1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
31 #include <linux/cma.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/node.h>
40 #include <linux/userfaultfd_k.h>
41 #include <linux/page_owner.h>
44 int hugetlb_max_hstate __read_mostly
;
45 unsigned int default_hstate_idx
;
46 struct hstate hstates
[HUGE_MAX_HSTATE
];
48 static struct cma
*hugetlb_cma
[MAX_NUMNODES
];
51 * Minimum page order among possible hugepage sizes, set to a proper value
54 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
56 __initdata
LIST_HEAD(huge_boot_pages
);
58 /* for command line parsing */
59 static struct hstate
* __initdata parsed_hstate
;
60 static unsigned long __initdata default_hstate_max_huge_pages
;
61 static bool __initdata parsed_valid_hugepagesz
= true;
62 static bool __initdata parsed_default_hugepagesz
;
65 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
66 * free_huge_pages, and surplus_huge_pages.
68 DEFINE_SPINLOCK(hugetlb_lock
);
71 * Serializes faults on the same logical page. This is used to
72 * prevent spurious OOMs when the hugepage pool is fully utilized.
74 static int num_fault_mutexes
;
75 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
77 /* Forward declaration */
78 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
80 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
82 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
84 spin_unlock(&spool
->lock
);
86 /* If no pages are used, and no other handles to the subpool
87 * remain, give up any reservations based on minimum size and
90 if (spool
->min_hpages
!= -1)
91 hugetlb_acct_memory(spool
->hstate
,
97 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
100 struct hugepage_subpool
*spool
;
102 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
106 spin_lock_init(&spool
->lock
);
108 spool
->max_hpages
= max_hpages
;
110 spool
->min_hpages
= min_hpages
;
112 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
116 spool
->rsv_hpages
= min_hpages
;
121 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
123 spin_lock(&spool
->lock
);
124 BUG_ON(!spool
->count
);
126 unlock_or_release_subpool(spool
);
130 * Subpool accounting for allocating and reserving pages.
131 * Return -ENOMEM if there are not enough resources to satisfy the
132 * the request. Otherwise, return the number of pages by which the
133 * global pools must be adjusted (upward). The returned value may
134 * only be different than the passed value (delta) in the case where
135 * a subpool minimum size must be maintained.
137 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
145 spin_lock(&spool
->lock
);
147 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
148 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
149 spool
->used_hpages
+= delta
;
156 /* minimum size accounting */
157 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
158 if (delta
> spool
->rsv_hpages
) {
160 * Asking for more reserves than those already taken on
161 * behalf of subpool. Return difference.
163 ret
= delta
- spool
->rsv_hpages
;
164 spool
->rsv_hpages
= 0;
166 ret
= 0; /* reserves already accounted for */
167 spool
->rsv_hpages
-= delta
;
172 spin_unlock(&spool
->lock
);
177 * Subpool accounting for freeing and unreserving pages.
178 * Return the number of global page reservations that must be dropped.
179 * The return value may only be different than the passed value (delta)
180 * in the case where a subpool minimum size must be maintained.
182 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
190 spin_lock(&spool
->lock
);
192 if (spool
->max_hpages
!= -1) /* maximum size accounting */
193 spool
->used_hpages
-= delta
;
195 /* minimum size accounting */
196 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
197 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
200 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
202 spool
->rsv_hpages
+= delta
;
203 if (spool
->rsv_hpages
> spool
->min_hpages
)
204 spool
->rsv_hpages
= spool
->min_hpages
;
208 * If hugetlbfs_put_super couldn't free spool due to an outstanding
209 * quota reference, free it now.
211 unlock_or_release_subpool(spool
);
216 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
218 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
221 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
223 return subpool_inode(file_inode(vma
->vm_file
));
226 /* Helper that removes a struct file_region from the resv_map cache and returns
229 static struct file_region
*
230 get_file_region_entry_from_cache(struct resv_map
*resv
, long from
, long to
)
232 struct file_region
*nrg
= NULL
;
234 VM_BUG_ON(resv
->region_cache_count
<= 0);
236 resv
->region_cache_count
--;
237 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
, link
);
239 list_del(&nrg
->link
);
247 static void copy_hugetlb_cgroup_uncharge_info(struct file_region
*nrg
,
248 struct file_region
*rg
)
250 #ifdef CONFIG_CGROUP_HUGETLB
251 nrg
->reservation_counter
= rg
->reservation_counter
;
258 /* Helper that records hugetlb_cgroup uncharge info. */
259 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup
*h_cg
,
261 struct resv_map
*resv
,
262 struct file_region
*nrg
)
264 #ifdef CONFIG_CGROUP_HUGETLB
266 nrg
->reservation_counter
=
267 &h_cg
->rsvd_hugepage
[hstate_index(h
)];
268 nrg
->css
= &h_cg
->css
;
269 if (!resv
->pages_per_hpage
)
270 resv
->pages_per_hpage
= pages_per_huge_page(h
);
271 /* pages_per_hpage should be the same for all entries in
274 VM_BUG_ON(resv
->pages_per_hpage
!= pages_per_huge_page(h
));
276 nrg
->reservation_counter
= NULL
;
282 static bool has_same_uncharge_info(struct file_region
*rg
,
283 struct file_region
*org
)
285 #ifdef CONFIG_CGROUP_HUGETLB
287 rg
->reservation_counter
== org
->reservation_counter
&&
295 static void coalesce_file_region(struct resv_map
*resv
, struct file_region
*rg
)
297 struct file_region
*nrg
= NULL
, *prg
= NULL
;
299 prg
= list_prev_entry(rg
, link
);
300 if (&prg
->link
!= &resv
->regions
&& prg
->to
== rg
->from
&&
301 has_same_uncharge_info(prg
, rg
)) {
307 coalesce_file_region(resv
, prg
);
311 nrg
= list_next_entry(rg
, link
);
312 if (&nrg
->link
!= &resv
->regions
&& nrg
->from
== rg
->to
&&
313 has_same_uncharge_info(nrg
, rg
)) {
314 nrg
->from
= rg
->from
;
319 coalesce_file_region(resv
, nrg
);
324 /* Must be called with resv->lock held. Calling this with count_only == true
325 * will count the number of pages to be added but will not modify the linked
326 * list. If regions_needed != NULL and count_only == true, then regions_needed
327 * will indicate the number of file_regions needed in the cache to carry out to
328 * add the regions for this range.
330 static long add_reservation_in_range(struct resv_map
*resv
, long f
, long t
,
331 struct hugetlb_cgroup
*h_cg
,
332 struct hstate
*h
, long *regions_needed
,
336 struct list_head
*head
= &resv
->regions
;
337 long last_accounted_offset
= f
;
338 struct file_region
*rg
= NULL
, *trg
= NULL
, *nrg
= NULL
;
343 /* In this loop, we essentially handle an entry for the range
344 * [last_accounted_offset, rg->from), at every iteration, with some
347 list_for_each_entry_safe(rg
, trg
, head
, link
) {
348 /* Skip irrelevant regions that start before our range. */
350 /* If this region ends after the last accounted offset,
351 * then we need to update last_accounted_offset.
353 if (rg
->to
> last_accounted_offset
)
354 last_accounted_offset
= rg
->to
;
358 /* When we find a region that starts beyond our range, we've
364 /* Add an entry for last_accounted_offset -> rg->from, and
365 * update last_accounted_offset.
367 if (rg
->from
> last_accounted_offset
) {
368 add
+= rg
->from
- last_accounted_offset
;
370 nrg
= get_file_region_entry_from_cache(
371 resv
, last_accounted_offset
, rg
->from
);
372 record_hugetlb_cgroup_uncharge_info(h_cg
, h
,
374 list_add(&nrg
->link
, rg
->link
.prev
);
375 coalesce_file_region(resv
, nrg
);
376 } else if (regions_needed
)
377 *regions_needed
+= 1;
380 last_accounted_offset
= rg
->to
;
383 /* Handle the case where our range extends beyond
384 * last_accounted_offset.
386 if (last_accounted_offset
< t
) {
387 add
+= t
- last_accounted_offset
;
389 nrg
= get_file_region_entry_from_cache(
390 resv
, last_accounted_offset
, t
);
391 record_hugetlb_cgroup_uncharge_info(h_cg
, h
, resv
, nrg
);
392 list_add(&nrg
->link
, rg
->link
.prev
);
393 coalesce_file_region(resv
, nrg
);
394 } else if (regions_needed
)
395 *regions_needed
+= 1;
402 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
404 static int allocate_file_region_entries(struct resv_map
*resv
,
406 __must_hold(&resv
->lock
)
408 struct list_head allocated_regions
;
409 int to_allocate
= 0, i
= 0;
410 struct file_region
*trg
= NULL
, *rg
= NULL
;
412 VM_BUG_ON(regions_needed
< 0);
414 INIT_LIST_HEAD(&allocated_regions
);
417 * Check for sufficient descriptors in the cache to accommodate
418 * the number of in progress add operations plus regions_needed.
420 * This is a while loop because when we drop the lock, some other call
421 * to region_add or region_del may have consumed some region_entries,
422 * so we keep looping here until we finally have enough entries for
423 * (adds_in_progress + regions_needed).
425 while (resv
->region_cache_count
<
426 (resv
->adds_in_progress
+ regions_needed
)) {
427 to_allocate
= resv
->adds_in_progress
+ regions_needed
-
428 resv
->region_cache_count
;
430 /* At this point, we should have enough entries in the cache
431 * for all the existings adds_in_progress. We should only be
432 * needing to allocate for regions_needed.
434 VM_BUG_ON(resv
->region_cache_count
< resv
->adds_in_progress
);
436 spin_unlock(&resv
->lock
);
437 for (i
= 0; i
< to_allocate
; i
++) {
438 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
441 list_add(&trg
->link
, &allocated_regions
);
444 spin_lock(&resv
->lock
);
446 list_for_each_entry_safe(rg
, trg
, &allocated_regions
, link
) {
448 list_add(&rg
->link
, &resv
->region_cache
);
449 resv
->region_cache_count
++;
456 list_for_each_entry_safe(rg
, trg
, &allocated_regions
, link
) {
464 * Add the huge page range represented by [f, t) to the reserve
465 * map. Regions will be taken from the cache to fill in this range.
466 * Sufficient regions should exist in the cache due to the previous
467 * call to region_chg with the same range, but in some cases the cache will not
468 * have sufficient entries due to races with other code doing region_add or
469 * region_del. The extra needed entries will be allocated.
471 * regions_needed is the out value provided by a previous call to region_chg.
473 * Return the number of new huge pages added to the map. This number is greater
474 * than or equal to zero. If file_region entries needed to be allocated for
475 * this operation and we were not able to allocate, it returns -ENOMEM.
476 * region_add of regions of length 1 never allocate file_regions and cannot
477 * fail; region_chg will always allocate at least 1 entry and a region_add for
478 * 1 page will only require at most 1 entry.
480 static long region_add(struct resv_map
*resv
, long f
, long t
,
481 long in_regions_needed
, struct hstate
*h
,
482 struct hugetlb_cgroup
*h_cg
)
484 long add
= 0, actual_regions_needed
= 0;
486 spin_lock(&resv
->lock
);
489 /* Count how many regions are actually needed to execute this add. */
490 add_reservation_in_range(resv
, f
, t
, NULL
, NULL
, &actual_regions_needed
,
494 * Check for sufficient descriptors in the cache to accommodate
495 * this add operation. Note that actual_regions_needed may be greater
496 * than in_regions_needed, as the resv_map may have been modified since
497 * the region_chg call. In this case, we need to make sure that we
498 * allocate extra entries, such that we have enough for all the
499 * existing adds_in_progress, plus the excess needed for this
502 if (actual_regions_needed
> in_regions_needed
&&
503 resv
->region_cache_count
<
504 resv
->adds_in_progress
+
505 (actual_regions_needed
- in_regions_needed
)) {
506 /* region_add operation of range 1 should never need to
507 * allocate file_region entries.
509 VM_BUG_ON(t
- f
<= 1);
511 if (allocate_file_region_entries(
512 resv
, actual_regions_needed
- in_regions_needed
)) {
519 add
= add_reservation_in_range(resv
, f
, t
, h_cg
, h
, NULL
, false);
521 resv
->adds_in_progress
-= in_regions_needed
;
523 spin_unlock(&resv
->lock
);
529 * Examine the existing reserve map and determine how many
530 * huge pages in the specified range [f, t) are NOT currently
531 * represented. This routine is called before a subsequent
532 * call to region_add that will actually modify the reserve
533 * map to add the specified range [f, t). region_chg does
534 * not change the number of huge pages represented by the
535 * map. A number of new file_region structures is added to the cache as a
536 * placeholder, for the subsequent region_add call to use. At least 1
537 * file_region structure is added.
539 * out_regions_needed is the number of regions added to the
540 * resv->adds_in_progress. This value needs to be provided to a follow up call
541 * to region_add or region_abort for proper accounting.
543 * Returns the number of huge pages that need to be added to the existing
544 * reservation map for the range [f, t). This number is greater or equal to
545 * zero. -ENOMEM is returned if a new file_region structure or cache entry
546 * is needed and can not be allocated.
548 static long region_chg(struct resv_map
*resv
, long f
, long t
,
549 long *out_regions_needed
)
553 spin_lock(&resv
->lock
);
555 /* Count how many hugepages in this range are NOT respresented. */
556 chg
= add_reservation_in_range(resv
, f
, t
, NULL
, NULL
,
557 out_regions_needed
, true);
559 if (*out_regions_needed
== 0)
560 *out_regions_needed
= 1;
562 if (allocate_file_region_entries(resv
, *out_regions_needed
))
565 resv
->adds_in_progress
+= *out_regions_needed
;
567 spin_unlock(&resv
->lock
);
572 * Abort the in progress add operation. The adds_in_progress field
573 * of the resv_map keeps track of the operations in progress between
574 * calls to region_chg and region_add. Operations are sometimes
575 * aborted after the call to region_chg. In such cases, region_abort
576 * is called to decrement the adds_in_progress counter. regions_needed
577 * is the value returned by the region_chg call, it is used to decrement
578 * the adds_in_progress counter.
580 * NOTE: The range arguments [f, t) are not needed or used in this
581 * routine. They are kept to make reading the calling code easier as
582 * arguments will match the associated region_chg call.
584 static void region_abort(struct resv_map
*resv
, long f
, long t
,
587 spin_lock(&resv
->lock
);
588 VM_BUG_ON(!resv
->region_cache_count
);
589 resv
->adds_in_progress
-= regions_needed
;
590 spin_unlock(&resv
->lock
);
594 * Delete the specified range [f, t) from the reserve map. If the
595 * t parameter is LONG_MAX, this indicates that ALL regions after f
596 * should be deleted. Locate the regions which intersect [f, t)
597 * and either trim, delete or split the existing regions.
599 * Returns the number of huge pages deleted from the reserve map.
600 * In the normal case, the return value is zero or more. In the
601 * case where a region must be split, a new region descriptor must
602 * be allocated. If the allocation fails, -ENOMEM will be returned.
603 * NOTE: If the parameter t == LONG_MAX, then we will never split
604 * a region and possibly return -ENOMEM. Callers specifying
605 * t == LONG_MAX do not need to check for -ENOMEM error.
607 static long region_del(struct resv_map
*resv
, long f
, long t
)
609 struct list_head
*head
= &resv
->regions
;
610 struct file_region
*rg
, *trg
;
611 struct file_region
*nrg
= NULL
;
615 spin_lock(&resv
->lock
);
616 list_for_each_entry_safe(rg
, trg
, head
, link
) {
618 * Skip regions before the range to be deleted. file_region
619 * ranges are normally of the form [from, to). However, there
620 * may be a "placeholder" entry in the map which is of the form
621 * (from, to) with from == to. Check for placeholder entries
622 * at the beginning of the range to be deleted.
624 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
630 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
632 * Check for an entry in the cache before dropping
633 * lock and attempting allocation.
636 resv
->region_cache_count
> resv
->adds_in_progress
) {
637 nrg
= list_first_entry(&resv
->region_cache
,
640 list_del(&nrg
->link
);
641 resv
->region_cache_count
--;
645 spin_unlock(&resv
->lock
);
646 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
654 /* New entry for end of split region */
658 copy_hugetlb_cgroup_uncharge_info(nrg
, rg
);
660 INIT_LIST_HEAD(&nrg
->link
);
662 /* Original entry is trimmed */
665 hugetlb_cgroup_uncharge_file_region(
666 resv
, rg
, nrg
->to
- nrg
->from
);
668 list_add(&nrg
->link
, &rg
->link
);
673 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
674 del
+= rg
->to
- rg
->from
;
675 hugetlb_cgroup_uncharge_file_region(resv
, rg
,
682 if (f
<= rg
->from
) { /* Trim beginning of region */
686 hugetlb_cgroup_uncharge_file_region(resv
, rg
,
688 } else { /* Trim end of region */
692 hugetlb_cgroup_uncharge_file_region(resv
, rg
,
697 spin_unlock(&resv
->lock
);
703 * A rare out of memory error was encountered which prevented removal of
704 * the reserve map region for a page. The huge page itself was free'ed
705 * and removed from the page cache. This routine will adjust the subpool
706 * usage count, and the global reserve count if needed. By incrementing
707 * these counts, the reserve map entry which could not be deleted will
708 * appear as a "reserved" entry instead of simply dangling with incorrect
711 void hugetlb_fix_reserve_counts(struct inode
*inode
)
713 struct hugepage_subpool
*spool
= subpool_inode(inode
);
716 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
718 struct hstate
*h
= hstate_inode(inode
);
720 hugetlb_acct_memory(h
, 1);
725 * Count and return the number of huge pages in the reserve map
726 * that intersect with the range [f, t).
728 static long region_count(struct resv_map
*resv
, long f
, long t
)
730 struct list_head
*head
= &resv
->regions
;
731 struct file_region
*rg
;
734 spin_lock(&resv
->lock
);
735 /* Locate each segment we overlap with, and count that overlap. */
736 list_for_each_entry(rg
, head
, link
) {
745 seg_from
= max(rg
->from
, f
);
746 seg_to
= min(rg
->to
, t
);
748 chg
+= seg_to
- seg_from
;
750 spin_unlock(&resv
->lock
);
756 * Convert the address within this vma to the page offset within
757 * the mapping, in pagecache page units; huge pages here.
759 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
760 struct vm_area_struct
*vma
, unsigned long address
)
762 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
763 (vma
->vm_pgoff
>> huge_page_order(h
));
766 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
767 unsigned long address
)
769 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
771 EXPORT_SYMBOL_GPL(linear_hugepage_index
);
774 * Return the size of the pages allocated when backing a VMA. In the majority
775 * cases this will be same size as used by the page table entries.
777 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
779 if (vma
->vm_ops
&& vma
->vm_ops
->pagesize
)
780 return vma
->vm_ops
->pagesize(vma
);
783 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
786 * Return the page size being used by the MMU to back a VMA. In the majority
787 * of cases, the page size used by the kernel matches the MMU size. On
788 * architectures where it differs, an architecture-specific 'strong'
789 * version of this symbol is required.
791 __weak
unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
793 return vma_kernel_pagesize(vma
);
797 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
798 * bits of the reservation map pointer, which are always clear due to
801 #define HPAGE_RESV_OWNER (1UL << 0)
802 #define HPAGE_RESV_UNMAPPED (1UL << 1)
803 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
806 * These helpers are used to track how many pages are reserved for
807 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
808 * is guaranteed to have their future faults succeed.
810 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
811 * the reserve counters are updated with the hugetlb_lock held. It is safe
812 * to reset the VMA at fork() time as it is not in use yet and there is no
813 * chance of the global counters getting corrupted as a result of the values.
815 * The private mapping reservation is represented in a subtly different
816 * manner to a shared mapping. A shared mapping has a region map associated
817 * with the underlying file, this region map represents the backing file
818 * pages which have ever had a reservation assigned which this persists even
819 * after the page is instantiated. A private mapping has a region map
820 * associated with the original mmap which is attached to all VMAs which
821 * reference it, this region map represents those offsets which have consumed
822 * reservation ie. where pages have been instantiated.
824 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
826 return (unsigned long)vma
->vm_private_data
;
829 static void set_vma_private_data(struct vm_area_struct
*vma
,
832 vma
->vm_private_data
= (void *)value
;
836 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map
*resv_map
,
837 struct hugetlb_cgroup
*h_cg
,
840 #ifdef CONFIG_CGROUP_HUGETLB
842 resv_map
->reservation_counter
= NULL
;
843 resv_map
->pages_per_hpage
= 0;
844 resv_map
->css
= NULL
;
846 resv_map
->reservation_counter
=
847 &h_cg
->rsvd_hugepage
[hstate_index(h
)];
848 resv_map
->pages_per_hpage
= pages_per_huge_page(h
);
849 resv_map
->css
= &h_cg
->css
;
854 struct resv_map
*resv_map_alloc(void)
856 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
857 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
859 if (!resv_map
|| !rg
) {
865 kref_init(&resv_map
->refs
);
866 spin_lock_init(&resv_map
->lock
);
867 INIT_LIST_HEAD(&resv_map
->regions
);
869 resv_map
->adds_in_progress
= 0;
871 * Initialize these to 0. On shared mappings, 0's here indicate these
872 * fields don't do cgroup accounting. On private mappings, these will be
873 * re-initialized to the proper values, to indicate that hugetlb cgroup
874 * reservations are to be un-charged from here.
876 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map
, NULL
, NULL
);
878 INIT_LIST_HEAD(&resv_map
->region_cache
);
879 list_add(&rg
->link
, &resv_map
->region_cache
);
880 resv_map
->region_cache_count
= 1;
885 void resv_map_release(struct kref
*ref
)
887 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
888 struct list_head
*head
= &resv_map
->region_cache
;
889 struct file_region
*rg
, *trg
;
891 /* Clear out any active regions before we release the map. */
892 region_del(resv_map
, 0, LONG_MAX
);
894 /* ... and any entries left in the cache */
895 list_for_each_entry_safe(rg
, trg
, head
, link
) {
900 VM_BUG_ON(resv_map
->adds_in_progress
);
905 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
908 * At inode evict time, i_mapping may not point to the original
909 * address space within the inode. This original address space
910 * contains the pointer to the resv_map. So, always use the
911 * address space embedded within the inode.
912 * The VERY common case is inode->mapping == &inode->i_data but,
913 * this may not be true for device special inodes.
915 return (struct resv_map
*)(&inode
->i_data
)->private_data
;
918 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
920 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
921 if (vma
->vm_flags
& VM_MAYSHARE
) {
922 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
923 struct inode
*inode
= mapping
->host
;
925 return inode_resv_map(inode
);
928 return (struct resv_map
*)(get_vma_private_data(vma
) &
933 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
935 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
936 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
938 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
939 HPAGE_RESV_MASK
) | (unsigned long)map
);
942 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
944 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
945 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
947 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
950 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
952 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
954 return (get_vma_private_data(vma
) & flag
) != 0;
957 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
958 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
960 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
961 if (!(vma
->vm_flags
& VM_MAYSHARE
))
962 vma
->vm_private_data
= (void *)0;
965 /* Returns true if the VMA has associated reserve pages */
966 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
968 if (vma
->vm_flags
& VM_NORESERVE
) {
970 * This address is already reserved by other process(chg == 0),
971 * so, we should decrement reserved count. Without decrementing,
972 * reserve count remains after releasing inode, because this
973 * allocated page will go into page cache and is regarded as
974 * coming from reserved pool in releasing step. Currently, we
975 * don't have any other solution to deal with this situation
976 * properly, so add work-around here.
978 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
984 /* Shared mappings always use reserves */
985 if (vma
->vm_flags
& VM_MAYSHARE
) {
987 * We know VM_NORESERVE is not set. Therefore, there SHOULD
988 * be a region map for all pages. The only situation where
989 * there is no region map is if a hole was punched via
990 * fallocate. In this case, there really are no reserves to
991 * use. This situation is indicated if chg != 0.
1000 * Only the process that called mmap() has reserves for
1003 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1005 * Like the shared case above, a hole punch or truncate
1006 * could have been performed on the private mapping.
1007 * Examine the value of chg to determine if reserves
1008 * actually exist or were previously consumed.
1009 * Very Subtle - The value of chg comes from a previous
1010 * call to vma_needs_reserves(). The reserve map for
1011 * private mappings has different (opposite) semantics
1012 * than that of shared mappings. vma_needs_reserves()
1013 * has already taken this difference in semantics into
1014 * account. Therefore, the meaning of chg is the same
1015 * as in the shared case above. Code could easily be
1016 * combined, but keeping it separate draws attention to
1017 * subtle differences.
1028 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
1030 int nid
= page_to_nid(page
);
1031 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
1032 h
->free_huge_pages
++;
1033 h
->free_huge_pages_node
[nid
]++;
1036 static struct page
*dequeue_huge_page_node_exact(struct hstate
*h
, int nid
)
1040 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
1041 if (!PageHWPoison(page
))
1044 * if 'non-isolated free hugepage' not found on the list,
1045 * the allocation fails.
1047 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
1049 list_move(&page
->lru
, &h
->hugepage_activelist
);
1050 set_page_refcounted(page
);
1051 h
->free_huge_pages
--;
1052 h
->free_huge_pages_node
[nid
]--;
1056 static struct page
*dequeue_huge_page_nodemask(struct hstate
*h
, gfp_t gfp_mask
, int nid
,
1059 unsigned int cpuset_mems_cookie
;
1060 struct zonelist
*zonelist
;
1063 int node
= NUMA_NO_NODE
;
1065 zonelist
= node_zonelist(nid
, gfp_mask
);
1068 cpuset_mems_cookie
= read_mems_allowed_begin();
1069 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nmask
) {
1072 if (!cpuset_zone_allowed(zone
, gfp_mask
))
1075 * no need to ask again on the same node. Pool is node rather than
1078 if (zone_to_nid(zone
) == node
)
1080 node
= zone_to_nid(zone
);
1082 page
= dequeue_huge_page_node_exact(h
, node
);
1086 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie
)))
1092 /* Movability of hugepages depends on migration support. */
1093 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
1095 if (hugepage_movable_supported(h
))
1096 return GFP_HIGHUSER_MOVABLE
;
1098 return GFP_HIGHUSER
;
1101 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
1102 struct vm_area_struct
*vma
,
1103 unsigned long address
, int avoid_reserve
,
1107 struct mempolicy
*mpol
;
1109 nodemask_t
*nodemask
;
1113 * A child process with MAP_PRIVATE mappings created by their parent
1114 * have no page reserves. This check ensures that reservations are
1115 * not "stolen". The child may still get SIGKILLed
1117 if (!vma_has_reserves(vma
, chg
) &&
1118 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1121 /* If reserves cannot be used, ensure enough pages are in the pool */
1122 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1125 gfp_mask
= htlb_alloc_mask(h
);
1126 nid
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
1127 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, nodemask
);
1128 if (page
&& !avoid_reserve
&& vma_has_reserves(vma
, chg
)) {
1129 SetPagePrivate(page
);
1130 h
->resv_huge_pages
--;
1133 mpol_cond_put(mpol
);
1141 * common helper functions for hstate_next_node_to_{alloc|free}.
1142 * We may have allocated or freed a huge page based on a different
1143 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1144 * be outside of *nodes_allowed. Ensure that we use an allowed
1145 * node for alloc or free.
1147 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
1149 nid
= next_node_in(nid
, *nodes_allowed
);
1150 VM_BUG_ON(nid
>= MAX_NUMNODES
);
1155 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
1157 if (!node_isset(nid
, *nodes_allowed
))
1158 nid
= next_node_allowed(nid
, nodes_allowed
);
1163 * returns the previously saved node ["this node"] from which to
1164 * allocate a persistent huge page for the pool and advance the
1165 * next node from which to allocate, handling wrap at end of node
1168 static int hstate_next_node_to_alloc(struct hstate
*h
,
1169 nodemask_t
*nodes_allowed
)
1173 VM_BUG_ON(!nodes_allowed
);
1175 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
1176 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
1182 * helper for free_pool_huge_page() - return the previously saved
1183 * node ["this node"] from which to free a huge page. Advance the
1184 * next node id whether or not we find a free huge page to free so
1185 * that the next attempt to free addresses the next node.
1187 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1191 VM_BUG_ON(!nodes_allowed
);
1193 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
1194 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
1199 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1200 for (nr_nodes = nodes_weight(*mask); \
1202 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1205 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1206 for (nr_nodes = nodes_weight(*mask); \
1208 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1211 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1212 static void destroy_compound_gigantic_page(struct page
*page
,
1216 int nr_pages
= 1 << order
;
1217 struct page
*p
= page
+ 1;
1219 atomic_set(compound_mapcount_ptr(page
), 0);
1220 if (hpage_pincount_available(page
))
1221 atomic_set(compound_pincount_ptr(page
), 0);
1223 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1224 clear_compound_head(p
);
1225 set_page_refcounted(p
);
1228 set_compound_order(page
, 0);
1229 __ClearPageHead(page
);
1232 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1235 * If the page isn't allocated using the cma allocator,
1236 * cma_release() returns false.
1238 if (IS_ENABLED(CONFIG_CMA
) &&
1239 cma_release(hugetlb_cma
[page_to_nid(page
)], page
, 1 << order
))
1242 free_contig_range(page_to_pfn(page
), 1 << order
);
1245 #ifdef CONFIG_CONTIG_ALLOC
1246 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1247 int nid
, nodemask_t
*nodemask
)
1249 unsigned long nr_pages
= 1UL << huge_page_order(h
);
1251 if (IS_ENABLED(CONFIG_CMA
)) {
1255 for_each_node_mask(node
, *nodemask
) {
1256 if (!hugetlb_cma
[node
])
1259 page
= cma_alloc(hugetlb_cma
[node
], nr_pages
,
1260 huge_page_order(h
), true);
1266 return alloc_contig_pages(nr_pages
, gfp_mask
, nid
, nodemask
);
1269 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1270 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1271 #else /* !CONFIG_CONTIG_ALLOC */
1272 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1273 int nid
, nodemask_t
*nodemask
)
1277 #endif /* CONFIG_CONTIG_ALLOC */
1279 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1280 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1281 int nid
, nodemask_t
*nodemask
)
1285 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1286 static inline void destroy_compound_gigantic_page(struct page
*page
,
1287 unsigned int order
) { }
1290 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1294 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
1298 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1299 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1300 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1301 1 << PG_referenced
| 1 << PG_dirty
|
1302 1 << PG_active
| 1 << PG_private
|
1305 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1306 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page
), page
);
1307 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1308 set_page_refcounted(page
);
1309 if (hstate_is_gigantic(h
)) {
1311 * Temporarily drop the hugetlb_lock, because
1312 * we might block in free_gigantic_page().
1314 spin_unlock(&hugetlb_lock
);
1315 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1316 free_gigantic_page(page
, huge_page_order(h
));
1317 spin_lock(&hugetlb_lock
);
1319 __free_pages(page
, huge_page_order(h
));
1323 struct hstate
*size_to_hstate(unsigned long size
)
1327 for_each_hstate(h
) {
1328 if (huge_page_size(h
) == size
)
1335 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1336 * to hstate->hugepage_activelist.)
1338 * This function can be called for tail pages, but never returns true for them.
1340 bool page_huge_active(struct page
*page
)
1342 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1343 return PageHead(page
) && PagePrivate(&page
[1]);
1346 /* never called for tail page */
1347 static void set_page_huge_active(struct page
*page
)
1349 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1350 SetPagePrivate(&page
[1]);
1353 static void clear_page_huge_active(struct page
*page
)
1355 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1356 ClearPagePrivate(&page
[1]);
1360 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1363 static inline bool PageHugeTemporary(struct page
*page
)
1365 if (!PageHuge(page
))
1368 return (unsigned long)page
[2].mapping
== -1U;
1371 static inline void SetPageHugeTemporary(struct page
*page
)
1373 page
[2].mapping
= (void *)-1U;
1376 static inline void ClearPageHugeTemporary(struct page
*page
)
1378 page
[2].mapping
= NULL
;
1381 static void __free_huge_page(struct page
*page
)
1384 * Can't pass hstate in here because it is called from the
1385 * compound page destructor.
1387 struct hstate
*h
= page_hstate(page
);
1388 int nid
= page_to_nid(page
);
1389 struct hugepage_subpool
*spool
=
1390 (struct hugepage_subpool
*)page_private(page
);
1391 bool restore_reserve
;
1393 VM_BUG_ON_PAGE(page_count(page
), page
);
1394 VM_BUG_ON_PAGE(page_mapcount(page
), page
);
1396 set_page_private(page
, 0);
1397 page
->mapping
= NULL
;
1398 restore_reserve
= PagePrivate(page
);
1399 ClearPagePrivate(page
);
1402 * If PagePrivate() was set on page, page allocation consumed a
1403 * reservation. If the page was associated with a subpool, there
1404 * would have been a page reserved in the subpool before allocation
1405 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1406 * reservtion, do not call hugepage_subpool_put_pages() as this will
1407 * remove the reserved page from the subpool.
1409 if (!restore_reserve
) {
1411 * A return code of zero implies that the subpool will be
1412 * under its minimum size if the reservation is not restored
1413 * after page is free. Therefore, force restore_reserve
1416 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1417 restore_reserve
= true;
1420 spin_lock(&hugetlb_lock
);
1421 clear_page_huge_active(page
);
1422 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1423 pages_per_huge_page(h
), page
);
1424 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h
),
1425 pages_per_huge_page(h
), page
);
1426 if (restore_reserve
)
1427 h
->resv_huge_pages
++;
1429 if (PageHugeTemporary(page
)) {
1430 list_del(&page
->lru
);
1431 ClearPageHugeTemporary(page
);
1432 update_and_free_page(h
, page
);
1433 } else if (h
->surplus_huge_pages_node
[nid
]) {
1434 /* remove the page from active list */
1435 list_del(&page
->lru
);
1436 update_and_free_page(h
, page
);
1437 h
->surplus_huge_pages
--;
1438 h
->surplus_huge_pages_node
[nid
]--;
1440 arch_clear_hugepage_flags(page
);
1441 enqueue_huge_page(h
, page
);
1443 spin_unlock(&hugetlb_lock
);
1447 * As free_huge_page() can be called from a non-task context, we have
1448 * to defer the actual freeing in a workqueue to prevent potential
1449 * hugetlb_lock deadlock.
1451 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1452 * be freed and frees them one-by-one. As the page->mapping pointer is
1453 * going to be cleared in __free_huge_page() anyway, it is reused as the
1454 * llist_node structure of a lockless linked list of huge pages to be freed.
1456 static LLIST_HEAD(hpage_freelist
);
1458 static void free_hpage_workfn(struct work_struct
*work
)
1460 struct llist_node
*node
;
1463 node
= llist_del_all(&hpage_freelist
);
1466 page
= container_of((struct address_space
**)node
,
1467 struct page
, mapping
);
1469 __free_huge_page(page
);
1472 static DECLARE_WORK(free_hpage_work
, free_hpage_workfn
);
1474 void free_huge_page(struct page
*page
)
1477 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1481 * Only call schedule_work() if hpage_freelist is previously
1482 * empty. Otherwise, schedule_work() had been called but the
1483 * workfn hasn't retrieved the list yet.
1485 if (llist_add((struct llist_node
*)&page
->mapping
,
1487 schedule_work(&free_hpage_work
);
1491 __free_huge_page(page
);
1494 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1496 INIT_LIST_HEAD(&page
->lru
);
1497 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1498 spin_lock(&hugetlb_lock
);
1499 set_hugetlb_cgroup(page
, NULL
);
1500 set_hugetlb_cgroup_rsvd(page
, NULL
);
1502 h
->nr_huge_pages_node
[nid
]++;
1503 spin_unlock(&hugetlb_lock
);
1506 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1509 int nr_pages
= 1 << order
;
1510 struct page
*p
= page
+ 1;
1512 /* we rely on prep_new_huge_page to set the destructor */
1513 set_compound_order(page
, order
);
1514 __ClearPageReserved(page
);
1515 __SetPageHead(page
);
1516 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1518 * For gigantic hugepages allocated through bootmem at
1519 * boot, it's safer to be consistent with the not-gigantic
1520 * hugepages and clear the PG_reserved bit from all tail pages
1521 * too. Otherwise drivers using get_user_pages() to access tail
1522 * pages may get the reference counting wrong if they see
1523 * PG_reserved set on a tail page (despite the head page not
1524 * having PG_reserved set). Enforcing this consistency between
1525 * head and tail pages allows drivers to optimize away a check
1526 * on the head page when they need know if put_page() is needed
1527 * after get_user_pages().
1529 __ClearPageReserved(p
);
1530 set_page_count(p
, 0);
1531 set_compound_head(p
, page
);
1533 atomic_set(compound_mapcount_ptr(page
), -1);
1535 if (hpage_pincount_available(page
))
1536 atomic_set(compound_pincount_ptr(page
), 0);
1540 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1541 * transparent huge pages. See the PageTransHuge() documentation for more
1544 int PageHuge(struct page
*page
)
1546 if (!PageCompound(page
))
1549 page
= compound_head(page
);
1550 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1552 EXPORT_SYMBOL_GPL(PageHuge
);
1555 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1556 * normal or transparent huge pages.
1558 int PageHeadHuge(struct page
*page_head
)
1560 if (!PageHead(page_head
))
1563 return page_head
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1567 * Find address_space associated with hugetlbfs page.
1568 * Upon entry page is locked and page 'was' mapped although mapped state
1569 * could change. If necessary, use anon_vma to find vma and associated
1570 * address space. The returned mapping may be stale, but it can not be
1571 * invalid as page lock (which is held) is required to destroy mapping.
1573 static struct address_space
*_get_hugetlb_page_mapping(struct page
*hpage
)
1575 struct anon_vma
*anon_vma
;
1576 pgoff_t pgoff_start
, pgoff_end
;
1577 struct anon_vma_chain
*avc
;
1578 struct address_space
*mapping
= page_mapping(hpage
);
1580 /* Simple file based mapping */
1585 * Even anonymous hugetlbfs mappings are associated with an
1586 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1587 * code). Find a vma associated with the anonymous vma, and
1588 * use the file pointer to get address_space.
1590 anon_vma
= page_lock_anon_vma_read(hpage
);
1592 return mapping
; /* NULL */
1594 /* Use first found vma */
1595 pgoff_start
= page_to_pgoff(hpage
);
1596 pgoff_end
= pgoff_start
+ hpage_nr_pages(hpage
) - 1;
1597 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
,
1598 pgoff_start
, pgoff_end
) {
1599 struct vm_area_struct
*vma
= avc
->vma
;
1601 mapping
= vma
->vm_file
->f_mapping
;
1605 anon_vma_unlock_read(anon_vma
);
1610 * Find and lock address space (mapping) in write mode.
1612 * Upon entry, the page is locked which allows us to find the mapping
1613 * even in the case of an anon page. However, locking order dictates
1614 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs
1615 * specific. So, we first try to lock the sema while still holding the
1616 * page lock. If this works, great! If not, then we need to drop the
1617 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of
1618 * course, need to revalidate state along the way.
1620 struct address_space
*hugetlb_page_mapping_lock_write(struct page
*hpage
)
1622 struct address_space
*mapping
, *mapping2
;
1624 mapping
= _get_hugetlb_page_mapping(hpage
);
1630 * If no contention, take lock and return
1632 if (i_mmap_trylock_write(mapping
))
1636 * Must drop page lock and wait on mapping sema.
1637 * Note: Once page lock is dropped, mapping could become invalid.
1638 * As a hack, increase map count until we lock page again.
1640 atomic_inc(&hpage
->_mapcount
);
1642 i_mmap_lock_write(mapping
);
1644 atomic_add_negative(-1, &hpage
->_mapcount
);
1646 /* verify page is still mapped */
1647 if (!page_mapped(hpage
)) {
1648 i_mmap_unlock_write(mapping
);
1653 * Get address space again and verify it is the same one
1654 * we locked. If not, drop lock and retry.
1656 mapping2
= _get_hugetlb_page_mapping(hpage
);
1657 if (mapping2
!= mapping
) {
1658 i_mmap_unlock_write(mapping
);
1666 pgoff_t
__basepage_index(struct page
*page
)
1668 struct page
*page_head
= compound_head(page
);
1669 pgoff_t index
= page_index(page_head
);
1670 unsigned long compound_idx
;
1672 if (!PageHuge(page_head
))
1673 return page_index(page
);
1675 if (compound_order(page_head
) >= MAX_ORDER
)
1676 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1678 compound_idx
= page
- page_head
;
1680 return (index
<< compound_order(page_head
)) + compound_idx
;
1683 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
1684 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
,
1685 nodemask_t
*node_alloc_noretry
)
1687 int order
= huge_page_order(h
);
1689 bool alloc_try_hard
= true;
1692 * By default we always try hard to allocate the page with
1693 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1694 * a loop (to adjust global huge page counts) and previous allocation
1695 * failed, do not continue to try hard on the same node. Use the
1696 * node_alloc_noretry bitmap to manage this state information.
1698 if (node_alloc_noretry
&& node_isset(nid
, *node_alloc_noretry
))
1699 alloc_try_hard
= false;
1700 gfp_mask
|= __GFP_COMP
|__GFP_NOWARN
;
1702 gfp_mask
|= __GFP_RETRY_MAYFAIL
;
1703 if (nid
== NUMA_NO_NODE
)
1704 nid
= numa_mem_id();
1705 page
= __alloc_pages_nodemask(gfp_mask
, order
, nid
, nmask
);
1707 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1709 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1712 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1713 * indicates an overall state change. Clear bit so that we resume
1714 * normal 'try hard' allocations.
1716 if (node_alloc_noretry
&& page
&& !alloc_try_hard
)
1717 node_clear(nid
, *node_alloc_noretry
);
1720 * If we tried hard to get a page but failed, set bit so that
1721 * subsequent attempts will not try as hard until there is an
1722 * overall state change.
1724 if (node_alloc_noretry
&& !page
&& alloc_try_hard
)
1725 node_set(nid
, *node_alloc_noretry
);
1731 * Common helper to allocate a fresh hugetlb page. All specific allocators
1732 * should use this function to get new hugetlb pages
1734 static struct page
*alloc_fresh_huge_page(struct hstate
*h
,
1735 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
,
1736 nodemask_t
*node_alloc_noretry
)
1740 if (hstate_is_gigantic(h
))
1741 page
= alloc_gigantic_page(h
, gfp_mask
, nid
, nmask
);
1743 page
= alloc_buddy_huge_page(h
, gfp_mask
,
1744 nid
, nmask
, node_alloc_noretry
);
1748 if (hstate_is_gigantic(h
))
1749 prep_compound_gigantic_page(page
, huge_page_order(h
));
1750 prep_new_huge_page(h
, page
, page_to_nid(page
));
1756 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1759 static int alloc_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1760 nodemask_t
*node_alloc_noretry
)
1764 gfp_t gfp_mask
= htlb_alloc_mask(h
) | __GFP_THISNODE
;
1766 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1767 page
= alloc_fresh_huge_page(h
, gfp_mask
, node
, nodes_allowed
,
1768 node_alloc_noretry
);
1776 put_page(page
); /* free it into the hugepage allocator */
1782 * Free huge page from pool from next node to free.
1783 * Attempt to keep persistent huge pages more or less
1784 * balanced over allowed nodes.
1785 * Called with hugetlb_lock locked.
1787 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1793 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1795 * If we're returning unused surplus pages, only examine
1796 * nodes with surplus pages.
1798 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1799 !list_empty(&h
->hugepage_freelists
[node
])) {
1801 list_entry(h
->hugepage_freelists
[node
].next
,
1803 list_del(&page
->lru
);
1804 h
->free_huge_pages
--;
1805 h
->free_huge_pages_node
[node
]--;
1807 h
->surplus_huge_pages
--;
1808 h
->surplus_huge_pages_node
[node
]--;
1810 update_and_free_page(h
, page
);
1820 * Dissolve a given free hugepage into free buddy pages. This function does
1821 * nothing for in-use hugepages and non-hugepages.
1822 * This function returns values like below:
1824 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1825 * (allocated or reserved.)
1826 * 0: successfully dissolved free hugepages or the page is not a
1827 * hugepage (considered as already dissolved)
1829 int dissolve_free_huge_page(struct page
*page
)
1833 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1834 if (!PageHuge(page
))
1837 spin_lock(&hugetlb_lock
);
1838 if (!PageHuge(page
)) {
1843 if (!page_count(page
)) {
1844 struct page
*head
= compound_head(page
);
1845 struct hstate
*h
= page_hstate(head
);
1846 int nid
= page_to_nid(head
);
1847 if (h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1850 * Move PageHWPoison flag from head page to the raw error page,
1851 * which makes any subpages rather than the error page reusable.
1853 if (PageHWPoison(head
) && page
!= head
) {
1854 SetPageHWPoison(page
);
1855 ClearPageHWPoison(head
);
1857 list_del(&head
->lru
);
1858 h
->free_huge_pages
--;
1859 h
->free_huge_pages_node
[nid
]--;
1860 h
->max_huge_pages
--;
1861 update_and_free_page(h
, head
);
1865 spin_unlock(&hugetlb_lock
);
1870 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1871 * make specified memory blocks removable from the system.
1872 * Note that this will dissolve a free gigantic hugepage completely, if any
1873 * part of it lies within the given range.
1874 * Also note that if dissolve_free_huge_page() returns with an error, all
1875 * free hugepages that were dissolved before that error are lost.
1877 int dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1883 if (!hugepages_supported())
1886 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
) {
1887 page
= pfn_to_page(pfn
);
1888 rc
= dissolve_free_huge_page(page
);
1897 * Allocates a fresh surplus page from the page allocator.
1899 static struct page
*alloc_surplus_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1900 int nid
, nodemask_t
*nmask
)
1902 struct page
*page
= NULL
;
1904 if (hstate_is_gigantic(h
))
1907 spin_lock(&hugetlb_lock
);
1908 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
)
1910 spin_unlock(&hugetlb_lock
);
1912 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
, NULL
);
1916 spin_lock(&hugetlb_lock
);
1918 * We could have raced with the pool size change.
1919 * Double check that and simply deallocate the new page
1920 * if we would end up overcommiting the surpluses. Abuse
1921 * temporary page to workaround the nasty free_huge_page
1924 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1925 SetPageHugeTemporary(page
);
1926 spin_unlock(&hugetlb_lock
);
1930 h
->surplus_huge_pages
++;
1931 h
->surplus_huge_pages_node
[page_to_nid(page
)]++;
1935 spin_unlock(&hugetlb_lock
);
1940 struct page
*alloc_migrate_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1941 int nid
, nodemask_t
*nmask
)
1945 if (hstate_is_gigantic(h
))
1948 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
, NULL
);
1953 * We do not account these pages as surplus because they are only
1954 * temporary and will be released properly on the last reference
1956 SetPageHugeTemporary(page
);
1962 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1965 struct page
*alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1966 struct vm_area_struct
*vma
, unsigned long addr
)
1969 struct mempolicy
*mpol
;
1970 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1972 nodemask_t
*nodemask
;
1974 nid
= huge_node(vma
, addr
, gfp_mask
, &mpol
, &nodemask
);
1975 page
= alloc_surplus_huge_page(h
, gfp_mask
, nid
, nodemask
);
1976 mpol_cond_put(mpol
);
1981 /* page migration callback function */
1982 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1984 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1985 struct page
*page
= NULL
;
1987 if (nid
!= NUMA_NO_NODE
)
1988 gfp_mask
|= __GFP_THISNODE
;
1990 spin_lock(&hugetlb_lock
);
1991 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1992 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, NULL
);
1993 spin_unlock(&hugetlb_lock
);
1996 page
= alloc_migrate_huge_page(h
, gfp_mask
, nid
, NULL
);
2001 /* page migration callback function */
2002 struct page
*alloc_huge_page_nodemask(struct hstate
*h
, int preferred_nid
,
2005 gfp_t gfp_mask
= htlb_alloc_mask(h
);
2007 spin_lock(&hugetlb_lock
);
2008 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0) {
2011 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, preferred_nid
, nmask
);
2013 spin_unlock(&hugetlb_lock
);
2017 spin_unlock(&hugetlb_lock
);
2019 return alloc_migrate_huge_page(h
, gfp_mask
, preferred_nid
, nmask
);
2022 /* mempolicy aware migration callback */
2023 struct page
*alloc_huge_page_vma(struct hstate
*h
, struct vm_area_struct
*vma
,
2024 unsigned long address
)
2026 struct mempolicy
*mpol
;
2027 nodemask_t
*nodemask
;
2032 gfp_mask
= htlb_alloc_mask(h
);
2033 node
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
2034 page
= alloc_huge_page_nodemask(h
, node
, nodemask
);
2035 mpol_cond_put(mpol
);
2041 * Increase the hugetlb pool such that it can accommodate a reservation
2044 static int gather_surplus_pages(struct hstate
*h
, int delta
)
2045 __must_hold(&hugetlb_lock
)
2047 struct list_head surplus_list
;
2048 struct page
*page
, *tmp
;
2050 int needed
, allocated
;
2051 bool alloc_ok
= true;
2053 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
2055 h
->resv_huge_pages
+= delta
;
2060 INIT_LIST_HEAD(&surplus_list
);
2064 spin_unlock(&hugetlb_lock
);
2065 for (i
= 0; i
< needed
; i
++) {
2066 page
= alloc_surplus_huge_page(h
, htlb_alloc_mask(h
),
2067 NUMA_NO_NODE
, NULL
);
2072 list_add(&page
->lru
, &surplus_list
);
2078 * After retaking hugetlb_lock, we need to recalculate 'needed'
2079 * because either resv_huge_pages or free_huge_pages may have changed.
2081 spin_lock(&hugetlb_lock
);
2082 needed
= (h
->resv_huge_pages
+ delta
) -
2083 (h
->free_huge_pages
+ allocated
);
2088 * We were not able to allocate enough pages to
2089 * satisfy the entire reservation so we free what
2090 * we've allocated so far.
2095 * The surplus_list now contains _at_least_ the number of extra pages
2096 * needed to accommodate the reservation. Add the appropriate number
2097 * of pages to the hugetlb pool and free the extras back to the buddy
2098 * allocator. Commit the entire reservation here to prevent another
2099 * process from stealing the pages as they are added to the pool but
2100 * before they are reserved.
2102 needed
+= allocated
;
2103 h
->resv_huge_pages
+= delta
;
2106 /* Free the needed pages to the hugetlb pool */
2107 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
2111 * This page is now managed by the hugetlb allocator and has
2112 * no users -- drop the buddy allocator's reference.
2114 put_page_testzero(page
);
2115 VM_BUG_ON_PAGE(page_count(page
), page
);
2116 enqueue_huge_page(h
, page
);
2119 spin_unlock(&hugetlb_lock
);
2121 /* Free unnecessary surplus pages to the buddy allocator */
2122 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
2124 spin_lock(&hugetlb_lock
);
2130 * This routine has two main purposes:
2131 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2132 * in unused_resv_pages. This corresponds to the prior adjustments made
2133 * to the associated reservation map.
2134 * 2) Free any unused surplus pages that may have been allocated to satisfy
2135 * the reservation. As many as unused_resv_pages may be freed.
2137 * Called with hugetlb_lock held. However, the lock could be dropped (and
2138 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2139 * we must make sure nobody else can claim pages we are in the process of
2140 * freeing. Do this by ensuring resv_huge_page always is greater than the
2141 * number of huge pages we plan to free when dropping the lock.
2143 static void return_unused_surplus_pages(struct hstate
*h
,
2144 unsigned long unused_resv_pages
)
2146 unsigned long nr_pages
;
2148 /* Cannot return gigantic pages currently */
2149 if (hstate_is_gigantic(h
))
2153 * Part (or even all) of the reservation could have been backed
2154 * by pre-allocated pages. Only free surplus pages.
2156 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
2159 * We want to release as many surplus pages as possible, spread
2160 * evenly across all nodes with memory. Iterate across these nodes
2161 * until we can no longer free unreserved surplus pages. This occurs
2162 * when the nodes with surplus pages have no free pages.
2163 * free_pool_huge_page() will balance the the freed pages across the
2164 * on-line nodes with memory and will handle the hstate accounting.
2166 * Note that we decrement resv_huge_pages as we free the pages. If
2167 * we drop the lock, resv_huge_pages will still be sufficiently large
2168 * to cover subsequent pages we may free.
2170 while (nr_pages
--) {
2171 h
->resv_huge_pages
--;
2172 unused_resv_pages
--;
2173 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
2175 cond_resched_lock(&hugetlb_lock
);
2179 /* Fully uncommit the reservation */
2180 h
->resv_huge_pages
-= unused_resv_pages
;
2185 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2186 * are used by the huge page allocation routines to manage reservations.
2188 * vma_needs_reservation is called to determine if the huge page at addr
2189 * within the vma has an associated reservation. If a reservation is
2190 * needed, the value 1 is returned. The caller is then responsible for
2191 * managing the global reservation and subpool usage counts. After
2192 * the huge page has been allocated, vma_commit_reservation is called
2193 * to add the page to the reservation map. If the page allocation fails,
2194 * the reservation must be ended instead of committed. vma_end_reservation
2195 * is called in such cases.
2197 * In the normal case, vma_commit_reservation returns the same value
2198 * as the preceding vma_needs_reservation call. The only time this
2199 * is not the case is if a reserve map was changed between calls. It
2200 * is the responsibility of the caller to notice the difference and
2201 * take appropriate action.
2203 * vma_add_reservation is used in error paths where a reservation must
2204 * be restored when a newly allocated huge page must be freed. It is
2205 * to be called after calling vma_needs_reservation to determine if a
2206 * reservation exists.
2208 enum vma_resv_mode
{
2214 static long __vma_reservation_common(struct hstate
*h
,
2215 struct vm_area_struct
*vma
, unsigned long addr
,
2216 enum vma_resv_mode mode
)
2218 struct resv_map
*resv
;
2221 long dummy_out_regions_needed
;
2223 resv
= vma_resv_map(vma
);
2227 idx
= vma_hugecache_offset(h
, vma
, addr
);
2229 case VMA_NEEDS_RESV
:
2230 ret
= region_chg(resv
, idx
, idx
+ 1, &dummy_out_regions_needed
);
2231 /* We assume that vma_reservation_* routines always operate on
2232 * 1 page, and that adding to resv map a 1 page entry can only
2233 * ever require 1 region.
2235 VM_BUG_ON(dummy_out_regions_needed
!= 1);
2237 case VMA_COMMIT_RESV
:
2238 ret
= region_add(resv
, idx
, idx
+ 1, 1, NULL
, NULL
);
2239 /* region_add calls of range 1 should never fail. */
2243 region_abort(resv
, idx
, idx
+ 1, 1);
2247 if (vma
->vm_flags
& VM_MAYSHARE
) {
2248 ret
= region_add(resv
, idx
, idx
+ 1, 1, NULL
, NULL
);
2249 /* region_add calls of range 1 should never fail. */
2252 region_abort(resv
, idx
, idx
+ 1, 1);
2253 ret
= region_del(resv
, idx
, idx
+ 1);
2260 if (vma
->vm_flags
& VM_MAYSHARE
)
2262 else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) && ret
>= 0) {
2264 * In most cases, reserves always exist for private mappings.
2265 * However, a file associated with mapping could have been
2266 * hole punched or truncated after reserves were consumed.
2267 * As subsequent fault on such a range will not use reserves.
2268 * Subtle - The reserve map for private mappings has the
2269 * opposite meaning than that of shared mappings. If NO
2270 * entry is in the reserve map, it means a reservation exists.
2271 * If an entry exists in the reserve map, it means the
2272 * reservation has already been consumed. As a result, the
2273 * return value of this routine is the opposite of the
2274 * value returned from reserve map manipulation routines above.
2282 return ret
< 0 ? ret
: 0;
2285 static long vma_needs_reservation(struct hstate
*h
,
2286 struct vm_area_struct
*vma
, unsigned long addr
)
2288 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
2291 static long vma_commit_reservation(struct hstate
*h
,
2292 struct vm_area_struct
*vma
, unsigned long addr
)
2294 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
2297 static void vma_end_reservation(struct hstate
*h
,
2298 struct vm_area_struct
*vma
, unsigned long addr
)
2300 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
2303 static long vma_add_reservation(struct hstate
*h
,
2304 struct vm_area_struct
*vma
, unsigned long addr
)
2306 return __vma_reservation_common(h
, vma
, addr
, VMA_ADD_RESV
);
2310 * This routine is called to restore a reservation on error paths. In the
2311 * specific error paths, a huge page was allocated (via alloc_huge_page)
2312 * and is about to be freed. If a reservation for the page existed,
2313 * alloc_huge_page would have consumed the reservation and set PagePrivate
2314 * in the newly allocated page. When the page is freed via free_huge_page,
2315 * the global reservation count will be incremented if PagePrivate is set.
2316 * However, free_huge_page can not adjust the reserve map. Adjust the
2317 * reserve map here to be consistent with global reserve count adjustments
2318 * to be made by free_huge_page.
2320 static void restore_reserve_on_error(struct hstate
*h
,
2321 struct vm_area_struct
*vma
, unsigned long address
,
2324 if (unlikely(PagePrivate(page
))) {
2325 long rc
= vma_needs_reservation(h
, vma
, address
);
2327 if (unlikely(rc
< 0)) {
2329 * Rare out of memory condition in reserve map
2330 * manipulation. Clear PagePrivate so that
2331 * global reserve count will not be incremented
2332 * by free_huge_page. This will make it appear
2333 * as though the reservation for this page was
2334 * consumed. This may prevent the task from
2335 * faulting in the page at a later time. This
2336 * is better than inconsistent global huge page
2337 * accounting of reserve counts.
2339 ClearPagePrivate(page
);
2341 rc
= vma_add_reservation(h
, vma
, address
);
2342 if (unlikely(rc
< 0))
2344 * See above comment about rare out of
2347 ClearPagePrivate(page
);
2349 vma_end_reservation(h
, vma
, address
);
2353 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
2354 unsigned long addr
, int avoid_reserve
)
2356 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2357 struct hstate
*h
= hstate_vma(vma
);
2359 long map_chg
, map_commit
;
2362 struct hugetlb_cgroup
*h_cg
;
2363 bool deferred_reserve
;
2365 idx
= hstate_index(h
);
2367 * Examine the region/reserve map to determine if the process
2368 * has a reservation for the page to be allocated. A return
2369 * code of zero indicates a reservation exists (no change).
2371 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
2373 return ERR_PTR(-ENOMEM
);
2376 * Processes that did not create the mapping will have no
2377 * reserves as indicated by the region/reserve map. Check
2378 * that the allocation will not exceed the subpool limit.
2379 * Allocations for MAP_NORESERVE mappings also need to be
2380 * checked against any subpool limit.
2382 if (map_chg
|| avoid_reserve
) {
2383 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
2385 vma_end_reservation(h
, vma
, addr
);
2386 return ERR_PTR(-ENOSPC
);
2390 * Even though there was no reservation in the region/reserve
2391 * map, there could be reservations associated with the
2392 * subpool that can be used. This would be indicated if the
2393 * return value of hugepage_subpool_get_pages() is zero.
2394 * However, if avoid_reserve is specified we still avoid even
2395 * the subpool reservations.
2401 /* If this allocation is not consuming a reservation, charge it now.
2403 deferred_reserve
= map_chg
|| avoid_reserve
|| !vma_resv_map(vma
);
2404 if (deferred_reserve
) {
2405 ret
= hugetlb_cgroup_charge_cgroup_rsvd(
2406 idx
, pages_per_huge_page(h
), &h_cg
);
2408 goto out_subpool_put
;
2411 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
2413 goto out_uncharge_cgroup_reservation
;
2415 spin_lock(&hugetlb_lock
);
2417 * glb_chg is passed to indicate whether or not a page must be taken
2418 * from the global free pool (global change). gbl_chg == 0 indicates
2419 * a reservation exists for the allocation.
2421 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
2423 spin_unlock(&hugetlb_lock
);
2424 page
= alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
2426 goto out_uncharge_cgroup
;
2427 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
2428 SetPagePrivate(page
);
2429 h
->resv_huge_pages
--;
2431 spin_lock(&hugetlb_lock
);
2432 list_move(&page
->lru
, &h
->hugepage_activelist
);
2435 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
2436 /* If allocation is not consuming a reservation, also store the
2437 * hugetlb_cgroup pointer on the page.
2439 if (deferred_reserve
) {
2440 hugetlb_cgroup_commit_charge_rsvd(idx
, pages_per_huge_page(h
),
2444 spin_unlock(&hugetlb_lock
);
2446 set_page_private(page
, (unsigned long)spool
);
2448 map_commit
= vma_commit_reservation(h
, vma
, addr
);
2449 if (unlikely(map_chg
> map_commit
)) {
2451 * The page was added to the reservation map between
2452 * vma_needs_reservation and vma_commit_reservation.
2453 * This indicates a race with hugetlb_reserve_pages.
2454 * Adjust for the subpool count incremented above AND
2455 * in hugetlb_reserve_pages for the same page. Also,
2456 * the reservation count added in hugetlb_reserve_pages
2457 * no longer applies.
2461 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
2462 hugetlb_acct_memory(h
, -rsv_adjust
);
2466 out_uncharge_cgroup
:
2467 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
2468 out_uncharge_cgroup_reservation
:
2469 if (deferred_reserve
)
2470 hugetlb_cgroup_uncharge_cgroup_rsvd(idx
, pages_per_huge_page(h
),
2473 if (map_chg
|| avoid_reserve
)
2474 hugepage_subpool_put_pages(spool
, 1);
2475 vma_end_reservation(h
, vma
, addr
);
2476 return ERR_PTR(-ENOSPC
);
2479 int alloc_bootmem_huge_page(struct hstate
*h
)
2480 __attribute__ ((weak
, alias("__alloc_bootmem_huge_page")));
2481 int __alloc_bootmem_huge_page(struct hstate
*h
)
2483 struct huge_bootmem_page
*m
;
2486 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
2489 addr
= memblock_alloc_try_nid_raw(
2490 huge_page_size(h
), huge_page_size(h
),
2491 0, MEMBLOCK_ALLOC_ACCESSIBLE
, node
);
2494 * Use the beginning of the huge page to store the
2495 * huge_bootmem_page struct (until gather_bootmem
2496 * puts them into the mem_map).
2505 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
2506 /* Put them into a private list first because mem_map is not up yet */
2507 INIT_LIST_HEAD(&m
->list
);
2508 list_add(&m
->list
, &huge_boot_pages
);
2513 static void __init
prep_compound_huge_page(struct page
*page
,
2516 if (unlikely(order
> (MAX_ORDER
- 1)))
2517 prep_compound_gigantic_page(page
, order
);
2519 prep_compound_page(page
, order
);
2522 /* Put bootmem huge pages into the standard lists after mem_map is up */
2523 static void __init
gather_bootmem_prealloc(void)
2525 struct huge_bootmem_page
*m
;
2527 list_for_each_entry(m
, &huge_boot_pages
, list
) {
2528 struct page
*page
= virt_to_page(m
);
2529 struct hstate
*h
= m
->hstate
;
2531 WARN_ON(page_count(page
) != 1);
2532 prep_compound_huge_page(page
, h
->order
);
2533 WARN_ON(PageReserved(page
));
2534 prep_new_huge_page(h
, page
, page_to_nid(page
));
2535 put_page(page
); /* free it into the hugepage allocator */
2538 * If we had gigantic hugepages allocated at boot time, we need
2539 * to restore the 'stolen' pages to totalram_pages in order to
2540 * fix confusing memory reports from free(1) and another
2541 * side-effects, like CommitLimit going negative.
2543 if (hstate_is_gigantic(h
))
2544 adjust_managed_page_count(page
, 1 << h
->order
);
2549 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2552 nodemask_t
*node_alloc_noretry
;
2554 if (!hstate_is_gigantic(h
)) {
2556 * Bit mask controlling how hard we retry per-node allocations.
2557 * Ignore errors as lower level routines can deal with
2558 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2559 * time, we are likely in bigger trouble.
2561 node_alloc_noretry
= kmalloc(sizeof(*node_alloc_noretry
),
2564 /* allocations done at boot time */
2565 node_alloc_noretry
= NULL
;
2568 /* bit mask controlling how hard we retry per-node allocations */
2569 if (node_alloc_noretry
)
2570 nodes_clear(*node_alloc_noretry
);
2572 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2573 if (hstate_is_gigantic(h
)) {
2574 if (IS_ENABLED(CONFIG_CMA
) && hugetlb_cma
[0]) {
2575 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2578 if (!alloc_bootmem_huge_page(h
))
2580 } else if (!alloc_pool_huge_page(h
,
2581 &node_states
[N_MEMORY
],
2582 node_alloc_noretry
))
2586 if (i
< h
->max_huge_pages
) {
2589 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2590 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2591 h
->max_huge_pages
, buf
, i
);
2592 h
->max_huge_pages
= i
;
2595 kfree(node_alloc_noretry
);
2598 static void __init
hugetlb_init_hstates(void)
2602 for_each_hstate(h
) {
2603 if (minimum_order
> huge_page_order(h
))
2604 minimum_order
= huge_page_order(h
);
2606 /* oversize hugepages were init'ed in early boot */
2607 if (!hstate_is_gigantic(h
))
2608 hugetlb_hstate_alloc_pages(h
);
2610 VM_BUG_ON(minimum_order
== UINT_MAX
);
2613 static void __init
report_hugepages(void)
2617 for_each_hstate(h
) {
2620 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2621 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2622 buf
, h
->free_huge_pages
);
2626 #ifdef CONFIG_HIGHMEM
2627 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2628 nodemask_t
*nodes_allowed
)
2632 if (hstate_is_gigantic(h
))
2635 for_each_node_mask(i
, *nodes_allowed
) {
2636 struct page
*page
, *next
;
2637 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2638 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2639 if (count
>= h
->nr_huge_pages
)
2641 if (PageHighMem(page
))
2643 list_del(&page
->lru
);
2644 update_and_free_page(h
, page
);
2645 h
->free_huge_pages
--;
2646 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2651 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2652 nodemask_t
*nodes_allowed
)
2658 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2659 * balanced by operating on them in a round-robin fashion.
2660 * Returns 1 if an adjustment was made.
2662 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2667 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2670 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2671 if (h
->surplus_huge_pages_node
[node
])
2675 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2676 if (h
->surplus_huge_pages_node
[node
] <
2677 h
->nr_huge_pages_node
[node
])
2684 h
->surplus_huge_pages
+= delta
;
2685 h
->surplus_huge_pages_node
[node
] += delta
;
2689 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2690 static int set_max_huge_pages(struct hstate
*h
, unsigned long count
, int nid
,
2691 nodemask_t
*nodes_allowed
)
2693 unsigned long min_count
, ret
;
2694 NODEMASK_ALLOC(nodemask_t
, node_alloc_noretry
, GFP_KERNEL
);
2697 * Bit mask controlling how hard we retry per-node allocations.
2698 * If we can not allocate the bit mask, do not attempt to allocate
2699 * the requested huge pages.
2701 if (node_alloc_noretry
)
2702 nodes_clear(*node_alloc_noretry
);
2706 spin_lock(&hugetlb_lock
);
2709 * Check for a node specific request.
2710 * Changing node specific huge page count may require a corresponding
2711 * change to the global count. In any case, the passed node mask
2712 * (nodes_allowed) will restrict alloc/free to the specified node.
2714 if (nid
!= NUMA_NO_NODE
) {
2715 unsigned long old_count
= count
;
2717 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2719 * User may have specified a large count value which caused the
2720 * above calculation to overflow. In this case, they wanted
2721 * to allocate as many huge pages as possible. Set count to
2722 * largest possible value to align with their intention.
2724 if (count
< old_count
)
2729 * Gigantic pages runtime allocation depend on the capability for large
2730 * page range allocation.
2731 * If the system does not provide this feature, return an error when
2732 * the user tries to allocate gigantic pages but let the user free the
2733 * boottime allocated gigantic pages.
2735 if (hstate_is_gigantic(h
) && !IS_ENABLED(CONFIG_CONTIG_ALLOC
)) {
2736 if (count
> persistent_huge_pages(h
)) {
2737 spin_unlock(&hugetlb_lock
);
2738 NODEMASK_FREE(node_alloc_noretry
);
2741 /* Fall through to decrease pool */
2745 * Increase the pool size
2746 * First take pages out of surplus state. Then make up the
2747 * remaining difference by allocating fresh huge pages.
2749 * We might race with alloc_surplus_huge_page() here and be unable
2750 * to convert a surplus huge page to a normal huge page. That is
2751 * not critical, though, it just means the overall size of the
2752 * pool might be one hugepage larger than it needs to be, but
2753 * within all the constraints specified by the sysctls.
2755 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2756 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2760 while (count
> persistent_huge_pages(h
)) {
2762 * If this allocation races such that we no longer need the
2763 * page, free_huge_page will handle it by freeing the page
2764 * and reducing the surplus.
2766 spin_unlock(&hugetlb_lock
);
2768 /* yield cpu to avoid soft lockup */
2771 ret
= alloc_pool_huge_page(h
, nodes_allowed
,
2772 node_alloc_noretry
);
2773 spin_lock(&hugetlb_lock
);
2777 /* Bail for signals. Probably ctrl-c from user */
2778 if (signal_pending(current
))
2783 * Decrease the pool size
2784 * First return free pages to the buddy allocator (being careful
2785 * to keep enough around to satisfy reservations). Then place
2786 * pages into surplus state as needed so the pool will shrink
2787 * to the desired size as pages become free.
2789 * By placing pages into the surplus state independent of the
2790 * overcommit value, we are allowing the surplus pool size to
2791 * exceed overcommit. There are few sane options here. Since
2792 * alloc_surplus_huge_page() is checking the global counter,
2793 * though, we'll note that we're not allowed to exceed surplus
2794 * and won't grow the pool anywhere else. Not until one of the
2795 * sysctls are changed, or the surplus pages go out of use.
2797 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2798 min_count
= max(count
, min_count
);
2799 try_to_free_low(h
, min_count
, nodes_allowed
);
2800 while (min_count
< persistent_huge_pages(h
)) {
2801 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2803 cond_resched_lock(&hugetlb_lock
);
2805 while (count
< persistent_huge_pages(h
)) {
2806 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2810 h
->max_huge_pages
= persistent_huge_pages(h
);
2811 spin_unlock(&hugetlb_lock
);
2813 NODEMASK_FREE(node_alloc_noretry
);
2818 #define HSTATE_ATTR_RO(_name) \
2819 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2821 #define HSTATE_ATTR(_name) \
2822 static struct kobj_attribute _name##_attr = \
2823 __ATTR(_name, 0644, _name##_show, _name##_store)
2825 static struct kobject
*hugepages_kobj
;
2826 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2828 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2830 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2834 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2835 if (hstate_kobjs
[i
] == kobj
) {
2837 *nidp
= NUMA_NO_NODE
;
2841 return kobj_to_node_hstate(kobj
, nidp
);
2844 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2845 struct kobj_attribute
*attr
, char *buf
)
2848 unsigned long nr_huge_pages
;
2851 h
= kobj_to_hstate(kobj
, &nid
);
2852 if (nid
== NUMA_NO_NODE
)
2853 nr_huge_pages
= h
->nr_huge_pages
;
2855 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2857 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2860 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2861 struct hstate
*h
, int nid
,
2862 unsigned long count
, size_t len
)
2865 nodemask_t nodes_allowed
, *n_mask
;
2867 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
2870 if (nid
== NUMA_NO_NODE
) {
2872 * global hstate attribute
2874 if (!(obey_mempolicy
&&
2875 init_nodemask_of_mempolicy(&nodes_allowed
)))
2876 n_mask
= &node_states
[N_MEMORY
];
2878 n_mask
= &nodes_allowed
;
2881 * Node specific request. count adjustment happens in
2882 * set_max_huge_pages() after acquiring hugetlb_lock.
2884 init_nodemask_of_node(&nodes_allowed
, nid
);
2885 n_mask
= &nodes_allowed
;
2888 err
= set_max_huge_pages(h
, count
, nid
, n_mask
);
2890 return err
? err
: len
;
2893 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2894 struct kobject
*kobj
, const char *buf
,
2898 unsigned long count
;
2902 err
= kstrtoul(buf
, 10, &count
);
2906 h
= kobj_to_hstate(kobj
, &nid
);
2907 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2910 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2911 struct kobj_attribute
*attr
, char *buf
)
2913 return nr_hugepages_show_common(kobj
, attr
, buf
);
2916 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2917 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2919 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2921 HSTATE_ATTR(nr_hugepages
);
2926 * hstate attribute for optionally mempolicy-based constraint on persistent
2927 * huge page alloc/free.
2929 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2930 struct kobj_attribute
*attr
, char *buf
)
2932 return nr_hugepages_show_common(kobj
, attr
, buf
);
2935 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2936 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2938 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2940 HSTATE_ATTR(nr_hugepages_mempolicy
);
2944 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2945 struct kobj_attribute
*attr
, char *buf
)
2947 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2948 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2951 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2952 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2955 unsigned long input
;
2956 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2958 if (hstate_is_gigantic(h
))
2961 err
= kstrtoul(buf
, 10, &input
);
2965 spin_lock(&hugetlb_lock
);
2966 h
->nr_overcommit_huge_pages
= input
;
2967 spin_unlock(&hugetlb_lock
);
2971 HSTATE_ATTR(nr_overcommit_hugepages
);
2973 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2974 struct kobj_attribute
*attr
, char *buf
)
2977 unsigned long free_huge_pages
;
2980 h
= kobj_to_hstate(kobj
, &nid
);
2981 if (nid
== NUMA_NO_NODE
)
2982 free_huge_pages
= h
->free_huge_pages
;
2984 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2986 return sprintf(buf
, "%lu\n", free_huge_pages
);
2988 HSTATE_ATTR_RO(free_hugepages
);
2990 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2991 struct kobj_attribute
*attr
, char *buf
)
2993 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2994 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2996 HSTATE_ATTR_RO(resv_hugepages
);
2998 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2999 struct kobj_attribute
*attr
, char *buf
)
3002 unsigned long surplus_huge_pages
;
3005 h
= kobj_to_hstate(kobj
, &nid
);
3006 if (nid
== NUMA_NO_NODE
)
3007 surplus_huge_pages
= h
->surplus_huge_pages
;
3009 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
3011 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
3013 HSTATE_ATTR_RO(surplus_hugepages
);
3015 static struct attribute
*hstate_attrs
[] = {
3016 &nr_hugepages_attr
.attr
,
3017 &nr_overcommit_hugepages_attr
.attr
,
3018 &free_hugepages_attr
.attr
,
3019 &resv_hugepages_attr
.attr
,
3020 &surplus_hugepages_attr
.attr
,
3022 &nr_hugepages_mempolicy_attr
.attr
,
3027 static const struct attribute_group hstate_attr_group
= {
3028 .attrs
= hstate_attrs
,
3031 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
3032 struct kobject
**hstate_kobjs
,
3033 const struct attribute_group
*hstate_attr_group
)
3036 int hi
= hstate_index(h
);
3038 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
3039 if (!hstate_kobjs
[hi
])
3042 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
3044 kobject_put(hstate_kobjs
[hi
]);
3049 static void __init
hugetlb_sysfs_init(void)
3054 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
3055 if (!hugepages_kobj
)
3058 for_each_hstate(h
) {
3059 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
3060 hstate_kobjs
, &hstate_attr_group
);
3062 pr_err("HugeTLB: Unable to add hstate %s", h
->name
);
3069 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3070 * with node devices in node_devices[] using a parallel array. The array
3071 * index of a node device or _hstate == node id.
3072 * This is here to avoid any static dependency of the node device driver, in
3073 * the base kernel, on the hugetlb module.
3075 struct node_hstate
{
3076 struct kobject
*hugepages_kobj
;
3077 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
3079 static struct node_hstate node_hstates
[MAX_NUMNODES
];
3082 * A subset of global hstate attributes for node devices
3084 static struct attribute
*per_node_hstate_attrs
[] = {
3085 &nr_hugepages_attr
.attr
,
3086 &free_hugepages_attr
.attr
,
3087 &surplus_hugepages_attr
.attr
,
3091 static const struct attribute_group per_node_hstate_attr_group
= {
3092 .attrs
= per_node_hstate_attrs
,
3096 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3097 * Returns node id via non-NULL nidp.
3099 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
3103 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
3104 struct node_hstate
*nhs
= &node_hstates
[nid
];
3106 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
3107 if (nhs
->hstate_kobjs
[i
] == kobj
) {
3119 * Unregister hstate attributes from a single node device.
3120 * No-op if no hstate attributes attached.
3122 static void hugetlb_unregister_node(struct node
*node
)
3125 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
3127 if (!nhs
->hugepages_kobj
)
3128 return; /* no hstate attributes */
3130 for_each_hstate(h
) {
3131 int idx
= hstate_index(h
);
3132 if (nhs
->hstate_kobjs
[idx
]) {
3133 kobject_put(nhs
->hstate_kobjs
[idx
]);
3134 nhs
->hstate_kobjs
[idx
] = NULL
;
3138 kobject_put(nhs
->hugepages_kobj
);
3139 nhs
->hugepages_kobj
= NULL
;
3144 * Register hstate attributes for a single node device.
3145 * No-op if attributes already registered.
3147 static void hugetlb_register_node(struct node
*node
)
3150 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
3153 if (nhs
->hugepages_kobj
)
3154 return; /* already allocated */
3156 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
3158 if (!nhs
->hugepages_kobj
)
3161 for_each_hstate(h
) {
3162 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
3164 &per_node_hstate_attr_group
);
3166 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3167 h
->name
, node
->dev
.id
);
3168 hugetlb_unregister_node(node
);
3175 * hugetlb init time: register hstate attributes for all registered node
3176 * devices of nodes that have memory. All on-line nodes should have
3177 * registered their associated device by this time.
3179 static void __init
hugetlb_register_all_nodes(void)
3183 for_each_node_state(nid
, N_MEMORY
) {
3184 struct node
*node
= node_devices
[nid
];
3185 if (node
->dev
.id
== nid
)
3186 hugetlb_register_node(node
);
3190 * Let the node device driver know we're here so it can
3191 * [un]register hstate attributes on node hotplug.
3193 register_hugetlbfs_with_node(hugetlb_register_node
,
3194 hugetlb_unregister_node
);
3196 #else /* !CONFIG_NUMA */
3198 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
3206 static void hugetlb_register_all_nodes(void) { }
3210 static int __init
hugetlb_init(void)
3214 if (!hugepages_supported()) {
3215 if (hugetlb_max_hstate
|| default_hstate_max_huge_pages
)
3216 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3221 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3222 * architectures depend on setup being done here.
3224 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
3225 if (!parsed_default_hugepagesz
) {
3227 * If we did not parse a default huge page size, set
3228 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3229 * number of huge pages for this default size was implicitly
3230 * specified, set that here as well.
3231 * Note that the implicit setting will overwrite an explicit
3232 * setting. A warning will be printed in this case.
3234 default_hstate_idx
= hstate_index(size_to_hstate(HPAGE_SIZE
));
3235 if (default_hstate_max_huge_pages
) {
3236 if (default_hstate
.max_huge_pages
) {
3239 string_get_size(huge_page_size(&default_hstate
),
3240 1, STRING_UNITS_2
, buf
, 32);
3241 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3242 default_hstate
.max_huge_pages
, buf
);
3243 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3244 default_hstate_max_huge_pages
);
3246 default_hstate
.max_huge_pages
=
3247 default_hstate_max_huge_pages
;
3251 hugetlb_cma_check();
3252 hugetlb_init_hstates();
3253 gather_bootmem_prealloc();
3256 hugetlb_sysfs_init();
3257 hugetlb_register_all_nodes();
3258 hugetlb_cgroup_file_init();
3261 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
3263 num_fault_mutexes
= 1;
3265 hugetlb_fault_mutex_table
=
3266 kmalloc_array(num_fault_mutexes
, sizeof(struct mutex
),
3268 BUG_ON(!hugetlb_fault_mutex_table
);
3270 for (i
= 0; i
< num_fault_mutexes
; i
++)
3271 mutex_init(&hugetlb_fault_mutex_table
[i
]);
3274 subsys_initcall(hugetlb_init
);
3276 /* Overwritten by architectures with more huge page sizes */
3277 bool __init
__attribute((weak
)) arch_hugetlb_valid_size(unsigned long size
)
3279 return size
== HPAGE_SIZE
;
3282 void __init
hugetlb_add_hstate(unsigned int order
)
3287 if (size_to_hstate(PAGE_SIZE
<< order
)) {
3290 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
3292 h
= &hstates
[hugetlb_max_hstate
++];
3294 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
3295 h
->nr_huge_pages
= 0;
3296 h
->free_huge_pages
= 0;
3297 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
3298 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
3299 INIT_LIST_HEAD(&h
->hugepage_activelist
);
3300 h
->next_nid_to_alloc
= first_memory_node
;
3301 h
->next_nid_to_free
= first_memory_node
;
3302 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
3303 huge_page_size(h
)/1024);
3309 * hugepages command line processing
3310 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3311 * specification. If not, ignore the hugepages value. hugepages can also
3312 * be the first huge page command line option in which case it implicitly
3313 * specifies the number of huge pages for the default size.
3315 static int __init
hugepages_setup(char *s
)
3318 static unsigned long *last_mhp
;
3320 if (!parsed_valid_hugepagesz
) {
3321 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s
);
3322 parsed_valid_hugepagesz
= true;
3327 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3328 * yet, so this hugepages= parameter goes to the "default hstate".
3329 * Otherwise, it goes with the previously parsed hugepagesz or
3330 * default_hugepagesz.
3332 else if (!hugetlb_max_hstate
)
3333 mhp
= &default_hstate_max_huge_pages
;
3335 mhp
= &parsed_hstate
->max_huge_pages
;
3337 if (mhp
== last_mhp
) {
3338 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s
);
3342 if (sscanf(s
, "%lu", mhp
) <= 0)
3346 * Global state is always initialized later in hugetlb_init.
3347 * But we need to allocate >= MAX_ORDER hstates here early to still
3348 * use the bootmem allocator.
3350 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
3351 hugetlb_hstate_alloc_pages(parsed_hstate
);
3357 __setup("hugepages=", hugepages_setup
);
3360 * hugepagesz command line processing
3361 * A specific huge page size can only be specified once with hugepagesz.
3362 * hugepagesz is followed by hugepages on the command line. The global
3363 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3364 * hugepagesz argument was valid.
3366 static int __init
hugepagesz_setup(char *s
)
3371 parsed_valid_hugepagesz
= false;
3372 size
= (unsigned long)memparse(s
, NULL
);
3374 if (!arch_hugetlb_valid_size(size
)) {
3375 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s
);
3379 h
= size_to_hstate(size
);
3382 * hstate for this size already exists. This is normally
3383 * an error, but is allowed if the existing hstate is the
3384 * default hstate. More specifically, it is only allowed if
3385 * the number of huge pages for the default hstate was not
3386 * previously specified.
3388 if (!parsed_default_hugepagesz
|| h
!= &default_hstate
||
3389 default_hstate
.max_huge_pages
) {
3390 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s
);
3395 * No need to call hugetlb_add_hstate() as hstate already
3396 * exists. But, do set parsed_hstate so that a following
3397 * hugepages= parameter will be applied to this hstate.
3400 parsed_valid_hugepagesz
= true;
3404 hugetlb_add_hstate(ilog2(size
) - PAGE_SHIFT
);
3405 parsed_valid_hugepagesz
= true;
3408 __setup("hugepagesz=", hugepagesz_setup
);
3411 * default_hugepagesz command line input
3412 * Only one instance of default_hugepagesz allowed on command line.
3414 static int __init
default_hugepagesz_setup(char *s
)
3418 parsed_valid_hugepagesz
= false;
3419 if (parsed_default_hugepagesz
) {
3420 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s
);
3424 size
= (unsigned long)memparse(s
, NULL
);
3426 if (!arch_hugetlb_valid_size(size
)) {
3427 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s
);
3431 hugetlb_add_hstate(ilog2(size
) - PAGE_SHIFT
);
3432 parsed_valid_hugepagesz
= true;
3433 parsed_default_hugepagesz
= true;
3434 default_hstate_idx
= hstate_index(size_to_hstate(size
));
3437 * The number of default huge pages (for this size) could have been
3438 * specified as the first hugetlb parameter: hugepages=X. If so,
3439 * then default_hstate_max_huge_pages is set. If the default huge
3440 * page size is gigantic (>= MAX_ORDER), then the pages must be
3441 * allocated here from bootmem allocator.
3443 if (default_hstate_max_huge_pages
) {
3444 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
3445 if (hstate_is_gigantic(&default_hstate
))
3446 hugetlb_hstate_alloc_pages(&default_hstate
);
3447 default_hstate_max_huge_pages
= 0;
3452 __setup("default_hugepagesz=", default_hugepagesz_setup
);
3454 static unsigned int cpuset_mems_nr(unsigned int *array
)
3457 unsigned int nr
= 0;
3459 for_each_node_mask(node
, cpuset_current_mems_allowed
)
3465 #ifdef CONFIG_SYSCTL
3466 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
3467 struct ctl_table
*table
, int write
,
3468 void *buffer
, size_t *length
, loff_t
*ppos
)
3470 struct hstate
*h
= &default_hstate
;
3471 unsigned long tmp
= h
->max_huge_pages
;
3474 if (!hugepages_supported())
3478 table
->maxlen
= sizeof(unsigned long);
3479 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
3484 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
3485 NUMA_NO_NODE
, tmp
, *length
);
3490 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
3491 void *buffer
, size_t *length
, loff_t
*ppos
)
3494 return hugetlb_sysctl_handler_common(false, table
, write
,
3495 buffer
, length
, ppos
);
3499 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
3500 void *buffer
, size_t *length
, loff_t
*ppos
)
3502 return hugetlb_sysctl_handler_common(true, table
, write
,
3503 buffer
, length
, ppos
);
3505 #endif /* CONFIG_NUMA */
3507 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
3508 void *buffer
, size_t *length
, loff_t
*ppos
)
3510 struct hstate
*h
= &default_hstate
;
3514 if (!hugepages_supported())
3517 tmp
= h
->nr_overcommit_huge_pages
;
3519 if (write
&& hstate_is_gigantic(h
))
3523 table
->maxlen
= sizeof(unsigned long);
3524 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
3529 spin_lock(&hugetlb_lock
);
3530 h
->nr_overcommit_huge_pages
= tmp
;
3531 spin_unlock(&hugetlb_lock
);
3537 #endif /* CONFIG_SYSCTL */
3539 void hugetlb_report_meminfo(struct seq_file
*m
)
3542 unsigned long total
= 0;
3544 if (!hugepages_supported())
3547 for_each_hstate(h
) {
3548 unsigned long count
= h
->nr_huge_pages
;
3550 total
+= (PAGE_SIZE
<< huge_page_order(h
)) * count
;
3552 if (h
== &default_hstate
)
3554 "HugePages_Total: %5lu\n"
3555 "HugePages_Free: %5lu\n"
3556 "HugePages_Rsvd: %5lu\n"
3557 "HugePages_Surp: %5lu\n"
3558 "Hugepagesize: %8lu kB\n",
3562 h
->surplus_huge_pages
,
3563 (PAGE_SIZE
<< huge_page_order(h
)) / 1024);
3566 seq_printf(m
, "Hugetlb: %8lu kB\n", total
/ 1024);
3569 int hugetlb_report_node_meminfo(int nid
, char *buf
)
3571 struct hstate
*h
= &default_hstate
;
3572 if (!hugepages_supported())
3575 "Node %d HugePages_Total: %5u\n"
3576 "Node %d HugePages_Free: %5u\n"
3577 "Node %d HugePages_Surp: %5u\n",
3578 nid
, h
->nr_huge_pages_node
[nid
],
3579 nid
, h
->free_huge_pages_node
[nid
],
3580 nid
, h
->surplus_huge_pages_node
[nid
]);
3583 void hugetlb_show_meminfo(void)
3588 if (!hugepages_supported())
3591 for_each_node_state(nid
, N_MEMORY
)
3593 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3595 h
->nr_huge_pages_node
[nid
],
3596 h
->free_huge_pages_node
[nid
],
3597 h
->surplus_huge_pages_node
[nid
],
3598 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
3601 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
3603 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
3604 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
3607 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3608 unsigned long hugetlb_total_pages(void)
3611 unsigned long nr_total_pages
= 0;
3614 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
3615 return nr_total_pages
;
3618 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
3622 spin_lock(&hugetlb_lock
);
3624 * When cpuset is configured, it breaks the strict hugetlb page
3625 * reservation as the accounting is done on a global variable. Such
3626 * reservation is completely rubbish in the presence of cpuset because
3627 * the reservation is not checked against page availability for the
3628 * current cpuset. Application can still potentially OOM'ed by kernel
3629 * with lack of free htlb page in cpuset that the task is in.
3630 * Attempt to enforce strict accounting with cpuset is almost
3631 * impossible (or too ugly) because cpuset is too fluid that
3632 * task or memory node can be dynamically moved between cpusets.
3634 * The change of semantics for shared hugetlb mapping with cpuset is
3635 * undesirable. However, in order to preserve some of the semantics,
3636 * we fall back to check against current free page availability as
3637 * a best attempt and hopefully to minimize the impact of changing
3638 * semantics that cpuset has.
3641 if (gather_surplus_pages(h
, delta
) < 0)
3644 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
3645 return_unused_surplus_pages(h
, delta
);
3652 return_unused_surplus_pages(h
, (unsigned long) -delta
);
3655 spin_unlock(&hugetlb_lock
);
3659 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
3661 struct resv_map
*resv
= vma_resv_map(vma
);
3664 * This new VMA should share its siblings reservation map if present.
3665 * The VMA will only ever have a valid reservation map pointer where
3666 * it is being copied for another still existing VMA. As that VMA
3667 * has a reference to the reservation map it cannot disappear until
3668 * after this open call completes. It is therefore safe to take a
3669 * new reference here without additional locking.
3671 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3672 kref_get(&resv
->refs
);
3675 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
3677 struct hstate
*h
= hstate_vma(vma
);
3678 struct resv_map
*resv
= vma_resv_map(vma
);
3679 struct hugepage_subpool
*spool
= subpool_vma(vma
);
3680 unsigned long reserve
, start
, end
;
3683 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3686 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
3687 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
3689 reserve
= (end
- start
) - region_count(resv
, start
, end
);
3690 hugetlb_cgroup_uncharge_counter(resv
, start
, end
);
3693 * Decrement reserve counts. The global reserve count may be
3694 * adjusted if the subpool has a minimum size.
3696 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3697 hugetlb_acct_memory(h
, -gbl_reserve
);
3700 kref_put(&resv
->refs
, resv_map_release
);
3703 static int hugetlb_vm_op_split(struct vm_area_struct
*vma
, unsigned long addr
)
3705 if (addr
& ~(huge_page_mask(hstate_vma(vma
))))
3710 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct
*vma
)
3712 struct hstate
*hstate
= hstate_vma(vma
);
3714 return 1UL << huge_page_shift(hstate
);
3718 * We cannot handle pagefaults against hugetlb pages at all. They cause
3719 * handle_mm_fault() to try to instantiate regular-sized pages in the
3720 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3723 static vm_fault_t
hugetlb_vm_op_fault(struct vm_fault
*vmf
)
3730 * When a new function is introduced to vm_operations_struct and added
3731 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3732 * This is because under System V memory model, mappings created via
3733 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3734 * their original vm_ops are overwritten with shm_vm_ops.
3736 const struct vm_operations_struct hugetlb_vm_ops
= {
3737 .fault
= hugetlb_vm_op_fault
,
3738 .open
= hugetlb_vm_op_open
,
3739 .close
= hugetlb_vm_op_close
,
3740 .split
= hugetlb_vm_op_split
,
3741 .pagesize
= hugetlb_vm_op_pagesize
,
3744 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3750 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3751 vma
->vm_page_prot
)));
3753 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3754 vma
->vm_page_prot
));
3756 entry
= pte_mkyoung(entry
);
3757 entry
= pte_mkhuge(entry
);
3758 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3763 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3764 unsigned long address
, pte_t
*ptep
)
3768 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3769 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3770 update_mmu_cache(vma
, address
, ptep
);
3773 bool is_hugetlb_entry_migration(pte_t pte
)
3777 if (huge_pte_none(pte
) || pte_present(pte
))
3779 swp
= pte_to_swp_entry(pte
);
3780 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3786 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3790 if (huge_pte_none(pte
) || pte_present(pte
))
3792 swp
= pte_to_swp_entry(pte
);
3793 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3799 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3800 struct vm_area_struct
*vma
)
3802 pte_t
*src_pte
, *dst_pte
, entry
, dst_entry
;
3803 struct page
*ptepage
;
3806 struct hstate
*h
= hstate_vma(vma
);
3807 unsigned long sz
= huge_page_size(h
);
3808 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
3809 struct mmu_notifier_range range
;
3812 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3815 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, src
,
3818 mmu_notifier_invalidate_range_start(&range
);
3821 * For shared mappings i_mmap_rwsem must be held to call
3822 * huge_pte_alloc, otherwise the returned ptep could go
3823 * away if part of a shared pmd and another thread calls
3826 i_mmap_lock_read(mapping
);
3829 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3830 spinlock_t
*src_ptl
, *dst_ptl
;
3831 src_pte
= huge_pte_offset(src
, addr
, sz
);
3834 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3841 * If the pagetables are shared don't copy or take references.
3842 * dst_pte == src_pte is the common case of src/dest sharing.
3844 * However, src could have 'unshared' and dst shares with
3845 * another vma. If dst_pte !none, this implies sharing.
3846 * Check here before taking page table lock, and once again
3847 * after taking the lock below.
3849 dst_entry
= huge_ptep_get(dst_pte
);
3850 if ((dst_pte
== src_pte
) || !huge_pte_none(dst_entry
))
3853 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3854 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3855 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3856 entry
= huge_ptep_get(src_pte
);
3857 dst_entry
= huge_ptep_get(dst_pte
);
3858 if (huge_pte_none(entry
) || !huge_pte_none(dst_entry
)) {
3860 * Skip if src entry none. Also, skip in the
3861 * unlikely case dst entry !none as this implies
3862 * sharing with another vma.
3865 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3866 is_hugetlb_entry_hwpoisoned(entry
))) {
3867 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3869 if (is_write_migration_entry(swp_entry
) && cow
) {
3871 * COW mappings require pages in both
3872 * parent and child to be set to read.
3874 make_migration_entry_read(&swp_entry
);
3875 entry
= swp_entry_to_pte(swp_entry
);
3876 set_huge_swap_pte_at(src
, addr
, src_pte
,
3879 set_huge_swap_pte_at(dst
, addr
, dst_pte
, entry
, sz
);
3883 * No need to notify as we are downgrading page
3884 * table protection not changing it to point
3887 * See Documentation/vm/mmu_notifier.rst
3889 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3891 entry
= huge_ptep_get(src_pte
);
3892 ptepage
= pte_page(entry
);
3894 page_dup_rmap(ptepage
, true);
3895 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3896 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3898 spin_unlock(src_ptl
);
3899 spin_unlock(dst_ptl
);
3903 mmu_notifier_invalidate_range_end(&range
);
3905 i_mmap_unlock_read(mapping
);
3910 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3911 unsigned long start
, unsigned long end
,
3912 struct page
*ref_page
)
3914 struct mm_struct
*mm
= vma
->vm_mm
;
3915 unsigned long address
;
3920 struct hstate
*h
= hstate_vma(vma
);
3921 unsigned long sz
= huge_page_size(h
);
3922 struct mmu_notifier_range range
;
3924 WARN_ON(!is_vm_hugetlb_page(vma
));
3925 BUG_ON(start
& ~huge_page_mask(h
));
3926 BUG_ON(end
& ~huge_page_mask(h
));
3929 * This is a hugetlb vma, all the pte entries should point
3932 tlb_change_page_size(tlb
, sz
);
3933 tlb_start_vma(tlb
, vma
);
3936 * If sharing possible, alert mmu notifiers of worst case.
3938 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0, vma
, mm
, start
,
3940 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
3941 mmu_notifier_invalidate_range_start(&range
);
3943 for (; address
< end
; address
+= sz
) {
3944 ptep
= huge_pte_offset(mm
, address
, sz
);
3948 ptl
= huge_pte_lock(h
, mm
, ptep
);
3949 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3952 * We just unmapped a page of PMDs by clearing a PUD.
3953 * The caller's TLB flush range should cover this area.
3958 pte
= huge_ptep_get(ptep
);
3959 if (huge_pte_none(pte
)) {
3965 * Migrating hugepage or HWPoisoned hugepage is already
3966 * unmapped and its refcount is dropped, so just clear pte here.
3968 if (unlikely(!pte_present(pte
))) {
3969 huge_pte_clear(mm
, address
, ptep
, sz
);
3974 page
= pte_page(pte
);
3976 * If a reference page is supplied, it is because a specific
3977 * page is being unmapped, not a range. Ensure the page we
3978 * are about to unmap is the actual page of interest.
3981 if (page
!= ref_page
) {
3986 * Mark the VMA as having unmapped its page so that
3987 * future faults in this VMA will fail rather than
3988 * looking like data was lost
3990 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3993 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3994 tlb_remove_huge_tlb_entry(h
, tlb
, ptep
, address
);
3995 if (huge_pte_dirty(pte
))
3996 set_page_dirty(page
);
3998 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3999 page_remove_rmap(page
, true);
4002 tlb_remove_page_size(tlb
, page
, huge_page_size(h
));
4004 * Bail out after unmapping reference page if supplied
4009 mmu_notifier_invalidate_range_end(&range
);
4010 tlb_end_vma(tlb
, vma
);
4013 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
4014 struct vm_area_struct
*vma
, unsigned long start
,
4015 unsigned long end
, struct page
*ref_page
)
4017 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
4020 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4021 * test will fail on a vma being torn down, and not grab a page table
4022 * on its way out. We're lucky that the flag has such an appropriate
4023 * name, and can in fact be safely cleared here. We could clear it
4024 * before the __unmap_hugepage_range above, but all that's necessary
4025 * is to clear it before releasing the i_mmap_rwsem. This works
4026 * because in the context this is called, the VMA is about to be
4027 * destroyed and the i_mmap_rwsem is held.
4029 vma
->vm_flags
&= ~VM_MAYSHARE
;
4032 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
4033 unsigned long end
, struct page
*ref_page
)
4035 struct mm_struct
*mm
;
4036 struct mmu_gather tlb
;
4037 unsigned long tlb_start
= start
;
4038 unsigned long tlb_end
= end
;
4041 * If shared PMDs were possibly used within this vma range, adjust
4042 * start/end for worst case tlb flushing.
4043 * Note that we can not be sure if PMDs are shared until we try to
4044 * unmap pages. However, we want to make sure TLB flushing covers
4045 * the largest possible range.
4047 adjust_range_if_pmd_sharing_possible(vma
, &tlb_start
, &tlb_end
);
4051 tlb_gather_mmu(&tlb
, mm
, tlb_start
, tlb_end
);
4052 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
4053 tlb_finish_mmu(&tlb
, tlb_start
, tlb_end
);
4057 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4058 * mappping it owns the reserve page for. The intention is to unmap the page
4059 * from other VMAs and let the children be SIGKILLed if they are faulting the
4062 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4063 struct page
*page
, unsigned long address
)
4065 struct hstate
*h
= hstate_vma(vma
);
4066 struct vm_area_struct
*iter_vma
;
4067 struct address_space
*mapping
;
4071 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4072 * from page cache lookup which is in HPAGE_SIZE units.
4074 address
= address
& huge_page_mask(h
);
4075 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
4077 mapping
= vma
->vm_file
->f_mapping
;
4080 * Take the mapping lock for the duration of the table walk. As
4081 * this mapping should be shared between all the VMAs,
4082 * __unmap_hugepage_range() is called as the lock is already held
4084 i_mmap_lock_write(mapping
);
4085 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
4086 /* Do not unmap the current VMA */
4087 if (iter_vma
== vma
)
4091 * Shared VMAs have their own reserves and do not affect
4092 * MAP_PRIVATE accounting but it is possible that a shared
4093 * VMA is using the same page so check and skip such VMAs.
4095 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
4099 * Unmap the page from other VMAs without their own reserves.
4100 * They get marked to be SIGKILLed if they fault in these
4101 * areas. This is because a future no-page fault on this VMA
4102 * could insert a zeroed page instead of the data existing
4103 * from the time of fork. This would look like data corruption
4105 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
4106 unmap_hugepage_range(iter_vma
, address
,
4107 address
+ huge_page_size(h
), page
);
4109 i_mmap_unlock_write(mapping
);
4113 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4114 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4115 * cannot race with other handlers or page migration.
4116 * Keep the pte_same checks anyway to make transition from the mutex easier.
4118 static vm_fault_t
hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4119 unsigned long address
, pte_t
*ptep
,
4120 struct page
*pagecache_page
, spinlock_t
*ptl
)
4123 struct hstate
*h
= hstate_vma(vma
);
4124 struct page
*old_page
, *new_page
;
4125 int outside_reserve
= 0;
4127 unsigned long haddr
= address
& huge_page_mask(h
);
4128 struct mmu_notifier_range range
;
4130 pte
= huge_ptep_get(ptep
);
4131 old_page
= pte_page(pte
);
4134 /* If no-one else is actually using this page, avoid the copy
4135 * and just make the page writable */
4136 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
4137 page_move_anon_rmap(old_page
, vma
);
4138 set_huge_ptep_writable(vma
, haddr
, ptep
);
4143 * If the process that created a MAP_PRIVATE mapping is about to
4144 * perform a COW due to a shared page count, attempt to satisfy
4145 * the allocation without using the existing reserves. The pagecache
4146 * page is used to determine if the reserve at this address was
4147 * consumed or not. If reserves were used, a partial faulted mapping
4148 * at the time of fork() could consume its reserves on COW instead
4149 * of the full address range.
4151 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
4152 old_page
!= pagecache_page
)
4153 outside_reserve
= 1;
4158 * Drop page table lock as buddy allocator may be called. It will
4159 * be acquired again before returning to the caller, as expected.
4162 new_page
= alloc_huge_page(vma
, haddr
, outside_reserve
);
4164 if (IS_ERR(new_page
)) {
4166 * If a process owning a MAP_PRIVATE mapping fails to COW,
4167 * it is due to references held by a child and an insufficient
4168 * huge page pool. To guarantee the original mappers
4169 * reliability, unmap the page from child processes. The child
4170 * may get SIGKILLed if it later faults.
4172 if (outside_reserve
) {
4174 BUG_ON(huge_pte_none(pte
));
4175 unmap_ref_private(mm
, vma
, old_page
, haddr
);
4176 BUG_ON(huge_pte_none(pte
));
4178 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
4180 pte_same(huge_ptep_get(ptep
), pte
)))
4181 goto retry_avoidcopy
;
4183 * race occurs while re-acquiring page table
4184 * lock, and our job is done.
4189 ret
= vmf_error(PTR_ERR(new_page
));
4190 goto out_release_old
;
4194 * When the original hugepage is shared one, it does not have
4195 * anon_vma prepared.
4197 if (unlikely(anon_vma_prepare(vma
))) {
4199 goto out_release_all
;
4202 copy_user_huge_page(new_page
, old_page
, address
, vma
,
4203 pages_per_huge_page(h
));
4204 __SetPageUptodate(new_page
);
4206 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
, haddr
,
4207 haddr
+ huge_page_size(h
));
4208 mmu_notifier_invalidate_range_start(&range
);
4211 * Retake the page table lock to check for racing updates
4212 * before the page tables are altered
4215 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
4216 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
4217 ClearPagePrivate(new_page
);
4220 huge_ptep_clear_flush(vma
, haddr
, ptep
);
4221 mmu_notifier_invalidate_range(mm
, range
.start
, range
.end
);
4222 set_huge_pte_at(mm
, haddr
, ptep
,
4223 make_huge_pte(vma
, new_page
, 1));
4224 page_remove_rmap(old_page
, true);
4225 hugepage_add_new_anon_rmap(new_page
, vma
, haddr
);
4226 set_page_huge_active(new_page
);
4227 /* Make the old page be freed below */
4228 new_page
= old_page
;
4231 mmu_notifier_invalidate_range_end(&range
);
4233 restore_reserve_on_error(h
, vma
, haddr
, new_page
);
4238 spin_lock(ptl
); /* Caller expects lock to be held */
4242 /* Return the pagecache page at a given address within a VMA */
4243 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
4244 struct vm_area_struct
*vma
, unsigned long address
)
4246 struct address_space
*mapping
;
4249 mapping
= vma
->vm_file
->f_mapping
;
4250 idx
= vma_hugecache_offset(h
, vma
, address
);
4252 return find_lock_page(mapping
, idx
);
4256 * Return whether there is a pagecache page to back given address within VMA.
4257 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4259 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
4260 struct vm_area_struct
*vma
, unsigned long address
)
4262 struct address_space
*mapping
;
4266 mapping
= vma
->vm_file
->f_mapping
;
4267 idx
= vma_hugecache_offset(h
, vma
, address
);
4269 page
= find_get_page(mapping
, idx
);
4272 return page
!= NULL
;
4275 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
4278 struct inode
*inode
= mapping
->host
;
4279 struct hstate
*h
= hstate_inode(inode
);
4280 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
4284 ClearPagePrivate(page
);
4287 * set page dirty so that it will not be removed from cache/file
4288 * by non-hugetlbfs specific code paths.
4290 set_page_dirty(page
);
4292 spin_lock(&inode
->i_lock
);
4293 inode
->i_blocks
+= blocks_per_huge_page(h
);
4294 spin_unlock(&inode
->i_lock
);
4298 static vm_fault_t
hugetlb_no_page(struct mm_struct
*mm
,
4299 struct vm_area_struct
*vma
,
4300 struct address_space
*mapping
, pgoff_t idx
,
4301 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
4303 struct hstate
*h
= hstate_vma(vma
);
4304 vm_fault_t ret
= VM_FAULT_SIGBUS
;
4310 unsigned long haddr
= address
& huge_page_mask(h
);
4311 bool new_page
= false;
4314 * Currently, we are forced to kill the process in the event the
4315 * original mapper has unmapped pages from the child due to a failed
4316 * COW. Warn that such a situation has occurred as it may not be obvious
4318 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
4319 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4325 * We can not race with truncation due to holding i_mmap_rwsem.
4326 * i_size is modified when holding i_mmap_rwsem, so check here
4327 * once for faults beyond end of file.
4329 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4334 page
= find_lock_page(mapping
, idx
);
4337 * Check for page in userfault range
4339 if (userfaultfd_missing(vma
)) {
4341 struct vm_fault vmf
= {
4346 * Hard to debug if it ends up being
4347 * used by a callee that assumes
4348 * something about the other
4349 * uninitialized fields... same as in
4355 * hugetlb_fault_mutex and i_mmap_rwsem must be
4356 * dropped before handling userfault. Reacquire
4357 * after handling fault to make calling code simpler.
4359 hash
= hugetlb_fault_mutex_hash(mapping
, idx
);
4360 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
4361 i_mmap_unlock_read(mapping
);
4362 ret
= handle_userfault(&vmf
, VM_UFFD_MISSING
);
4363 i_mmap_lock_read(mapping
);
4364 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
4368 page
= alloc_huge_page(vma
, haddr
, 0);
4371 * Returning error will result in faulting task being
4372 * sent SIGBUS. The hugetlb fault mutex prevents two
4373 * tasks from racing to fault in the same page which
4374 * could result in false unable to allocate errors.
4375 * Page migration does not take the fault mutex, but
4376 * does a clear then write of pte's under page table
4377 * lock. Page fault code could race with migration,
4378 * notice the clear pte and try to allocate a page
4379 * here. Before returning error, get ptl and make
4380 * sure there really is no pte entry.
4382 ptl
= huge_pte_lock(h
, mm
, ptep
);
4383 if (!huge_pte_none(huge_ptep_get(ptep
))) {
4389 ret
= vmf_error(PTR_ERR(page
));
4392 clear_huge_page(page
, address
, pages_per_huge_page(h
));
4393 __SetPageUptodate(page
);
4396 if (vma
->vm_flags
& VM_MAYSHARE
) {
4397 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
4406 if (unlikely(anon_vma_prepare(vma
))) {
4408 goto backout_unlocked
;
4414 * If memory error occurs between mmap() and fault, some process
4415 * don't have hwpoisoned swap entry for errored virtual address.
4416 * So we need to block hugepage fault by PG_hwpoison bit check.
4418 if (unlikely(PageHWPoison(page
))) {
4419 ret
= VM_FAULT_HWPOISON
|
4420 VM_FAULT_SET_HINDEX(hstate_index(h
));
4421 goto backout_unlocked
;
4426 * If we are going to COW a private mapping later, we examine the
4427 * pending reservations for this page now. This will ensure that
4428 * any allocations necessary to record that reservation occur outside
4431 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
4432 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
4434 goto backout_unlocked
;
4436 /* Just decrements count, does not deallocate */
4437 vma_end_reservation(h
, vma
, haddr
);
4440 ptl
= huge_pte_lock(h
, mm
, ptep
);
4442 if (!huge_pte_none(huge_ptep_get(ptep
)))
4446 ClearPagePrivate(page
);
4447 hugepage_add_new_anon_rmap(page
, vma
, haddr
);
4449 page_dup_rmap(page
, true);
4450 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
4451 && (vma
->vm_flags
& VM_SHARED
)));
4452 set_huge_pte_at(mm
, haddr
, ptep
, new_pte
);
4454 hugetlb_count_add(pages_per_huge_page(h
), mm
);
4455 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
4456 /* Optimization, do the COW without a second fault */
4457 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, page
, ptl
);
4463 * Only make newly allocated pages active. Existing pages found
4464 * in the pagecache could be !page_huge_active() if they have been
4465 * isolated for migration.
4468 set_page_huge_active(page
);
4478 restore_reserve_on_error(h
, vma
, haddr
, page
);
4484 u32
hugetlb_fault_mutex_hash(struct address_space
*mapping
, pgoff_t idx
)
4486 unsigned long key
[2];
4489 key
[0] = (unsigned long) mapping
;
4492 hash
= jhash2((u32
*)&key
, sizeof(key
)/(sizeof(u32
)), 0);
4494 return hash
& (num_fault_mutexes
- 1);
4498 * For uniprocesor systems we always use a single mutex, so just
4499 * return 0 and avoid the hashing overhead.
4501 u32
hugetlb_fault_mutex_hash(struct address_space
*mapping
, pgoff_t idx
)
4507 vm_fault_t
hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4508 unsigned long address
, unsigned int flags
)
4515 struct page
*page
= NULL
;
4516 struct page
*pagecache_page
= NULL
;
4517 struct hstate
*h
= hstate_vma(vma
);
4518 struct address_space
*mapping
;
4519 int need_wait_lock
= 0;
4520 unsigned long haddr
= address
& huge_page_mask(h
);
4522 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
4525 * Since we hold no locks, ptep could be stale. That is
4526 * OK as we are only making decisions based on content and
4527 * not actually modifying content here.
4529 entry
= huge_ptep_get(ptep
);
4530 if (unlikely(is_hugetlb_entry_migration(entry
))) {
4531 migration_entry_wait_huge(vma
, mm
, ptep
);
4533 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
4534 return VM_FAULT_HWPOISON_LARGE
|
4535 VM_FAULT_SET_HINDEX(hstate_index(h
));
4537 ptep
= huge_pte_alloc(mm
, haddr
, huge_page_size(h
));
4539 return VM_FAULT_OOM
;
4543 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4544 * until finished with ptep. This serves two purposes:
4545 * 1) It prevents huge_pmd_unshare from being called elsewhere
4546 * and making the ptep no longer valid.
4547 * 2) It synchronizes us with i_size modifications during truncation.
4549 * ptep could have already be assigned via huge_pte_offset. That
4550 * is OK, as huge_pte_alloc will return the same value unless
4551 * something has changed.
4553 mapping
= vma
->vm_file
->f_mapping
;
4554 i_mmap_lock_read(mapping
);
4555 ptep
= huge_pte_alloc(mm
, haddr
, huge_page_size(h
));
4557 i_mmap_unlock_read(mapping
);
4558 return VM_FAULT_OOM
;
4562 * Serialize hugepage allocation and instantiation, so that we don't
4563 * get spurious allocation failures if two CPUs race to instantiate
4564 * the same page in the page cache.
4566 idx
= vma_hugecache_offset(h
, vma
, haddr
);
4567 hash
= hugetlb_fault_mutex_hash(mapping
, idx
);
4568 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
4570 entry
= huge_ptep_get(ptep
);
4571 if (huge_pte_none(entry
)) {
4572 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
4579 * entry could be a migration/hwpoison entry at this point, so this
4580 * check prevents the kernel from going below assuming that we have
4581 * an active hugepage in pagecache. This goto expects the 2nd page
4582 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4583 * properly handle it.
4585 if (!pte_present(entry
))
4589 * If we are going to COW the mapping later, we examine the pending
4590 * reservations for this page now. This will ensure that any
4591 * allocations necessary to record that reservation occur outside the
4592 * spinlock. For private mappings, we also lookup the pagecache
4593 * page now as it is used to determine if a reservation has been
4596 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
4597 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
4601 /* Just decrements count, does not deallocate */
4602 vma_end_reservation(h
, vma
, haddr
);
4604 if (!(vma
->vm_flags
& VM_MAYSHARE
))
4605 pagecache_page
= hugetlbfs_pagecache_page(h
,
4609 ptl
= huge_pte_lock(h
, mm
, ptep
);
4611 /* Check for a racing update before calling hugetlb_cow */
4612 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
4616 * hugetlb_cow() requires page locks of pte_page(entry) and
4617 * pagecache_page, so here we need take the former one
4618 * when page != pagecache_page or !pagecache_page.
4620 page
= pte_page(entry
);
4621 if (page
!= pagecache_page
)
4622 if (!trylock_page(page
)) {
4629 if (flags
& FAULT_FLAG_WRITE
) {
4630 if (!huge_pte_write(entry
)) {
4631 ret
= hugetlb_cow(mm
, vma
, address
, ptep
,
4632 pagecache_page
, ptl
);
4635 entry
= huge_pte_mkdirty(entry
);
4637 entry
= pte_mkyoung(entry
);
4638 if (huge_ptep_set_access_flags(vma
, haddr
, ptep
, entry
,
4639 flags
& FAULT_FLAG_WRITE
))
4640 update_mmu_cache(vma
, haddr
, ptep
);
4642 if (page
!= pagecache_page
)
4648 if (pagecache_page
) {
4649 unlock_page(pagecache_page
);
4650 put_page(pagecache_page
);
4653 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
4654 i_mmap_unlock_read(mapping
);
4656 * Generally it's safe to hold refcount during waiting page lock. But
4657 * here we just wait to defer the next page fault to avoid busy loop and
4658 * the page is not used after unlocked before returning from the current
4659 * page fault. So we are safe from accessing freed page, even if we wait
4660 * here without taking refcount.
4663 wait_on_page_locked(page
);
4668 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4669 * modifications for huge pages.
4671 int hugetlb_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
4673 struct vm_area_struct
*dst_vma
,
4674 unsigned long dst_addr
,
4675 unsigned long src_addr
,
4676 struct page
**pagep
)
4678 struct address_space
*mapping
;
4681 int vm_shared
= dst_vma
->vm_flags
& VM_SHARED
;
4682 struct hstate
*h
= hstate_vma(dst_vma
);
4690 page
= alloc_huge_page(dst_vma
, dst_addr
, 0);
4694 ret
= copy_huge_page_from_user(page
,
4695 (const void __user
*) src_addr
,
4696 pages_per_huge_page(h
), false);
4698 /* fallback to copy_from_user outside mmap_lock */
4699 if (unlikely(ret
)) {
4702 /* don't free the page */
4711 * The memory barrier inside __SetPageUptodate makes sure that
4712 * preceding stores to the page contents become visible before
4713 * the set_pte_at() write.
4715 __SetPageUptodate(page
);
4717 mapping
= dst_vma
->vm_file
->f_mapping
;
4718 idx
= vma_hugecache_offset(h
, dst_vma
, dst_addr
);
4721 * If shared, add to page cache
4724 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4727 goto out_release_nounlock
;
4730 * Serialization between remove_inode_hugepages() and
4731 * huge_add_to_page_cache() below happens through the
4732 * hugetlb_fault_mutex_table that here must be hold by
4735 ret
= huge_add_to_page_cache(page
, mapping
, idx
);
4737 goto out_release_nounlock
;
4740 ptl
= huge_pte_lockptr(h
, dst_mm
, dst_pte
);
4744 * Recheck the i_size after holding PT lock to make sure not
4745 * to leave any page mapped (as page_mapped()) beyond the end
4746 * of the i_size (remove_inode_hugepages() is strict about
4747 * enforcing that). If we bail out here, we'll also leave a
4748 * page in the radix tree in the vm_shared case beyond the end
4749 * of the i_size, but remove_inode_hugepages() will take care
4750 * of it as soon as we drop the hugetlb_fault_mutex_table.
4752 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4755 goto out_release_unlock
;
4758 if (!huge_pte_none(huge_ptep_get(dst_pte
)))
4759 goto out_release_unlock
;
4762 page_dup_rmap(page
, true);
4764 ClearPagePrivate(page
);
4765 hugepage_add_new_anon_rmap(page
, dst_vma
, dst_addr
);
4768 _dst_pte
= make_huge_pte(dst_vma
, page
, dst_vma
->vm_flags
& VM_WRITE
);
4769 if (dst_vma
->vm_flags
& VM_WRITE
)
4770 _dst_pte
= huge_pte_mkdirty(_dst_pte
);
4771 _dst_pte
= pte_mkyoung(_dst_pte
);
4773 set_huge_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
4775 (void)huge_ptep_set_access_flags(dst_vma
, dst_addr
, dst_pte
, _dst_pte
,
4776 dst_vma
->vm_flags
& VM_WRITE
);
4777 hugetlb_count_add(pages_per_huge_page(h
), dst_mm
);
4779 /* No need to invalidate - it was non-present before */
4780 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
4783 set_page_huge_active(page
);
4793 out_release_nounlock
:
4798 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4799 struct page
**pages
, struct vm_area_struct
**vmas
,
4800 unsigned long *position
, unsigned long *nr_pages
,
4801 long i
, unsigned int flags
, int *locked
)
4803 unsigned long pfn_offset
;
4804 unsigned long vaddr
= *position
;
4805 unsigned long remainder
= *nr_pages
;
4806 struct hstate
*h
= hstate_vma(vma
);
4809 while (vaddr
< vma
->vm_end
&& remainder
) {
4811 spinlock_t
*ptl
= NULL
;
4816 * If we have a pending SIGKILL, don't keep faulting pages and
4817 * potentially allocating memory.
4819 if (fatal_signal_pending(current
)) {
4825 * Some archs (sparc64, sh*) have multiple pte_ts to
4826 * each hugepage. We have to make sure we get the
4827 * first, for the page indexing below to work.
4829 * Note that page table lock is not held when pte is null.
4831 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
),
4834 ptl
= huge_pte_lock(h
, mm
, pte
);
4835 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
4838 * When coredumping, it suits get_dump_page if we just return
4839 * an error where there's an empty slot with no huge pagecache
4840 * to back it. This way, we avoid allocating a hugepage, and
4841 * the sparse dumpfile avoids allocating disk blocks, but its
4842 * huge holes still show up with zeroes where they need to be.
4844 if (absent
&& (flags
& FOLL_DUMP
) &&
4845 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
4853 * We need call hugetlb_fault for both hugepages under migration
4854 * (in which case hugetlb_fault waits for the migration,) and
4855 * hwpoisoned hugepages (in which case we need to prevent the
4856 * caller from accessing to them.) In order to do this, we use
4857 * here is_swap_pte instead of is_hugetlb_entry_migration and
4858 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4859 * both cases, and because we can't follow correct pages
4860 * directly from any kind of swap entries.
4862 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
4863 ((flags
& FOLL_WRITE
) &&
4864 !huge_pte_write(huge_ptep_get(pte
)))) {
4866 unsigned int fault_flags
= 0;
4870 if (flags
& FOLL_WRITE
)
4871 fault_flags
|= FAULT_FLAG_WRITE
;
4873 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
|
4874 FAULT_FLAG_KILLABLE
;
4875 if (flags
& FOLL_NOWAIT
)
4876 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
|
4877 FAULT_FLAG_RETRY_NOWAIT
;
4878 if (flags
& FOLL_TRIED
) {
4880 * Note: FAULT_FLAG_ALLOW_RETRY and
4881 * FAULT_FLAG_TRIED can co-exist
4883 fault_flags
|= FAULT_FLAG_TRIED
;
4885 ret
= hugetlb_fault(mm
, vma
, vaddr
, fault_flags
);
4886 if (ret
& VM_FAULT_ERROR
) {
4887 err
= vm_fault_to_errno(ret
, flags
);
4891 if (ret
& VM_FAULT_RETRY
) {
4893 !(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
))
4897 * VM_FAULT_RETRY must not return an
4898 * error, it will return zero
4901 * No need to update "position" as the
4902 * caller will not check it after
4903 * *nr_pages is set to 0.
4910 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
4911 page
= pte_page(huge_ptep_get(pte
));
4914 * If subpage information not requested, update counters
4915 * and skip the same_page loop below.
4917 if (!pages
&& !vmas
&& !pfn_offset
&&
4918 (vaddr
+ huge_page_size(h
) < vma
->vm_end
) &&
4919 (remainder
>= pages_per_huge_page(h
))) {
4920 vaddr
+= huge_page_size(h
);
4921 remainder
-= pages_per_huge_page(h
);
4922 i
+= pages_per_huge_page(h
);
4929 pages
[i
] = mem_map_offset(page
, pfn_offset
);
4931 * try_grab_page() should always succeed here, because:
4932 * a) we hold the ptl lock, and b) we've just checked
4933 * that the huge page is present in the page tables. If
4934 * the huge page is present, then the tail pages must
4935 * also be present. The ptl prevents the head page and
4936 * tail pages from being rearranged in any way. So this
4937 * page must be available at this point, unless the page
4938 * refcount overflowed:
4940 if (WARN_ON_ONCE(!try_grab_page(pages
[i
], flags
))) {
4955 if (vaddr
< vma
->vm_end
&& remainder
&&
4956 pfn_offset
< pages_per_huge_page(h
)) {
4958 * We use pfn_offset to avoid touching the pageframes
4959 * of this compound page.
4965 *nr_pages
= remainder
;
4967 * setting position is actually required only if remainder is
4968 * not zero but it's faster not to add a "if (remainder)"
4976 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4978 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4981 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4984 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
4985 unsigned long address
, unsigned long end
, pgprot_t newprot
)
4987 struct mm_struct
*mm
= vma
->vm_mm
;
4988 unsigned long start
= address
;
4991 struct hstate
*h
= hstate_vma(vma
);
4992 unsigned long pages
= 0;
4993 bool shared_pmd
= false;
4994 struct mmu_notifier_range range
;
4997 * In the case of shared PMDs, the area to flush could be beyond
4998 * start/end. Set range.start/range.end to cover the maximum possible
4999 * range if PMD sharing is possible.
5001 mmu_notifier_range_init(&range
, MMU_NOTIFY_PROTECTION_VMA
,
5002 0, vma
, mm
, start
, end
);
5003 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
5005 BUG_ON(address
>= end
);
5006 flush_cache_range(vma
, range
.start
, range
.end
);
5008 mmu_notifier_invalidate_range_start(&range
);
5009 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
5010 for (; address
< end
; address
+= huge_page_size(h
)) {
5012 ptep
= huge_pte_offset(mm
, address
, huge_page_size(h
));
5015 ptl
= huge_pte_lock(h
, mm
, ptep
);
5016 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
5022 pte
= huge_ptep_get(ptep
);
5023 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
5027 if (unlikely(is_hugetlb_entry_migration(pte
))) {
5028 swp_entry_t entry
= pte_to_swp_entry(pte
);
5030 if (is_write_migration_entry(entry
)) {
5033 make_migration_entry_read(&entry
);
5034 newpte
= swp_entry_to_pte(entry
);
5035 set_huge_swap_pte_at(mm
, address
, ptep
,
5036 newpte
, huge_page_size(h
));
5042 if (!huge_pte_none(pte
)) {
5045 old_pte
= huge_ptep_modify_prot_start(vma
, address
, ptep
);
5046 pte
= pte_mkhuge(huge_pte_modify(old_pte
, newprot
));
5047 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
5048 huge_ptep_modify_prot_commit(vma
, address
, ptep
, old_pte
, pte
);
5054 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5055 * may have cleared our pud entry and done put_page on the page table:
5056 * once we release i_mmap_rwsem, another task can do the final put_page
5057 * and that page table be reused and filled with junk. If we actually
5058 * did unshare a page of pmds, flush the range corresponding to the pud.
5061 flush_hugetlb_tlb_range(vma
, range
.start
, range
.end
);
5063 flush_hugetlb_tlb_range(vma
, start
, end
);
5065 * No need to call mmu_notifier_invalidate_range() we are downgrading
5066 * page table protection not changing it to point to a new page.
5068 * See Documentation/vm/mmu_notifier.rst
5070 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
5071 mmu_notifier_invalidate_range_end(&range
);
5073 return pages
<< h
->order
;
5076 int hugetlb_reserve_pages(struct inode
*inode
,
5078 struct vm_area_struct
*vma
,
5079 vm_flags_t vm_flags
)
5081 long ret
, chg
, add
= -1;
5082 struct hstate
*h
= hstate_inode(inode
);
5083 struct hugepage_subpool
*spool
= subpool_inode(inode
);
5084 struct resv_map
*resv_map
;
5085 struct hugetlb_cgroup
*h_cg
= NULL
;
5086 long gbl_reserve
, regions_needed
= 0;
5088 /* This should never happen */
5090 VM_WARN(1, "%s called with a negative range\n", __func__
);
5095 * Only apply hugepage reservation if asked. At fault time, an
5096 * attempt will be made for VM_NORESERVE to allocate a page
5097 * without using reserves
5099 if (vm_flags
& VM_NORESERVE
)
5103 * Shared mappings base their reservation on the number of pages that
5104 * are already allocated on behalf of the file. Private mappings need
5105 * to reserve the full area even if read-only as mprotect() may be
5106 * called to make the mapping read-write. Assume !vma is a shm mapping
5108 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
5110 * resv_map can not be NULL as hugetlb_reserve_pages is only
5111 * called for inodes for which resv_maps were created (see
5112 * hugetlbfs_get_inode).
5114 resv_map
= inode_resv_map(inode
);
5116 chg
= region_chg(resv_map
, from
, to
, ®ions_needed
);
5119 /* Private mapping. */
5120 resv_map
= resv_map_alloc();
5126 set_vma_resv_map(vma
, resv_map
);
5127 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
5135 ret
= hugetlb_cgroup_charge_cgroup_rsvd(
5136 hstate_index(h
), chg
* pages_per_huge_page(h
), &h_cg
);
5143 if (vma
&& !(vma
->vm_flags
& VM_MAYSHARE
) && h_cg
) {
5144 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5147 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map
, h_cg
, h
);
5151 * There must be enough pages in the subpool for the mapping. If
5152 * the subpool has a minimum size, there may be some global
5153 * reservations already in place (gbl_reserve).
5155 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
5156 if (gbl_reserve
< 0) {
5158 goto out_uncharge_cgroup
;
5162 * Check enough hugepages are available for the reservation.
5163 * Hand the pages back to the subpool if there are not
5165 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
5171 * Account for the reservations made. Shared mappings record regions
5172 * that have reservations as they are shared by multiple VMAs.
5173 * When the last VMA disappears, the region map says how much
5174 * the reservation was and the page cache tells how much of
5175 * the reservation was consumed. Private mappings are per-VMA and
5176 * only the consumed reservations are tracked. When the VMA
5177 * disappears, the original reservation is the VMA size and the
5178 * consumed reservations are stored in the map. Hence, nothing
5179 * else has to be done for private mappings here
5181 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
5182 add
= region_add(resv_map
, from
, to
, regions_needed
, h
, h_cg
);
5184 if (unlikely(add
< 0)) {
5185 hugetlb_acct_memory(h
, -gbl_reserve
);
5187 } else if (unlikely(chg
> add
)) {
5189 * pages in this range were added to the reserve
5190 * map between region_chg and region_add. This
5191 * indicates a race with alloc_huge_page. Adjust
5192 * the subpool and reserve counts modified above
5193 * based on the difference.
5197 hugetlb_cgroup_uncharge_cgroup_rsvd(
5199 (chg
- add
) * pages_per_huge_page(h
), h_cg
);
5201 rsv_adjust
= hugepage_subpool_put_pages(spool
,
5203 hugetlb_acct_memory(h
, -rsv_adjust
);
5208 /* put back original number of pages, chg */
5209 (void)hugepage_subpool_put_pages(spool
, chg
);
5210 out_uncharge_cgroup
:
5211 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h
),
5212 chg
* pages_per_huge_page(h
), h_cg
);
5214 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
5215 /* Only call region_abort if the region_chg succeeded but the
5216 * region_add failed or didn't run.
5218 if (chg
>= 0 && add
< 0)
5219 region_abort(resv_map
, from
, to
, regions_needed
);
5220 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
5221 kref_put(&resv_map
->refs
, resv_map_release
);
5225 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
5228 struct hstate
*h
= hstate_inode(inode
);
5229 struct resv_map
*resv_map
= inode_resv_map(inode
);
5231 struct hugepage_subpool
*spool
= subpool_inode(inode
);
5235 * Since this routine can be called in the evict inode path for all
5236 * hugetlbfs inodes, resv_map could be NULL.
5239 chg
= region_del(resv_map
, start
, end
);
5241 * region_del() can fail in the rare case where a region
5242 * must be split and another region descriptor can not be
5243 * allocated. If end == LONG_MAX, it will not fail.
5249 spin_lock(&inode
->i_lock
);
5250 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
5251 spin_unlock(&inode
->i_lock
);
5254 * If the subpool has a minimum size, the number of global
5255 * reservations to be released may be adjusted.
5257 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
5258 hugetlb_acct_memory(h
, -gbl_reserve
);
5263 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5264 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
5265 struct vm_area_struct
*vma
,
5266 unsigned long addr
, pgoff_t idx
)
5268 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
5270 unsigned long sbase
= saddr
& PUD_MASK
;
5271 unsigned long s_end
= sbase
+ PUD_SIZE
;
5273 /* Allow segments to share if only one is marked locked */
5274 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
5275 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
5278 * match the virtual addresses, permission and the alignment of the
5281 if (pmd_index(addr
) != pmd_index(saddr
) ||
5282 vm_flags
!= svm_flags
||
5283 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
5289 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
5291 unsigned long base
= addr
& PUD_MASK
;
5292 unsigned long end
= base
+ PUD_SIZE
;
5295 * check on proper vm_flags and page table alignment
5297 if (vma
->vm_flags
& VM_MAYSHARE
&& range_in_vma(vma
, base
, end
))
5303 * Determine if start,end range within vma could be mapped by shared pmd.
5304 * If yes, adjust start and end to cover range associated with possible
5305 * shared pmd mappings.
5307 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
5308 unsigned long *start
, unsigned long *end
)
5310 unsigned long check_addr
;
5312 if (!(vma
->vm_flags
& VM_MAYSHARE
))
5315 for (check_addr
= *start
; check_addr
< *end
; check_addr
+= PUD_SIZE
) {
5316 unsigned long a_start
= check_addr
& PUD_MASK
;
5317 unsigned long a_end
= a_start
+ PUD_SIZE
;
5320 * If sharing is possible, adjust start/end if necessary.
5322 if (range_in_vma(vma
, a_start
, a_end
)) {
5323 if (a_start
< *start
)
5332 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5333 * and returns the corresponding pte. While this is not necessary for the
5334 * !shared pmd case because we can allocate the pmd later as well, it makes the
5335 * code much cleaner.
5337 * This routine must be called with i_mmap_rwsem held in at least read mode.
5338 * For hugetlbfs, this prevents removal of any page table entries associated
5339 * with the address space. This is important as we are setting up sharing
5340 * based on existing page table entries (mappings).
5342 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
5344 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
5345 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
5346 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
5348 struct vm_area_struct
*svma
;
5349 unsigned long saddr
;
5354 if (!vma_shareable(vma
, addr
))
5355 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
5357 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
5361 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
5363 spte
= huge_pte_offset(svma
->vm_mm
, saddr
,
5364 vma_mmu_pagesize(svma
));
5366 get_page(virt_to_page(spte
));
5375 ptl
= huge_pte_lock(hstate_vma(vma
), mm
, spte
);
5376 if (pud_none(*pud
)) {
5377 pud_populate(mm
, pud
,
5378 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
5381 put_page(virt_to_page(spte
));
5385 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
5390 * unmap huge page backed by shared pte.
5392 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5393 * indicated by page_count > 1, unmap is achieved by clearing pud and
5394 * decrementing the ref count. If count == 1, the pte page is not shared.
5396 * Called with page table lock held and i_mmap_rwsem held in write mode.
5398 * returns: 1 successfully unmapped a shared pte page
5399 * 0 the underlying pte page is not shared, or it is the last user
5401 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
5403 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
5404 p4d_t
*p4d
= p4d_offset(pgd
, *addr
);
5405 pud_t
*pud
= pud_offset(p4d
, *addr
);
5407 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
5408 if (page_count(virt_to_page(ptep
)) == 1)
5412 put_page(virt_to_page(ptep
));
5414 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
5417 #define want_pmd_share() (1)
5418 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5419 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
5424 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
5429 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
5430 unsigned long *start
, unsigned long *end
)
5433 #define want_pmd_share() (0)
5434 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5436 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5437 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
5438 unsigned long addr
, unsigned long sz
)
5445 pgd
= pgd_offset(mm
, addr
);
5446 p4d
= p4d_alloc(mm
, pgd
, addr
);
5449 pud
= pud_alloc(mm
, p4d
, addr
);
5451 if (sz
== PUD_SIZE
) {
5454 BUG_ON(sz
!= PMD_SIZE
);
5455 if (want_pmd_share() && pud_none(*pud
))
5456 pte
= huge_pmd_share(mm
, addr
, pud
);
5458 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
5461 BUG_ON(pte
&& pte_present(*pte
) && !pte_huge(*pte
));
5467 * huge_pte_offset() - Walk the page table to resolve the hugepage
5468 * entry at address @addr
5470 * Return: Pointer to page table entry (PUD or PMD) for
5471 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5472 * size @sz doesn't match the hugepage size at this level of the page
5475 pte_t
*huge_pte_offset(struct mm_struct
*mm
,
5476 unsigned long addr
, unsigned long sz
)
5483 pgd
= pgd_offset(mm
, addr
);
5484 if (!pgd_present(*pgd
))
5486 p4d
= p4d_offset(pgd
, addr
);
5487 if (!p4d_present(*p4d
))
5490 pud
= pud_offset(p4d
, addr
);
5492 /* must be pud huge, non-present or none */
5493 return (pte_t
*)pud
;
5494 if (!pud_present(*pud
))
5496 /* must have a valid entry and size to go further */
5498 pmd
= pmd_offset(pud
, addr
);
5499 /* must be pmd huge, non-present or none */
5500 return (pte_t
*)pmd
;
5503 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5506 * These functions are overwritable if your architecture needs its own
5509 struct page
* __weak
5510 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
5513 return ERR_PTR(-EINVAL
);
5516 struct page
* __weak
5517 follow_huge_pd(struct vm_area_struct
*vma
,
5518 unsigned long address
, hugepd_t hpd
, int flags
, int pdshift
)
5520 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5524 struct page
* __weak
5525 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
5526 pmd_t
*pmd
, int flags
)
5528 struct page
*page
= NULL
;
5532 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5533 if (WARN_ON_ONCE((flags
& (FOLL_PIN
| FOLL_GET
)) ==
5534 (FOLL_PIN
| FOLL_GET
)))
5538 ptl
= pmd_lockptr(mm
, pmd
);
5541 * make sure that the address range covered by this pmd is not
5542 * unmapped from other threads.
5544 if (!pmd_huge(*pmd
))
5546 pte
= huge_ptep_get((pte_t
*)pmd
);
5547 if (pte_present(pte
)) {
5548 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
5550 * try_grab_page() should always succeed here, because: a) we
5551 * hold the pmd (ptl) lock, and b) we've just checked that the
5552 * huge pmd (head) page is present in the page tables. The ptl
5553 * prevents the head page and tail pages from being rearranged
5554 * in any way. So this page must be available at this point,
5555 * unless the page refcount overflowed:
5557 if (WARN_ON_ONCE(!try_grab_page(page
, flags
))) {
5562 if (is_hugetlb_entry_migration(pte
)) {
5564 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
5568 * hwpoisoned entry is treated as no_page_table in
5569 * follow_page_mask().
5577 struct page
* __weak
5578 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
5579 pud_t
*pud
, int flags
)
5581 if (flags
& (FOLL_GET
| FOLL_PIN
))
5584 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
5587 struct page
* __weak
5588 follow_huge_pgd(struct mm_struct
*mm
, unsigned long address
, pgd_t
*pgd
, int flags
)
5590 if (flags
& (FOLL_GET
| FOLL_PIN
))
5593 return pte_page(*(pte_t
*)pgd
) + ((address
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
5596 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
5600 VM_BUG_ON_PAGE(!PageHead(page
), page
);
5601 spin_lock(&hugetlb_lock
);
5602 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
5606 clear_page_huge_active(page
);
5607 list_move_tail(&page
->lru
, list
);
5609 spin_unlock(&hugetlb_lock
);
5613 void putback_active_hugepage(struct page
*page
)
5615 VM_BUG_ON_PAGE(!PageHead(page
), page
);
5616 spin_lock(&hugetlb_lock
);
5617 set_page_huge_active(page
);
5618 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
5619 spin_unlock(&hugetlb_lock
);
5623 void move_hugetlb_state(struct page
*oldpage
, struct page
*newpage
, int reason
)
5625 struct hstate
*h
= page_hstate(oldpage
);
5627 hugetlb_cgroup_migrate(oldpage
, newpage
);
5628 set_page_owner_migrate_reason(newpage
, reason
);
5631 * transfer temporary state of the new huge page. This is
5632 * reverse to other transitions because the newpage is going to
5633 * be final while the old one will be freed so it takes over
5634 * the temporary status.
5636 * Also note that we have to transfer the per-node surplus state
5637 * here as well otherwise the global surplus count will not match
5640 if (PageHugeTemporary(newpage
)) {
5641 int old_nid
= page_to_nid(oldpage
);
5642 int new_nid
= page_to_nid(newpage
);
5644 SetPageHugeTemporary(oldpage
);
5645 ClearPageHugeTemporary(newpage
);
5647 spin_lock(&hugetlb_lock
);
5648 if (h
->surplus_huge_pages_node
[old_nid
]) {
5649 h
->surplus_huge_pages_node
[old_nid
]--;
5650 h
->surplus_huge_pages_node
[new_nid
]++;
5652 spin_unlock(&hugetlb_lock
);
5657 static unsigned long hugetlb_cma_size __initdata
;
5658 static bool cma_reserve_called __initdata
;
5660 static int __init
cmdline_parse_hugetlb_cma(char *p
)
5662 hugetlb_cma_size
= memparse(p
, &p
);
5666 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma
);
5668 void __init
hugetlb_cma_reserve(int order
)
5670 unsigned long size
, reserved
, per_node
;
5673 cma_reserve_called
= true;
5675 if (!hugetlb_cma_size
)
5678 if (hugetlb_cma_size
< (PAGE_SIZE
<< order
)) {
5679 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5680 (PAGE_SIZE
<< order
) / SZ_1M
);
5685 * If 3 GB area is requested on a machine with 4 numa nodes,
5686 * let's allocate 1 GB on first three nodes and ignore the last one.
5688 per_node
= DIV_ROUND_UP(hugetlb_cma_size
, nr_online_nodes
);
5689 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5690 hugetlb_cma_size
/ SZ_1M
, per_node
/ SZ_1M
);
5693 for_each_node_state(nid
, N_ONLINE
) {
5696 size
= min(per_node
, hugetlb_cma_size
- reserved
);
5697 size
= round_up(size
, PAGE_SIZE
<< order
);
5699 res
= cma_declare_contiguous_nid(0, size
, 0, PAGE_SIZE
<< order
,
5700 0, false, "hugetlb",
5701 &hugetlb_cma
[nid
], nid
);
5703 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5709 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5712 if (reserved
>= hugetlb_cma_size
)
5717 void __init
hugetlb_cma_check(void)
5719 if (!hugetlb_cma_size
|| cma_reserve_called
)
5722 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5725 #endif /* CONFIG_CMA */