4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h> /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
28 #include <asm/local.h>
30 static void update_pages_handler(struct work_struct
*work
);
33 * The ring buffer header is special. We must manually up keep it.
35 int ring_buffer_print_entry_header(struct trace_seq
*s
)
39 ret
= trace_seq_puts(s
, "# compressed entry header\n");
40 ret
= trace_seq_puts(s
, "\ttype_len : 5 bits\n");
41 ret
= trace_seq_puts(s
, "\ttime_delta : 27 bits\n");
42 ret
= trace_seq_puts(s
, "\tarray : 32 bits\n");
43 ret
= trace_seq_putc(s
, '\n');
44 ret
= trace_seq_printf(s
, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING
);
46 ret
= trace_seq_printf(s
, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND
);
48 ret
= trace_seq_printf(s
, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
68 * Here's some silly ASCII art.
71 * |reader| RING BUFFER
73 * +------+ +---+ +---+ +---+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
100 * +------------------------------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
108 * | New +---+ +---+ +---+
111 * +------------------------------+
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
118 * We will be using cmpxchg soon to make all this lockless.
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
152 RB_BUFFERS_ON_BIT
= 0,
153 RB_BUFFERS_DISABLED_BIT
= 1,
157 RB_BUFFERS_ON
= 1 << RB_BUFFERS_ON_BIT
,
158 RB_BUFFERS_DISABLED
= 1 << RB_BUFFERS_DISABLED_BIT
,
161 static unsigned long ring_buffer_flags __read_mostly
= RB_BUFFERS_ON
;
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF (1 << 20)
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
169 * tracing_off_permanent - permanently disable ring buffers
171 * This function, once called, will disable all ring buffers
174 void tracing_off_permanent(void)
176 set_bit(RB_BUFFERS_DISABLED_BIT
, &ring_buffer_flags
);
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT 4U
181 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT 0
186 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
188 # define RB_FORCE_8BYTE_ALIGNMENT 1
189 # define RB_ARCH_ALIGNMENT 8U
192 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
198 RB_LEN_TIME_EXTEND
= 8,
199 RB_LEN_TIME_STAMP
= 16,
202 #define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
205 static inline int rb_null_event(struct ring_buffer_event
*event
)
207 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
210 static void rb_event_set_padding(struct ring_buffer_event
*event
)
212 /* padding has a NULL time_delta */
213 event
->type_len
= RINGBUF_TYPE_PADDING
;
214 event
->time_delta
= 0;
218 rb_event_data_length(struct ring_buffer_event
*event
)
223 length
= event
->type_len
* RB_ALIGNMENT
;
225 length
= event
->array
[0];
226 return length
+ RB_EVNT_HDR_SIZE
;
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event
*event
)
237 switch (event
->type_len
) {
238 case RINGBUF_TYPE_PADDING
:
239 if (rb_null_event(event
))
242 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
244 case RINGBUF_TYPE_TIME_EXTEND
:
245 return RB_LEN_TIME_EXTEND
;
247 case RINGBUF_TYPE_TIME_STAMP
:
248 return RB_LEN_TIME_STAMP
;
250 case RINGBUF_TYPE_DATA
:
251 return rb_event_data_length(event
);
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event
*event
)
268 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
269 /* time extends include the data event after it */
270 len
= RB_LEN_TIME_EXTEND
;
271 event
= skip_time_extend(event
);
273 return len
+ rb_event_length(event
);
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
286 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
290 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
291 event
= skip_time_extend(event
);
293 length
= rb_event_length(event
);
294 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
296 length
-= RB_EVNT_HDR_SIZE
;
297 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
298 length
-= sizeof(event
->array
[0]);
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
303 /* inline for ring buffer fast paths */
305 rb_event_data(struct ring_buffer_event
*event
)
307 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
308 event
= skip_time_extend(event
);
309 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
310 /* If length is in len field, then array[0] has the data */
312 return (void *)&event
->array
[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event
->array
[1];
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
321 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
323 return rb_event_data(event
);
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
327 #define for_each_buffer_cpu(buffer, cpu) \
328 for_each_cpu(cpu, buffer->cpumask)
331 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST (~TS_MASK)
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED (1 << 30)
339 struct buffer_data_page
{
340 u64 time_stamp
; /* page time stamp */
341 local_t commit
; /* write committed index */
342 unsigned char data
[] RB_ALIGN_DATA
; /* data of buffer page */
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
354 struct list_head list
; /* list of buffer pages */
355 local_t write
; /* index for next write */
356 unsigned read
; /* index for next read */
357 local_t entries
; /* entries on this page */
358 unsigned long real_end
; /* real end of data */
359 struct buffer_data_page
*page
; /* Actual data page */
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
372 * The counter is 20 bits, and the state data is 12.
374 #define RB_WRITE_MASK 0xfffff
375 #define RB_WRITE_INTCNT (1 << 20)
377 static void rb_init_page(struct buffer_data_page
*bpage
)
379 local_set(&bpage
->commit
, 0);
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
386 * Returns the amount of data on the page, including buffer page header.
388 size_t ring_buffer_page_len(void *page
)
390 return local_read(&((struct buffer_data_page
*)page
)->commit
)
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
398 static void free_buffer_page(struct buffer_page
*bpage
)
400 free_page((unsigned long)bpage
->page
);
405 * We need to fit the time_stamp delta into 27 bits.
407 static inline int test_time_stamp(u64 delta
)
409 if (delta
& TS_DELTA_TEST
)
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
419 int ring_buffer_print_page_header(struct trace_seq
*s
)
421 struct buffer_data_page field
;
424 ret
= trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field
.time_stamp
),
427 (unsigned int)is_signed_type(u64
));
429 ret
= trace_seq_printf(s
, "\tfield: local_t commit;\t"
430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 (unsigned int)offsetof(typeof(field
), commit
),
432 (unsigned int)sizeof(field
.commit
),
433 (unsigned int)is_signed_type(long));
435 ret
= trace_seq_printf(s
, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field
), commit
),
439 (unsigned int)is_signed_type(long));
441 ret
= trace_seq_printf(s
, "\tfield: char data;\t"
442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
443 (unsigned int)offsetof(typeof(field
), data
),
444 (unsigned int)BUF_PAGE_SIZE
,
445 (unsigned int)is_signed_type(char));
451 struct irq_work work
;
452 wait_queue_head_t waiters
;
453 bool waiters_pending
;
457 * head_page == tail_page && head == tail then buffer is empty.
459 struct ring_buffer_per_cpu
{
461 atomic_t record_disabled
;
462 struct ring_buffer
*buffer
;
463 raw_spinlock_t reader_lock
; /* serialize readers */
464 arch_spinlock_t lock
;
465 struct lock_class_key lock_key
;
466 unsigned int nr_pages
;
467 struct list_head
*pages
;
468 struct buffer_page
*head_page
; /* read from head */
469 struct buffer_page
*tail_page
; /* write to tail */
470 struct buffer_page
*commit_page
; /* committed pages */
471 struct buffer_page
*reader_page
;
472 unsigned long lost_events
;
473 unsigned long last_overrun
;
474 local_t entries_bytes
;
477 local_t commit_overrun
;
478 local_t dropped_events
;
482 unsigned long read_bytes
;
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update
;
487 struct list_head new_pages
; /* new pages to add */
488 struct work_struct update_pages_work
;
489 struct completion update_done
;
491 struct rb_irq_work irq_work
;
497 atomic_t record_disabled
;
498 atomic_t resize_disabled
;
499 cpumask_var_t cpumask
;
501 struct lock_class_key
*reader_lock_key
;
505 struct ring_buffer_per_cpu
**buffers
;
507 #ifdef CONFIG_HOTPLUG_CPU
508 struct notifier_block cpu_notify
;
512 struct rb_irq_work irq_work
;
515 struct ring_buffer_iter
{
516 struct ring_buffer_per_cpu
*cpu_buffer
;
518 struct buffer_page
*head_page
;
519 struct buffer_page
*cache_reader_page
;
520 unsigned long cache_read
;
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
530 static void rb_wake_up_waiters(struct irq_work
*work
)
532 struct rb_irq_work
*rbwork
= container_of(work
, struct rb_irq_work
, work
);
534 wake_up_all(&rbwork
->waiters
);
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
546 void ring_buffer_wait(struct ring_buffer
*buffer
, int cpu
)
548 struct ring_buffer_per_cpu
*cpu_buffer
;
550 struct rb_irq_work
*work
;
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
557 if (cpu
== RING_BUFFER_ALL_CPUS
)
558 work
= &buffer
->irq_work
;
560 cpu_buffer
= buffer
->buffers
[cpu
];
561 work
= &cpu_buffer
->irq_work
;
565 prepare_to_wait(&work
->waiters
, &wait
, TASK_INTERRUPTIBLE
);
568 * The events can happen in critical sections where
569 * checking a work queue can cause deadlocks.
570 * After adding a task to the queue, this flag is set
571 * only to notify events to try to wake up the queue
574 * We don't clear it even if the buffer is no longer
575 * empty. The flag only causes the next event to run
576 * irq_work to do the work queue wake up. The worse
577 * that can happen if we race with !trace_empty() is that
578 * an event will cause an irq_work to try to wake up
581 * There's no reason to protect this flag either, as
582 * the work queue and irq_work logic will do the necessary
583 * synchronization for the wake ups. The only thing
584 * that is necessary is that the wake up happens after
585 * a task has been queued. It's OK for spurious wake ups.
587 work
->waiters_pending
= true;
589 if ((cpu
== RING_BUFFER_ALL_CPUS
&& ring_buffer_empty(buffer
)) ||
590 (cpu
!= RING_BUFFER_ALL_CPUS
&& ring_buffer_empty_cpu(buffer
, cpu
)))
593 finish_wait(&work
->waiters
, &wait
);
597 * ring_buffer_poll_wait - poll on buffer input
598 * @buffer: buffer to wait on
599 * @cpu: the cpu buffer to wait on
600 * @filp: the file descriptor
601 * @poll_table: The poll descriptor
603 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
604 * as data is added to any of the @buffer's cpu buffers. Otherwise
605 * it will wait for data to be added to a specific cpu buffer.
607 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
610 int ring_buffer_poll_wait(struct ring_buffer
*buffer
, int cpu
,
611 struct file
*filp
, poll_table
*poll_table
)
613 struct ring_buffer_per_cpu
*cpu_buffer
;
614 struct rb_irq_work
*work
;
616 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
617 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
618 return POLLIN
| POLLRDNORM
;
620 if (cpu
== RING_BUFFER_ALL_CPUS
)
621 work
= &buffer
->irq_work
;
623 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
626 cpu_buffer
= buffer
->buffers
[cpu
];
627 work
= &cpu_buffer
->irq_work
;
630 work
->waiters_pending
= true;
631 poll_wait(filp
, &work
->waiters
, poll_table
);
633 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
634 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
635 return POLLIN
| POLLRDNORM
;
639 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
640 #define RB_WARN_ON(b, cond) \
642 int _____ret = unlikely(cond); \
644 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
645 struct ring_buffer_per_cpu *__b = \
647 atomic_inc(&__b->buffer->record_disabled); \
649 atomic_inc(&b->record_disabled); \
655 /* Up this if you want to test the TIME_EXTENTS and normalization */
656 #define DEBUG_SHIFT 0
658 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
660 /* shift to debug/test normalization and TIME_EXTENTS */
661 return buffer
->clock() << DEBUG_SHIFT
;
664 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
668 preempt_disable_notrace();
669 time
= rb_time_stamp(buffer
);
670 preempt_enable_no_resched_notrace();
674 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
676 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
679 /* Just stupid testing the normalize function and deltas */
682 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
685 * Making the ring buffer lockless makes things tricky.
686 * Although writes only happen on the CPU that they are on,
687 * and they only need to worry about interrupts. Reads can
690 * The reader page is always off the ring buffer, but when the
691 * reader finishes with a page, it needs to swap its page with
692 * a new one from the buffer. The reader needs to take from
693 * the head (writes go to the tail). But if a writer is in overwrite
694 * mode and wraps, it must push the head page forward.
696 * Here lies the problem.
698 * The reader must be careful to replace only the head page, and
699 * not another one. As described at the top of the file in the
700 * ASCII art, the reader sets its old page to point to the next
701 * page after head. It then sets the page after head to point to
702 * the old reader page. But if the writer moves the head page
703 * during this operation, the reader could end up with the tail.
705 * We use cmpxchg to help prevent this race. We also do something
706 * special with the page before head. We set the LSB to 1.
708 * When the writer must push the page forward, it will clear the
709 * bit that points to the head page, move the head, and then set
710 * the bit that points to the new head page.
712 * We also don't want an interrupt coming in and moving the head
713 * page on another writer. Thus we use the second LSB to catch
716 * head->list->prev->next bit 1 bit 0
719 * Points to head page 0 1
722 * Note we can not trust the prev pointer of the head page, because:
724 * +----+ +-----+ +-----+
725 * | |------>| T |---X--->| N |
727 * +----+ +-----+ +-----+
730 * +----------| R |----------+ |
734 * Key: ---X--> HEAD flag set in pointer
739 * (see __rb_reserve_next() to see where this happens)
741 * What the above shows is that the reader just swapped out
742 * the reader page with a page in the buffer, but before it
743 * could make the new header point back to the new page added
744 * it was preempted by a writer. The writer moved forward onto
745 * the new page added by the reader and is about to move forward
748 * You can see, it is legitimate for the previous pointer of
749 * the head (or any page) not to point back to itself. But only
753 #define RB_PAGE_NORMAL 0UL
754 #define RB_PAGE_HEAD 1UL
755 #define RB_PAGE_UPDATE 2UL
758 #define RB_FLAG_MASK 3UL
760 /* PAGE_MOVED is not part of the mask */
761 #define RB_PAGE_MOVED 4UL
764 * rb_list_head - remove any bit
766 static struct list_head
*rb_list_head(struct list_head
*list
)
768 unsigned long val
= (unsigned long)list
;
770 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
774 * rb_is_head_page - test if the given page is the head page
776 * Because the reader may move the head_page pointer, we can
777 * not trust what the head page is (it may be pointing to
778 * the reader page). But if the next page is a header page,
779 * its flags will be non zero.
782 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
783 struct buffer_page
*page
, struct list_head
*list
)
787 val
= (unsigned long)list
->next
;
789 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
790 return RB_PAGE_MOVED
;
792 return val
& RB_FLAG_MASK
;
798 * The unique thing about the reader page, is that, if the
799 * writer is ever on it, the previous pointer never points
800 * back to the reader page.
802 static int rb_is_reader_page(struct buffer_page
*page
)
804 struct list_head
*list
= page
->list
.prev
;
806 return rb_list_head(list
->next
) != &page
->list
;
810 * rb_set_list_to_head - set a list_head to be pointing to head.
812 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
813 struct list_head
*list
)
817 ptr
= (unsigned long *)&list
->next
;
818 *ptr
|= RB_PAGE_HEAD
;
819 *ptr
&= ~RB_PAGE_UPDATE
;
823 * rb_head_page_activate - sets up head page
825 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
827 struct buffer_page
*head
;
829 head
= cpu_buffer
->head_page
;
834 * Set the previous list pointer to have the HEAD flag.
836 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
839 static void rb_list_head_clear(struct list_head
*list
)
841 unsigned long *ptr
= (unsigned long *)&list
->next
;
843 *ptr
&= ~RB_FLAG_MASK
;
847 * rb_head_page_dactivate - clears head page ptr (for free list)
850 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
852 struct list_head
*hd
;
854 /* Go through the whole list and clear any pointers found. */
855 rb_list_head_clear(cpu_buffer
->pages
);
857 list_for_each(hd
, cpu_buffer
->pages
)
858 rb_list_head_clear(hd
);
861 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
862 struct buffer_page
*head
,
863 struct buffer_page
*prev
,
864 int old_flag
, int new_flag
)
866 struct list_head
*list
;
867 unsigned long val
= (unsigned long)&head
->list
;
872 val
&= ~RB_FLAG_MASK
;
874 ret
= cmpxchg((unsigned long *)&list
->next
,
875 val
| old_flag
, val
| new_flag
);
877 /* check if the reader took the page */
878 if ((ret
& ~RB_FLAG_MASK
) != val
)
879 return RB_PAGE_MOVED
;
881 return ret
& RB_FLAG_MASK
;
884 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
885 struct buffer_page
*head
,
886 struct buffer_page
*prev
,
889 return rb_head_page_set(cpu_buffer
, head
, prev
,
890 old_flag
, RB_PAGE_UPDATE
);
893 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
894 struct buffer_page
*head
,
895 struct buffer_page
*prev
,
898 return rb_head_page_set(cpu_buffer
, head
, prev
,
899 old_flag
, RB_PAGE_HEAD
);
902 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
903 struct buffer_page
*head
,
904 struct buffer_page
*prev
,
907 return rb_head_page_set(cpu_buffer
, head
, prev
,
908 old_flag
, RB_PAGE_NORMAL
);
911 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
912 struct buffer_page
**bpage
)
914 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
916 *bpage
= list_entry(p
, struct buffer_page
, list
);
919 static struct buffer_page
*
920 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
922 struct buffer_page
*head
;
923 struct buffer_page
*page
;
924 struct list_head
*list
;
927 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
931 list
= cpu_buffer
->pages
;
932 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
935 page
= head
= cpu_buffer
->head_page
;
937 * It is possible that the writer moves the header behind
938 * where we started, and we miss in one loop.
939 * A second loop should grab the header, but we'll do
940 * three loops just because I'm paranoid.
942 for (i
= 0; i
< 3; i
++) {
944 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
945 cpu_buffer
->head_page
= page
;
948 rb_inc_page(cpu_buffer
, &page
);
949 } while (page
!= head
);
952 RB_WARN_ON(cpu_buffer
, 1);
957 static int rb_head_page_replace(struct buffer_page
*old
,
958 struct buffer_page
*new)
960 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
964 val
= *ptr
& ~RB_FLAG_MASK
;
967 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
973 * rb_tail_page_update - move the tail page forward
975 * Returns 1 if moved tail page, 0 if someone else did.
977 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
978 struct buffer_page
*tail_page
,
979 struct buffer_page
*next_page
)
981 struct buffer_page
*old_tail
;
982 unsigned long old_entries
;
983 unsigned long old_write
;
987 * The tail page now needs to be moved forward.
989 * We need to reset the tail page, but without messing
990 * with possible erasing of data brought in by interrupts
991 * that have moved the tail page and are currently on it.
993 * We add a counter to the write field to denote this.
995 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
996 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
999 * Just make sure we have seen our old_write and synchronize
1000 * with any interrupts that come in.
1005 * If the tail page is still the same as what we think
1006 * it is, then it is up to us to update the tail
1009 if (tail_page
== cpu_buffer
->tail_page
) {
1010 /* Zero the write counter */
1011 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
1012 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
1015 * This will only succeed if an interrupt did
1016 * not come in and change it. In which case, we
1017 * do not want to modify it.
1019 * We add (void) to let the compiler know that we do not care
1020 * about the return value of these functions. We use the
1021 * cmpxchg to only update if an interrupt did not already
1022 * do it for us. If the cmpxchg fails, we don't care.
1024 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
1025 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
1028 * No need to worry about races with clearing out the commit.
1029 * it only can increment when a commit takes place. But that
1030 * only happens in the outer most nested commit.
1032 local_set(&next_page
->page
->commit
, 0);
1034 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
1035 tail_page
, next_page
);
1037 if (old_tail
== tail_page
)
1044 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
1045 struct buffer_page
*bpage
)
1047 unsigned long val
= (unsigned long)bpage
;
1049 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
1056 * rb_check_list - make sure a pointer to a list has the last bits zero
1058 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
1059 struct list_head
*list
)
1061 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
1063 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
1069 * rb_check_pages - integrity check of buffer pages
1070 * @cpu_buffer: CPU buffer with pages to test
1072 * As a safety measure we check to make sure the data pages have not
1075 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1077 struct list_head
*head
= cpu_buffer
->pages
;
1078 struct buffer_page
*bpage
, *tmp
;
1080 /* Reset the head page if it exists */
1081 if (cpu_buffer
->head_page
)
1082 rb_set_head_page(cpu_buffer
);
1084 rb_head_page_deactivate(cpu_buffer
);
1086 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
1088 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
1091 if (rb_check_list(cpu_buffer
, head
))
1094 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1095 if (RB_WARN_ON(cpu_buffer
,
1096 bpage
->list
.next
->prev
!= &bpage
->list
))
1098 if (RB_WARN_ON(cpu_buffer
,
1099 bpage
->list
.prev
->next
!= &bpage
->list
))
1101 if (rb_check_list(cpu_buffer
, &bpage
->list
))
1105 rb_head_page_activate(cpu_buffer
);
1110 static int __rb_allocate_pages(int nr_pages
, struct list_head
*pages
, int cpu
)
1113 struct buffer_page
*bpage
, *tmp
;
1115 for (i
= 0; i
< nr_pages
; i
++) {
1118 * __GFP_NORETRY flag makes sure that the allocation fails
1119 * gracefully without invoking oom-killer and the system is
1122 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1123 GFP_KERNEL
| __GFP_NORETRY
,
1128 list_add(&bpage
->list
, pages
);
1130 page
= alloc_pages_node(cpu_to_node(cpu
),
1131 GFP_KERNEL
| __GFP_NORETRY
, 0);
1134 bpage
->page
= page_address(page
);
1135 rb_init_page(bpage
->page
);
1141 list_for_each_entry_safe(bpage
, tmp
, pages
, list
) {
1142 list_del_init(&bpage
->list
);
1143 free_buffer_page(bpage
);
1149 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1156 if (__rb_allocate_pages(nr_pages
, &pages
, cpu_buffer
->cpu
))
1160 * The ring buffer page list is a circular list that does not
1161 * start and end with a list head. All page list items point to
1164 cpu_buffer
->pages
= pages
.next
;
1167 cpu_buffer
->nr_pages
= nr_pages
;
1169 rb_check_pages(cpu_buffer
);
1174 static struct ring_buffer_per_cpu
*
1175 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int nr_pages
, int cpu
)
1177 struct ring_buffer_per_cpu
*cpu_buffer
;
1178 struct buffer_page
*bpage
;
1182 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1183 GFP_KERNEL
, cpu_to_node(cpu
));
1187 cpu_buffer
->cpu
= cpu
;
1188 cpu_buffer
->buffer
= buffer
;
1189 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
1190 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1191 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1192 INIT_WORK(&cpu_buffer
->update_pages_work
, update_pages_handler
);
1193 init_completion(&cpu_buffer
->update_done
);
1194 init_irq_work(&cpu_buffer
->irq_work
.work
, rb_wake_up_waiters
);
1195 init_waitqueue_head(&cpu_buffer
->irq_work
.waiters
);
1197 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1198 GFP_KERNEL
, cpu_to_node(cpu
));
1200 goto fail_free_buffer
;
1202 rb_check_bpage(cpu_buffer
, bpage
);
1204 cpu_buffer
->reader_page
= bpage
;
1205 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1207 goto fail_free_reader
;
1208 bpage
->page
= page_address(page
);
1209 rb_init_page(bpage
->page
);
1211 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1212 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1214 ret
= rb_allocate_pages(cpu_buffer
, nr_pages
);
1216 goto fail_free_reader
;
1218 cpu_buffer
->head_page
1219 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1220 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1222 rb_head_page_activate(cpu_buffer
);
1227 free_buffer_page(cpu_buffer
->reader_page
);
1234 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1236 struct list_head
*head
= cpu_buffer
->pages
;
1237 struct buffer_page
*bpage
, *tmp
;
1239 free_buffer_page(cpu_buffer
->reader_page
);
1241 rb_head_page_deactivate(cpu_buffer
);
1244 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1245 list_del_init(&bpage
->list
);
1246 free_buffer_page(bpage
);
1248 bpage
= list_entry(head
, struct buffer_page
, list
);
1249 free_buffer_page(bpage
);
1255 #ifdef CONFIG_HOTPLUG_CPU
1256 static int rb_cpu_notify(struct notifier_block
*self
,
1257 unsigned long action
, void *hcpu
);
1261 * __ring_buffer_alloc - allocate a new ring_buffer
1262 * @size: the size in bytes per cpu that is needed.
1263 * @flags: attributes to set for the ring buffer.
1265 * Currently the only flag that is available is the RB_FL_OVERWRITE
1266 * flag. This flag means that the buffer will overwrite old data
1267 * when the buffer wraps. If this flag is not set, the buffer will
1268 * drop data when the tail hits the head.
1270 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1271 struct lock_class_key
*key
)
1273 struct ring_buffer
*buffer
;
1277 /* keep it in its own cache line */
1278 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1283 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1284 goto fail_free_buffer
;
1286 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1287 buffer
->flags
= flags
;
1288 buffer
->clock
= trace_clock_local
;
1289 buffer
->reader_lock_key
= key
;
1291 init_irq_work(&buffer
->irq_work
.work
, rb_wake_up_waiters
);
1292 init_waitqueue_head(&buffer
->irq_work
.waiters
);
1294 /* need at least two pages */
1299 * In case of non-hotplug cpu, if the ring-buffer is allocated
1300 * in early initcall, it will not be notified of secondary cpus.
1301 * In that off case, we need to allocate for all possible cpus.
1303 #ifdef CONFIG_HOTPLUG_CPU
1304 cpu_notifier_register_begin();
1305 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1307 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1309 buffer
->cpus
= nr_cpu_ids
;
1311 bsize
= sizeof(void *) * nr_cpu_ids
;
1312 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1314 if (!buffer
->buffers
)
1315 goto fail_free_cpumask
;
1317 for_each_buffer_cpu(buffer
, cpu
) {
1318 buffer
->buffers
[cpu
] =
1319 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
1320 if (!buffer
->buffers
[cpu
])
1321 goto fail_free_buffers
;
1324 #ifdef CONFIG_HOTPLUG_CPU
1325 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1326 buffer
->cpu_notify
.priority
= 0;
1327 __register_cpu_notifier(&buffer
->cpu_notify
);
1328 cpu_notifier_register_done();
1331 mutex_init(&buffer
->mutex
);
1336 for_each_buffer_cpu(buffer
, cpu
) {
1337 if (buffer
->buffers
[cpu
])
1338 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1340 kfree(buffer
->buffers
);
1343 free_cpumask_var(buffer
->cpumask
);
1344 #ifdef CONFIG_HOTPLUG_CPU
1345 cpu_notifier_register_done();
1352 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1355 * ring_buffer_free - free a ring buffer.
1356 * @buffer: the buffer to free.
1359 ring_buffer_free(struct ring_buffer
*buffer
)
1363 #ifdef CONFIG_HOTPLUG_CPU
1364 cpu_notifier_register_begin();
1365 __unregister_cpu_notifier(&buffer
->cpu_notify
);
1368 for_each_buffer_cpu(buffer
, cpu
)
1369 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1371 #ifdef CONFIG_HOTPLUG_CPU
1372 cpu_notifier_register_done();
1375 kfree(buffer
->buffers
);
1376 free_cpumask_var(buffer
->cpumask
);
1380 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1382 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1385 buffer
->clock
= clock
;
1388 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1390 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1392 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1395 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1397 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1401 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned int nr_pages
)
1403 struct list_head
*tail_page
, *to_remove
, *next_page
;
1404 struct buffer_page
*to_remove_page
, *tmp_iter_page
;
1405 struct buffer_page
*last_page
, *first_page
;
1406 unsigned int nr_removed
;
1407 unsigned long head_bit
;
1412 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1413 atomic_inc(&cpu_buffer
->record_disabled
);
1415 * We don't race with the readers since we have acquired the reader
1416 * lock. We also don't race with writers after disabling recording.
1417 * This makes it easy to figure out the first and the last page to be
1418 * removed from the list. We unlink all the pages in between including
1419 * the first and last pages. This is done in a busy loop so that we
1420 * lose the least number of traces.
1421 * The pages are freed after we restart recording and unlock readers.
1423 tail_page
= &cpu_buffer
->tail_page
->list
;
1426 * tail page might be on reader page, we remove the next page
1427 * from the ring buffer
1429 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
1430 tail_page
= rb_list_head(tail_page
->next
);
1431 to_remove
= tail_page
;
1433 /* start of pages to remove */
1434 first_page
= list_entry(rb_list_head(to_remove
->next
),
1435 struct buffer_page
, list
);
1437 for (nr_removed
= 0; nr_removed
< nr_pages
; nr_removed
++) {
1438 to_remove
= rb_list_head(to_remove
)->next
;
1439 head_bit
|= (unsigned long)to_remove
& RB_PAGE_HEAD
;
1442 next_page
= rb_list_head(to_remove
)->next
;
1445 * Now we remove all pages between tail_page and next_page.
1446 * Make sure that we have head_bit value preserved for the
1449 tail_page
->next
= (struct list_head
*)((unsigned long)next_page
|
1451 next_page
= rb_list_head(next_page
);
1452 next_page
->prev
= tail_page
;
1454 /* make sure pages points to a valid page in the ring buffer */
1455 cpu_buffer
->pages
= next_page
;
1457 /* update head page */
1459 cpu_buffer
->head_page
= list_entry(next_page
,
1460 struct buffer_page
, list
);
1463 * change read pointer to make sure any read iterators reset
1466 cpu_buffer
->read
= 0;
1468 /* pages are removed, resume tracing and then free the pages */
1469 atomic_dec(&cpu_buffer
->record_disabled
);
1470 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1472 RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
));
1474 /* last buffer page to remove */
1475 last_page
= list_entry(rb_list_head(to_remove
), struct buffer_page
,
1477 tmp_iter_page
= first_page
;
1480 to_remove_page
= tmp_iter_page
;
1481 rb_inc_page(cpu_buffer
, &tmp_iter_page
);
1483 /* update the counters */
1484 page_entries
= rb_page_entries(to_remove_page
);
1487 * If something was added to this page, it was full
1488 * since it is not the tail page. So we deduct the
1489 * bytes consumed in ring buffer from here.
1490 * Increment overrun to account for the lost events.
1492 local_add(page_entries
, &cpu_buffer
->overrun
);
1493 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1497 * We have already removed references to this list item, just
1498 * free up the buffer_page and its page
1500 free_buffer_page(to_remove_page
);
1503 } while (to_remove_page
!= last_page
);
1505 RB_WARN_ON(cpu_buffer
, nr_removed
);
1507 return nr_removed
== 0;
1511 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1513 struct list_head
*pages
= &cpu_buffer
->new_pages
;
1514 int retries
, success
;
1516 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1518 * We are holding the reader lock, so the reader page won't be swapped
1519 * in the ring buffer. Now we are racing with the writer trying to
1520 * move head page and the tail page.
1521 * We are going to adapt the reader page update process where:
1522 * 1. We first splice the start and end of list of new pages between
1523 * the head page and its previous page.
1524 * 2. We cmpxchg the prev_page->next to point from head page to the
1525 * start of new pages list.
1526 * 3. Finally, we update the head->prev to the end of new list.
1528 * We will try this process 10 times, to make sure that we don't keep
1534 struct list_head
*head_page
, *prev_page
, *r
;
1535 struct list_head
*last_page
, *first_page
;
1536 struct list_head
*head_page_with_bit
;
1538 head_page
= &rb_set_head_page(cpu_buffer
)->list
;
1541 prev_page
= head_page
->prev
;
1543 first_page
= pages
->next
;
1544 last_page
= pages
->prev
;
1546 head_page_with_bit
= (struct list_head
*)
1547 ((unsigned long)head_page
| RB_PAGE_HEAD
);
1549 last_page
->next
= head_page_with_bit
;
1550 first_page
->prev
= prev_page
;
1552 r
= cmpxchg(&prev_page
->next
, head_page_with_bit
, first_page
);
1554 if (r
== head_page_with_bit
) {
1556 * yay, we replaced the page pointer to our new list,
1557 * now, we just have to update to head page's prev
1558 * pointer to point to end of list
1560 head_page
->prev
= last_page
;
1567 INIT_LIST_HEAD(pages
);
1569 * If we weren't successful in adding in new pages, warn and stop
1572 RB_WARN_ON(cpu_buffer
, !success
);
1573 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1575 /* free pages if they weren't inserted */
1577 struct buffer_page
*bpage
, *tmp
;
1578 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1580 list_del_init(&bpage
->list
);
1581 free_buffer_page(bpage
);
1587 static void rb_update_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1591 if (cpu_buffer
->nr_pages_to_update
> 0)
1592 success
= rb_insert_pages(cpu_buffer
);
1594 success
= rb_remove_pages(cpu_buffer
,
1595 -cpu_buffer
->nr_pages_to_update
);
1598 cpu_buffer
->nr_pages
+= cpu_buffer
->nr_pages_to_update
;
1601 static void update_pages_handler(struct work_struct
*work
)
1603 struct ring_buffer_per_cpu
*cpu_buffer
= container_of(work
,
1604 struct ring_buffer_per_cpu
, update_pages_work
);
1605 rb_update_pages(cpu_buffer
);
1606 complete(&cpu_buffer
->update_done
);
1610 * ring_buffer_resize - resize the ring buffer
1611 * @buffer: the buffer to resize.
1612 * @size: the new size.
1613 * @cpu_id: the cpu buffer to resize
1615 * Minimum size is 2 * BUF_PAGE_SIZE.
1617 * Returns 0 on success and < 0 on failure.
1619 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
,
1622 struct ring_buffer_per_cpu
*cpu_buffer
;
1627 * Always succeed at resizing a non-existent buffer:
1632 /* Make sure the requested buffer exists */
1633 if (cpu_id
!= RING_BUFFER_ALL_CPUS
&&
1634 !cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1637 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1638 size
*= BUF_PAGE_SIZE
;
1640 /* we need a minimum of two pages */
1641 if (size
< BUF_PAGE_SIZE
* 2)
1642 size
= BUF_PAGE_SIZE
* 2;
1644 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1647 * Don't succeed if resizing is disabled, as a reader might be
1648 * manipulating the ring buffer and is expecting a sane state while
1651 if (atomic_read(&buffer
->resize_disabled
))
1654 /* prevent another thread from changing buffer sizes */
1655 mutex_lock(&buffer
->mutex
);
1657 if (cpu_id
== RING_BUFFER_ALL_CPUS
) {
1658 /* calculate the pages to update */
1659 for_each_buffer_cpu(buffer
, cpu
) {
1660 cpu_buffer
= buffer
->buffers
[cpu
];
1662 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1663 cpu_buffer
->nr_pages
;
1665 * nothing more to do for removing pages or no update
1667 if (cpu_buffer
->nr_pages_to_update
<= 0)
1670 * to add pages, make sure all new pages can be
1671 * allocated without receiving ENOMEM
1673 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1674 if (__rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1675 &cpu_buffer
->new_pages
, cpu
)) {
1676 /* not enough memory for new pages */
1684 * Fire off all the required work handlers
1685 * We can't schedule on offline CPUs, but it's not necessary
1686 * since we can change their buffer sizes without any race.
1688 for_each_buffer_cpu(buffer
, cpu
) {
1689 cpu_buffer
= buffer
->buffers
[cpu
];
1690 if (!cpu_buffer
->nr_pages_to_update
)
1693 /* The update must run on the CPU that is being updated. */
1695 if (cpu
== smp_processor_id() || !cpu_online(cpu
)) {
1696 rb_update_pages(cpu_buffer
);
1697 cpu_buffer
->nr_pages_to_update
= 0;
1700 * Can not disable preemption for schedule_work_on()
1704 schedule_work_on(cpu
,
1705 &cpu_buffer
->update_pages_work
);
1711 /* wait for all the updates to complete */
1712 for_each_buffer_cpu(buffer
, cpu
) {
1713 cpu_buffer
= buffer
->buffers
[cpu
];
1714 if (!cpu_buffer
->nr_pages_to_update
)
1717 if (cpu_online(cpu
))
1718 wait_for_completion(&cpu_buffer
->update_done
);
1719 cpu_buffer
->nr_pages_to_update
= 0;
1724 /* Make sure this CPU has been intitialized */
1725 if (!cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1728 cpu_buffer
= buffer
->buffers
[cpu_id
];
1730 if (nr_pages
== cpu_buffer
->nr_pages
)
1733 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1734 cpu_buffer
->nr_pages
;
1736 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1737 if (cpu_buffer
->nr_pages_to_update
> 0 &&
1738 __rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1739 &cpu_buffer
->new_pages
, cpu_id
)) {
1747 /* The update must run on the CPU that is being updated. */
1748 if (cpu_id
== smp_processor_id() || !cpu_online(cpu_id
))
1749 rb_update_pages(cpu_buffer
);
1752 * Can not disable preemption for schedule_work_on()
1756 schedule_work_on(cpu_id
,
1757 &cpu_buffer
->update_pages_work
);
1758 wait_for_completion(&cpu_buffer
->update_done
);
1763 cpu_buffer
->nr_pages_to_update
= 0;
1769 * The ring buffer resize can happen with the ring buffer
1770 * enabled, so that the update disturbs the tracing as little
1771 * as possible. But if the buffer is disabled, we do not need
1772 * to worry about that, and we can take the time to verify
1773 * that the buffer is not corrupt.
1775 if (atomic_read(&buffer
->record_disabled
)) {
1776 atomic_inc(&buffer
->record_disabled
);
1778 * Even though the buffer was disabled, we must make sure
1779 * that it is truly disabled before calling rb_check_pages.
1780 * There could have been a race between checking
1781 * record_disable and incrementing it.
1783 synchronize_sched();
1784 for_each_buffer_cpu(buffer
, cpu
) {
1785 cpu_buffer
= buffer
->buffers
[cpu
];
1786 rb_check_pages(cpu_buffer
);
1788 atomic_dec(&buffer
->record_disabled
);
1791 mutex_unlock(&buffer
->mutex
);
1795 for_each_buffer_cpu(buffer
, cpu
) {
1796 struct buffer_page
*bpage
, *tmp
;
1798 cpu_buffer
= buffer
->buffers
[cpu
];
1799 cpu_buffer
->nr_pages_to_update
= 0;
1801 if (list_empty(&cpu_buffer
->new_pages
))
1804 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1806 list_del_init(&bpage
->list
);
1807 free_buffer_page(bpage
);
1810 mutex_unlock(&buffer
->mutex
);
1813 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1815 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1817 mutex_lock(&buffer
->mutex
);
1819 buffer
->flags
|= RB_FL_OVERWRITE
;
1821 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1822 mutex_unlock(&buffer
->mutex
);
1824 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1826 static inline void *
1827 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1829 return bpage
->data
+ index
;
1832 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1834 return bpage
->page
->data
+ index
;
1837 static inline struct ring_buffer_event
*
1838 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1840 return __rb_page_index(cpu_buffer
->reader_page
,
1841 cpu_buffer
->reader_page
->read
);
1844 static inline struct ring_buffer_event
*
1845 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1847 return __rb_page_index(iter
->head_page
, iter
->head
);
1850 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1852 return local_read(&bpage
->page
->commit
);
1855 /* Size is determined by what has been committed */
1856 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1858 return rb_page_commit(bpage
);
1861 static inline unsigned
1862 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1864 return rb_page_commit(cpu_buffer
->commit_page
);
1867 static inline unsigned
1868 rb_event_index(struct ring_buffer_event
*event
)
1870 unsigned long addr
= (unsigned long)event
;
1872 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1876 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1877 struct ring_buffer_event
*event
)
1879 unsigned long addr
= (unsigned long)event
;
1880 unsigned long index
;
1882 index
= rb_event_index(event
);
1885 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1886 rb_commit_index(cpu_buffer
) == index
;
1890 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1892 unsigned long max_count
;
1895 * We only race with interrupts and NMIs on this CPU.
1896 * If we own the commit event, then we can commit
1897 * all others that interrupted us, since the interruptions
1898 * are in stack format (they finish before they come
1899 * back to us). This allows us to do a simple loop to
1900 * assign the commit to the tail.
1903 max_count
= cpu_buffer
->nr_pages
* 100;
1905 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1906 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
1908 if (RB_WARN_ON(cpu_buffer
,
1909 rb_is_reader_page(cpu_buffer
->tail_page
)))
1911 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1912 rb_page_write(cpu_buffer
->commit_page
));
1913 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1914 cpu_buffer
->write_stamp
=
1915 cpu_buffer
->commit_page
->page
->time_stamp
;
1916 /* add barrier to keep gcc from optimizing too much */
1919 while (rb_commit_index(cpu_buffer
) !=
1920 rb_page_write(cpu_buffer
->commit_page
)) {
1922 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1923 rb_page_write(cpu_buffer
->commit_page
));
1924 RB_WARN_ON(cpu_buffer
,
1925 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
1930 /* again, keep gcc from optimizing */
1934 * If an interrupt came in just after the first while loop
1935 * and pushed the tail page forward, we will be left with
1936 * a dangling commit that will never go forward.
1938 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1942 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1944 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1945 cpu_buffer
->reader_page
->read
= 0;
1948 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1950 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1953 * The iterator could be on the reader page (it starts there).
1954 * But the head could have moved, since the reader was
1955 * found. Check for this case and assign the iterator
1956 * to the head page instead of next.
1958 if (iter
->head_page
== cpu_buffer
->reader_page
)
1959 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1961 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1963 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1967 /* Slow path, do not inline */
1968 static noinline
struct ring_buffer_event
*
1969 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
)
1971 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
1973 /* Not the first event on the page? */
1974 if (rb_event_index(event
)) {
1975 event
->time_delta
= delta
& TS_MASK
;
1976 event
->array
[0] = delta
>> TS_SHIFT
;
1978 /* nope, just zero it */
1979 event
->time_delta
= 0;
1980 event
->array
[0] = 0;
1983 return skip_time_extend(event
);
1987 * rb_update_event - update event type and data
1988 * @event: the even to update
1989 * @type: the type of event
1990 * @length: the size of the event field in the ring buffer
1992 * Update the type and data fields of the event. The length
1993 * is the actual size that is written to the ring buffer,
1994 * and with this, we can determine what to place into the
1998 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
1999 struct ring_buffer_event
*event
, unsigned length
,
2000 int add_timestamp
, u64 delta
)
2002 /* Only a commit updates the timestamp */
2003 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
2007 * If we need to add a timestamp, then we
2008 * add it to the start of the resevered space.
2010 if (unlikely(add_timestamp
)) {
2011 event
= rb_add_time_stamp(event
, delta
);
2012 length
-= RB_LEN_TIME_EXTEND
;
2016 event
->time_delta
= delta
;
2017 length
-= RB_EVNT_HDR_SIZE
;
2018 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
2019 event
->type_len
= 0;
2020 event
->array
[0] = length
;
2022 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
2026 * rb_handle_head_page - writer hit the head page
2028 * Returns: +1 to retry page
2033 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
2034 struct buffer_page
*tail_page
,
2035 struct buffer_page
*next_page
)
2037 struct buffer_page
*new_head
;
2042 entries
= rb_page_entries(next_page
);
2045 * The hard part is here. We need to move the head
2046 * forward, and protect against both readers on
2047 * other CPUs and writers coming in via interrupts.
2049 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
2053 * type can be one of four:
2054 * NORMAL - an interrupt already moved it for us
2055 * HEAD - we are the first to get here.
2056 * UPDATE - we are the interrupt interrupting
2058 * MOVED - a reader on another CPU moved the next
2059 * pointer to its reader page. Give up
2066 * We changed the head to UPDATE, thus
2067 * it is our responsibility to update
2070 local_add(entries
, &cpu_buffer
->overrun
);
2071 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
2074 * The entries will be zeroed out when we move the
2078 /* still more to do */
2081 case RB_PAGE_UPDATE
:
2083 * This is an interrupt that interrupt the
2084 * previous update. Still more to do.
2087 case RB_PAGE_NORMAL
:
2089 * An interrupt came in before the update
2090 * and processed this for us.
2091 * Nothing left to do.
2096 * The reader is on another CPU and just did
2097 * a swap with our next_page.
2102 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
2107 * Now that we are here, the old head pointer is
2108 * set to UPDATE. This will keep the reader from
2109 * swapping the head page with the reader page.
2110 * The reader (on another CPU) will spin till
2113 * We just need to protect against interrupts
2114 * doing the job. We will set the next pointer
2115 * to HEAD. After that, we set the old pointer
2116 * to NORMAL, but only if it was HEAD before.
2117 * otherwise we are an interrupt, and only
2118 * want the outer most commit to reset it.
2120 new_head
= next_page
;
2121 rb_inc_page(cpu_buffer
, &new_head
);
2123 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
2127 * Valid returns are:
2128 * HEAD - an interrupt came in and already set it.
2129 * NORMAL - One of two things:
2130 * 1) We really set it.
2131 * 2) A bunch of interrupts came in and moved
2132 * the page forward again.
2136 case RB_PAGE_NORMAL
:
2140 RB_WARN_ON(cpu_buffer
, 1);
2145 * It is possible that an interrupt came in,
2146 * set the head up, then more interrupts came in
2147 * and moved it again. When we get back here,
2148 * the page would have been set to NORMAL but we
2149 * just set it back to HEAD.
2151 * How do you detect this? Well, if that happened
2152 * the tail page would have moved.
2154 if (ret
== RB_PAGE_NORMAL
) {
2156 * If the tail had moved passed next, then we need
2157 * to reset the pointer.
2159 if (cpu_buffer
->tail_page
!= tail_page
&&
2160 cpu_buffer
->tail_page
!= next_page
)
2161 rb_head_page_set_normal(cpu_buffer
, new_head
,
2167 * If this was the outer most commit (the one that
2168 * changed the original pointer from HEAD to UPDATE),
2169 * then it is up to us to reset it to NORMAL.
2171 if (type
== RB_PAGE_HEAD
) {
2172 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
2175 if (RB_WARN_ON(cpu_buffer
,
2176 ret
!= RB_PAGE_UPDATE
))
2183 static unsigned rb_calculate_event_length(unsigned length
)
2185 struct ring_buffer_event event
; /* Used only for sizeof array */
2187 /* zero length can cause confusions */
2191 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
2192 length
+= sizeof(event
.array
[0]);
2194 length
+= RB_EVNT_HDR_SIZE
;
2195 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
2201 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2202 struct buffer_page
*tail_page
,
2203 unsigned long tail
, unsigned long length
)
2205 struct ring_buffer_event
*event
;
2208 * Only the event that crossed the page boundary
2209 * must fill the old tail_page with padding.
2211 if (tail
>= BUF_PAGE_SIZE
) {
2213 * If the page was filled, then we still need
2214 * to update the real_end. Reset it to zero
2215 * and the reader will ignore it.
2217 if (tail
== BUF_PAGE_SIZE
)
2218 tail_page
->real_end
= 0;
2220 local_sub(length
, &tail_page
->write
);
2224 event
= __rb_page_index(tail_page
, tail
);
2225 kmemcheck_annotate_bitfield(event
, bitfield
);
2227 /* account for padding bytes */
2228 local_add(BUF_PAGE_SIZE
- tail
, &cpu_buffer
->entries_bytes
);
2231 * Save the original length to the meta data.
2232 * This will be used by the reader to add lost event
2235 tail_page
->real_end
= tail
;
2238 * If this event is bigger than the minimum size, then
2239 * we need to be careful that we don't subtract the
2240 * write counter enough to allow another writer to slip
2242 * We put in a discarded commit instead, to make sure
2243 * that this space is not used again.
2245 * If we are less than the minimum size, we don't need to
2248 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
2249 /* No room for any events */
2251 /* Mark the rest of the page with padding */
2252 rb_event_set_padding(event
);
2254 /* Set the write back to the previous setting */
2255 local_sub(length
, &tail_page
->write
);
2259 /* Put in a discarded event */
2260 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
2261 event
->type_len
= RINGBUF_TYPE_PADDING
;
2262 /* time delta must be non zero */
2263 event
->time_delta
= 1;
2265 /* Set write to end of buffer */
2266 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
2267 local_sub(length
, &tail_page
->write
);
2271 * This is the slow path, force gcc not to inline it.
2273 static noinline
struct ring_buffer_event
*
2274 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2275 unsigned long length
, unsigned long tail
,
2276 struct buffer_page
*tail_page
, u64 ts
)
2278 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
2279 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
2280 struct buffer_page
*next_page
;
2283 next_page
= tail_page
;
2285 rb_inc_page(cpu_buffer
, &next_page
);
2288 * If for some reason, we had an interrupt storm that made
2289 * it all the way around the buffer, bail, and warn
2292 if (unlikely(next_page
== commit_page
)) {
2293 local_inc(&cpu_buffer
->commit_overrun
);
2298 * This is where the fun begins!
2300 * We are fighting against races between a reader that
2301 * could be on another CPU trying to swap its reader
2302 * page with the buffer head.
2304 * We are also fighting against interrupts coming in and
2305 * moving the head or tail on us as well.
2307 * If the next page is the head page then we have filled
2308 * the buffer, unless the commit page is still on the
2311 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
2314 * If the commit is not on the reader page, then
2315 * move the header page.
2317 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
2319 * If we are not in overwrite mode,
2320 * this is easy, just stop here.
2322 if (!(buffer
->flags
& RB_FL_OVERWRITE
)) {
2323 local_inc(&cpu_buffer
->dropped_events
);
2327 ret
= rb_handle_head_page(cpu_buffer
,
2336 * We need to be careful here too. The
2337 * commit page could still be on the reader
2338 * page. We could have a small buffer, and
2339 * have filled up the buffer with events
2340 * from interrupts and such, and wrapped.
2342 * Note, if the tail page is also the on the
2343 * reader_page, we let it move out.
2345 if (unlikely((cpu_buffer
->commit_page
!=
2346 cpu_buffer
->tail_page
) &&
2347 (cpu_buffer
->commit_page
==
2348 cpu_buffer
->reader_page
))) {
2349 local_inc(&cpu_buffer
->commit_overrun
);
2355 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
2358 * Nested commits always have zero deltas, so
2359 * just reread the time stamp
2361 ts
= rb_time_stamp(buffer
);
2362 next_page
->page
->time_stamp
= ts
;
2367 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2369 /* fail and let the caller try again */
2370 return ERR_PTR(-EAGAIN
);
2374 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2379 static struct ring_buffer_event
*
2380 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2381 unsigned long length
, u64 ts
,
2382 u64 delta
, int add_timestamp
)
2384 struct buffer_page
*tail_page
;
2385 struct ring_buffer_event
*event
;
2386 unsigned long tail
, write
;
2389 * If the time delta since the last event is too big to
2390 * hold in the time field of the event, then we append a
2391 * TIME EXTEND event ahead of the data event.
2393 if (unlikely(add_timestamp
))
2394 length
+= RB_LEN_TIME_EXTEND
;
2396 tail_page
= cpu_buffer
->tail_page
;
2397 write
= local_add_return(length
, &tail_page
->write
);
2399 /* set write to only the index of the write */
2400 write
&= RB_WRITE_MASK
;
2401 tail
= write
- length
;
2404 * If this is the first commit on the page, then it has the same
2405 * timestamp as the page itself.
2410 /* See if we shot pass the end of this buffer page */
2411 if (unlikely(write
> BUF_PAGE_SIZE
))
2412 return rb_move_tail(cpu_buffer
, length
, tail
,
2415 /* We reserved something on the buffer */
2417 event
= __rb_page_index(tail_page
, tail
);
2418 kmemcheck_annotate_bitfield(event
, bitfield
);
2419 rb_update_event(cpu_buffer
, event
, length
, add_timestamp
, delta
);
2421 local_inc(&tail_page
->entries
);
2424 * If this is the first commit on the page, then update
2428 tail_page
->page
->time_stamp
= ts
;
2430 /* account for these added bytes */
2431 local_add(length
, &cpu_buffer
->entries_bytes
);
2437 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2438 struct ring_buffer_event
*event
)
2440 unsigned long new_index
, old_index
;
2441 struct buffer_page
*bpage
;
2442 unsigned long index
;
2445 new_index
= rb_event_index(event
);
2446 old_index
= new_index
+ rb_event_ts_length(event
);
2447 addr
= (unsigned long)event
;
2450 bpage
= cpu_buffer
->tail_page
;
2452 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2453 unsigned long write_mask
=
2454 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2455 unsigned long event_length
= rb_event_length(event
);
2457 * This is on the tail page. It is possible that
2458 * a write could come in and move the tail page
2459 * and write to the next page. That is fine
2460 * because we just shorten what is on this page.
2462 old_index
+= write_mask
;
2463 new_index
+= write_mask
;
2464 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2465 if (index
== old_index
) {
2466 /* update counters */
2467 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
2472 /* could not discard */
2476 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2478 local_inc(&cpu_buffer
->committing
);
2479 local_inc(&cpu_buffer
->commits
);
2482 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2484 unsigned long commits
;
2486 if (RB_WARN_ON(cpu_buffer
,
2487 !local_read(&cpu_buffer
->committing
)))
2491 commits
= local_read(&cpu_buffer
->commits
);
2492 /* synchronize with interrupts */
2494 if (local_read(&cpu_buffer
->committing
) == 1)
2495 rb_set_commit_to_write(cpu_buffer
);
2497 local_dec(&cpu_buffer
->committing
);
2499 /* synchronize with interrupts */
2503 * Need to account for interrupts coming in between the
2504 * updating of the commit page and the clearing of the
2505 * committing counter.
2507 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2508 !local_read(&cpu_buffer
->committing
)) {
2509 local_inc(&cpu_buffer
->committing
);
2514 static struct ring_buffer_event
*
2515 rb_reserve_next_event(struct ring_buffer
*buffer
,
2516 struct ring_buffer_per_cpu
*cpu_buffer
,
2517 unsigned long length
)
2519 struct ring_buffer_event
*event
;
2525 rb_start_commit(cpu_buffer
);
2527 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2529 * Due to the ability to swap a cpu buffer from a buffer
2530 * it is possible it was swapped before we committed.
2531 * (committing stops a swap). We check for it here and
2532 * if it happened, we have to fail the write.
2535 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2536 local_dec(&cpu_buffer
->committing
);
2537 local_dec(&cpu_buffer
->commits
);
2542 length
= rb_calculate_event_length(length
);
2548 * We allow for interrupts to reenter here and do a trace.
2549 * If one does, it will cause this original code to loop
2550 * back here. Even with heavy interrupts happening, this
2551 * should only happen a few times in a row. If this happens
2552 * 1000 times in a row, there must be either an interrupt
2553 * storm or we have something buggy.
2556 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2559 ts
= rb_time_stamp(cpu_buffer
->buffer
);
2560 diff
= ts
- cpu_buffer
->write_stamp
;
2562 /* make sure this diff is calculated here */
2565 /* Did the write stamp get updated already? */
2566 if (likely(ts
>= cpu_buffer
->write_stamp
)) {
2568 if (unlikely(test_time_stamp(delta
))) {
2569 int local_clock_stable
= 1;
2570 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2571 local_clock_stable
= sched_clock_stable();
2573 WARN_ONCE(delta
> (1ULL << 59),
2574 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2575 (unsigned long long)delta
,
2576 (unsigned long long)ts
,
2577 (unsigned long long)cpu_buffer
->write_stamp
,
2578 local_clock_stable
? "" :
2579 "If you just came from a suspend/resume,\n"
2580 "please switch to the trace global clock:\n"
2581 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2586 event
= __rb_reserve_next(cpu_buffer
, length
, ts
,
2587 delta
, add_timestamp
);
2588 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
2597 rb_end_commit(cpu_buffer
);
2601 #ifdef CONFIG_TRACING
2604 * The lock and unlock are done within a preempt disable section.
2605 * The current_context per_cpu variable can only be modified
2606 * by the current task between lock and unlock. But it can
2607 * be modified more than once via an interrupt. To pass this
2608 * information from the lock to the unlock without having to
2609 * access the 'in_interrupt()' functions again (which do show
2610 * a bit of overhead in something as critical as function tracing,
2611 * we use a bitmask trick.
2613 * bit 0 = NMI context
2614 * bit 1 = IRQ context
2615 * bit 2 = SoftIRQ context
2616 * bit 3 = normal context.
2618 * This works because this is the order of contexts that can
2619 * preempt other contexts. A SoftIRQ never preempts an IRQ
2622 * When the context is determined, the corresponding bit is
2623 * checked and set (if it was set, then a recursion of that context
2626 * On unlock, we need to clear this bit. To do so, just subtract
2627 * 1 from the current_context and AND it to itself.
2631 * 101 & 100 = 100 (clearing bit zero)
2634 * 1010 & 1001 = 1000 (clearing bit 1)
2636 * The least significant bit can be cleared this way, and it
2637 * just so happens that it is the same bit corresponding to
2638 * the current context.
2640 static DEFINE_PER_CPU(unsigned int, current_context
);
2642 static __always_inline
int trace_recursive_lock(void)
2644 unsigned int val
= this_cpu_read(current_context
);
2647 if (in_interrupt()) {
2657 if (unlikely(val
& (1 << bit
)))
2661 this_cpu_write(current_context
, val
);
2666 static __always_inline
void trace_recursive_unlock(void)
2668 unsigned int val
= this_cpu_read(current_context
);
2671 val
&= this_cpu_read(current_context
);
2672 this_cpu_write(current_context
, val
);
2677 #define trace_recursive_lock() (0)
2678 #define trace_recursive_unlock() do { } while (0)
2683 * ring_buffer_lock_reserve - reserve a part of the buffer
2684 * @buffer: the ring buffer to reserve from
2685 * @length: the length of the data to reserve (excluding event header)
2687 * Returns a reseverd event on the ring buffer to copy directly to.
2688 * The user of this interface will need to get the body to write into
2689 * and can use the ring_buffer_event_data() interface.
2691 * The length is the length of the data needed, not the event length
2692 * which also includes the event header.
2694 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2695 * If NULL is returned, then nothing has been allocated or locked.
2697 struct ring_buffer_event
*
2698 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2700 struct ring_buffer_per_cpu
*cpu_buffer
;
2701 struct ring_buffer_event
*event
;
2704 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2707 /* If we are tracing schedule, we don't want to recurse */
2708 preempt_disable_notrace();
2710 if (atomic_read(&buffer
->record_disabled
))
2713 if (trace_recursive_lock())
2716 cpu
= raw_smp_processor_id();
2718 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2721 cpu_buffer
= buffer
->buffers
[cpu
];
2723 if (atomic_read(&cpu_buffer
->record_disabled
))
2726 if (length
> BUF_MAX_DATA_SIZE
)
2729 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2736 trace_recursive_unlock();
2739 preempt_enable_notrace();
2742 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2745 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2746 struct ring_buffer_event
*event
)
2751 * The event first in the commit queue updates the
2754 if (rb_event_is_commit(cpu_buffer
, event
)) {
2756 * A commit event that is first on a page
2757 * updates the write timestamp with the page stamp
2759 if (!rb_event_index(event
))
2760 cpu_buffer
->write_stamp
=
2761 cpu_buffer
->commit_page
->page
->time_stamp
;
2762 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2763 delta
= event
->array
[0];
2765 delta
+= event
->time_delta
;
2766 cpu_buffer
->write_stamp
+= delta
;
2768 cpu_buffer
->write_stamp
+= event
->time_delta
;
2772 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2773 struct ring_buffer_event
*event
)
2775 local_inc(&cpu_buffer
->entries
);
2776 rb_update_write_stamp(cpu_buffer
, event
);
2777 rb_end_commit(cpu_buffer
);
2780 static __always_inline
void
2781 rb_wakeups(struct ring_buffer
*buffer
, struct ring_buffer_per_cpu
*cpu_buffer
)
2783 if (buffer
->irq_work
.waiters_pending
) {
2784 buffer
->irq_work
.waiters_pending
= false;
2785 /* irq_work_queue() supplies it's own memory barriers */
2786 irq_work_queue(&buffer
->irq_work
.work
);
2789 if (cpu_buffer
->irq_work
.waiters_pending
) {
2790 cpu_buffer
->irq_work
.waiters_pending
= false;
2791 /* irq_work_queue() supplies it's own memory barriers */
2792 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2797 * ring_buffer_unlock_commit - commit a reserved
2798 * @buffer: The buffer to commit to
2799 * @event: The event pointer to commit.
2801 * This commits the data to the ring buffer, and releases any locks held.
2803 * Must be paired with ring_buffer_lock_reserve.
2805 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2806 struct ring_buffer_event
*event
)
2808 struct ring_buffer_per_cpu
*cpu_buffer
;
2809 int cpu
= raw_smp_processor_id();
2811 cpu_buffer
= buffer
->buffers
[cpu
];
2813 rb_commit(cpu_buffer
, event
);
2815 rb_wakeups(buffer
, cpu_buffer
);
2817 trace_recursive_unlock();
2819 preempt_enable_notrace();
2823 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2825 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2827 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
2828 event
= skip_time_extend(event
);
2830 /* array[0] holds the actual length for the discarded event */
2831 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2832 event
->type_len
= RINGBUF_TYPE_PADDING
;
2833 /* time delta must be non zero */
2834 if (!event
->time_delta
)
2835 event
->time_delta
= 1;
2839 * Decrement the entries to the page that an event is on.
2840 * The event does not even need to exist, only the pointer
2841 * to the page it is on. This may only be called before the commit
2845 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2846 struct ring_buffer_event
*event
)
2848 unsigned long addr
= (unsigned long)event
;
2849 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2850 struct buffer_page
*start
;
2854 /* Do the likely case first */
2855 if (likely(bpage
->page
== (void *)addr
)) {
2856 local_dec(&bpage
->entries
);
2861 * Because the commit page may be on the reader page we
2862 * start with the next page and check the end loop there.
2864 rb_inc_page(cpu_buffer
, &bpage
);
2867 if (bpage
->page
== (void *)addr
) {
2868 local_dec(&bpage
->entries
);
2871 rb_inc_page(cpu_buffer
, &bpage
);
2872 } while (bpage
!= start
);
2874 /* commit not part of this buffer?? */
2875 RB_WARN_ON(cpu_buffer
, 1);
2879 * ring_buffer_commit_discard - discard an event that has not been committed
2880 * @buffer: the ring buffer
2881 * @event: non committed event to discard
2883 * Sometimes an event that is in the ring buffer needs to be ignored.
2884 * This function lets the user discard an event in the ring buffer
2885 * and then that event will not be read later.
2887 * This function only works if it is called before the the item has been
2888 * committed. It will try to free the event from the ring buffer
2889 * if another event has not been added behind it.
2891 * If another event has been added behind it, it will set the event
2892 * up as discarded, and perform the commit.
2894 * If this function is called, do not call ring_buffer_unlock_commit on
2897 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2898 struct ring_buffer_event
*event
)
2900 struct ring_buffer_per_cpu
*cpu_buffer
;
2903 /* The event is discarded regardless */
2904 rb_event_discard(event
);
2906 cpu
= smp_processor_id();
2907 cpu_buffer
= buffer
->buffers
[cpu
];
2910 * This must only be called if the event has not been
2911 * committed yet. Thus we can assume that preemption
2912 * is still disabled.
2914 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2916 rb_decrement_entry(cpu_buffer
, event
);
2917 if (rb_try_to_discard(cpu_buffer
, event
))
2921 * The commit is still visible by the reader, so we
2922 * must still update the timestamp.
2924 rb_update_write_stamp(cpu_buffer
, event
);
2926 rb_end_commit(cpu_buffer
);
2928 trace_recursive_unlock();
2930 preempt_enable_notrace();
2933 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2936 * ring_buffer_write - write data to the buffer without reserving
2937 * @buffer: The ring buffer to write to.
2938 * @length: The length of the data being written (excluding the event header)
2939 * @data: The data to write to the buffer.
2941 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2942 * one function. If you already have the data to write to the buffer, it
2943 * may be easier to simply call this function.
2945 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2946 * and not the length of the event which would hold the header.
2948 int ring_buffer_write(struct ring_buffer
*buffer
,
2949 unsigned long length
,
2952 struct ring_buffer_per_cpu
*cpu_buffer
;
2953 struct ring_buffer_event
*event
;
2958 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2961 preempt_disable_notrace();
2963 if (atomic_read(&buffer
->record_disabled
))
2966 cpu
= raw_smp_processor_id();
2968 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2971 cpu_buffer
= buffer
->buffers
[cpu
];
2973 if (atomic_read(&cpu_buffer
->record_disabled
))
2976 if (length
> BUF_MAX_DATA_SIZE
)
2979 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2983 body
= rb_event_data(event
);
2985 memcpy(body
, data
, length
);
2987 rb_commit(cpu_buffer
, event
);
2989 rb_wakeups(buffer
, cpu_buffer
);
2993 preempt_enable_notrace();
2997 EXPORT_SYMBOL_GPL(ring_buffer_write
);
2999 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
3001 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
3002 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
3003 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
3005 /* In case of error, head will be NULL */
3006 if (unlikely(!head
))
3009 return reader
->read
== rb_page_commit(reader
) &&
3010 (commit
== reader
||
3012 head
->read
== rb_page_commit(commit
)));
3016 * ring_buffer_record_disable - stop all writes into the buffer
3017 * @buffer: The ring buffer to stop writes to.
3019 * This prevents all writes to the buffer. Any attempt to write
3020 * to the buffer after this will fail and return NULL.
3022 * The caller should call synchronize_sched() after this.
3024 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
3026 atomic_inc(&buffer
->record_disabled
);
3028 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
3031 * ring_buffer_record_enable - enable writes to the buffer
3032 * @buffer: The ring buffer to enable writes
3034 * Note, multiple disables will need the same number of enables
3035 * to truly enable the writing (much like preempt_disable).
3037 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
3039 atomic_dec(&buffer
->record_disabled
);
3041 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
3044 * ring_buffer_record_off - stop all writes into the buffer
3045 * @buffer: The ring buffer to stop writes to.
3047 * This prevents all writes to the buffer. Any attempt to write
3048 * to the buffer after this will fail and return NULL.
3050 * This is different than ring_buffer_record_disable() as
3051 * it works like an on/off switch, where as the disable() version
3052 * must be paired with a enable().
3054 void ring_buffer_record_off(struct ring_buffer
*buffer
)
3057 unsigned int new_rd
;
3060 rd
= atomic_read(&buffer
->record_disabled
);
3061 new_rd
= rd
| RB_BUFFER_OFF
;
3062 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3064 EXPORT_SYMBOL_GPL(ring_buffer_record_off
);
3067 * ring_buffer_record_on - restart writes into the buffer
3068 * @buffer: The ring buffer to start writes to.
3070 * This enables all writes to the buffer that was disabled by
3071 * ring_buffer_record_off().
3073 * This is different than ring_buffer_record_enable() as
3074 * it works like an on/off switch, where as the enable() version
3075 * must be paired with a disable().
3077 void ring_buffer_record_on(struct ring_buffer
*buffer
)
3080 unsigned int new_rd
;
3083 rd
= atomic_read(&buffer
->record_disabled
);
3084 new_rd
= rd
& ~RB_BUFFER_OFF
;
3085 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3087 EXPORT_SYMBOL_GPL(ring_buffer_record_on
);
3090 * ring_buffer_record_is_on - return true if the ring buffer can write
3091 * @buffer: The ring buffer to see if write is enabled
3093 * Returns true if the ring buffer is in a state that it accepts writes.
3095 int ring_buffer_record_is_on(struct ring_buffer
*buffer
)
3097 return !atomic_read(&buffer
->record_disabled
);
3101 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3102 * @buffer: The ring buffer to stop writes to.
3103 * @cpu: The CPU buffer to stop
3105 * This prevents all writes to the buffer. Any attempt to write
3106 * to the buffer after this will fail and return NULL.
3108 * The caller should call synchronize_sched() after this.
3110 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
3112 struct ring_buffer_per_cpu
*cpu_buffer
;
3114 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3117 cpu_buffer
= buffer
->buffers
[cpu
];
3118 atomic_inc(&cpu_buffer
->record_disabled
);
3120 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
3123 * ring_buffer_record_enable_cpu - enable writes to the buffer
3124 * @buffer: The ring buffer to enable writes
3125 * @cpu: The CPU to enable.
3127 * Note, multiple disables will need the same number of enables
3128 * to truly enable the writing (much like preempt_disable).
3130 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
3132 struct ring_buffer_per_cpu
*cpu_buffer
;
3134 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3137 cpu_buffer
= buffer
->buffers
[cpu
];
3138 atomic_dec(&cpu_buffer
->record_disabled
);
3140 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
3143 * The total entries in the ring buffer is the running counter
3144 * of entries entered into the ring buffer, minus the sum of
3145 * the entries read from the ring buffer and the number of
3146 * entries that were overwritten.
3148 static inline unsigned long
3149 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
3151 return local_read(&cpu_buffer
->entries
) -
3152 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
3156 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3157 * @buffer: The ring buffer
3158 * @cpu: The per CPU buffer to read from.
3160 u64
ring_buffer_oldest_event_ts(struct ring_buffer
*buffer
, int cpu
)
3162 unsigned long flags
;
3163 struct ring_buffer_per_cpu
*cpu_buffer
;
3164 struct buffer_page
*bpage
;
3167 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3170 cpu_buffer
= buffer
->buffers
[cpu
];
3171 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3173 * if the tail is on reader_page, oldest time stamp is on the reader
3176 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
3177 bpage
= cpu_buffer
->reader_page
;
3179 bpage
= rb_set_head_page(cpu_buffer
);
3181 ret
= bpage
->page
->time_stamp
;
3182 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3186 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
3189 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3190 * @buffer: The ring buffer
3191 * @cpu: The per CPU buffer to read from.
3193 unsigned long ring_buffer_bytes_cpu(struct ring_buffer
*buffer
, int cpu
)
3195 struct ring_buffer_per_cpu
*cpu_buffer
;
3198 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3201 cpu_buffer
= buffer
->buffers
[cpu
];
3202 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
3206 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
3209 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3210 * @buffer: The ring buffer
3211 * @cpu: The per CPU buffer to get the entries from.
3213 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
3215 struct ring_buffer_per_cpu
*cpu_buffer
;
3217 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3220 cpu_buffer
= buffer
->buffers
[cpu
];
3222 return rb_num_of_entries(cpu_buffer
);
3224 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
3227 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3228 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3229 * @buffer: The ring buffer
3230 * @cpu: The per CPU buffer to get the number of overruns from
3232 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3234 struct ring_buffer_per_cpu
*cpu_buffer
;
3237 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3240 cpu_buffer
= buffer
->buffers
[cpu
];
3241 ret
= local_read(&cpu_buffer
->overrun
);
3245 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
3248 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3249 * commits failing due to the buffer wrapping around while there are uncommitted
3250 * events, such as during an interrupt storm.
3251 * @buffer: The ring buffer
3252 * @cpu: The per CPU buffer to get the number of overruns from
3255 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3257 struct ring_buffer_per_cpu
*cpu_buffer
;
3260 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3263 cpu_buffer
= buffer
->buffers
[cpu
];
3264 ret
= local_read(&cpu_buffer
->commit_overrun
);
3268 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
3271 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3272 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3273 * @buffer: The ring buffer
3274 * @cpu: The per CPU buffer to get the number of overruns from
3277 ring_buffer_dropped_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3279 struct ring_buffer_per_cpu
*cpu_buffer
;
3282 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3285 cpu_buffer
= buffer
->buffers
[cpu
];
3286 ret
= local_read(&cpu_buffer
->dropped_events
);
3290 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu
);
3293 * ring_buffer_read_events_cpu - get the number of events successfully read
3294 * @buffer: The ring buffer
3295 * @cpu: The per CPU buffer to get the number of events read
3298 ring_buffer_read_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3300 struct ring_buffer_per_cpu
*cpu_buffer
;
3302 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3305 cpu_buffer
= buffer
->buffers
[cpu
];
3306 return cpu_buffer
->read
;
3308 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu
);
3311 * ring_buffer_entries - get the number of entries in a buffer
3312 * @buffer: The ring buffer
3314 * Returns the total number of entries in the ring buffer
3317 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
3319 struct ring_buffer_per_cpu
*cpu_buffer
;
3320 unsigned long entries
= 0;
3323 /* if you care about this being correct, lock the buffer */
3324 for_each_buffer_cpu(buffer
, cpu
) {
3325 cpu_buffer
= buffer
->buffers
[cpu
];
3326 entries
+= rb_num_of_entries(cpu_buffer
);
3331 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
3334 * ring_buffer_overruns - get the number of overruns in buffer
3335 * @buffer: The ring buffer
3337 * Returns the total number of overruns in the ring buffer
3340 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
3342 struct ring_buffer_per_cpu
*cpu_buffer
;
3343 unsigned long overruns
= 0;
3346 /* if you care about this being correct, lock the buffer */
3347 for_each_buffer_cpu(buffer
, cpu
) {
3348 cpu_buffer
= buffer
->buffers
[cpu
];
3349 overruns
+= local_read(&cpu_buffer
->overrun
);
3354 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
3356 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
3358 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3360 /* Iterator usage is expected to have record disabled */
3361 if (list_empty(&cpu_buffer
->reader_page
->list
)) {
3362 iter
->head_page
= rb_set_head_page(cpu_buffer
);
3363 if (unlikely(!iter
->head_page
))
3365 iter
->head
= iter
->head_page
->read
;
3367 iter
->head_page
= cpu_buffer
->reader_page
;
3368 iter
->head
= cpu_buffer
->reader_page
->read
;
3371 iter
->read_stamp
= cpu_buffer
->read_stamp
;
3373 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3374 iter
->cache_reader_page
= cpu_buffer
->reader_page
;
3375 iter
->cache_read
= cpu_buffer
->read
;
3379 * ring_buffer_iter_reset - reset an iterator
3380 * @iter: The iterator to reset
3382 * Resets the iterator, so that it will start from the beginning
3385 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
3387 struct ring_buffer_per_cpu
*cpu_buffer
;
3388 unsigned long flags
;
3393 cpu_buffer
= iter
->cpu_buffer
;
3395 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3396 rb_iter_reset(iter
);
3397 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3399 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
3402 * ring_buffer_iter_empty - check if an iterator has no more to read
3403 * @iter: The iterator to check
3405 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
3407 struct ring_buffer_per_cpu
*cpu_buffer
;
3409 cpu_buffer
= iter
->cpu_buffer
;
3411 return iter
->head_page
== cpu_buffer
->commit_page
&&
3412 iter
->head
== rb_commit_index(cpu_buffer
);
3414 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
3417 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3418 struct ring_buffer_event
*event
)
3422 switch (event
->type_len
) {
3423 case RINGBUF_TYPE_PADDING
:
3426 case RINGBUF_TYPE_TIME_EXTEND
:
3427 delta
= event
->array
[0];
3429 delta
+= event
->time_delta
;
3430 cpu_buffer
->read_stamp
+= delta
;
3433 case RINGBUF_TYPE_TIME_STAMP
:
3434 /* FIXME: not implemented */
3437 case RINGBUF_TYPE_DATA
:
3438 cpu_buffer
->read_stamp
+= event
->time_delta
;
3448 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
3449 struct ring_buffer_event
*event
)
3453 switch (event
->type_len
) {
3454 case RINGBUF_TYPE_PADDING
:
3457 case RINGBUF_TYPE_TIME_EXTEND
:
3458 delta
= event
->array
[0];
3460 delta
+= event
->time_delta
;
3461 iter
->read_stamp
+= delta
;
3464 case RINGBUF_TYPE_TIME_STAMP
:
3465 /* FIXME: not implemented */
3468 case RINGBUF_TYPE_DATA
:
3469 iter
->read_stamp
+= event
->time_delta
;
3478 static struct buffer_page
*
3479 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
3481 struct buffer_page
*reader
= NULL
;
3482 unsigned long overwrite
;
3483 unsigned long flags
;
3487 local_irq_save(flags
);
3488 arch_spin_lock(&cpu_buffer
->lock
);
3492 * This should normally only loop twice. But because the
3493 * start of the reader inserts an empty page, it causes
3494 * a case where we will loop three times. There should be no
3495 * reason to loop four times (that I know of).
3497 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
3502 reader
= cpu_buffer
->reader_page
;
3504 /* If there's more to read, return this page */
3505 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
3508 /* Never should we have an index greater than the size */
3509 if (RB_WARN_ON(cpu_buffer
,
3510 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
3513 /* check if we caught up to the tail */
3515 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
3518 /* Don't bother swapping if the ring buffer is empty */
3519 if (rb_num_of_entries(cpu_buffer
) == 0)
3523 * Reset the reader page to size zero.
3525 local_set(&cpu_buffer
->reader_page
->write
, 0);
3526 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3527 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3528 cpu_buffer
->reader_page
->real_end
= 0;
3532 * Splice the empty reader page into the list around the head.
3534 reader
= rb_set_head_page(cpu_buffer
);
3537 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
3538 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
3541 * cpu_buffer->pages just needs to point to the buffer, it
3542 * has no specific buffer page to point to. Lets move it out
3543 * of our way so we don't accidentally swap it.
3545 cpu_buffer
->pages
= reader
->list
.prev
;
3547 /* The reader page will be pointing to the new head */
3548 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
3551 * We want to make sure we read the overruns after we set up our
3552 * pointers to the next object. The writer side does a
3553 * cmpxchg to cross pages which acts as the mb on the writer
3554 * side. Note, the reader will constantly fail the swap
3555 * while the writer is updating the pointers, so this
3556 * guarantees that the overwrite recorded here is the one we
3557 * want to compare with the last_overrun.
3560 overwrite
= local_read(&(cpu_buffer
->overrun
));
3563 * Here's the tricky part.
3565 * We need to move the pointer past the header page.
3566 * But we can only do that if a writer is not currently
3567 * moving it. The page before the header page has the
3568 * flag bit '1' set if it is pointing to the page we want.
3569 * but if the writer is in the process of moving it
3570 * than it will be '2' or already moved '0'.
3573 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
3576 * If we did not convert it, then we must try again.
3582 * Yeah! We succeeded in replacing the page.
3584 * Now make the new head point back to the reader page.
3586 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
3587 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
3589 /* Finally update the reader page to the new head */
3590 cpu_buffer
->reader_page
= reader
;
3591 rb_reset_reader_page(cpu_buffer
);
3593 if (overwrite
!= cpu_buffer
->last_overrun
) {
3594 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3595 cpu_buffer
->last_overrun
= overwrite
;
3601 arch_spin_unlock(&cpu_buffer
->lock
);
3602 local_irq_restore(flags
);
3607 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3609 struct ring_buffer_event
*event
;
3610 struct buffer_page
*reader
;
3613 reader
= rb_get_reader_page(cpu_buffer
);
3615 /* This function should not be called when buffer is empty */
3616 if (RB_WARN_ON(cpu_buffer
, !reader
))
3619 event
= rb_reader_event(cpu_buffer
);
3621 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3624 rb_update_read_stamp(cpu_buffer
, event
);
3626 length
= rb_event_length(event
);
3627 cpu_buffer
->reader_page
->read
+= length
;
3630 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3632 struct ring_buffer_per_cpu
*cpu_buffer
;
3633 struct ring_buffer_event
*event
;
3636 cpu_buffer
= iter
->cpu_buffer
;
3639 * Check if we are at the end of the buffer.
3641 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3642 /* discarded commits can make the page empty */
3643 if (iter
->head_page
== cpu_buffer
->commit_page
)
3649 event
= rb_iter_head_event(iter
);
3651 length
= rb_event_length(event
);
3654 * This should not be called to advance the header if we are
3655 * at the tail of the buffer.
3657 if (RB_WARN_ON(cpu_buffer
,
3658 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3659 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3662 rb_update_iter_read_stamp(iter
, event
);
3664 iter
->head
+= length
;
3666 /* check for end of page padding */
3667 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3668 (iter
->head_page
!= cpu_buffer
->commit_page
))
3672 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3674 return cpu_buffer
->lost_events
;
3677 static struct ring_buffer_event
*
3678 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3679 unsigned long *lost_events
)
3681 struct ring_buffer_event
*event
;
3682 struct buffer_page
*reader
;
3687 * We repeat when a time extend is encountered.
3688 * Since the time extend is always attached to a data event,
3689 * we should never loop more than once.
3690 * (We never hit the following condition more than twice).
3692 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3695 reader
= rb_get_reader_page(cpu_buffer
);
3699 event
= rb_reader_event(cpu_buffer
);
3701 switch (event
->type_len
) {
3702 case RINGBUF_TYPE_PADDING
:
3703 if (rb_null_event(event
))
3704 RB_WARN_ON(cpu_buffer
, 1);
3706 * Because the writer could be discarding every
3707 * event it creates (which would probably be bad)
3708 * if we were to go back to "again" then we may never
3709 * catch up, and will trigger the warn on, or lock
3710 * the box. Return the padding, and we will release
3711 * the current locks, and try again.
3715 case RINGBUF_TYPE_TIME_EXTEND
:
3716 /* Internal data, OK to advance */
3717 rb_advance_reader(cpu_buffer
);
3720 case RINGBUF_TYPE_TIME_STAMP
:
3721 /* FIXME: not implemented */
3722 rb_advance_reader(cpu_buffer
);
3725 case RINGBUF_TYPE_DATA
:
3727 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3728 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3729 cpu_buffer
->cpu
, ts
);
3732 *lost_events
= rb_lost_events(cpu_buffer
);
3741 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3743 static struct ring_buffer_event
*
3744 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3746 struct ring_buffer
*buffer
;
3747 struct ring_buffer_per_cpu
*cpu_buffer
;
3748 struct ring_buffer_event
*event
;
3751 cpu_buffer
= iter
->cpu_buffer
;
3752 buffer
= cpu_buffer
->buffer
;
3755 * Check if someone performed a consuming read to
3756 * the buffer. A consuming read invalidates the iterator
3757 * and we need to reset the iterator in this case.
3759 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3760 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3761 rb_iter_reset(iter
);
3764 if (ring_buffer_iter_empty(iter
))
3768 * We repeat when a time extend is encountered.
3769 * Since the time extend is always attached to a data event,
3770 * we should never loop more than once.
3771 * (We never hit the following condition more than twice).
3773 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3776 if (rb_per_cpu_empty(cpu_buffer
))
3779 if (iter
->head
>= local_read(&iter
->head_page
->page
->commit
)) {
3784 event
= rb_iter_head_event(iter
);
3786 switch (event
->type_len
) {
3787 case RINGBUF_TYPE_PADDING
:
3788 if (rb_null_event(event
)) {
3792 rb_advance_iter(iter
);
3795 case RINGBUF_TYPE_TIME_EXTEND
:
3796 /* Internal data, OK to advance */
3797 rb_advance_iter(iter
);
3800 case RINGBUF_TYPE_TIME_STAMP
:
3801 /* FIXME: not implemented */
3802 rb_advance_iter(iter
);
3805 case RINGBUF_TYPE_DATA
:
3807 *ts
= iter
->read_stamp
+ event
->time_delta
;
3808 ring_buffer_normalize_time_stamp(buffer
,
3809 cpu_buffer
->cpu
, ts
);
3819 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3821 static inline int rb_ok_to_lock(void)
3824 * If an NMI die dumps out the content of the ring buffer
3825 * do not grab locks. We also permanently disable the ring
3826 * buffer too. A one time deal is all you get from reading
3827 * the ring buffer from an NMI.
3829 if (likely(!in_nmi()))
3832 tracing_off_permanent();
3837 * ring_buffer_peek - peek at the next event to be read
3838 * @buffer: The ring buffer to read
3839 * @cpu: The cpu to peak at
3840 * @ts: The timestamp counter of this event.
3841 * @lost_events: a variable to store if events were lost (may be NULL)
3843 * This will return the event that will be read next, but does
3844 * not consume the data.
3846 struct ring_buffer_event
*
3847 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3848 unsigned long *lost_events
)
3850 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3851 struct ring_buffer_event
*event
;
3852 unsigned long flags
;
3855 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3858 dolock
= rb_ok_to_lock();
3860 local_irq_save(flags
);
3862 raw_spin_lock(&cpu_buffer
->reader_lock
);
3863 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3864 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3865 rb_advance_reader(cpu_buffer
);
3867 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3868 local_irq_restore(flags
);
3870 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3877 * ring_buffer_iter_peek - peek at the next event to be read
3878 * @iter: The ring buffer iterator
3879 * @ts: The timestamp counter of this event.
3881 * This will return the event that will be read next, but does
3882 * not increment the iterator.
3884 struct ring_buffer_event
*
3885 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3887 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3888 struct ring_buffer_event
*event
;
3889 unsigned long flags
;
3892 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3893 event
= rb_iter_peek(iter
, ts
);
3894 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3896 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3903 * ring_buffer_consume - return an event and consume it
3904 * @buffer: The ring buffer to get the next event from
3905 * @cpu: the cpu to read the buffer from
3906 * @ts: a variable to store the timestamp (may be NULL)
3907 * @lost_events: a variable to store if events were lost (may be NULL)
3909 * Returns the next event in the ring buffer, and that event is consumed.
3910 * Meaning, that sequential reads will keep returning a different event,
3911 * and eventually empty the ring buffer if the producer is slower.
3913 struct ring_buffer_event
*
3914 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3915 unsigned long *lost_events
)
3917 struct ring_buffer_per_cpu
*cpu_buffer
;
3918 struct ring_buffer_event
*event
= NULL
;
3919 unsigned long flags
;
3922 dolock
= rb_ok_to_lock();
3925 /* might be called in atomic */
3928 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3931 cpu_buffer
= buffer
->buffers
[cpu
];
3932 local_irq_save(flags
);
3934 raw_spin_lock(&cpu_buffer
->reader_lock
);
3936 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3938 cpu_buffer
->lost_events
= 0;
3939 rb_advance_reader(cpu_buffer
);
3943 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3944 local_irq_restore(flags
);
3949 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3954 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
3957 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3958 * @buffer: The ring buffer to read from
3959 * @cpu: The cpu buffer to iterate over
3961 * This performs the initial preparations necessary to iterate
3962 * through the buffer. Memory is allocated, buffer recording
3963 * is disabled, and the iterator pointer is returned to the caller.
3965 * Disabling buffer recordng prevents the reading from being
3966 * corrupted. This is not a consuming read, so a producer is not
3969 * After a sequence of ring_buffer_read_prepare calls, the user is
3970 * expected to make at least one call to ring_buffer_read_prepare_sync.
3971 * Afterwards, ring_buffer_read_start is invoked to get things going
3974 * This overall must be paired with ring_buffer_read_finish.
3976 struct ring_buffer_iter
*
3977 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
3979 struct ring_buffer_per_cpu
*cpu_buffer
;
3980 struct ring_buffer_iter
*iter
;
3982 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3985 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
3989 cpu_buffer
= buffer
->buffers
[cpu
];
3991 iter
->cpu_buffer
= cpu_buffer
;
3993 atomic_inc(&buffer
->resize_disabled
);
3994 atomic_inc(&cpu_buffer
->record_disabled
);
3998 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
4001 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4003 * All previously invoked ring_buffer_read_prepare calls to prepare
4004 * iterators will be synchronized. Afterwards, read_buffer_read_start
4005 * calls on those iterators are allowed.
4008 ring_buffer_read_prepare_sync(void)
4010 synchronize_sched();
4012 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
4015 * ring_buffer_read_start - start a non consuming read of the buffer
4016 * @iter: The iterator returned by ring_buffer_read_prepare
4018 * This finalizes the startup of an iteration through the buffer.
4019 * The iterator comes from a call to ring_buffer_read_prepare and
4020 * an intervening ring_buffer_read_prepare_sync must have been
4023 * Must be paired with ring_buffer_read_finish.
4026 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
4028 struct ring_buffer_per_cpu
*cpu_buffer
;
4029 unsigned long flags
;
4034 cpu_buffer
= iter
->cpu_buffer
;
4036 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4037 arch_spin_lock(&cpu_buffer
->lock
);
4038 rb_iter_reset(iter
);
4039 arch_spin_unlock(&cpu_buffer
->lock
);
4040 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4042 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
4045 * ring_buffer_read_finish - finish reading the iterator of the buffer
4046 * @iter: The iterator retrieved by ring_buffer_start
4048 * This re-enables the recording to the buffer, and frees the
4052 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
4054 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4055 unsigned long flags
;
4058 * Ring buffer is disabled from recording, here's a good place
4059 * to check the integrity of the ring buffer.
4060 * Must prevent readers from trying to read, as the check
4061 * clears the HEAD page and readers require it.
4063 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4064 rb_check_pages(cpu_buffer
);
4065 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4067 atomic_dec(&cpu_buffer
->record_disabled
);
4068 atomic_dec(&cpu_buffer
->buffer
->resize_disabled
);
4071 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
4074 * ring_buffer_read - read the next item in the ring buffer by the iterator
4075 * @iter: The ring buffer iterator
4076 * @ts: The time stamp of the event read.
4078 * This reads the next event in the ring buffer and increments the iterator.
4080 struct ring_buffer_event
*
4081 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
4083 struct ring_buffer_event
*event
;
4084 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4085 unsigned long flags
;
4087 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4089 event
= rb_iter_peek(iter
, ts
);
4093 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
4096 rb_advance_iter(iter
);
4098 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4102 EXPORT_SYMBOL_GPL(ring_buffer_read
);
4105 * ring_buffer_size - return the size of the ring buffer (in bytes)
4106 * @buffer: The ring buffer.
4108 unsigned long ring_buffer_size(struct ring_buffer
*buffer
, int cpu
)
4111 * Earlier, this method returned
4112 * BUF_PAGE_SIZE * buffer->nr_pages
4113 * Since the nr_pages field is now removed, we have converted this to
4114 * return the per cpu buffer value.
4116 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4119 return BUF_PAGE_SIZE
* buffer
->buffers
[cpu
]->nr_pages
;
4121 EXPORT_SYMBOL_GPL(ring_buffer_size
);
4124 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
4126 rb_head_page_deactivate(cpu_buffer
);
4128 cpu_buffer
->head_page
4129 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
4130 local_set(&cpu_buffer
->head_page
->write
, 0);
4131 local_set(&cpu_buffer
->head_page
->entries
, 0);
4132 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
4134 cpu_buffer
->head_page
->read
= 0;
4136 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
4137 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
4139 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
4140 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
4141 local_set(&cpu_buffer
->reader_page
->write
, 0);
4142 local_set(&cpu_buffer
->reader_page
->entries
, 0);
4143 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
4144 cpu_buffer
->reader_page
->read
= 0;
4146 local_set(&cpu_buffer
->entries_bytes
, 0);
4147 local_set(&cpu_buffer
->overrun
, 0);
4148 local_set(&cpu_buffer
->commit_overrun
, 0);
4149 local_set(&cpu_buffer
->dropped_events
, 0);
4150 local_set(&cpu_buffer
->entries
, 0);
4151 local_set(&cpu_buffer
->committing
, 0);
4152 local_set(&cpu_buffer
->commits
, 0);
4153 cpu_buffer
->read
= 0;
4154 cpu_buffer
->read_bytes
= 0;
4156 cpu_buffer
->write_stamp
= 0;
4157 cpu_buffer
->read_stamp
= 0;
4159 cpu_buffer
->lost_events
= 0;
4160 cpu_buffer
->last_overrun
= 0;
4162 rb_head_page_activate(cpu_buffer
);
4166 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4167 * @buffer: The ring buffer to reset a per cpu buffer of
4168 * @cpu: The CPU buffer to be reset
4170 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
4172 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4173 unsigned long flags
;
4175 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4178 atomic_inc(&buffer
->resize_disabled
);
4179 atomic_inc(&cpu_buffer
->record_disabled
);
4181 /* Make sure all commits have finished */
4182 synchronize_sched();
4184 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4186 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
4189 arch_spin_lock(&cpu_buffer
->lock
);
4191 rb_reset_cpu(cpu_buffer
);
4193 arch_spin_unlock(&cpu_buffer
->lock
);
4196 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4198 atomic_dec(&cpu_buffer
->record_disabled
);
4199 atomic_dec(&buffer
->resize_disabled
);
4201 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
4204 * ring_buffer_reset - reset a ring buffer
4205 * @buffer: The ring buffer to reset all cpu buffers
4207 void ring_buffer_reset(struct ring_buffer
*buffer
)
4211 for_each_buffer_cpu(buffer
, cpu
)
4212 ring_buffer_reset_cpu(buffer
, cpu
);
4214 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
4217 * rind_buffer_empty - is the ring buffer empty?
4218 * @buffer: The ring buffer to test
4220 int ring_buffer_empty(struct ring_buffer
*buffer
)
4222 struct ring_buffer_per_cpu
*cpu_buffer
;
4223 unsigned long flags
;
4228 dolock
= rb_ok_to_lock();
4230 /* yes this is racy, but if you don't like the race, lock the buffer */
4231 for_each_buffer_cpu(buffer
, cpu
) {
4232 cpu_buffer
= buffer
->buffers
[cpu
];
4233 local_irq_save(flags
);
4235 raw_spin_lock(&cpu_buffer
->reader_lock
);
4236 ret
= rb_per_cpu_empty(cpu_buffer
);
4238 raw_spin_unlock(&cpu_buffer
->reader_lock
);
4239 local_irq_restore(flags
);
4247 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
4250 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4251 * @buffer: The ring buffer
4252 * @cpu: The CPU buffer to test
4254 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
4256 struct ring_buffer_per_cpu
*cpu_buffer
;
4257 unsigned long flags
;
4261 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4264 dolock
= rb_ok_to_lock();
4266 cpu_buffer
= buffer
->buffers
[cpu
];
4267 local_irq_save(flags
);
4269 raw_spin_lock(&cpu_buffer
->reader_lock
);
4270 ret
= rb_per_cpu_empty(cpu_buffer
);
4272 raw_spin_unlock(&cpu_buffer
->reader_lock
);
4273 local_irq_restore(flags
);
4277 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
4279 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4281 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4282 * @buffer_a: One buffer to swap with
4283 * @buffer_b: The other buffer to swap with
4285 * This function is useful for tracers that want to take a "snapshot"
4286 * of a CPU buffer and has another back up buffer lying around.
4287 * it is expected that the tracer handles the cpu buffer not being
4288 * used at the moment.
4290 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
4291 struct ring_buffer
*buffer_b
, int cpu
)
4293 struct ring_buffer_per_cpu
*cpu_buffer_a
;
4294 struct ring_buffer_per_cpu
*cpu_buffer_b
;
4297 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
4298 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
4301 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
4302 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
4304 /* At least make sure the two buffers are somewhat the same */
4305 if (cpu_buffer_a
->nr_pages
!= cpu_buffer_b
->nr_pages
)
4310 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
4313 if (atomic_read(&buffer_a
->record_disabled
))
4316 if (atomic_read(&buffer_b
->record_disabled
))
4319 if (atomic_read(&cpu_buffer_a
->record_disabled
))
4322 if (atomic_read(&cpu_buffer_b
->record_disabled
))
4326 * We can't do a synchronize_sched here because this
4327 * function can be called in atomic context.
4328 * Normally this will be called from the same CPU as cpu.
4329 * If not it's up to the caller to protect this.
4331 atomic_inc(&cpu_buffer_a
->record_disabled
);
4332 atomic_inc(&cpu_buffer_b
->record_disabled
);
4335 if (local_read(&cpu_buffer_a
->committing
))
4337 if (local_read(&cpu_buffer_b
->committing
))
4340 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
4341 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
4343 cpu_buffer_b
->buffer
= buffer_a
;
4344 cpu_buffer_a
->buffer
= buffer_b
;
4349 atomic_dec(&cpu_buffer_a
->record_disabled
);
4350 atomic_dec(&cpu_buffer_b
->record_disabled
);
4354 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
4355 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4358 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4359 * @buffer: the buffer to allocate for.
4360 * @cpu: the cpu buffer to allocate.
4362 * This function is used in conjunction with ring_buffer_read_page.
4363 * When reading a full page from the ring buffer, these functions
4364 * can be used to speed up the process. The calling function should
4365 * allocate a few pages first with this function. Then when it
4366 * needs to get pages from the ring buffer, it passes the result
4367 * of this function into ring_buffer_read_page, which will swap
4368 * the page that was allocated, with the read page of the buffer.
4371 * The page allocated, or NULL on error.
4373 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
, int cpu
)
4375 struct buffer_data_page
*bpage
;
4378 page
= alloc_pages_node(cpu_to_node(cpu
),
4379 GFP_KERNEL
| __GFP_NORETRY
, 0);
4383 bpage
= page_address(page
);
4385 rb_init_page(bpage
);
4389 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
4392 * ring_buffer_free_read_page - free an allocated read page
4393 * @buffer: the buffer the page was allocate for
4394 * @data: the page to free
4396 * Free a page allocated from ring_buffer_alloc_read_page.
4398 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
4400 free_page((unsigned long)data
);
4402 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
4405 * ring_buffer_read_page - extract a page from the ring buffer
4406 * @buffer: buffer to extract from
4407 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4408 * @len: amount to extract
4409 * @cpu: the cpu of the buffer to extract
4410 * @full: should the extraction only happen when the page is full.
4412 * This function will pull out a page from the ring buffer and consume it.
4413 * @data_page must be the address of the variable that was returned
4414 * from ring_buffer_alloc_read_page. This is because the page might be used
4415 * to swap with a page in the ring buffer.
4418 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4421 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4423 * process_page(rpage, ret);
4425 * When @full is set, the function will not return true unless
4426 * the writer is off the reader page.
4428 * Note: it is up to the calling functions to handle sleeps and wakeups.
4429 * The ring buffer can be used anywhere in the kernel and can not
4430 * blindly call wake_up. The layer that uses the ring buffer must be
4431 * responsible for that.
4434 * >=0 if data has been transferred, returns the offset of consumed data.
4435 * <0 if no data has been transferred.
4437 int ring_buffer_read_page(struct ring_buffer
*buffer
,
4438 void **data_page
, size_t len
, int cpu
, int full
)
4440 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4441 struct ring_buffer_event
*event
;
4442 struct buffer_data_page
*bpage
;
4443 struct buffer_page
*reader
;
4444 unsigned long missed_events
;
4445 unsigned long flags
;
4446 unsigned int commit
;
4451 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4455 * If len is not big enough to hold the page header, then
4456 * we can not copy anything.
4458 if (len
<= BUF_PAGE_HDR_SIZE
)
4461 len
-= BUF_PAGE_HDR_SIZE
;
4470 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4472 reader
= rb_get_reader_page(cpu_buffer
);
4476 event
= rb_reader_event(cpu_buffer
);
4478 read
= reader
->read
;
4479 commit
= rb_page_commit(reader
);
4481 /* Check if any events were dropped */
4482 missed_events
= cpu_buffer
->lost_events
;
4485 * If this page has been partially read or
4486 * if len is not big enough to read the rest of the page or
4487 * a writer is still on the page, then
4488 * we must copy the data from the page to the buffer.
4489 * Otherwise, we can simply swap the page with the one passed in.
4491 if (read
|| (len
< (commit
- read
)) ||
4492 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
4493 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
4494 unsigned int rpos
= read
;
4495 unsigned int pos
= 0;
4501 if (len
> (commit
- read
))
4502 len
= (commit
- read
);
4504 /* Always keep the time extend and data together */
4505 size
= rb_event_ts_length(event
);
4510 /* save the current timestamp, since the user will need it */
4511 save_timestamp
= cpu_buffer
->read_stamp
;
4513 /* Need to copy one event at a time */
4515 /* We need the size of one event, because
4516 * rb_advance_reader only advances by one event,
4517 * whereas rb_event_ts_length may include the size of
4518 * one or two events.
4519 * We have already ensured there's enough space if this
4520 * is a time extend. */
4521 size
= rb_event_length(event
);
4522 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
4526 rb_advance_reader(cpu_buffer
);
4527 rpos
= reader
->read
;
4533 event
= rb_reader_event(cpu_buffer
);
4534 /* Always keep the time extend and data together */
4535 size
= rb_event_ts_length(event
);
4536 } while (len
>= size
);
4539 local_set(&bpage
->commit
, pos
);
4540 bpage
->time_stamp
= save_timestamp
;
4542 /* we copied everything to the beginning */
4545 /* update the entry counter */
4546 cpu_buffer
->read
+= rb_page_entries(reader
);
4547 cpu_buffer
->read_bytes
+= BUF_PAGE_SIZE
;
4549 /* swap the pages */
4550 rb_init_page(bpage
);
4551 bpage
= reader
->page
;
4552 reader
->page
= *data_page
;
4553 local_set(&reader
->write
, 0);
4554 local_set(&reader
->entries
, 0);
4559 * Use the real_end for the data size,
4560 * This gives us a chance to store the lost events
4563 if (reader
->real_end
)
4564 local_set(&bpage
->commit
, reader
->real_end
);
4568 cpu_buffer
->lost_events
= 0;
4570 commit
= local_read(&bpage
->commit
);
4572 * Set a flag in the commit field if we lost events
4574 if (missed_events
) {
4575 /* If there is room at the end of the page to save the
4576 * missed events, then record it there.
4578 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
4579 memcpy(&bpage
->data
[commit
], &missed_events
,
4580 sizeof(missed_events
));
4581 local_add(RB_MISSED_STORED
, &bpage
->commit
);
4582 commit
+= sizeof(missed_events
);
4584 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
4588 * This page may be off to user land. Zero it out here.
4590 if (commit
< BUF_PAGE_SIZE
)
4591 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
4594 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4599 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
4601 #ifdef CONFIG_HOTPLUG_CPU
4602 static int rb_cpu_notify(struct notifier_block
*self
,
4603 unsigned long action
, void *hcpu
)
4605 struct ring_buffer
*buffer
=
4606 container_of(self
, struct ring_buffer
, cpu_notify
);
4607 long cpu
= (long)hcpu
;
4608 int cpu_i
, nr_pages_same
;
4609 unsigned int nr_pages
;
4612 case CPU_UP_PREPARE
:
4613 case CPU_UP_PREPARE_FROZEN
:
4614 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4619 /* check if all cpu sizes are same */
4620 for_each_buffer_cpu(buffer
, cpu_i
) {
4621 /* fill in the size from first enabled cpu */
4623 nr_pages
= buffer
->buffers
[cpu_i
]->nr_pages
;
4624 if (nr_pages
!= buffer
->buffers
[cpu_i
]->nr_pages
) {
4629 /* allocate minimum pages, user can later expand it */
4632 buffer
->buffers
[cpu
] =
4633 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
4634 if (!buffer
->buffers
[cpu
]) {
4635 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4640 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4642 case CPU_DOWN_PREPARE
:
4643 case CPU_DOWN_PREPARE_FROZEN
:
4646 * If we were to free the buffer, then the user would
4647 * lose any trace that was in the buffer.
4657 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4659 * This is a basic integrity check of the ring buffer.
4660 * Late in the boot cycle this test will run when configured in.
4661 * It will kick off a thread per CPU that will go into a loop
4662 * writing to the per cpu ring buffer various sizes of data.
4663 * Some of the data will be large items, some small.
4665 * Another thread is created that goes into a spin, sending out
4666 * IPIs to the other CPUs to also write into the ring buffer.
4667 * this is to test the nesting ability of the buffer.
4669 * Basic stats are recorded and reported. If something in the
4670 * ring buffer should happen that's not expected, a big warning
4671 * is displayed and all ring buffers are disabled.
4673 static struct task_struct
*rb_threads
[NR_CPUS
] __initdata
;
4675 struct rb_test_data
{
4676 struct ring_buffer
*buffer
;
4677 unsigned long events
;
4678 unsigned long bytes_written
;
4679 unsigned long bytes_alloc
;
4680 unsigned long bytes_dropped
;
4681 unsigned long events_nested
;
4682 unsigned long bytes_written_nested
;
4683 unsigned long bytes_alloc_nested
;
4684 unsigned long bytes_dropped_nested
;
4685 int min_size_nested
;
4686 int max_size_nested
;
4693 static struct rb_test_data rb_data
[NR_CPUS
] __initdata
;
4696 #define RB_TEST_BUFFER_SIZE 1048576
4698 static char rb_string
[] __initdata
=
4699 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4700 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4701 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4703 static bool rb_test_started __initdata
;
4710 static __init
int rb_write_something(struct rb_test_data
*data
, bool nested
)
4712 struct ring_buffer_event
*event
;
4713 struct rb_item
*item
;
4720 /* Have nested writes different that what is written */
4721 cnt
= data
->cnt
+ (nested
? 27 : 0);
4723 /* Multiply cnt by ~e, to make some unique increment */
4724 size
= (data
->cnt
* 68 / 25) % (sizeof(rb_string
) - 1);
4726 len
= size
+ sizeof(struct rb_item
);
4728 started
= rb_test_started
;
4729 /* read rb_test_started before checking buffer enabled */
4732 event
= ring_buffer_lock_reserve(data
->buffer
, len
);
4734 /* Ignore dropped events before test starts. */
4737 data
->bytes_dropped
+= len
;
4739 data
->bytes_dropped_nested
+= len
;
4744 event_len
= ring_buffer_event_length(event
);
4746 if (RB_WARN_ON(data
->buffer
, event_len
< len
))
4749 item
= ring_buffer_event_data(event
);
4751 memcpy(item
->str
, rb_string
, size
);
4754 data
->bytes_alloc_nested
+= event_len
;
4755 data
->bytes_written_nested
+= len
;
4756 data
->events_nested
++;
4757 if (!data
->min_size_nested
|| len
< data
->min_size_nested
)
4758 data
->min_size_nested
= len
;
4759 if (len
> data
->max_size_nested
)
4760 data
->max_size_nested
= len
;
4762 data
->bytes_alloc
+= event_len
;
4763 data
->bytes_written
+= len
;
4765 if (!data
->min_size
|| len
< data
->min_size
)
4766 data
->max_size
= len
;
4767 if (len
> data
->max_size
)
4768 data
->max_size
= len
;
4772 ring_buffer_unlock_commit(data
->buffer
, event
);
4777 static __init
int rb_test(void *arg
)
4779 struct rb_test_data
*data
= arg
;
4781 while (!kthread_should_stop()) {
4782 rb_write_something(data
, false);
4785 set_current_state(TASK_INTERRUPTIBLE
);
4786 /* Now sleep between a min of 100-300us and a max of 1ms */
4787 usleep_range(((data
->cnt
% 3) + 1) * 100, 1000);
4793 static __init
void rb_ipi(void *ignore
)
4795 struct rb_test_data
*data
;
4796 int cpu
= smp_processor_id();
4798 data
= &rb_data
[cpu
];
4799 rb_write_something(data
, true);
4802 static __init
int rb_hammer_test(void *arg
)
4804 while (!kthread_should_stop()) {
4806 /* Send an IPI to all cpus to write data! */
4807 smp_call_function(rb_ipi
, NULL
, 1);
4808 /* No sleep, but for non preempt, let others run */
4815 static __init
int test_ringbuffer(void)
4817 struct task_struct
*rb_hammer
;
4818 struct ring_buffer
*buffer
;
4822 pr_info("Running ring buffer tests...\n");
4824 buffer
= ring_buffer_alloc(RB_TEST_BUFFER_SIZE
, RB_FL_OVERWRITE
);
4825 if (WARN_ON(!buffer
))
4828 /* Disable buffer so that threads can't write to it yet */
4829 ring_buffer_record_off(buffer
);
4831 for_each_online_cpu(cpu
) {
4832 rb_data
[cpu
].buffer
= buffer
;
4833 rb_data
[cpu
].cpu
= cpu
;
4834 rb_data
[cpu
].cnt
= cpu
;
4835 rb_threads
[cpu
] = kthread_create(rb_test
, &rb_data
[cpu
],
4836 "rbtester/%d", cpu
);
4837 if (WARN_ON(!rb_threads
[cpu
])) {
4838 pr_cont("FAILED\n");
4843 kthread_bind(rb_threads
[cpu
], cpu
);
4844 wake_up_process(rb_threads
[cpu
]);
4847 /* Now create the rb hammer! */
4848 rb_hammer
= kthread_run(rb_hammer_test
, NULL
, "rbhammer");
4849 if (WARN_ON(!rb_hammer
)) {
4850 pr_cont("FAILED\n");
4855 ring_buffer_record_on(buffer
);
4857 * Show buffer is enabled before setting rb_test_started.
4858 * Yes there's a small race window where events could be
4859 * dropped and the thread wont catch it. But when a ring
4860 * buffer gets enabled, there will always be some kind of
4861 * delay before other CPUs see it. Thus, we don't care about
4862 * those dropped events. We care about events dropped after
4863 * the threads see that the buffer is active.
4866 rb_test_started
= true;
4868 set_current_state(TASK_INTERRUPTIBLE
);
4869 /* Just run for 10 seconds */;
4870 schedule_timeout(10 * HZ
);
4872 kthread_stop(rb_hammer
);
4875 for_each_online_cpu(cpu
) {
4876 if (!rb_threads
[cpu
])
4878 kthread_stop(rb_threads
[cpu
]);
4881 ring_buffer_free(buffer
);
4886 pr_info("finished\n");
4887 for_each_online_cpu(cpu
) {
4888 struct ring_buffer_event
*event
;
4889 struct rb_test_data
*data
= &rb_data
[cpu
];
4890 struct rb_item
*item
;
4891 unsigned long total_events
;
4892 unsigned long total_dropped
;
4893 unsigned long total_written
;
4894 unsigned long total_alloc
;
4895 unsigned long total_read
= 0;
4896 unsigned long total_size
= 0;
4897 unsigned long total_len
= 0;
4898 unsigned long total_lost
= 0;
4901 int small_event_size
;
4905 total_events
= data
->events
+ data
->events_nested
;
4906 total_written
= data
->bytes_written
+ data
->bytes_written_nested
;
4907 total_alloc
= data
->bytes_alloc
+ data
->bytes_alloc_nested
;
4908 total_dropped
= data
->bytes_dropped
+ data
->bytes_dropped_nested
;
4910 big_event_size
= data
->max_size
+ data
->max_size_nested
;
4911 small_event_size
= data
->min_size
+ data
->min_size_nested
;
4913 pr_info("CPU %d:\n", cpu
);
4914 pr_info(" events: %ld\n", total_events
);
4915 pr_info(" dropped bytes: %ld\n", total_dropped
);
4916 pr_info(" alloced bytes: %ld\n", total_alloc
);
4917 pr_info(" written bytes: %ld\n", total_written
);
4918 pr_info(" biggest event: %d\n", big_event_size
);
4919 pr_info(" smallest event: %d\n", small_event_size
);
4921 if (RB_WARN_ON(buffer
, total_dropped
))
4926 while ((event
= ring_buffer_consume(buffer
, cpu
, NULL
, &lost
))) {
4928 item
= ring_buffer_event_data(event
);
4929 total_len
+= ring_buffer_event_length(event
);
4930 total_size
+= item
->size
+ sizeof(struct rb_item
);
4931 if (memcmp(&item
->str
[0], rb_string
, item
->size
) != 0) {
4932 pr_info("FAILED!\n");
4933 pr_info("buffer had: %.*s\n", item
->size
, item
->str
);
4934 pr_info("expected: %.*s\n", item
->size
, rb_string
);
4935 RB_WARN_ON(buffer
, 1);
4946 pr_info(" read events: %ld\n", total_read
);
4947 pr_info(" lost events: %ld\n", total_lost
);
4948 pr_info(" total events: %ld\n", total_lost
+ total_read
);
4949 pr_info(" recorded len bytes: %ld\n", total_len
);
4950 pr_info(" recorded size bytes: %ld\n", total_size
);
4952 pr_info(" With dropped events, record len and size may not match\n"
4953 " alloced and written from above\n");
4955 if (RB_WARN_ON(buffer
, total_len
!= total_alloc
||
4956 total_size
!= total_written
))
4959 if (RB_WARN_ON(buffer
, total_lost
+ total_read
!= total_events
))
4965 pr_info("Ring buffer PASSED!\n");
4967 ring_buffer_free(buffer
);
4971 late_initcall(test_ringbuffer
);
4972 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */