;
4741 return len;
4744 event_len = ring_buffer_event_length(event);
4746 if (RB_WARN_ON(data->buffer, event_len < len))
4747 goto out;
4749 item = ring_buffer_event_data(event);
4750 item->size = size;
4751 memcpy(item->str, rb_string, size);
4753 if (nested) {
4754 data->bytes_alloc_nested += event_len;
4755 data->bytes_written_nested += len;
4756 data->events_nested++;
4757 if (!data->min_size_nested || len < data->min_size_nested)
4758 data->min_size_nested = len;
4759 if (len > data->max_size_nested)
4760 data->max_size_nested = len;
4761 } else {
4762 data->bytes_alloc += event_len;
4763 data->bytes_written += len;
4764 data->events++;
4765 if (!data->min_size || len < data->min_size)
4766 data->max_size = len;
4767 if (len > data->max_size)
4768 data->max_size = len;
4771 out:
4772 ring_buffer_unlock_commit(data->buffer, event);
4774 return 0;
4777 static __init int rb_test(void *arg)
4779 struct rb_test_data *data = arg;
4781 while (!kthread_should_stop()) {
4782 rb_write_something(data, false);
4783 data->cnt++;
4785 set_current_state(TASK_INTERRUPTIBLE);
4786 /* Now sleep between a min of 100-300us and a max of 1ms */
4787 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4790 return 0;
4793 static __init void rb_ipi(void *ignore)
4795 struct rb_test_data *data;
4796 int cpu = smp_processor_id();
4798 data = &rb_data[cpu];
4799 rb_write_something(data, true);
4802 static __init int rb_hammer_test(void *arg)
4804 while (!kthread_should_stop()) {
4806 /* Send an IPI to all cpus to write data! */
4807 smp_call_function(rb_ipi, NULL, 1);
4808 /* No sleep, but for non preempt, let others run */
4809 schedule();
4812 return 0;
4815 static __init int test_ringbuffer(void)
4817 struct task_struct *rb_hammer;
4818 struct ring_buffer *buffer;
4819 int cpu;
4820 int ret = 0;
4822 pr_info("Running ring buffer tests...\n");
4824 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4825 if (WARN_ON(!buffer))
4826 return 0;
4828 /* Disable buffer so that threads can't write to it yet */
4829 ring_buffer_record_off(buffer);
4831 for_each_online_cpu(cpu) {
4832 rb_data[cpu].buffer = buffer;
4833 rb_data[cpu].cpu = cpu;
4834 rb_data[cpu].cnt = cpu;
4835 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4836 "rbtester/%d", cpu);
4837 if (WARN_ON(!rb_threads[cpu])) {
4838 pr_cont("FAILED\n");
4839 ret = -1;
4840 goto out_free;
4843 kthread_bind(rb_threads[cpu], cpu);
4844 wake_up_process(rb_threads[cpu]);
4847 /* Now create the rb hammer! */
4848 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4849 if (WARN_ON(!rb_hammer)) {
4850 pr_cont("FAILED\n");
4851 ret = -1;
4852 goto out_free;
4855 ring_buffer_record_on(buffer);
4857 * Show buffer is enabled before setting rb_test_started.
4858 * Yes there's a small race window where events could be
4859 * dropped and the thread wont catch it. But when a ring
4860 * buffer gets enabled, there will always be some kind of
4861 * delay before other CPUs see it. Thus, we don't care about
4862 * those dropped events. We care about events dropped after
4863 * the threads see that the buffer is active.
4865 smp_wmb();
4866 rb_test_started = true;
4868 set_current_state(TASK_INTERRUPTIBLE);
4869 /* Just run for 10 seconds */;
4870 schedule_timeout(10 * HZ);
4872 kthread_stop(rb_hammer);
4874 out_free:
4875 for_each_online_cpu(cpu) {
4876 if (!rb_threads[cpu])
4877 break;
4878 kthread_stop(rb_threads[cpu]);
4880 if (ret) {
4881 ring_buffer_free(buffer);
4882 return ret;
4885 /* Report! */
4886 pr_info("finished\n");
4887 for_each_online_cpu(cpu) {
4888 struct ring_buffer_event *event;
4889 struct rb_test_data *data = &rb_data[cpu];
4890 struct rb_item *item;
4891 unsigned long total_events;
4892 unsigned long total_dropped;
4893 unsigned long total_written;
4894 unsigned long total_alloc;
4895 unsigned long total_read = 0;
4896 unsigned long total_size = 0;
4897 unsigned long total_len = 0;
4898 unsigned long total_lost = 0;
4899 unsigned long lost;
4900 int big_event_size;
4901 int small_event_size;
4903 ret = -1;
4905 total_events = data->events + data->events_nested;
4906 total_written = data->bytes_written + data->bytes_written_nested;
4907 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4908 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4910 big_event_size = data->max_size + data->max_size_nested;
4911 small_event_size = data->min_size + data->min_size_nested;
4913 pr_info("CPU %d:\n", cpu);
4914 pr_info(" events: %ld\n", total_events);
4915 pr_info(" dropped bytes: %ld\n", total_dropped);
4916 pr_info(" alloced bytes: %ld\n", total_alloc);
4917 pr_info(" written bytes: %ld\n", total_written);
4918 pr_info(" biggest event: %d\n", big_event_size);
4919 pr_info(" smallest event: %d\n", small_event_size);
4921 if (RB_WARN_ON(buffer, total_dropped))
4922 break;
4924 ret = 0;
4926 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4927 total_lost += lost;
4928 item = ring_buffer_event_data(event);
4929 total_len += ring_buffer_event_length(event);
4930 total_size += item->size + sizeof(struct rb_item);
4931 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4932 pr_info("FAILED!\n");
4933 pr_info("buffer had: %.*s\n", item->size, item->str);
4934 pr_info("expected: %.*s\n", item->size, rb_string);
4935 RB_WARN_ON(buffer, 1);
4936 ret = -1;
4937 break;
4939 total_read++;
4941 if (ret)
4942 break;
4944 ret = -1;
4946 pr_info(" read events: %ld\n", total_read);
4947 pr_info(" lost events: %ld\n", total_lost);
4948 pr_info(" total events: %ld\n", total_lost + total_read);
4949 pr_info(" recorded len bytes: %ld\n", total_len);
4950 pr_info(" recorded size bytes: %ld\n", total_size);
4951 if (total_lost)
4952 pr_info(" With dropped events, record len and size may not match\n"
4953 " alloced and written from above\n");
4954 if (!total_lost) {
4955 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4956 total_size != total_written))
4957 break;
4959 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4960 break;
4962 ret = 0;
4964 if (!ret)
4965 pr_info("Ring buffer PASSED!\n");
4967 ring_buffer_free(buffer);
4968 return 0;
4971 late_initcall(test_ringbuffer);
4972 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */