usb: cdc-acm: bugfix release()
[linux/fpc-iii.git] / kernel / cpuset.c
blobd5ab79cf516d7edf77f8e45afe15c04cdae2cda4
1 /*
2 * kernel/cpuset.c
4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
18 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux
20 * distribution for more details.
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
29 #include <linux/fs.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mempolicy.h>
36 #include <linux/mm.h>
37 #include <linux/module.h>
38 #include <linux/mount.h>
39 #include <linux/namei.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/seq_file.h>
45 #include <linux/security.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/stat.h>
49 #include <linux/string.h>
50 #include <linux/time.h>
51 #include <linux/backing-dev.h>
52 #include <linux/sort.h>
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
56 #include <linux/mutex.h>
57 #include <linux/workqueue.h>
58 #include <linux/cgroup.h>
61 * Tracks how many cpusets are currently defined in system.
62 * When there is only one cpuset (the root cpuset) we can
63 * short circuit some hooks.
65 int number_of_cpusets __read_mostly;
67 /* Forward declare cgroup structures */
68 struct cgroup_subsys cpuset_subsys;
69 struct cpuset;
71 /* See "Frequency meter" comments, below. */
73 struct fmeter {
74 int cnt; /* unprocessed events count */
75 int val; /* most recent output value */
76 time_t time; /* clock (secs) when val computed */
77 spinlock_t lock; /* guards read or write of above */
80 struct cpuset {
81 struct cgroup_subsys_state css;
83 unsigned long flags; /* "unsigned long" so bitops work */
84 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
85 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
87 struct cpuset *parent; /* my parent */
90 * Copy of global cpuset_mems_generation as of the most
91 * recent time this cpuset changed its mems_allowed.
93 int mems_generation;
95 struct fmeter fmeter; /* memory_pressure filter */
97 /* partition number for rebuild_sched_domains() */
98 int pn;
100 /* for custom sched domain */
101 int relax_domain_level;
103 /* used for walking a cpuset heirarchy */
104 struct list_head stack_list;
107 /* Retrieve the cpuset for a cgroup */
108 static inline struct cpuset *cgroup_cs(struct cgroup *cont)
110 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
111 struct cpuset, css);
114 /* Retrieve the cpuset for a task */
115 static inline struct cpuset *task_cs(struct task_struct *task)
117 return container_of(task_subsys_state(task, cpuset_subsys_id),
118 struct cpuset, css);
120 struct cpuset_hotplug_scanner {
121 struct cgroup_scanner scan;
122 struct cgroup *to;
125 /* bits in struct cpuset flags field */
126 typedef enum {
127 CS_CPU_EXCLUSIVE,
128 CS_MEM_EXCLUSIVE,
129 CS_MEM_HARDWALL,
130 CS_MEMORY_MIGRATE,
131 CS_SCHED_LOAD_BALANCE,
132 CS_SPREAD_PAGE,
133 CS_SPREAD_SLAB,
134 } cpuset_flagbits_t;
136 /* convenient tests for these bits */
137 static inline int is_cpu_exclusive(const struct cpuset *cs)
139 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
142 static inline int is_mem_exclusive(const struct cpuset *cs)
144 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
147 static inline int is_mem_hardwall(const struct cpuset *cs)
149 return test_bit(CS_MEM_HARDWALL, &cs->flags);
152 static inline int is_sched_load_balance(const struct cpuset *cs)
154 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
157 static inline int is_memory_migrate(const struct cpuset *cs)
159 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
162 static inline int is_spread_page(const struct cpuset *cs)
164 return test_bit(CS_SPREAD_PAGE, &cs->flags);
167 static inline int is_spread_slab(const struct cpuset *cs)
169 return test_bit(CS_SPREAD_SLAB, &cs->flags);
173 * Increment this integer everytime any cpuset changes its
174 * mems_allowed value. Users of cpusets can track this generation
175 * number, and avoid having to lock and reload mems_allowed unless
176 * the cpuset they're using changes generation.
178 * A single, global generation is needed because cpuset_attach_task() could
179 * reattach a task to a different cpuset, which must not have its
180 * generation numbers aliased with those of that tasks previous cpuset.
182 * Generations are needed for mems_allowed because one task cannot
183 * modify another's memory placement. So we must enable every task,
184 * on every visit to __alloc_pages(), to efficiently check whether
185 * its current->cpuset->mems_allowed has changed, requiring an update
186 * of its current->mems_allowed.
188 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
189 * there is no need to mark it atomic.
191 static int cpuset_mems_generation;
193 static struct cpuset top_cpuset = {
194 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
195 .cpus_allowed = CPU_MASK_ALL,
196 .mems_allowed = NODE_MASK_ALL,
200 * There are two global mutexes guarding cpuset structures. The first
201 * is the main control groups cgroup_mutex, accessed via
202 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
203 * callback_mutex, below. They can nest. It is ok to first take
204 * cgroup_mutex, then nest callback_mutex. We also require taking
205 * task_lock() when dereferencing a task's cpuset pointer. See "The
206 * task_lock() exception", at the end of this comment.
208 * A task must hold both mutexes to modify cpusets. If a task
209 * holds cgroup_mutex, then it blocks others wanting that mutex,
210 * ensuring that it is the only task able to also acquire callback_mutex
211 * and be able to modify cpusets. It can perform various checks on
212 * the cpuset structure first, knowing nothing will change. It can
213 * also allocate memory while just holding cgroup_mutex. While it is
214 * performing these checks, various callback routines can briefly
215 * acquire callback_mutex to query cpusets. Once it is ready to make
216 * the changes, it takes callback_mutex, blocking everyone else.
218 * Calls to the kernel memory allocator can not be made while holding
219 * callback_mutex, as that would risk double tripping on callback_mutex
220 * from one of the callbacks into the cpuset code from within
221 * __alloc_pages().
223 * If a task is only holding callback_mutex, then it has read-only
224 * access to cpusets.
226 * The task_struct fields mems_allowed and mems_generation may only
227 * be accessed in the context of that task, so require no locks.
229 * The cpuset_common_file_read() handlers only hold callback_mutex across
230 * small pieces of code, such as when reading out possibly multi-word
231 * cpumasks and nodemasks.
233 * Accessing a task's cpuset should be done in accordance with the
234 * guidelines for accessing subsystem state in kernel/cgroup.c
237 static DEFINE_MUTEX(callback_mutex);
239 /* This is ugly, but preserves the userspace API for existing cpuset
240 * users. If someone tries to mount the "cpuset" filesystem, we
241 * silently switch it to mount "cgroup" instead */
242 static int cpuset_get_sb(struct file_system_type *fs_type,
243 int flags, const char *unused_dev_name,
244 void *data, struct vfsmount *mnt)
246 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
247 int ret = -ENODEV;
248 if (cgroup_fs) {
249 char mountopts[] =
250 "cpuset,noprefix,"
251 "release_agent=/sbin/cpuset_release_agent";
252 ret = cgroup_fs->get_sb(cgroup_fs, flags,
253 unused_dev_name, mountopts, mnt);
254 put_filesystem(cgroup_fs);
256 return ret;
259 static struct file_system_type cpuset_fs_type = {
260 .name = "cpuset",
261 .get_sb = cpuset_get_sb,
265 * Return in *pmask the portion of a cpusets's cpus_allowed that
266 * are online. If none are online, walk up the cpuset hierarchy
267 * until we find one that does have some online cpus. If we get
268 * all the way to the top and still haven't found any online cpus,
269 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
270 * task, return cpu_online_map.
272 * One way or another, we guarantee to return some non-empty subset
273 * of cpu_online_map.
275 * Call with callback_mutex held.
278 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
280 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
281 cs = cs->parent;
282 if (cs)
283 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
284 else
285 *pmask = cpu_online_map;
286 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
290 * Return in *pmask the portion of a cpusets's mems_allowed that
291 * are online, with memory. If none are online with memory, walk
292 * up the cpuset hierarchy until we find one that does have some
293 * online mems. If we get all the way to the top and still haven't
294 * found any online mems, return node_states[N_HIGH_MEMORY].
296 * One way or another, we guarantee to return some non-empty subset
297 * of node_states[N_HIGH_MEMORY].
299 * Call with callback_mutex held.
302 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
304 while (cs && !nodes_intersects(cs->mems_allowed,
305 node_states[N_HIGH_MEMORY]))
306 cs = cs->parent;
307 if (cs)
308 nodes_and(*pmask, cs->mems_allowed,
309 node_states[N_HIGH_MEMORY]);
310 else
311 *pmask = node_states[N_HIGH_MEMORY];
312 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
316 * cpuset_update_task_memory_state - update task memory placement
318 * If the current tasks cpusets mems_allowed changed behind our
319 * backs, update current->mems_allowed, mems_generation and task NUMA
320 * mempolicy to the new value.
322 * Task mempolicy is updated by rebinding it relative to the
323 * current->cpuset if a task has its memory placement changed.
324 * Do not call this routine if in_interrupt().
326 * Call without callback_mutex or task_lock() held. May be
327 * called with or without cgroup_mutex held. Thanks in part to
328 * 'the_top_cpuset_hack', the task's cpuset pointer will never
329 * be NULL. This routine also might acquire callback_mutex during
330 * call.
332 * Reading current->cpuset->mems_generation doesn't need task_lock
333 * to guard the current->cpuset derefence, because it is guarded
334 * from concurrent freeing of current->cpuset using RCU.
336 * The rcu_dereference() is technically probably not needed,
337 * as I don't actually mind if I see a new cpuset pointer but
338 * an old value of mems_generation. However this really only
339 * matters on alpha systems using cpusets heavily. If I dropped
340 * that rcu_dereference(), it would save them a memory barrier.
341 * For all other arch's, rcu_dereference is a no-op anyway, and for
342 * alpha systems not using cpusets, another planned optimization,
343 * avoiding the rcu critical section for tasks in the root cpuset
344 * which is statically allocated, so can't vanish, will make this
345 * irrelevant. Better to use RCU as intended, than to engage in
346 * some cute trick to save a memory barrier that is impossible to
347 * test, for alpha systems using cpusets heavily, which might not
348 * even exist.
350 * This routine is needed to update the per-task mems_allowed data,
351 * within the tasks context, when it is trying to allocate memory
352 * (in various mm/mempolicy.c routines) and notices that some other
353 * task has been modifying its cpuset.
356 void cpuset_update_task_memory_state(void)
358 int my_cpusets_mem_gen;
359 struct task_struct *tsk = current;
360 struct cpuset *cs;
362 if (task_cs(tsk) == &top_cpuset) {
363 /* Don't need rcu for top_cpuset. It's never freed. */
364 my_cpusets_mem_gen = top_cpuset.mems_generation;
365 } else {
366 rcu_read_lock();
367 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
368 rcu_read_unlock();
371 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
372 mutex_lock(&callback_mutex);
373 task_lock(tsk);
374 cs = task_cs(tsk); /* Maybe changed when task not locked */
375 guarantee_online_mems(cs, &tsk->mems_allowed);
376 tsk->cpuset_mems_generation = cs->mems_generation;
377 if (is_spread_page(cs))
378 tsk->flags |= PF_SPREAD_PAGE;
379 else
380 tsk->flags &= ~PF_SPREAD_PAGE;
381 if (is_spread_slab(cs))
382 tsk->flags |= PF_SPREAD_SLAB;
383 else
384 tsk->flags &= ~PF_SPREAD_SLAB;
385 task_unlock(tsk);
386 mutex_unlock(&callback_mutex);
387 mpol_rebind_task(tsk, &tsk->mems_allowed);
392 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
394 * One cpuset is a subset of another if all its allowed CPUs and
395 * Memory Nodes are a subset of the other, and its exclusive flags
396 * are only set if the other's are set. Call holding cgroup_mutex.
399 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
401 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
402 nodes_subset(p->mems_allowed, q->mems_allowed) &&
403 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
404 is_mem_exclusive(p) <= is_mem_exclusive(q);
408 * validate_change() - Used to validate that any proposed cpuset change
409 * follows the structural rules for cpusets.
411 * If we replaced the flag and mask values of the current cpuset
412 * (cur) with those values in the trial cpuset (trial), would
413 * our various subset and exclusive rules still be valid? Presumes
414 * cgroup_mutex held.
416 * 'cur' is the address of an actual, in-use cpuset. Operations
417 * such as list traversal that depend on the actual address of the
418 * cpuset in the list must use cur below, not trial.
420 * 'trial' is the address of bulk structure copy of cur, with
421 * perhaps one or more of the fields cpus_allowed, mems_allowed,
422 * or flags changed to new, trial values.
424 * Return 0 if valid, -errno if not.
427 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
429 struct cgroup *cont;
430 struct cpuset *c, *par;
432 /* Each of our child cpusets must be a subset of us */
433 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
434 if (!is_cpuset_subset(cgroup_cs(cont), trial))
435 return -EBUSY;
438 /* Remaining checks don't apply to root cpuset */
439 if (cur == &top_cpuset)
440 return 0;
442 par = cur->parent;
444 /* We must be a subset of our parent cpuset */
445 if (!is_cpuset_subset(trial, par))
446 return -EACCES;
449 * If either I or some sibling (!= me) is exclusive, we can't
450 * overlap
452 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
453 c = cgroup_cs(cont);
454 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
455 c != cur &&
456 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
457 return -EINVAL;
458 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
459 c != cur &&
460 nodes_intersects(trial->mems_allowed, c->mems_allowed))
461 return -EINVAL;
464 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
465 if (cgroup_task_count(cur->css.cgroup)) {
466 if (cpus_empty(trial->cpus_allowed) ||
467 nodes_empty(trial->mems_allowed)) {
468 return -ENOSPC;
472 return 0;
476 * Helper routine for rebuild_sched_domains().
477 * Do cpusets a, b have overlapping cpus_allowed masks?
480 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
482 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
485 static void
486 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
488 if (dattr->relax_domain_level < c->relax_domain_level)
489 dattr->relax_domain_level = c->relax_domain_level;
490 return;
493 static void
494 update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
496 LIST_HEAD(q);
498 list_add(&c->stack_list, &q);
499 while (!list_empty(&q)) {
500 struct cpuset *cp;
501 struct cgroup *cont;
502 struct cpuset *child;
504 cp = list_first_entry(&q, struct cpuset, stack_list);
505 list_del(q.next);
507 if (cpus_empty(cp->cpus_allowed))
508 continue;
510 if (is_sched_load_balance(cp))
511 update_domain_attr(dattr, cp);
513 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
514 child = cgroup_cs(cont);
515 list_add_tail(&child->stack_list, &q);
521 * rebuild_sched_domains()
523 * This routine will be called to rebuild the scheduler's dynamic
524 * sched domains:
525 * - if the flag 'sched_load_balance' of any cpuset with non-empty
526 * 'cpus' changes,
527 * - or if the 'cpus' allowed changes in any cpuset which has that
528 * flag enabled,
529 * - or if the 'sched_relax_domain_level' of any cpuset which has
530 * that flag enabled and with non-empty 'cpus' changes,
531 * - or if any cpuset with non-empty 'cpus' is removed,
532 * - or if a cpu gets offlined.
534 * This routine builds a partial partition of the systems CPUs
535 * (the set of non-overlappping cpumask_t's in the array 'part'
536 * below), and passes that partial partition to the kernel/sched.c
537 * partition_sched_domains() routine, which will rebuild the
538 * schedulers load balancing domains (sched domains) as specified
539 * by that partial partition. A 'partial partition' is a set of
540 * non-overlapping subsets whose union is a subset of that set.
542 * See "What is sched_load_balance" in Documentation/cpusets.txt
543 * for a background explanation of this.
545 * Does not return errors, on the theory that the callers of this
546 * routine would rather not worry about failures to rebuild sched
547 * domains when operating in the severe memory shortage situations
548 * that could cause allocation failures below.
550 * Call with cgroup_mutex held. May take callback_mutex during
551 * call due to the kfifo_alloc() and kmalloc() calls. May nest
552 * a call to the get_online_cpus()/put_online_cpus() pair.
553 * Must not be called holding callback_mutex, because we must not
554 * call get_online_cpus() while holding callback_mutex. Elsewhere
555 * the kernel nests callback_mutex inside get_online_cpus() calls.
556 * So the reverse nesting would risk an ABBA deadlock.
558 * The three key local variables below are:
559 * q - a linked-list queue of cpuset pointers, used to implement a
560 * top-down scan of all cpusets. This scan loads a pointer
561 * to each cpuset marked is_sched_load_balance into the
562 * array 'csa'. For our purposes, rebuilding the schedulers
563 * sched domains, we can ignore !is_sched_load_balance cpusets.
564 * csa - (for CpuSet Array) Array of pointers to all the cpusets
565 * that need to be load balanced, for convenient iterative
566 * access by the subsequent code that finds the best partition,
567 * i.e the set of domains (subsets) of CPUs such that the
568 * cpus_allowed of every cpuset marked is_sched_load_balance
569 * is a subset of one of these domains, while there are as
570 * many such domains as possible, each as small as possible.
571 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
572 * the kernel/sched.c routine partition_sched_domains() in a
573 * convenient format, that can be easily compared to the prior
574 * value to determine what partition elements (sched domains)
575 * were changed (added or removed.)
577 * Finding the best partition (set of domains):
578 * The triple nested loops below over i, j, k scan over the
579 * load balanced cpusets (using the array of cpuset pointers in
580 * csa[]) looking for pairs of cpusets that have overlapping
581 * cpus_allowed, but which don't have the same 'pn' partition
582 * number and gives them in the same partition number. It keeps
583 * looping on the 'restart' label until it can no longer find
584 * any such pairs.
586 * The union of the cpus_allowed masks from the set of
587 * all cpusets having the same 'pn' value then form the one
588 * element of the partition (one sched domain) to be passed to
589 * partition_sched_domains().
592 void rebuild_sched_domains(void)
594 LIST_HEAD(q); /* queue of cpusets to be scanned*/
595 struct cpuset *cp; /* scans q */
596 struct cpuset **csa; /* array of all cpuset ptrs */
597 int csn; /* how many cpuset ptrs in csa so far */
598 int i, j, k; /* indices for partition finding loops */
599 cpumask_t *doms; /* resulting partition; i.e. sched domains */
600 struct sched_domain_attr *dattr; /* attributes for custom domains */
601 int ndoms; /* number of sched domains in result */
602 int nslot; /* next empty doms[] cpumask_t slot */
604 csa = NULL;
605 doms = NULL;
606 dattr = NULL;
608 /* Special case for the 99% of systems with one, full, sched domain */
609 if (is_sched_load_balance(&top_cpuset)) {
610 ndoms = 1;
611 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
612 if (!doms)
613 goto rebuild;
614 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
615 if (dattr) {
616 *dattr = SD_ATTR_INIT;
617 update_domain_attr_tree(dattr, &top_cpuset);
619 *doms = top_cpuset.cpus_allowed;
620 goto rebuild;
623 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
624 if (!csa)
625 goto done;
626 csn = 0;
628 list_add(&top_cpuset.stack_list, &q);
629 while (!list_empty(&q)) {
630 struct cgroup *cont;
631 struct cpuset *child; /* scans child cpusets of cp */
633 cp = list_first_entry(&q, struct cpuset, stack_list);
634 list_del(q.next);
636 if (cpus_empty(cp->cpus_allowed))
637 continue;
640 * All child cpusets contain a subset of the parent's cpus, so
641 * just skip them, and then we call update_domain_attr_tree()
642 * to calc relax_domain_level of the corresponding sched
643 * domain.
645 if (is_sched_load_balance(cp)) {
646 csa[csn++] = cp;
647 continue;
650 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
651 child = cgroup_cs(cont);
652 list_add_tail(&child->stack_list, &q);
656 for (i = 0; i < csn; i++)
657 csa[i]->pn = i;
658 ndoms = csn;
660 restart:
661 /* Find the best partition (set of sched domains) */
662 for (i = 0; i < csn; i++) {
663 struct cpuset *a = csa[i];
664 int apn = a->pn;
666 for (j = 0; j < csn; j++) {
667 struct cpuset *b = csa[j];
668 int bpn = b->pn;
670 if (apn != bpn && cpusets_overlap(a, b)) {
671 for (k = 0; k < csn; k++) {
672 struct cpuset *c = csa[k];
674 if (c->pn == bpn)
675 c->pn = apn;
677 ndoms--; /* one less element */
678 goto restart;
683 /* Convert <csn, csa> to <ndoms, doms> */
684 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
685 if (!doms)
686 goto rebuild;
687 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
689 for (nslot = 0, i = 0; i < csn; i++) {
690 struct cpuset *a = csa[i];
691 int apn = a->pn;
693 if (apn >= 0) {
694 cpumask_t *dp = doms + nslot;
696 if (nslot == ndoms) {
697 static int warnings = 10;
698 if (warnings) {
699 printk(KERN_WARNING
700 "rebuild_sched_domains confused:"
701 " nslot %d, ndoms %d, csn %d, i %d,"
702 " apn %d\n",
703 nslot, ndoms, csn, i, apn);
704 warnings--;
706 continue;
709 cpus_clear(*dp);
710 if (dattr)
711 *(dattr + nslot) = SD_ATTR_INIT;
712 for (j = i; j < csn; j++) {
713 struct cpuset *b = csa[j];
715 if (apn == b->pn) {
716 cpus_or(*dp, *dp, b->cpus_allowed);
717 b->pn = -1;
718 if (dattr)
719 update_domain_attr_tree(dattr
720 + nslot, b);
723 nslot++;
726 BUG_ON(nslot != ndoms);
728 rebuild:
729 /* Have scheduler rebuild sched domains */
730 get_online_cpus();
731 partition_sched_domains(ndoms, doms, dattr);
732 put_online_cpus();
734 done:
735 kfree(csa);
736 /* Don't kfree(doms) -- partition_sched_domains() does that. */
737 /* Don't kfree(dattr) -- partition_sched_domains() does that. */
741 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
742 * @tsk: task to test
743 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
745 * Call with cgroup_mutex held. May take callback_mutex during call.
746 * Called for each task in a cgroup by cgroup_scan_tasks().
747 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
748 * words, if its mask is not equal to its cpuset's mask).
750 static int cpuset_test_cpumask(struct task_struct *tsk,
751 struct cgroup_scanner *scan)
753 return !cpus_equal(tsk->cpus_allowed,
754 (cgroup_cs(scan->cg))->cpus_allowed);
758 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
759 * @tsk: task to test
760 * @scan: struct cgroup_scanner containing the cgroup of the task
762 * Called by cgroup_scan_tasks() for each task in a cgroup whose
763 * cpus_allowed mask needs to be changed.
765 * We don't need to re-check for the cgroup/cpuset membership, since we're
766 * holding cgroup_lock() at this point.
768 static void cpuset_change_cpumask(struct task_struct *tsk,
769 struct cgroup_scanner *scan)
771 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
775 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
776 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
778 * Called with cgroup_mutex held
780 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
781 * calling callback functions for each.
783 * Return 0 if successful, -errno if not.
785 static int update_tasks_cpumask(struct cpuset *cs)
787 struct cgroup_scanner scan;
788 struct ptr_heap heap;
789 int retval;
792 * cgroup_scan_tasks() will initialize heap->gt for us.
793 * heap_init() is still needed here for we should not change
794 * cs->cpus_allowed when heap_init() fails.
796 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
797 if (retval)
798 return retval;
800 scan.cg = cs->css.cgroup;
801 scan.test_task = cpuset_test_cpumask;
802 scan.process_task = cpuset_change_cpumask;
803 scan.heap = &heap;
804 retval = cgroup_scan_tasks(&scan);
806 heap_free(&heap);
807 return retval;
811 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
812 * @cs: the cpuset to consider
813 * @buf: buffer of cpu numbers written to this cpuset
815 static int update_cpumask(struct cpuset *cs, const char *buf)
817 struct cpuset trialcs;
818 int retval;
819 int is_load_balanced;
821 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
822 if (cs == &top_cpuset)
823 return -EACCES;
825 trialcs = *cs;
828 * An empty cpus_allowed is ok only if the cpuset has no tasks.
829 * Since cpulist_parse() fails on an empty mask, we special case
830 * that parsing. The validate_change() call ensures that cpusets
831 * with tasks have cpus.
833 if (!*buf) {
834 cpus_clear(trialcs.cpus_allowed);
835 } else {
836 retval = cpulist_parse(buf, trialcs.cpus_allowed);
837 if (retval < 0)
838 return retval;
840 if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
841 return -EINVAL;
843 retval = validate_change(cs, &trialcs);
844 if (retval < 0)
845 return retval;
847 /* Nothing to do if the cpus didn't change */
848 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
849 return 0;
851 is_load_balanced = is_sched_load_balance(&trialcs);
853 mutex_lock(&callback_mutex);
854 cs->cpus_allowed = trialcs.cpus_allowed;
855 mutex_unlock(&callback_mutex);
858 * Scan tasks in the cpuset, and update the cpumasks of any
859 * that need an update.
861 retval = update_tasks_cpumask(cs);
862 if (retval < 0)
863 return retval;
865 if (is_load_balanced)
866 rebuild_sched_domains();
867 return 0;
871 * cpuset_migrate_mm
873 * Migrate memory region from one set of nodes to another.
875 * Temporarilly set tasks mems_allowed to target nodes of migration,
876 * so that the migration code can allocate pages on these nodes.
878 * Call holding cgroup_mutex, so current's cpuset won't change
879 * during this call, as manage_mutex holds off any cpuset_attach()
880 * calls. Therefore we don't need to take task_lock around the
881 * call to guarantee_online_mems(), as we know no one is changing
882 * our task's cpuset.
884 * Hold callback_mutex around the two modifications of our tasks
885 * mems_allowed to synchronize with cpuset_mems_allowed().
887 * While the mm_struct we are migrating is typically from some
888 * other task, the task_struct mems_allowed that we are hacking
889 * is for our current task, which must allocate new pages for that
890 * migrating memory region.
892 * We call cpuset_update_task_memory_state() before hacking
893 * our tasks mems_allowed, so that we are assured of being in
894 * sync with our tasks cpuset, and in particular, callbacks to
895 * cpuset_update_task_memory_state() from nested page allocations
896 * won't see any mismatch of our cpuset and task mems_generation
897 * values, so won't overwrite our hacked tasks mems_allowed
898 * nodemask.
901 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
902 const nodemask_t *to)
904 struct task_struct *tsk = current;
906 cpuset_update_task_memory_state();
908 mutex_lock(&callback_mutex);
909 tsk->mems_allowed = *to;
910 mutex_unlock(&callback_mutex);
912 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
914 mutex_lock(&callback_mutex);
915 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
916 mutex_unlock(&callback_mutex);
919 static void *cpuset_being_rebound;
922 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
923 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
924 * @oldmem: old mems_allowed of cpuset cs
926 * Called with cgroup_mutex held
927 * Return 0 if successful, -errno if not.
929 static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
931 struct task_struct *p;
932 struct mm_struct **mmarray;
933 int i, n, ntasks;
934 int migrate;
935 int fudge;
936 struct cgroup_iter it;
937 int retval;
939 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
941 fudge = 10; /* spare mmarray[] slots */
942 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
943 retval = -ENOMEM;
946 * Allocate mmarray[] to hold mm reference for each task
947 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
948 * tasklist_lock. We could use GFP_ATOMIC, but with a
949 * few more lines of code, we can retry until we get a big
950 * enough mmarray[] w/o using GFP_ATOMIC.
952 while (1) {
953 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
954 ntasks += fudge;
955 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
956 if (!mmarray)
957 goto done;
958 read_lock(&tasklist_lock); /* block fork */
959 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
960 break; /* got enough */
961 read_unlock(&tasklist_lock); /* try again */
962 kfree(mmarray);
965 n = 0;
967 /* Load up mmarray[] with mm reference for each task in cpuset. */
968 cgroup_iter_start(cs->css.cgroup, &it);
969 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
970 struct mm_struct *mm;
972 if (n >= ntasks) {
973 printk(KERN_WARNING
974 "Cpuset mempolicy rebind incomplete.\n");
975 break;
977 mm = get_task_mm(p);
978 if (!mm)
979 continue;
980 mmarray[n++] = mm;
982 cgroup_iter_end(cs->css.cgroup, &it);
983 read_unlock(&tasklist_lock);
986 * Now that we've dropped the tasklist spinlock, we can
987 * rebind the vma mempolicies of each mm in mmarray[] to their
988 * new cpuset, and release that mm. The mpol_rebind_mm()
989 * call takes mmap_sem, which we couldn't take while holding
990 * tasklist_lock. Forks can happen again now - the mpol_dup()
991 * cpuset_being_rebound check will catch such forks, and rebind
992 * their vma mempolicies too. Because we still hold the global
993 * cgroup_mutex, we know that no other rebind effort will
994 * be contending for the global variable cpuset_being_rebound.
995 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
996 * is idempotent. Also migrate pages in each mm to new nodes.
998 migrate = is_memory_migrate(cs);
999 for (i = 0; i < n; i++) {
1000 struct mm_struct *mm = mmarray[i];
1002 mpol_rebind_mm(mm, &cs->mems_allowed);
1003 if (migrate)
1004 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1005 mmput(mm);
1008 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1009 kfree(mmarray);
1010 cpuset_being_rebound = NULL;
1011 retval = 0;
1012 done:
1013 return retval;
1017 * Handle user request to change the 'mems' memory placement
1018 * of a cpuset. Needs to validate the request, update the
1019 * cpusets mems_allowed and mems_generation, and for each
1020 * task in the cpuset, rebind any vma mempolicies and if
1021 * the cpuset is marked 'memory_migrate', migrate the tasks
1022 * pages to the new memory.
1024 * Call with cgroup_mutex held. May take callback_mutex during call.
1025 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1026 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1027 * their mempolicies to the cpusets new mems_allowed.
1029 static int update_nodemask(struct cpuset *cs, const char *buf)
1031 struct cpuset trialcs;
1032 nodemask_t oldmem;
1033 int retval;
1036 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1037 * it's read-only
1039 if (cs == &top_cpuset)
1040 return -EACCES;
1042 trialcs = *cs;
1045 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1046 * Since nodelist_parse() fails on an empty mask, we special case
1047 * that parsing. The validate_change() call ensures that cpusets
1048 * with tasks have memory.
1050 if (!*buf) {
1051 nodes_clear(trialcs.mems_allowed);
1052 } else {
1053 retval = nodelist_parse(buf, trialcs.mems_allowed);
1054 if (retval < 0)
1055 goto done;
1057 if (!nodes_subset(trialcs.mems_allowed,
1058 node_states[N_HIGH_MEMORY]))
1059 return -EINVAL;
1061 oldmem = cs->mems_allowed;
1062 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
1063 retval = 0; /* Too easy - nothing to do */
1064 goto done;
1066 retval = validate_change(cs, &trialcs);
1067 if (retval < 0)
1068 goto done;
1070 mutex_lock(&callback_mutex);
1071 cs->mems_allowed = trialcs.mems_allowed;
1072 cs->mems_generation = cpuset_mems_generation++;
1073 mutex_unlock(&callback_mutex);
1075 retval = update_tasks_nodemask(cs, &oldmem);
1076 done:
1077 return retval;
1080 int current_cpuset_is_being_rebound(void)
1082 return task_cs(current) == cpuset_being_rebound;
1085 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1087 if (val < -1 || val >= SD_LV_MAX)
1088 return -EINVAL;
1090 if (val != cs->relax_domain_level) {
1091 cs->relax_domain_level = val;
1092 if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
1093 rebuild_sched_domains();
1096 return 0;
1100 * update_flag - read a 0 or a 1 in a file and update associated flag
1101 * bit: the bit to update (see cpuset_flagbits_t)
1102 * cs: the cpuset to update
1103 * turning_on: whether the flag is being set or cleared
1105 * Call with cgroup_mutex held.
1108 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1109 int turning_on)
1111 struct cpuset trialcs;
1112 int err;
1113 int cpus_nonempty, balance_flag_changed;
1115 trialcs = *cs;
1116 if (turning_on)
1117 set_bit(bit, &trialcs.flags);
1118 else
1119 clear_bit(bit, &trialcs.flags);
1121 err = validate_change(cs, &trialcs);
1122 if (err < 0)
1123 return err;
1125 cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
1126 balance_flag_changed = (is_sched_load_balance(cs) !=
1127 is_sched_load_balance(&trialcs));
1129 mutex_lock(&callback_mutex);
1130 cs->flags = trialcs.flags;
1131 mutex_unlock(&callback_mutex);
1133 if (cpus_nonempty && balance_flag_changed)
1134 rebuild_sched_domains();
1136 return 0;
1140 * Frequency meter - How fast is some event occurring?
1142 * These routines manage a digitally filtered, constant time based,
1143 * event frequency meter. There are four routines:
1144 * fmeter_init() - initialize a frequency meter.
1145 * fmeter_markevent() - called each time the event happens.
1146 * fmeter_getrate() - returns the recent rate of such events.
1147 * fmeter_update() - internal routine used to update fmeter.
1149 * A common data structure is passed to each of these routines,
1150 * which is used to keep track of the state required to manage the
1151 * frequency meter and its digital filter.
1153 * The filter works on the number of events marked per unit time.
1154 * The filter is single-pole low-pass recursive (IIR). The time unit
1155 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1156 * simulate 3 decimal digits of precision (multiplied by 1000).
1158 * With an FM_COEF of 933, and a time base of 1 second, the filter
1159 * has a half-life of 10 seconds, meaning that if the events quit
1160 * happening, then the rate returned from the fmeter_getrate()
1161 * will be cut in half each 10 seconds, until it converges to zero.
1163 * It is not worth doing a real infinitely recursive filter. If more
1164 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1165 * just compute FM_MAXTICKS ticks worth, by which point the level
1166 * will be stable.
1168 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1169 * arithmetic overflow in the fmeter_update() routine.
1171 * Given the simple 32 bit integer arithmetic used, this meter works
1172 * best for reporting rates between one per millisecond (msec) and
1173 * one per 32 (approx) seconds. At constant rates faster than one
1174 * per msec it maxes out at values just under 1,000,000. At constant
1175 * rates between one per msec, and one per second it will stabilize
1176 * to a value N*1000, where N is the rate of events per second.
1177 * At constant rates between one per second and one per 32 seconds,
1178 * it will be choppy, moving up on the seconds that have an event,
1179 * and then decaying until the next event. At rates slower than
1180 * about one in 32 seconds, it decays all the way back to zero between
1181 * each event.
1184 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1185 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1186 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1187 #define FM_SCALE 1000 /* faux fixed point scale */
1189 /* Initialize a frequency meter */
1190 static void fmeter_init(struct fmeter *fmp)
1192 fmp->cnt = 0;
1193 fmp->val = 0;
1194 fmp->time = 0;
1195 spin_lock_init(&fmp->lock);
1198 /* Internal meter update - process cnt events and update value */
1199 static void fmeter_update(struct fmeter *fmp)
1201 time_t now = get_seconds();
1202 time_t ticks = now - fmp->time;
1204 if (ticks == 0)
1205 return;
1207 ticks = min(FM_MAXTICKS, ticks);
1208 while (ticks-- > 0)
1209 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1210 fmp->time = now;
1212 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1213 fmp->cnt = 0;
1216 /* Process any previous ticks, then bump cnt by one (times scale). */
1217 static void fmeter_markevent(struct fmeter *fmp)
1219 spin_lock(&fmp->lock);
1220 fmeter_update(fmp);
1221 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1222 spin_unlock(&fmp->lock);
1225 /* Process any previous ticks, then return current value. */
1226 static int fmeter_getrate(struct fmeter *fmp)
1228 int val;
1230 spin_lock(&fmp->lock);
1231 fmeter_update(fmp);
1232 val = fmp->val;
1233 spin_unlock(&fmp->lock);
1234 return val;
1237 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1238 static int cpuset_can_attach(struct cgroup_subsys *ss,
1239 struct cgroup *cont, struct task_struct *tsk)
1241 struct cpuset *cs = cgroup_cs(cont);
1243 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1244 return -ENOSPC;
1245 if (tsk->flags & PF_THREAD_BOUND) {
1246 cpumask_t mask;
1248 mutex_lock(&callback_mutex);
1249 mask = cs->cpus_allowed;
1250 mutex_unlock(&callback_mutex);
1251 if (!cpus_equal(tsk->cpus_allowed, mask))
1252 return -EINVAL;
1255 return security_task_setscheduler(tsk, 0, NULL);
1258 static void cpuset_attach(struct cgroup_subsys *ss,
1259 struct cgroup *cont, struct cgroup *oldcont,
1260 struct task_struct *tsk)
1262 cpumask_t cpus;
1263 nodemask_t from, to;
1264 struct mm_struct *mm;
1265 struct cpuset *cs = cgroup_cs(cont);
1266 struct cpuset *oldcs = cgroup_cs(oldcont);
1267 int err;
1269 mutex_lock(&callback_mutex);
1270 guarantee_online_cpus(cs, &cpus);
1271 err = set_cpus_allowed_ptr(tsk, &cpus);
1272 mutex_unlock(&callback_mutex);
1273 if (err)
1274 return;
1276 from = oldcs->mems_allowed;
1277 to = cs->mems_allowed;
1278 mm = get_task_mm(tsk);
1279 if (mm) {
1280 mpol_rebind_mm(mm, &to);
1281 if (is_memory_migrate(cs))
1282 cpuset_migrate_mm(mm, &from, &to);
1283 mmput(mm);
1288 /* The various types of files and directories in a cpuset file system */
1290 typedef enum {
1291 FILE_MEMORY_MIGRATE,
1292 FILE_CPULIST,
1293 FILE_MEMLIST,
1294 FILE_CPU_EXCLUSIVE,
1295 FILE_MEM_EXCLUSIVE,
1296 FILE_MEM_HARDWALL,
1297 FILE_SCHED_LOAD_BALANCE,
1298 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1299 FILE_MEMORY_PRESSURE_ENABLED,
1300 FILE_MEMORY_PRESSURE,
1301 FILE_SPREAD_PAGE,
1302 FILE_SPREAD_SLAB,
1303 } cpuset_filetype_t;
1305 static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1307 int retval = 0;
1308 struct cpuset *cs = cgroup_cs(cgrp);
1309 cpuset_filetype_t type = cft->private;
1311 if (!cgroup_lock_live_group(cgrp))
1312 return -ENODEV;
1314 switch (type) {
1315 case FILE_CPU_EXCLUSIVE:
1316 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1317 break;
1318 case FILE_MEM_EXCLUSIVE:
1319 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1320 break;
1321 case FILE_MEM_HARDWALL:
1322 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1323 break;
1324 case FILE_SCHED_LOAD_BALANCE:
1325 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1326 break;
1327 case FILE_MEMORY_MIGRATE:
1328 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1329 break;
1330 case FILE_MEMORY_PRESSURE_ENABLED:
1331 cpuset_memory_pressure_enabled = !!val;
1332 break;
1333 case FILE_MEMORY_PRESSURE:
1334 retval = -EACCES;
1335 break;
1336 case FILE_SPREAD_PAGE:
1337 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1338 cs->mems_generation = cpuset_mems_generation++;
1339 break;
1340 case FILE_SPREAD_SLAB:
1341 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1342 cs->mems_generation = cpuset_mems_generation++;
1343 break;
1344 default:
1345 retval = -EINVAL;
1346 break;
1348 cgroup_unlock();
1349 return retval;
1352 static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1354 int retval = 0;
1355 struct cpuset *cs = cgroup_cs(cgrp);
1356 cpuset_filetype_t type = cft->private;
1358 if (!cgroup_lock_live_group(cgrp))
1359 return -ENODEV;
1361 switch (type) {
1362 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1363 retval = update_relax_domain_level(cs, val);
1364 break;
1365 default:
1366 retval = -EINVAL;
1367 break;
1369 cgroup_unlock();
1370 return retval;
1374 * Common handling for a write to a "cpus" or "mems" file.
1376 static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1377 const char *buf)
1379 int retval = 0;
1381 if (!cgroup_lock_live_group(cgrp))
1382 return -ENODEV;
1384 switch (cft->private) {
1385 case FILE_CPULIST:
1386 retval = update_cpumask(cgroup_cs(cgrp), buf);
1387 break;
1388 case FILE_MEMLIST:
1389 retval = update_nodemask(cgroup_cs(cgrp), buf);
1390 break;
1391 default:
1392 retval = -EINVAL;
1393 break;
1395 cgroup_unlock();
1396 return retval;
1400 * These ascii lists should be read in a single call, by using a user
1401 * buffer large enough to hold the entire map. If read in smaller
1402 * chunks, there is no guarantee of atomicity. Since the display format
1403 * used, list of ranges of sequential numbers, is variable length,
1404 * and since these maps can change value dynamically, one could read
1405 * gibberish by doing partial reads while a list was changing.
1406 * A single large read to a buffer that crosses a page boundary is
1407 * ok, because the result being copied to user land is not recomputed
1408 * across a page fault.
1411 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1413 cpumask_t mask;
1415 mutex_lock(&callback_mutex);
1416 mask = cs->cpus_allowed;
1417 mutex_unlock(&callback_mutex);
1419 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1422 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1424 nodemask_t mask;
1426 mutex_lock(&callback_mutex);
1427 mask = cs->mems_allowed;
1428 mutex_unlock(&callback_mutex);
1430 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1433 static ssize_t cpuset_common_file_read(struct cgroup *cont,
1434 struct cftype *cft,
1435 struct file *file,
1436 char __user *buf,
1437 size_t nbytes, loff_t *ppos)
1439 struct cpuset *cs = cgroup_cs(cont);
1440 cpuset_filetype_t type = cft->private;
1441 char *page;
1442 ssize_t retval = 0;
1443 char *s;
1445 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1446 return -ENOMEM;
1448 s = page;
1450 switch (type) {
1451 case FILE_CPULIST:
1452 s += cpuset_sprintf_cpulist(s, cs);
1453 break;
1454 case FILE_MEMLIST:
1455 s += cpuset_sprintf_memlist(s, cs);
1456 break;
1457 default:
1458 retval = -EINVAL;
1459 goto out;
1461 *s++ = '\n';
1463 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1464 out:
1465 free_page((unsigned long)page);
1466 return retval;
1469 static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1471 struct cpuset *cs = cgroup_cs(cont);
1472 cpuset_filetype_t type = cft->private;
1473 switch (type) {
1474 case FILE_CPU_EXCLUSIVE:
1475 return is_cpu_exclusive(cs);
1476 case FILE_MEM_EXCLUSIVE:
1477 return is_mem_exclusive(cs);
1478 case FILE_MEM_HARDWALL:
1479 return is_mem_hardwall(cs);
1480 case FILE_SCHED_LOAD_BALANCE:
1481 return is_sched_load_balance(cs);
1482 case FILE_MEMORY_MIGRATE:
1483 return is_memory_migrate(cs);
1484 case FILE_MEMORY_PRESSURE_ENABLED:
1485 return cpuset_memory_pressure_enabled;
1486 case FILE_MEMORY_PRESSURE:
1487 return fmeter_getrate(&cs->fmeter);
1488 case FILE_SPREAD_PAGE:
1489 return is_spread_page(cs);
1490 case FILE_SPREAD_SLAB:
1491 return is_spread_slab(cs);
1492 default:
1493 BUG();
1497 static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1499 struct cpuset *cs = cgroup_cs(cont);
1500 cpuset_filetype_t type = cft->private;
1501 switch (type) {
1502 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1503 return cs->relax_domain_level;
1504 default:
1505 BUG();
1511 * for the common functions, 'private' gives the type of file
1514 static struct cftype files[] = {
1516 .name = "cpus",
1517 .read = cpuset_common_file_read,
1518 .write_string = cpuset_write_resmask,
1519 .max_write_len = (100U + 6 * NR_CPUS),
1520 .private = FILE_CPULIST,
1524 .name = "mems",
1525 .read = cpuset_common_file_read,
1526 .write_string = cpuset_write_resmask,
1527 .max_write_len = (100U + 6 * MAX_NUMNODES),
1528 .private = FILE_MEMLIST,
1532 .name = "cpu_exclusive",
1533 .read_u64 = cpuset_read_u64,
1534 .write_u64 = cpuset_write_u64,
1535 .private = FILE_CPU_EXCLUSIVE,
1539 .name = "mem_exclusive",
1540 .read_u64 = cpuset_read_u64,
1541 .write_u64 = cpuset_write_u64,
1542 .private = FILE_MEM_EXCLUSIVE,
1546 .name = "mem_hardwall",
1547 .read_u64 = cpuset_read_u64,
1548 .write_u64 = cpuset_write_u64,
1549 .private = FILE_MEM_HARDWALL,
1553 .name = "sched_load_balance",
1554 .read_u64 = cpuset_read_u64,
1555 .write_u64 = cpuset_write_u64,
1556 .private = FILE_SCHED_LOAD_BALANCE,
1560 .name = "sched_relax_domain_level",
1561 .read_s64 = cpuset_read_s64,
1562 .write_s64 = cpuset_write_s64,
1563 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1567 .name = "memory_migrate",
1568 .read_u64 = cpuset_read_u64,
1569 .write_u64 = cpuset_write_u64,
1570 .private = FILE_MEMORY_MIGRATE,
1574 .name = "memory_pressure",
1575 .read_u64 = cpuset_read_u64,
1576 .write_u64 = cpuset_write_u64,
1577 .private = FILE_MEMORY_PRESSURE,
1581 .name = "memory_spread_page",
1582 .read_u64 = cpuset_read_u64,
1583 .write_u64 = cpuset_write_u64,
1584 .private = FILE_SPREAD_PAGE,
1588 .name = "memory_spread_slab",
1589 .read_u64 = cpuset_read_u64,
1590 .write_u64 = cpuset_write_u64,
1591 .private = FILE_SPREAD_SLAB,
1595 static struct cftype cft_memory_pressure_enabled = {
1596 .name = "memory_pressure_enabled",
1597 .read_u64 = cpuset_read_u64,
1598 .write_u64 = cpuset_write_u64,
1599 .private = FILE_MEMORY_PRESSURE_ENABLED,
1602 static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1604 int err;
1606 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1607 if (err)
1608 return err;
1609 /* memory_pressure_enabled is in root cpuset only */
1610 if (!cont->parent)
1611 err = cgroup_add_file(cont, ss,
1612 &cft_memory_pressure_enabled);
1613 return err;
1617 * post_clone() is called at the end of cgroup_clone().
1618 * 'cgroup' was just created automatically as a result of
1619 * a cgroup_clone(), and the current task is about to
1620 * be moved into 'cgroup'.
1622 * Currently we refuse to set up the cgroup - thereby
1623 * refusing the task to be entered, and as a result refusing
1624 * the sys_unshare() or clone() which initiated it - if any
1625 * sibling cpusets have exclusive cpus or mem.
1627 * If this becomes a problem for some users who wish to
1628 * allow that scenario, then cpuset_post_clone() could be
1629 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1630 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1631 * held.
1633 static void cpuset_post_clone(struct cgroup_subsys *ss,
1634 struct cgroup *cgroup)
1636 struct cgroup *parent, *child;
1637 struct cpuset *cs, *parent_cs;
1639 parent = cgroup->parent;
1640 list_for_each_entry(child, &parent->children, sibling) {
1641 cs = cgroup_cs(child);
1642 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1643 return;
1645 cs = cgroup_cs(cgroup);
1646 parent_cs = cgroup_cs(parent);
1648 cs->mems_allowed = parent_cs->mems_allowed;
1649 cs->cpus_allowed = parent_cs->cpus_allowed;
1650 return;
1654 * cpuset_create - create a cpuset
1655 * ss: cpuset cgroup subsystem
1656 * cont: control group that the new cpuset will be part of
1659 static struct cgroup_subsys_state *cpuset_create(
1660 struct cgroup_subsys *ss,
1661 struct cgroup *cont)
1663 struct cpuset *cs;
1664 struct cpuset *parent;
1666 if (!cont->parent) {
1667 /* This is early initialization for the top cgroup */
1668 top_cpuset.mems_generation = cpuset_mems_generation++;
1669 return &top_cpuset.css;
1671 parent = cgroup_cs(cont->parent);
1672 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1673 if (!cs)
1674 return ERR_PTR(-ENOMEM);
1676 cpuset_update_task_memory_state();
1677 cs->flags = 0;
1678 if (is_spread_page(parent))
1679 set_bit(CS_SPREAD_PAGE, &cs->flags);
1680 if (is_spread_slab(parent))
1681 set_bit(CS_SPREAD_SLAB, &cs->flags);
1682 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1683 cpus_clear(cs->cpus_allowed);
1684 nodes_clear(cs->mems_allowed);
1685 cs->mems_generation = cpuset_mems_generation++;
1686 fmeter_init(&cs->fmeter);
1687 cs->relax_domain_level = -1;
1689 cs->parent = parent;
1690 number_of_cpusets++;
1691 return &cs->css ;
1695 * Locking note on the strange update_flag() call below:
1697 * If the cpuset being removed has its flag 'sched_load_balance'
1698 * enabled, then simulate turning sched_load_balance off, which
1699 * will call rebuild_sched_domains(). The get_online_cpus()
1700 * call in rebuild_sched_domains() must not be made while holding
1701 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
1702 * get_online_cpus() calls. So the reverse nesting would risk an
1703 * ABBA deadlock.
1706 static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1708 struct cpuset *cs = cgroup_cs(cont);
1710 cpuset_update_task_memory_state();
1712 if (is_sched_load_balance(cs))
1713 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1715 number_of_cpusets--;
1716 kfree(cs);
1719 struct cgroup_subsys cpuset_subsys = {
1720 .name = "cpuset",
1721 .create = cpuset_create,
1722 .destroy = cpuset_destroy,
1723 .can_attach = cpuset_can_attach,
1724 .attach = cpuset_attach,
1725 .populate = cpuset_populate,
1726 .post_clone = cpuset_post_clone,
1727 .subsys_id = cpuset_subsys_id,
1728 .early_init = 1,
1732 * cpuset_init_early - just enough so that the calls to
1733 * cpuset_update_task_memory_state() in early init code
1734 * are harmless.
1737 int __init cpuset_init_early(void)
1739 top_cpuset.mems_generation = cpuset_mems_generation++;
1740 return 0;
1745 * cpuset_init - initialize cpusets at system boot
1747 * Description: Initialize top_cpuset and the cpuset internal file system,
1750 int __init cpuset_init(void)
1752 int err = 0;
1754 cpus_setall(top_cpuset.cpus_allowed);
1755 nodes_setall(top_cpuset.mems_allowed);
1757 fmeter_init(&top_cpuset.fmeter);
1758 top_cpuset.mems_generation = cpuset_mems_generation++;
1759 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1760 top_cpuset.relax_domain_level = -1;
1762 err = register_filesystem(&cpuset_fs_type);
1763 if (err < 0)
1764 return err;
1766 number_of_cpusets = 1;
1767 return 0;
1771 * cpuset_do_move_task - move a given task to another cpuset
1772 * @tsk: pointer to task_struct the task to move
1773 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1775 * Called by cgroup_scan_tasks() for each task in a cgroup.
1776 * Return nonzero to stop the walk through the tasks.
1778 static void cpuset_do_move_task(struct task_struct *tsk,
1779 struct cgroup_scanner *scan)
1781 struct cpuset_hotplug_scanner *chsp;
1783 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1784 cgroup_attach_task(chsp->to, tsk);
1788 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1789 * @from: cpuset in which the tasks currently reside
1790 * @to: cpuset to which the tasks will be moved
1792 * Called with cgroup_mutex held
1793 * callback_mutex must not be held, as cpuset_attach() will take it.
1795 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1796 * calling callback functions for each.
1798 static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1800 struct cpuset_hotplug_scanner scan;
1802 scan.scan.cg = from->css.cgroup;
1803 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1804 scan.scan.process_task = cpuset_do_move_task;
1805 scan.scan.heap = NULL;
1806 scan.to = to->css.cgroup;
1808 if (cgroup_scan_tasks(&scan.scan))
1809 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1810 "cgroup_scan_tasks failed\n");
1814 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
1815 * or memory nodes, we need to walk over the cpuset hierarchy,
1816 * removing that CPU or node from all cpusets. If this removes the
1817 * last CPU or node from a cpuset, then move the tasks in the empty
1818 * cpuset to its next-highest non-empty parent.
1820 * Called with cgroup_mutex held
1821 * callback_mutex must not be held, as cpuset_attach() will take it.
1823 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1825 struct cpuset *parent;
1828 * The cgroup's css_sets list is in use if there are tasks
1829 * in the cpuset; the list is empty if there are none;
1830 * the cs->css.refcnt seems always 0.
1832 if (list_empty(&cs->css.cgroup->css_sets))
1833 return;
1836 * Find its next-highest non-empty parent, (top cpuset
1837 * has online cpus, so can't be empty).
1839 parent = cs->parent;
1840 while (cpus_empty(parent->cpus_allowed) ||
1841 nodes_empty(parent->mems_allowed))
1842 parent = parent->parent;
1844 move_member_tasks_to_cpuset(cs, parent);
1848 * Walk the specified cpuset subtree and look for empty cpusets.
1849 * The tasks of such cpuset must be moved to a parent cpuset.
1851 * Called with cgroup_mutex held. We take callback_mutex to modify
1852 * cpus_allowed and mems_allowed.
1854 * This walk processes the tree from top to bottom, completing one layer
1855 * before dropping down to the next. It always processes a node before
1856 * any of its children.
1858 * For now, since we lack memory hot unplug, we'll never see a cpuset
1859 * that has tasks along with an empty 'mems'. But if we did see such
1860 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1862 static void scan_for_empty_cpusets(const struct cpuset *root)
1864 LIST_HEAD(queue);
1865 struct cpuset *cp; /* scans cpusets being updated */
1866 struct cpuset *child; /* scans child cpusets of cp */
1867 struct cgroup *cont;
1868 nodemask_t oldmems;
1870 list_add_tail((struct list_head *)&root->stack_list, &queue);
1872 while (!list_empty(&queue)) {
1873 cp = list_first_entry(&queue, struct cpuset, stack_list);
1874 list_del(queue.next);
1875 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1876 child = cgroup_cs(cont);
1877 list_add_tail(&child->stack_list, &queue);
1880 /* Continue past cpusets with all cpus, mems online */
1881 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1882 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1883 continue;
1885 oldmems = cp->mems_allowed;
1887 /* Remove offline cpus and mems from this cpuset. */
1888 mutex_lock(&callback_mutex);
1889 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1890 nodes_and(cp->mems_allowed, cp->mems_allowed,
1891 node_states[N_HIGH_MEMORY]);
1892 mutex_unlock(&callback_mutex);
1894 /* Move tasks from the empty cpuset to a parent */
1895 if (cpus_empty(cp->cpus_allowed) ||
1896 nodes_empty(cp->mems_allowed))
1897 remove_tasks_in_empty_cpuset(cp);
1898 else {
1899 update_tasks_cpumask(cp);
1900 update_tasks_nodemask(cp, &oldmems);
1906 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
1907 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
1908 * track what's online after any CPU or memory node hotplug or unplug event.
1910 * Since there are two callers of this routine, one for CPU hotplug
1911 * events and one for memory node hotplug events, we could have coded
1912 * two separate routines here. We code it as a single common routine
1913 * in order to minimize text size.
1916 static void common_cpu_mem_hotplug_unplug(int rebuild_sd)
1918 cgroup_lock();
1920 top_cpuset.cpus_allowed = cpu_online_map;
1921 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1922 scan_for_empty_cpusets(&top_cpuset);
1925 * Scheduler destroys domains on hotplug events.
1926 * Rebuild them based on the current settings.
1928 if (rebuild_sd)
1929 rebuild_sched_domains();
1931 cgroup_unlock();
1935 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1936 * period. This is necessary in order to make cpusets transparent
1937 * (of no affect) on systems that are actively using CPU hotplug
1938 * but making no active use of cpusets.
1940 * This routine ensures that top_cpuset.cpus_allowed tracks
1941 * cpu_online_map on each CPU hotplug (cpuhp) event.
1944 static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
1945 unsigned long phase, void *unused_cpu)
1947 switch (phase) {
1948 case CPU_UP_CANCELED:
1949 case CPU_UP_CANCELED_FROZEN:
1950 case CPU_DOWN_FAILED:
1951 case CPU_DOWN_FAILED_FROZEN:
1952 case CPU_ONLINE:
1953 case CPU_ONLINE_FROZEN:
1954 case CPU_DEAD:
1955 case CPU_DEAD_FROZEN:
1956 common_cpu_mem_hotplug_unplug(1);
1957 break;
1958 default:
1959 return NOTIFY_DONE;
1962 return NOTIFY_OK;
1965 #ifdef CONFIG_MEMORY_HOTPLUG
1967 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1968 * Call this routine anytime after you change
1969 * node_states[N_HIGH_MEMORY].
1970 * See also the previous routine cpuset_handle_cpuhp().
1973 void cpuset_track_online_nodes(void)
1975 common_cpu_mem_hotplug_unplug(0);
1977 #endif
1980 * cpuset_init_smp - initialize cpus_allowed
1982 * Description: Finish top cpuset after cpu, node maps are initialized
1985 void __init cpuset_init_smp(void)
1987 top_cpuset.cpus_allowed = cpu_online_map;
1988 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
1990 hotcpu_notifier(cpuset_handle_cpuhp, 0);
1994 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1995 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1996 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
1998 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1999 * attached to the specified @tsk. Guaranteed to return some non-empty
2000 * subset of cpu_online_map, even if this means going outside the
2001 * tasks cpuset.
2004 void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
2006 mutex_lock(&callback_mutex);
2007 cpuset_cpus_allowed_locked(tsk, pmask);
2008 mutex_unlock(&callback_mutex);
2012 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2013 * Must be called with callback_mutex held.
2015 void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
2017 task_lock(tsk);
2018 guarantee_online_cpus(task_cs(tsk), pmask);
2019 task_unlock(tsk);
2022 void cpuset_init_current_mems_allowed(void)
2024 nodes_setall(current->mems_allowed);
2028 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2029 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2031 * Description: Returns the nodemask_t mems_allowed of the cpuset
2032 * attached to the specified @tsk. Guaranteed to return some non-empty
2033 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
2034 * tasks cpuset.
2037 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2039 nodemask_t mask;
2041 mutex_lock(&callback_mutex);
2042 task_lock(tsk);
2043 guarantee_online_mems(task_cs(tsk), &mask);
2044 task_unlock(tsk);
2045 mutex_unlock(&callback_mutex);
2047 return mask;
2051 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2052 * @nodemask: the nodemask to be checked
2054 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2056 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2058 return nodes_intersects(*nodemask, current->mems_allowed);
2062 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2063 * mem_hardwall ancestor to the specified cpuset. Call holding
2064 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2065 * (an unusual configuration), then returns the root cpuset.
2067 static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
2069 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
2070 cs = cs->parent;
2071 return cs;
2075 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
2076 * @z: is this zone on an allowed node?
2077 * @gfp_mask: memory allocation flags
2079 * If we're in interrupt, yes, we can always allocate. If
2080 * __GFP_THISNODE is set, yes, we can always allocate. If zone
2081 * z's node is in our tasks mems_allowed, yes. If it's not a
2082 * __GFP_HARDWALL request and this zone's nodes is in the nearest
2083 * hardwalled cpuset ancestor to this tasks cpuset, yes.
2084 * If the task has been OOM killed and has access to memory reserves
2085 * as specified by the TIF_MEMDIE flag, yes.
2086 * Otherwise, no.
2088 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2089 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2090 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2091 * from an enclosing cpuset.
2093 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2094 * hardwall cpusets, and never sleeps.
2096 * The __GFP_THISNODE placement logic is really handled elsewhere,
2097 * by forcibly using a zonelist starting at a specified node, and by
2098 * (in get_page_from_freelist()) refusing to consider the zones for
2099 * any node on the zonelist except the first. By the time any such
2100 * calls get to this routine, we should just shut up and say 'yes'.
2102 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2103 * and do not allow allocations outside the current tasks cpuset
2104 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2105 * GFP_KERNEL allocations are not so marked, so can escape to the
2106 * nearest enclosing hardwalled ancestor cpuset.
2108 * Scanning up parent cpusets requires callback_mutex. The
2109 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2110 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2111 * current tasks mems_allowed came up empty on the first pass over
2112 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2113 * cpuset are short of memory, might require taking the callback_mutex
2114 * mutex.
2116 * The first call here from mm/page_alloc:get_page_from_freelist()
2117 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2118 * so no allocation on a node outside the cpuset is allowed (unless
2119 * in interrupt, of course).
2121 * The second pass through get_page_from_freelist() doesn't even call
2122 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2123 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2124 * in alloc_flags. That logic and the checks below have the combined
2125 * affect that:
2126 * in_interrupt - any node ok (current task context irrelevant)
2127 * GFP_ATOMIC - any node ok
2128 * TIF_MEMDIE - any node ok
2129 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2130 * GFP_USER - only nodes in current tasks mems allowed ok.
2132 * Rule:
2133 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2134 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2135 * the code that might scan up ancestor cpusets and sleep.
2138 int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
2140 int node; /* node that zone z is on */
2141 const struct cpuset *cs; /* current cpuset ancestors */
2142 int allowed; /* is allocation in zone z allowed? */
2144 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2145 return 1;
2146 node = zone_to_nid(z);
2147 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
2148 if (node_isset(node, current->mems_allowed))
2149 return 1;
2151 * Allow tasks that have access to memory reserves because they have
2152 * been OOM killed to get memory anywhere.
2154 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2155 return 1;
2156 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2157 return 0;
2159 if (current->flags & PF_EXITING) /* Let dying task have memory */
2160 return 1;
2162 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2163 mutex_lock(&callback_mutex);
2165 task_lock(current);
2166 cs = nearest_hardwall_ancestor(task_cs(current));
2167 task_unlock(current);
2169 allowed = node_isset(node, cs->mems_allowed);
2170 mutex_unlock(&callback_mutex);
2171 return allowed;
2175 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2176 * @z: is this zone on an allowed node?
2177 * @gfp_mask: memory allocation flags
2179 * If we're in interrupt, yes, we can always allocate.
2180 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
2181 * z's node is in our tasks mems_allowed, yes. If the task has been
2182 * OOM killed and has access to memory reserves as specified by the
2183 * TIF_MEMDIE flag, yes. Otherwise, no.
2185 * The __GFP_THISNODE placement logic is really handled elsewhere,
2186 * by forcibly using a zonelist starting at a specified node, and by
2187 * (in get_page_from_freelist()) refusing to consider the zones for
2188 * any node on the zonelist except the first. By the time any such
2189 * calls get to this routine, we should just shut up and say 'yes'.
2191 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2192 * this variant requires that the zone be in the current tasks
2193 * mems_allowed or that we're in interrupt. It does not scan up the
2194 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2195 * It never sleeps.
2198 int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2200 int node; /* node that zone z is on */
2202 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2203 return 1;
2204 node = zone_to_nid(z);
2205 if (node_isset(node, current->mems_allowed))
2206 return 1;
2208 * Allow tasks that have access to memory reserves because they have
2209 * been OOM killed to get memory anywhere.
2211 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2212 return 1;
2213 return 0;
2217 * cpuset_lock - lock out any changes to cpuset structures
2219 * The out of memory (oom) code needs to mutex_lock cpusets
2220 * from being changed while it scans the tasklist looking for a
2221 * task in an overlapping cpuset. Expose callback_mutex via this
2222 * cpuset_lock() routine, so the oom code can lock it, before
2223 * locking the task list. The tasklist_lock is a spinlock, so
2224 * must be taken inside callback_mutex.
2227 void cpuset_lock(void)
2229 mutex_lock(&callback_mutex);
2233 * cpuset_unlock - release lock on cpuset changes
2235 * Undo the lock taken in a previous cpuset_lock() call.
2238 void cpuset_unlock(void)
2240 mutex_unlock(&callback_mutex);
2244 * cpuset_mem_spread_node() - On which node to begin search for a page
2246 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2247 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2248 * and if the memory allocation used cpuset_mem_spread_node()
2249 * to determine on which node to start looking, as it will for
2250 * certain page cache or slab cache pages such as used for file
2251 * system buffers and inode caches, then instead of starting on the
2252 * local node to look for a free page, rather spread the starting
2253 * node around the tasks mems_allowed nodes.
2255 * We don't have to worry about the returned node being offline
2256 * because "it can't happen", and even if it did, it would be ok.
2258 * The routines calling guarantee_online_mems() are careful to
2259 * only set nodes in task->mems_allowed that are online. So it
2260 * should not be possible for the following code to return an
2261 * offline node. But if it did, that would be ok, as this routine
2262 * is not returning the node where the allocation must be, only
2263 * the node where the search should start. The zonelist passed to
2264 * __alloc_pages() will include all nodes. If the slab allocator
2265 * is passed an offline node, it will fall back to the local node.
2266 * See kmem_cache_alloc_node().
2269 int cpuset_mem_spread_node(void)
2271 int node;
2273 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2274 if (node == MAX_NUMNODES)
2275 node = first_node(current->mems_allowed);
2276 current->cpuset_mem_spread_rotor = node;
2277 return node;
2279 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2282 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2283 * @tsk1: pointer to task_struct of some task.
2284 * @tsk2: pointer to task_struct of some other task.
2286 * Description: Return true if @tsk1's mems_allowed intersects the
2287 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2288 * one of the task's memory usage might impact the memory available
2289 * to the other.
2292 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2293 const struct task_struct *tsk2)
2295 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2299 * Collection of memory_pressure is suppressed unless
2300 * this flag is enabled by writing "1" to the special
2301 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2304 int cpuset_memory_pressure_enabled __read_mostly;
2307 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2309 * Keep a running average of the rate of synchronous (direct)
2310 * page reclaim efforts initiated by tasks in each cpuset.
2312 * This represents the rate at which some task in the cpuset
2313 * ran low on memory on all nodes it was allowed to use, and
2314 * had to enter the kernels page reclaim code in an effort to
2315 * create more free memory by tossing clean pages or swapping
2316 * or writing dirty pages.
2318 * Display to user space in the per-cpuset read-only file
2319 * "memory_pressure". Value displayed is an integer
2320 * representing the recent rate of entry into the synchronous
2321 * (direct) page reclaim by any task attached to the cpuset.
2324 void __cpuset_memory_pressure_bump(void)
2326 task_lock(current);
2327 fmeter_markevent(&task_cs(current)->fmeter);
2328 task_unlock(current);
2331 #ifdef CONFIG_PROC_PID_CPUSET
2333 * proc_cpuset_show()
2334 * - Print tasks cpuset path into seq_file.
2335 * - Used for /proc/<pid>/cpuset.
2336 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2337 * doesn't really matter if tsk->cpuset changes after we read it,
2338 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2339 * anyway.
2341 static int proc_cpuset_show(struct seq_file *m, void *unused_v)
2343 struct pid *pid;
2344 struct task_struct *tsk;
2345 char *buf;
2346 struct cgroup_subsys_state *css;
2347 int retval;
2349 retval = -ENOMEM;
2350 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2351 if (!buf)
2352 goto out;
2354 retval = -ESRCH;
2355 pid = m->private;
2356 tsk = get_pid_task(pid, PIDTYPE_PID);
2357 if (!tsk)
2358 goto out_free;
2360 retval = -EINVAL;
2361 cgroup_lock();
2362 css = task_subsys_state(tsk, cpuset_subsys_id);
2363 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
2364 if (retval < 0)
2365 goto out_unlock;
2366 seq_puts(m, buf);
2367 seq_putc(m, '\n');
2368 out_unlock:
2369 cgroup_unlock();
2370 put_task_struct(tsk);
2371 out_free:
2372 kfree(buf);
2373 out:
2374 return retval;
2377 static int cpuset_open(struct inode *inode, struct file *file)
2379 struct pid *pid = PROC_I(inode)->pid;
2380 return single_open(file, proc_cpuset_show, pid);
2383 const struct file_operations proc_cpuset_operations = {
2384 .open = cpuset_open,
2385 .read = seq_read,
2386 .llseek = seq_lseek,
2387 .release = single_release,
2389 #endif /* CONFIG_PROC_PID_CPUSET */
2391 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2392 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2394 seq_printf(m, "Cpus_allowed:\t");
2395 m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
2396 task->cpus_allowed);
2397 seq_printf(m, "\n");
2398 seq_printf(m, "Cpus_allowed_list:\t");
2399 m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
2400 task->cpus_allowed);
2401 seq_printf(m, "\n");
2402 seq_printf(m, "Mems_allowed:\t");
2403 m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
2404 task->mems_allowed);
2405 seq_printf(m, "\n");
2406 seq_printf(m, "Mems_allowed_list:\t");
2407 m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
2408 task->mems_allowed);
2409 seq_printf(m, "\n");