coresight: cti: Fix error handling in probe
[linux/fpc-iii.git] / mm / nommu.c
blobf32a69095d509e4d1f64d53a4f7f9fa7caf377ab
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
8 * See Documentation/nommu-mmap.txt
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
55 atomic_long_t mmap_pages_allocated;
57 EXPORT_SYMBOL(mem_map);
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
64 const struct vm_operations_struct generic_file_vm_ops = {
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
71 * Doesn't have to be accurate, i.e. may have races.
73 unsigned int kobjsize(const void *objp)
75 struct page *page;
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
84 page = virt_to_head_page(objp);
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
90 if (PageSlab(page))
91 return ksize(objp);
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
111 return page_size(page);
115 * follow_pfn - look up PFN at a user virtual address
116 * @vma: memory mapping
117 * @address: user virtual address
118 * @pfn: location to store found PFN
120 * Only IO mappings and raw PFN mappings are allowed.
122 * Returns zero and the pfn at @pfn on success, -ve otherwise.
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 unsigned long *pfn)
127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 return -EINVAL;
130 *pfn = address >> PAGE_SHIFT;
131 return 0;
133 EXPORT_SYMBOL(follow_pfn);
135 LIST_HEAD(vmap_area_list);
137 void vfree(const void *addr)
139 kfree(addr);
141 EXPORT_SYMBOL(vfree);
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 * returns only a logical address.
149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
151 EXPORT_SYMBOL(__vmalloc);
153 void *__vmalloc_node_range(unsigned long size, unsigned long align,
154 unsigned long start, unsigned long end, gfp_t gfp_mask,
155 pgprot_t prot, unsigned long vm_flags, int node,
156 const void *caller)
158 return __vmalloc(size, gfp_mask);
161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162 int node, const void *caller)
164 return __vmalloc(size, gfp_mask);
167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
169 void *ret;
171 ret = __vmalloc(size, flags);
172 if (ret) {
173 struct vm_area_struct *vma;
175 mmap_write_lock(current->mm);
176 vma = find_vma(current->mm, (unsigned long)ret);
177 if (vma)
178 vma->vm_flags |= VM_USERMAP;
179 mmap_write_unlock(current->mm);
182 return ret;
185 void *vmalloc_user(unsigned long size)
187 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
189 EXPORT_SYMBOL(vmalloc_user);
191 struct page *vmalloc_to_page(const void *addr)
193 return virt_to_page(addr);
195 EXPORT_SYMBOL(vmalloc_to_page);
197 unsigned long vmalloc_to_pfn(const void *addr)
199 return page_to_pfn(virt_to_page(addr));
201 EXPORT_SYMBOL(vmalloc_to_pfn);
203 long vread(char *buf, char *addr, unsigned long count)
205 /* Don't allow overflow */
206 if ((unsigned long) buf + count < count)
207 count = -(unsigned long) buf;
209 memcpy(buf, addr, count);
210 return count;
213 long vwrite(char *buf, char *addr, unsigned long count)
215 /* Don't allow overflow */
216 if ((unsigned long) addr + count < count)
217 count = -(unsigned long) addr;
219 memcpy(addr, buf, count);
220 return count;
224 * vmalloc - allocate virtually contiguous memory
226 * @size: allocation size
228 * Allocate enough pages to cover @size from the page level
229 * allocator and map them into contiguous kernel virtual space.
231 * For tight control over page level allocator and protection flags
232 * use __vmalloc() instead.
234 void *vmalloc(unsigned long size)
236 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
238 EXPORT_SYMBOL(vmalloc);
241 * vzalloc - allocate virtually contiguous memory with zero fill
243 * @size: allocation size
245 * Allocate enough pages to cover @size from the page level
246 * allocator and map them into contiguous kernel virtual space.
247 * The memory allocated is set to zero.
249 * For tight control over page level allocator and protection flags
250 * use __vmalloc() instead.
252 void *vzalloc(unsigned long size)
254 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
256 EXPORT_SYMBOL(vzalloc);
259 * vmalloc_node - allocate memory on a specific node
260 * @size: allocation size
261 * @node: numa node
263 * Allocate enough pages to cover @size from the page level
264 * allocator and map them into contiguous kernel virtual space.
266 * For tight control over page level allocator and protection flags
267 * use __vmalloc() instead.
269 void *vmalloc_node(unsigned long size, int node)
271 return vmalloc(size);
273 EXPORT_SYMBOL(vmalloc_node);
276 * vzalloc_node - allocate memory on a specific node with zero fill
277 * @size: allocation size
278 * @node: numa node
280 * Allocate enough pages to cover @size from the page level
281 * allocator and map them into contiguous kernel virtual space.
282 * The memory allocated is set to zero.
284 * For tight control over page level allocator and protection flags
285 * use __vmalloc() instead.
287 void *vzalloc_node(unsigned long size, int node)
289 return vzalloc(size);
291 EXPORT_SYMBOL(vzalloc_node);
294 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
295 * @size: allocation size
297 * Allocate enough 32bit PA addressable pages to cover @size from the
298 * page level allocator and map them into contiguous kernel virtual space.
300 void *vmalloc_32(unsigned long size)
302 return __vmalloc(size, GFP_KERNEL);
304 EXPORT_SYMBOL(vmalloc_32);
307 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
308 * @size: allocation size
310 * The resulting memory area is 32bit addressable and zeroed so it can be
311 * mapped to userspace without leaking data.
313 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
314 * remap_vmalloc_range() are permissible.
316 void *vmalloc_32_user(unsigned long size)
319 * We'll have to sort out the ZONE_DMA bits for 64-bit,
320 * but for now this can simply use vmalloc_user() directly.
322 return vmalloc_user(size);
324 EXPORT_SYMBOL(vmalloc_32_user);
326 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
328 BUG();
329 return NULL;
331 EXPORT_SYMBOL(vmap);
333 void vunmap(const void *addr)
335 BUG();
337 EXPORT_SYMBOL(vunmap);
339 void *vm_map_ram(struct page **pages, unsigned int count, int node)
341 BUG();
342 return NULL;
344 EXPORT_SYMBOL(vm_map_ram);
346 void vm_unmap_ram(const void *mem, unsigned int count)
348 BUG();
350 EXPORT_SYMBOL(vm_unmap_ram);
352 void vm_unmap_aliases(void)
355 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
357 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
359 BUG();
360 return NULL;
362 EXPORT_SYMBOL_GPL(alloc_vm_area);
364 void free_vm_area(struct vm_struct *area)
366 BUG();
368 EXPORT_SYMBOL_GPL(free_vm_area);
370 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
371 struct page *page)
373 return -EINVAL;
375 EXPORT_SYMBOL(vm_insert_page);
377 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
378 unsigned long num)
380 return -EINVAL;
382 EXPORT_SYMBOL(vm_map_pages);
384 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
385 unsigned long num)
387 return -EINVAL;
389 EXPORT_SYMBOL(vm_map_pages_zero);
392 * sys_brk() for the most part doesn't need the global kernel
393 * lock, except when an application is doing something nasty
394 * like trying to un-brk an area that has already been mapped
395 * to a regular file. in this case, the unmapping will need
396 * to invoke file system routines that need the global lock.
398 SYSCALL_DEFINE1(brk, unsigned long, brk)
400 struct mm_struct *mm = current->mm;
402 if (brk < mm->start_brk || brk > mm->context.end_brk)
403 return mm->brk;
405 if (mm->brk == brk)
406 return mm->brk;
409 * Always allow shrinking brk
411 if (brk <= mm->brk) {
412 mm->brk = brk;
413 return brk;
417 * Ok, looks good - let it rip.
419 flush_icache_user_range(mm->brk, brk);
420 return mm->brk = brk;
424 * initialise the percpu counter for VM and region record slabs
426 void __init mmap_init(void)
428 int ret;
430 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
431 VM_BUG_ON(ret);
432 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
436 * validate the region tree
437 * - the caller must hold the region lock
439 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
440 static noinline void validate_nommu_regions(void)
442 struct vm_region *region, *last;
443 struct rb_node *p, *lastp;
445 lastp = rb_first(&nommu_region_tree);
446 if (!lastp)
447 return;
449 last = rb_entry(lastp, struct vm_region, vm_rb);
450 BUG_ON(last->vm_end <= last->vm_start);
451 BUG_ON(last->vm_top < last->vm_end);
453 while ((p = rb_next(lastp))) {
454 region = rb_entry(p, struct vm_region, vm_rb);
455 last = rb_entry(lastp, struct vm_region, vm_rb);
457 BUG_ON(region->vm_end <= region->vm_start);
458 BUG_ON(region->vm_top < region->vm_end);
459 BUG_ON(region->vm_start < last->vm_top);
461 lastp = p;
464 #else
465 static void validate_nommu_regions(void)
468 #endif
471 * add a region into the global tree
473 static void add_nommu_region(struct vm_region *region)
475 struct vm_region *pregion;
476 struct rb_node **p, *parent;
478 validate_nommu_regions();
480 parent = NULL;
481 p = &nommu_region_tree.rb_node;
482 while (*p) {
483 parent = *p;
484 pregion = rb_entry(parent, struct vm_region, vm_rb);
485 if (region->vm_start < pregion->vm_start)
486 p = &(*p)->rb_left;
487 else if (region->vm_start > pregion->vm_start)
488 p = &(*p)->rb_right;
489 else if (pregion == region)
490 return;
491 else
492 BUG();
495 rb_link_node(&region->vm_rb, parent, p);
496 rb_insert_color(&region->vm_rb, &nommu_region_tree);
498 validate_nommu_regions();
502 * delete a region from the global tree
504 static void delete_nommu_region(struct vm_region *region)
506 BUG_ON(!nommu_region_tree.rb_node);
508 validate_nommu_regions();
509 rb_erase(&region->vm_rb, &nommu_region_tree);
510 validate_nommu_regions();
514 * free a contiguous series of pages
516 static void free_page_series(unsigned long from, unsigned long to)
518 for (; from < to; from += PAGE_SIZE) {
519 struct page *page = virt_to_page(from);
521 atomic_long_dec(&mmap_pages_allocated);
522 put_page(page);
527 * release a reference to a region
528 * - the caller must hold the region semaphore for writing, which this releases
529 * - the region may not have been added to the tree yet, in which case vm_top
530 * will equal vm_start
532 static void __put_nommu_region(struct vm_region *region)
533 __releases(nommu_region_sem)
535 BUG_ON(!nommu_region_tree.rb_node);
537 if (--region->vm_usage == 0) {
538 if (region->vm_top > region->vm_start)
539 delete_nommu_region(region);
540 up_write(&nommu_region_sem);
542 if (region->vm_file)
543 fput(region->vm_file);
545 /* IO memory and memory shared directly out of the pagecache
546 * from ramfs/tmpfs mustn't be released here */
547 if (region->vm_flags & VM_MAPPED_COPY)
548 free_page_series(region->vm_start, region->vm_top);
549 kmem_cache_free(vm_region_jar, region);
550 } else {
551 up_write(&nommu_region_sem);
556 * release a reference to a region
558 static void put_nommu_region(struct vm_region *region)
560 down_write(&nommu_region_sem);
561 __put_nommu_region(region);
565 * add a VMA into a process's mm_struct in the appropriate place in the list
566 * and tree and add to the address space's page tree also if not an anonymous
567 * page
568 * - should be called with mm->mmap_lock held writelocked
570 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
572 struct vm_area_struct *pvma, *prev;
573 struct address_space *mapping;
574 struct rb_node **p, *parent, *rb_prev;
576 BUG_ON(!vma->vm_region);
578 mm->map_count++;
579 vma->vm_mm = mm;
581 /* add the VMA to the mapping */
582 if (vma->vm_file) {
583 mapping = vma->vm_file->f_mapping;
585 i_mmap_lock_write(mapping);
586 flush_dcache_mmap_lock(mapping);
587 vma_interval_tree_insert(vma, &mapping->i_mmap);
588 flush_dcache_mmap_unlock(mapping);
589 i_mmap_unlock_write(mapping);
592 /* add the VMA to the tree */
593 parent = rb_prev = NULL;
594 p = &mm->mm_rb.rb_node;
595 while (*p) {
596 parent = *p;
597 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
599 /* sort by: start addr, end addr, VMA struct addr in that order
600 * (the latter is necessary as we may get identical VMAs) */
601 if (vma->vm_start < pvma->vm_start)
602 p = &(*p)->rb_left;
603 else if (vma->vm_start > pvma->vm_start) {
604 rb_prev = parent;
605 p = &(*p)->rb_right;
606 } else if (vma->vm_end < pvma->vm_end)
607 p = &(*p)->rb_left;
608 else if (vma->vm_end > pvma->vm_end) {
609 rb_prev = parent;
610 p = &(*p)->rb_right;
611 } else if (vma < pvma)
612 p = &(*p)->rb_left;
613 else if (vma > pvma) {
614 rb_prev = parent;
615 p = &(*p)->rb_right;
616 } else
617 BUG();
620 rb_link_node(&vma->vm_rb, parent, p);
621 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
623 /* add VMA to the VMA list also */
624 prev = NULL;
625 if (rb_prev)
626 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
628 __vma_link_list(mm, vma, prev);
632 * delete a VMA from its owning mm_struct and address space
634 static void delete_vma_from_mm(struct vm_area_struct *vma)
636 int i;
637 struct address_space *mapping;
638 struct mm_struct *mm = vma->vm_mm;
639 struct task_struct *curr = current;
641 mm->map_count--;
642 for (i = 0; i < VMACACHE_SIZE; i++) {
643 /* if the vma is cached, invalidate the entire cache */
644 if (curr->vmacache.vmas[i] == vma) {
645 vmacache_invalidate(mm);
646 break;
650 /* remove the VMA from the mapping */
651 if (vma->vm_file) {
652 mapping = vma->vm_file->f_mapping;
654 i_mmap_lock_write(mapping);
655 flush_dcache_mmap_lock(mapping);
656 vma_interval_tree_remove(vma, &mapping->i_mmap);
657 flush_dcache_mmap_unlock(mapping);
658 i_mmap_unlock_write(mapping);
661 /* remove from the MM's tree and list */
662 rb_erase(&vma->vm_rb, &mm->mm_rb);
664 __vma_unlink_list(mm, vma);
668 * destroy a VMA record
670 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
672 if (vma->vm_ops && vma->vm_ops->close)
673 vma->vm_ops->close(vma);
674 if (vma->vm_file)
675 fput(vma->vm_file);
676 put_nommu_region(vma->vm_region);
677 vm_area_free(vma);
681 * look up the first VMA in which addr resides, NULL if none
682 * - should be called with mm->mmap_lock at least held readlocked
684 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
686 struct vm_area_struct *vma;
688 /* check the cache first */
689 vma = vmacache_find(mm, addr);
690 if (likely(vma))
691 return vma;
693 /* trawl the list (there may be multiple mappings in which addr
694 * resides) */
695 for (vma = mm->mmap; vma; vma = vma->vm_next) {
696 if (vma->vm_start > addr)
697 return NULL;
698 if (vma->vm_end > addr) {
699 vmacache_update(addr, vma);
700 return vma;
704 return NULL;
706 EXPORT_SYMBOL(find_vma);
709 * find a VMA
710 * - we don't extend stack VMAs under NOMMU conditions
712 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
714 return find_vma(mm, addr);
718 * expand a stack to a given address
719 * - not supported under NOMMU conditions
721 int expand_stack(struct vm_area_struct *vma, unsigned long address)
723 return -ENOMEM;
727 * look up the first VMA exactly that exactly matches addr
728 * - should be called with mm->mmap_lock at least held readlocked
730 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
731 unsigned long addr,
732 unsigned long len)
734 struct vm_area_struct *vma;
735 unsigned long end = addr + len;
737 /* check the cache first */
738 vma = vmacache_find_exact(mm, addr, end);
739 if (vma)
740 return vma;
742 /* trawl the list (there may be multiple mappings in which addr
743 * resides) */
744 for (vma = mm->mmap; vma; vma = vma->vm_next) {
745 if (vma->vm_start < addr)
746 continue;
747 if (vma->vm_start > addr)
748 return NULL;
749 if (vma->vm_end == end) {
750 vmacache_update(addr, vma);
751 return vma;
755 return NULL;
759 * determine whether a mapping should be permitted and, if so, what sort of
760 * mapping we're capable of supporting
762 static int validate_mmap_request(struct file *file,
763 unsigned long addr,
764 unsigned long len,
765 unsigned long prot,
766 unsigned long flags,
767 unsigned long pgoff,
768 unsigned long *_capabilities)
770 unsigned long capabilities, rlen;
771 int ret;
773 /* do the simple checks first */
774 if (flags & MAP_FIXED)
775 return -EINVAL;
777 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
778 (flags & MAP_TYPE) != MAP_SHARED)
779 return -EINVAL;
781 if (!len)
782 return -EINVAL;
784 /* Careful about overflows.. */
785 rlen = PAGE_ALIGN(len);
786 if (!rlen || rlen > TASK_SIZE)
787 return -ENOMEM;
789 /* offset overflow? */
790 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
791 return -EOVERFLOW;
793 if (file) {
794 /* files must support mmap */
795 if (!file->f_op->mmap)
796 return -ENODEV;
798 /* work out if what we've got could possibly be shared
799 * - we support chardevs that provide their own "memory"
800 * - we support files/blockdevs that are memory backed
802 if (file->f_op->mmap_capabilities) {
803 capabilities = file->f_op->mmap_capabilities(file);
804 } else {
805 /* no explicit capabilities set, so assume some
806 * defaults */
807 switch (file_inode(file)->i_mode & S_IFMT) {
808 case S_IFREG:
809 case S_IFBLK:
810 capabilities = NOMMU_MAP_COPY;
811 break;
813 case S_IFCHR:
814 capabilities =
815 NOMMU_MAP_DIRECT |
816 NOMMU_MAP_READ |
817 NOMMU_MAP_WRITE;
818 break;
820 default:
821 return -EINVAL;
825 /* eliminate any capabilities that we can't support on this
826 * device */
827 if (!file->f_op->get_unmapped_area)
828 capabilities &= ~NOMMU_MAP_DIRECT;
829 if (!(file->f_mode & FMODE_CAN_READ))
830 capabilities &= ~NOMMU_MAP_COPY;
832 /* The file shall have been opened with read permission. */
833 if (!(file->f_mode & FMODE_READ))
834 return -EACCES;
836 if (flags & MAP_SHARED) {
837 /* do checks for writing, appending and locking */
838 if ((prot & PROT_WRITE) &&
839 !(file->f_mode & FMODE_WRITE))
840 return -EACCES;
842 if (IS_APPEND(file_inode(file)) &&
843 (file->f_mode & FMODE_WRITE))
844 return -EACCES;
846 if (locks_verify_locked(file))
847 return -EAGAIN;
849 if (!(capabilities & NOMMU_MAP_DIRECT))
850 return -ENODEV;
852 /* we mustn't privatise shared mappings */
853 capabilities &= ~NOMMU_MAP_COPY;
854 } else {
855 /* we're going to read the file into private memory we
856 * allocate */
857 if (!(capabilities & NOMMU_MAP_COPY))
858 return -ENODEV;
860 /* we don't permit a private writable mapping to be
861 * shared with the backing device */
862 if (prot & PROT_WRITE)
863 capabilities &= ~NOMMU_MAP_DIRECT;
866 if (capabilities & NOMMU_MAP_DIRECT) {
867 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
868 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
869 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
871 capabilities &= ~NOMMU_MAP_DIRECT;
872 if (flags & MAP_SHARED) {
873 pr_warn("MAP_SHARED not completely supported on !MMU\n");
874 return -EINVAL;
879 /* handle executable mappings and implied executable
880 * mappings */
881 if (path_noexec(&file->f_path)) {
882 if (prot & PROT_EXEC)
883 return -EPERM;
884 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
885 /* handle implication of PROT_EXEC by PROT_READ */
886 if (current->personality & READ_IMPLIES_EXEC) {
887 if (capabilities & NOMMU_MAP_EXEC)
888 prot |= PROT_EXEC;
890 } else if ((prot & PROT_READ) &&
891 (prot & PROT_EXEC) &&
892 !(capabilities & NOMMU_MAP_EXEC)
894 /* backing file is not executable, try to copy */
895 capabilities &= ~NOMMU_MAP_DIRECT;
897 } else {
898 /* anonymous mappings are always memory backed and can be
899 * privately mapped
901 capabilities = NOMMU_MAP_COPY;
903 /* handle PROT_EXEC implication by PROT_READ */
904 if ((prot & PROT_READ) &&
905 (current->personality & READ_IMPLIES_EXEC))
906 prot |= PROT_EXEC;
909 /* allow the security API to have its say */
910 ret = security_mmap_addr(addr);
911 if (ret < 0)
912 return ret;
914 /* looks okay */
915 *_capabilities = capabilities;
916 return 0;
920 * we've determined that we can make the mapping, now translate what we
921 * now know into VMA flags
923 static unsigned long determine_vm_flags(struct file *file,
924 unsigned long prot,
925 unsigned long flags,
926 unsigned long capabilities)
928 unsigned long vm_flags;
930 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
931 /* vm_flags |= mm->def_flags; */
933 if (!(capabilities & NOMMU_MAP_DIRECT)) {
934 /* attempt to share read-only copies of mapped file chunks */
935 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
936 if (file && !(prot & PROT_WRITE))
937 vm_flags |= VM_MAYSHARE;
938 } else {
939 /* overlay a shareable mapping on the backing device or inode
940 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
941 * romfs/cramfs */
942 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
943 if (flags & MAP_SHARED)
944 vm_flags |= VM_SHARED;
947 /* refuse to let anyone share private mappings with this process if
948 * it's being traced - otherwise breakpoints set in it may interfere
949 * with another untraced process
951 if ((flags & MAP_PRIVATE) && current->ptrace)
952 vm_flags &= ~VM_MAYSHARE;
954 return vm_flags;
958 * set up a shared mapping on a file (the driver or filesystem provides and
959 * pins the storage)
961 static int do_mmap_shared_file(struct vm_area_struct *vma)
963 int ret;
965 ret = call_mmap(vma->vm_file, vma);
966 if (ret == 0) {
967 vma->vm_region->vm_top = vma->vm_region->vm_end;
968 return 0;
970 if (ret != -ENOSYS)
971 return ret;
973 /* getting -ENOSYS indicates that direct mmap isn't possible (as
974 * opposed to tried but failed) so we can only give a suitable error as
975 * it's not possible to make a private copy if MAP_SHARED was given */
976 return -ENODEV;
980 * set up a private mapping or an anonymous shared mapping
982 static int do_mmap_private(struct vm_area_struct *vma,
983 struct vm_region *region,
984 unsigned long len,
985 unsigned long capabilities)
987 unsigned long total, point;
988 void *base;
989 int ret, order;
991 /* invoke the file's mapping function so that it can keep track of
992 * shared mappings on devices or memory
993 * - VM_MAYSHARE will be set if it may attempt to share
995 if (capabilities & NOMMU_MAP_DIRECT) {
996 ret = call_mmap(vma->vm_file, vma);
997 if (ret == 0) {
998 /* shouldn't return success if we're not sharing */
999 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1000 vma->vm_region->vm_top = vma->vm_region->vm_end;
1001 return 0;
1003 if (ret != -ENOSYS)
1004 return ret;
1006 /* getting an ENOSYS error indicates that direct mmap isn't
1007 * possible (as opposed to tried but failed) so we'll try to
1008 * make a private copy of the data and map that instead */
1012 /* allocate some memory to hold the mapping
1013 * - note that this may not return a page-aligned address if the object
1014 * we're allocating is smaller than a page
1016 order = get_order(len);
1017 total = 1 << order;
1018 point = len >> PAGE_SHIFT;
1020 /* we don't want to allocate a power-of-2 sized page set */
1021 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1022 total = point;
1024 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1025 if (!base)
1026 goto enomem;
1028 atomic_long_add(total, &mmap_pages_allocated);
1030 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1031 region->vm_start = (unsigned long) base;
1032 region->vm_end = region->vm_start + len;
1033 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1035 vma->vm_start = region->vm_start;
1036 vma->vm_end = region->vm_start + len;
1038 if (vma->vm_file) {
1039 /* read the contents of a file into the copy */
1040 loff_t fpos;
1042 fpos = vma->vm_pgoff;
1043 fpos <<= PAGE_SHIFT;
1045 ret = kernel_read(vma->vm_file, base, len, &fpos);
1046 if (ret < 0)
1047 goto error_free;
1049 /* clear the last little bit */
1050 if (ret < len)
1051 memset(base + ret, 0, len - ret);
1053 } else {
1054 vma_set_anonymous(vma);
1057 return 0;
1059 error_free:
1060 free_page_series(region->vm_start, region->vm_top);
1061 region->vm_start = vma->vm_start = 0;
1062 region->vm_end = vma->vm_end = 0;
1063 region->vm_top = 0;
1064 return ret;
1066 enomem:
1067 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1068 len, current->pid, current->comm);
1069 show_free_areas(0, NULL);
1070 return -ENOMEM;
1074 * handle mapping creation for uClinux
1076 unsigned long do_mmap(struct file *file,
1077 unsigned long addr,
1078 unsigned long len,
1079 unsigned long prot,
1080 unsigned long flags,
1081 vm_flags_t vm_flags,
1082 unsigned long pgoff,
1083 unsigned long *populate,
1084 struct list_head *uf)
1086 struct vm_area_struct *vma;
1087 struct vm_region *region;
1088 struct rb_node *rb;
1089 unsigned long capabilities, result;
1090 int ret;
1092 *populate = 0;
1094 /* decide whether we should attempt the mapping, and if so what sort of
1095 * mapping */
1096 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1097 &capabilities);
1098 if (ret < 0)
1099 return ret;
1101 /* we ignore the address hint */
1102 addr = 0;
1103 len = PAGE_ALIGN(len);
1105 /* we've determined that we can make the mapping, now translate what we
1106 * now know into VMA flags */
1107 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1109 /* we're going to need to record the mapping */
1110 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1111 if (!region)
1112 goto error_getting_region;
1114 vma = vm_area_alloc(current->mm);
1115 if (!vma)
1116 goto error_getting_vma;
1118 region->vm_usage = 1;
1119 region->vm_flags = vm_flags;
1120 region->vm_pgoff = pgoff;
1122 vma->vm_flags = vm_flags;
1123 vma->vm_pgoff = pgoff;
1125 if (file) {
1126 region->vm_file = get_file(file);
1127 vma->vm_file = get_file(file);
1130 down_write(&nommu_region_sem);
1132 /* if we want to share, we need to check for regions created by other
1133 * mmap() calls that overlap with our proposed mapping
1134 * - we can only share with a superset match on most regular files
1135 * - shared mappings on character devices and memory backed files are
1136 * permitted to overlap inexactly as far as we are concerned for in
1137 * these cases, sharing is handled in the driver or filesystem rather
1138 * than here
1140 if (vm_flags & VM_MAYSHARE) {
1141 struct vm_region *pregion;
1142 unsigned long pglen, rpglen, pgend, rpgend, start;
1144 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1145 pgend = pgoff + pglen;
1147 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1148 pregion = rb_entry(rb, struct vm_region, vm_rb);
1150 if (!(pregion->vm_flags & VM_MAYSHARE))
1151 continue;
1153 /* search for overlapping mappings on the same file */
1154 if (file_inode(pregion->vm_file) !=
1155 file_inode(file))
1156 continue;
1158 if (pregion->vm_pgoff >= pgend)
1159 continue;
1161 rpglen = pregion->vm_end - pregion->vm_start;
1162 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1163 rpgend = pregion->vm_pgoff + rpglen;
1164 if (pgoff >= rpgend)
1165 continue;
1167 /* handle inexactly overlapping matches between
1168 * mappings */
1169 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1170 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1171 /* new mapping is not a subset of the region */
1172 if (!(capabilities & NOMMU_MAP_DIRECT))
1173 goto sharing_violation;
1174 continue;
1177 /* we've found a region we can share */
1178 pregion->vm_usage++;
1179 vma->vm_region = pregion;
1180 start = pregion->vm_start;
1181 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1182 vma->vm_start = start;
1183 vma->vm_end = start + len;
1185 if (pregion->vm_flags & VM_MAPPED_COPY)
1186 vma->vm_flags |= VM_MAPPED_COPY;
1187 else {
1188 ret = do_mmap_shared_file(vma);
1189 if (ret < 0) {
1190 vma->vm_region = NULL;
1191 vma->vm_start = 0;
1192 vma->vm_end = 0;
1193 pregion->vm_usage--;
1194 pregion = NULL;
1195 goto error_just_free;
1198 fput(region->vm_file);
1199 kmem_cache_free(vm_region_jar, region);
1200 region = pregion;
1201 result = start;
1202 goto share;
1205 /* obtain the address at which to make a shared mapping
1206 * - this is the hook for quasi-memory character devices to
1207 * tell us the location of a shared mapping
1209 if (capabilities & NOMMU_MAP_DIRECT) {
1210 addr = file->f_op->get_unmapped_area(file, addr, len,
1211 pgoff, flags);
1212 if (IS_ERR_VALUE(addr)) {
1213 ret = addr;
1214 if (ret != -ENOSYS)
1215 goto error_just_free;
1217 /* the driver refused to tell us where to site
1218 * the mapping so we'll have to attempt to copy
1219 * it */
1220 ret = -ENODEV;
1221 if (!(capabilities & NOMMU_MAP_COPY))
1222 goto error_just_free;
1224 capabilities &= ~NOMMU_MAP_DIRECT;
1225 } else {
1226 vma->vm_start = region->vm_start = addr;
1227 vma->vm_end = region->vm_end = addr + len;
1232 vma->vm_region = region;
1234 /* set up the mapping
1235 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1237 if (file && vma->vm_flags & VM_SHARED)
1238 ret = do_mmap_shared_file(vma);
1239 else
1240 ret = do_mmap_private(vma, region, len, capabilities);
1241 if (ret < 0)
1242 goto error_just_free;
1243 add_nommu_region(region);
1245 /* clear anonymous mappings that don't ask for uninitialized data */
1246 if (!vma->vm_file &&
1247 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1248 !(flags & MAP_UNINITIALIZED)))
1249 memset((void *)region->vm_start, 0,
1250 region->vm_end - region->vm_start);
1252 /* okay... we have a mapping; now we have to register it */
1253 result = vma->vm_start;
1255 current->mm->total_vm += len >> PAGE_SHIFT;
1257 share:
1258 add_vma_to_mm(current->mm, vma);
1260 /* we flush the region from the icache only when the first executable
1261 * mapping of it is made */
1262 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1263 flush_icache_user_range(region->vm_start, region->vm_end);
1264 region->vm_icache_flushed = true;
1267 up_write(&nommu_region_sem);
1269 return result;
1271 error_just_free:
1272 up_write(&nommu_region_sem);
1273 error:
1274 if (region->vm_file)
1275 fput(region->vm_file);
1276 kmem_cache_free(vm_region_jar, region);
1277 if (vma->vm_file)
1278 fput(vma->vm_file);
1279 vm_area_free(vma);
1280 return ret;
1282 sharing_violation:
1283 up_write(&nommu_region_sem);
1284 pr_warn("Attempt to share mismatched mappings\n");
1285 ret = -EINVAL;
1286 goto error;
1288 error_getting_vma:
1289 kmem_cache_free(vm_region_jar, region);
1290 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1291 len, current->pid);
1292 show_free_areas(0, NULL);
1293 return -ENOMEM;
1295 error_getting_region:
1296 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1297 len, current->pid);
1298 show_free_areas(0, NULL);
1299 return -ENOMEM;
1302 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1303 unsigned long prot, unsigned long flags,
1304 unsigned long fd, unsigned long pgoff)
1306 struct file *file = NULL;
1307 unsigned long retval = -EBADF;
1309 audit_mmap_fd(fd, flags);
1310 if (!(flags & MAP_ANONYMOUS)) {
1311 file = fget(fd);
1312 if (!file)
1313 goto out;
1316 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1318 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1320 if (file)
1321 fput(file);
1322 out:
1323 return retval;
1326 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1327 unsigned long, prot, unsigned long, flags,
1328 unsigned long, fd, unsigned long, pgoff)
1330 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1333 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1334 struct mmap_arg_struct {
1335 unsigned long addr;
1336 unsigned long len;
1337 unsigned long prot;
1338 unsigned long flags;
1339 unsigned long fd;
1340 unsigned long offset;
1343 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1345 struct mmap_arg_struct a;
1347 if (copy_from_user(&a, arg, sizeof(a)))
1348 return -EFAULT;
1349 if (offset_in_page(a.offset))
1350 return -EINVAL;
1352 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1353 a.offset >> PAGE_SHIFT);
1355 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1358 * split a vma into two pieces at address 'addr', a new vma is allocated either
1359 * for the first part or the tail.
1361 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1362 unsigned long addr, int new_below)
1364 struct vm_area_struct *new;
1365 struct vm_region *region;
1366 unsigned long npages;
1368 /* we're only permitted to split anonymous regions (these should have
1369 * only a single usage on the region) */
1370 if (vma->vm_file)
1371 return -ENOMEM;
1373 if (mm->map_count >= sysctl_max_map_count)
1374 return -ENOMEM;
1376 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1377 if (!region)
1378 return -ENOMEM;
1380 new = vm_area_dup(vma);
1381 if (!new) {
1382 kmem_cache_free(vm_region_jar, region);
1383 return -ENOMEM;
1386 /* most fields are the same, copy all, and then fixup */
1387 *region = *vma->vm_region;
1388 new->vm_region = region;
1390 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1392 if (new_below) {
1393 region->vm_top = region->vm_end = new->vm_end = addr;
1394 } else {
1395 region->vm_start = new->vm_start = addr;
1396 region->vm_pgoff = new->vm_pgoff += npages;
1399 if (new->vm_ops && new->vm_ops->open)
1400 new->vm_ops->open(new);
1402 delete_vma_from_mm(vma);
1403 down_write(&nommu_region_sem);
1404 delete_nommu_region(vma->vm_region);
1405 if (new_below) {
1406 vma->vm_region->vm_start = vma->vm_start = addr;
1407 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1408 } else {
1409 vma->vm_region->vm_end = vma->vm_end = addr;
1410 vma->vm_region->vm_top = addr;
1412 add_nommu_region(vma->vm_region);
1413 add_nommu_region(new->vm_region);
1414 up_write(&nommu_region_sem);
1415 add_vma_to_mm(mm, vma);
1416 add_vma_to_mm(mm, new);
1417 return 0;
1421 * shrink a VMA by removing the specified chunk from either the beginning or
1422 * the end
1424 static int shrink_vma(struct mm_struct *mm,
1425 struct vm_area_struct *vma,
1426 unsigned long from, unsigned long to)
1428 struct vm_region *region;
1430 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1431 * and list */
1432 delete_vma_from_mm(vma);
1433 if (from > vma->vm_start)
1434 vma->vm_end = from;
1435 else
1436 vma->vm_start = to;
1437 add_vma_to_mm(mm, vma);
1439 /* cut the backing region down to size */
1440 region = vma->vm_region;
1441 BUG_ON(region->vm_usage != 1);
1443 down_write(&nommu_region_sem);
1444 delete_nommu_region(region);
1445 if (from > region->vm_start) {
1446 to = region->vm_top;
1447 region->vm_top = region->vm_end = from;
1448 } else {
1449 region->vm_start = to;
1451 add_nommu_region(region);
1452 up_write(&nommu_region_sem);
1454 free_page_series(from, to);
1455 return 0;
1459 * release a mapping
1460 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1461 * VMA, though it need not cover the whole VMA
1463 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1465 struct vm_area_struct *vma;
1466 unsigned long end;
1467 int ret;
1469 len = PAGE_ALIGN(len);
1470 if (len == 0)
1471 return -EINVAL;
1473 end = start + len;
1475 /* find the first potentially overlapping VMA */
1476 vma = find_vma(mm, start);
1477 if (!vma) {
1478 static int limit;
1479 if (limit < 5) {
1480 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1481 current->pid, current->comm,
1482 start, start + len - 1);
1483 limit++;
1485 return -EINVAL;
1488 /* we're allowed to split an anonymous VMA but not a file-backed one */
1489 if (vma->vm_file) {
1490 do {
1491 if (start > vma->vm_start)
1492 return -EINVAL;
1493 if (end == vma->vm_end)
1494 goto erase_whole_vma;
1495 vma = vma->vm_next;
1496 } while (vma);
1497 return -EINVAL;
1498 } else {
1499 /* the chunk must be a subset of the VMA found */
1500 if (start == vma->vm_start && end == vma->vm_end)
1501 goto erase_whole_vma;
1502 if (start < vma->vm_start || end > vma->vm_end)
1503 return -EINVAL;
1504 if (offset_in_page(start))
1505 return -EINVAL;
1506 if (end != vma->vm_end && offset_in_page(end))
1507 return -EINVAL;
1508 if (start != vma->vm_start && end != vma->vm_end) {
1509 ret = split_vma(mm, vma, start, 1);
1510 if (ret < 0)
1511 return ret;
1513 return shrink_vma(mm, vma, start, end);
1516 erase_whole_vma:
1517 delete_vma_from_mm(vma);
1518 delete_vma(mm, vma);
1519 return 0;
1521 EXPORT_SYMBOL(do_munmap);
1523 int vm_munmap(unsigned long addr, size_t len)
1525 struct mm_struct *mm = current->mm;
1526 int ret;
1528 mmap_write_lock(mm);
1529 ret = do_munmap(mm, addr, len, NULL);
1530 mmap_write_unlock(mm);
1531 return ret;
1533 EXPORT_SYMBOL(vm_munmap);
1535 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1537 return vm_munmap(addr, len);
1541 * release all the mappings made in a process's VM space
1543 void exit_mmap(struct mm_struct *mm)
1545 struct vm_area_struct *vma;
1547 if (!mm)
1548 return;
1550 mm->total_vm = 0;
1552 while ((vma = mm->mmap)) {
1553 mm->mmap = vma->vm_next;
1554 delete_vma_from_mm(vma);
1555 delete_vma(mm, vma);
1556 cond_resched();
1560 int vm_brk(unsigned long addr, unsigned long len)
1562 return -ENOMEM;
1566 * expand (or shrink) an existing mapping, potentially moving it at the same
1567 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1569 * under NOMMU conditions, we only permit changing a mapping's size, and only
1570 * as long as it stays within the region allocated by do_mmap_private() and the
1571 * block is not shareable
1573 * MREMAP_FIXED is not supported under NOMMU conditions
1575 static unsigned long do_mremap(unsigned long addr,
1576 unsigned long old_len, unsigned long new_len,
1577 unsigned long flags, unsigned long new_addr)
1579 struct vm_area_struct *vma;
1581 /* insanity checks first */
1582 old_len = PAGE_ALIGN(old_len);
1583 new_len = PAGE_ALIGN(new_len);
1584 if (old_len == 0 || new_len == 0)
1585 return (unsigned long) -EINVAL;
1587 if (offset_in_page(addr))
1588 return -EINVAL;
1590 if (flags & MREMAP_FIXED && new_addr != addr)
1591 return (unsigned long) -EINVAL;
1593 vma = find_vma_exact(current->mm, addr, old_len);
1594 if (!vma)
1595 return (unsigned long) -EINVAL;
1597 if (vma->vm_end != vma->vm_start + old_len)
1598 return (unsigned long) -EFAULT;
1600 if (vma->vm_flags & VM_MAYSHARE)
1601 return (unsigned long) -EPERM;
1603 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1604 return (unsigned long) -ENOMEM;
1606 /* all checks complete - do it */
1607 vma->vm_end = vma->vm_start + new_len;
1608 return vma->vm_start;
1611 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1612 unsigned long, new_len, unsigned long, flags,
1613 unsigned long, new_addr)
1615 unsigned long ret;
1617 mmap_write_lock(current->mm);
1618 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1619 mmap_write_unlock(current->mm);
1620 return ret;
1623 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1624 unsigned int foll_flags)
1626 return NULL;
1629 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1630 unsigned long pfn, unsigned long size, pgprot_t prot)
1632 if (addr != (pfn << PAGE_SHIFT))
1633 return -EINVAL;
1635 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1636 return 0;
1638 EXPORT_SYMBOL(remap_pfn_range);
1640 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1642 unsigned long pfn = start >> PAGE_SHIFT;
1643 unsigned long vm_len = vma->vm_end - vma->vm_start;
1645 pfn += vma->vm_pgoff;
1646 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1648 EXPORT_SYMBOL(vm_iomap_memory);
1650 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1651 unsigned long pgoff)
1653 unsigned int size = vma->vm_end - vma->vm_start;
1655 if (!(vma->vm_flags & VM_USERMAP))
1656 return -EINVAL;
1658 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1659 vma->vm_end = vma->vm_start + size;
1661 return 0;
1663 EXPORT_SYMBOL(remap_vmalloc_range);
1665 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1666 unsigned long len, unsigned long pgoff, unsigned long flags)
1668 return -ENOMEM;
1671 vm_fault_t filemap_fault(struct vm_fault *vmf)
1673 BUG();
1674 return 0;
1676 EXPORT_SYMBOL(filemap_fault);
1678 void filemap_map_pages(struct vm_fault *vmf,
1679 pgoff_t start_pgoff, pgoff_t end_pgoff)
1681 BUG();
1683 EXPORT_SYMBOL(filemap_map_pages);
1685 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1686 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1688 struct vm_area_struct *vma;
1689 int write = gup_flags & FOLL_WRITE;
1691 if (mmap_read_lock_killable(mm))
1692 return 0;
1694 /* the access must start within one of the target process's mappings */
1695 vma = find_vma(mm, addr);
1696 if (vma) {
1697 /* don't overrun this mapping */
1698 if (addr + len >= vma->vm_end)
1699 len = vma->vm_end - addr;
1701 /* only read or write mappings where it is permitted */
1702 if (write && vma->vm_flags & VM_MAYWRITE)
1703 copy_to_user_page(vma, NULL, addr,
1704 (void *) addr, buf, len);
1705 else if (!write && vma->vm_flags & VM_MAYREAD)
1706 copy_from_user_page(vma, NULL, addr,
1707 buf, (void *) addr, len);
1708 else
1709 len = 0;
1710 } else {
1711 len = 0;
1714 mmap_read_unlock(mm);
1716 return len;
1720 * access_remote_vm - access another process' address space
1721 * @mm: the mm_struct of the target address space
1722 * @addr: start address to access
1723 * @buf: source or destination buffer
1724 * @len: number of bytes to transfer
1725 * @gup_flags: flags modifying lookup behaviour
1727 * The caller must hold a reference on @mm.
1729 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1730 void *buf, int len, unsigned int gup_flags)
1732 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1736 * Access another process' address space.
1737 * - source/target buffer must be kernel space
1739 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1740 unsigned int gup_flags)
1742 struct mm_struct *mm;
1744 if (addr + len < addr)
1745 return 0;
1747 mm = get_task_mm(tsk);
1748 if (!mm)
1749 return 0;
1751 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1753 mmput(mm);
1754 return len;
1756 EXPORT_SYMBOL_GPL(access_process_vm);
1759 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1760 * @inode: The inode to check
1761 * @size: The current filesize of the inode
1762 * @newsize: The proposed filesize of the inode
1764 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1765 * make sure that that any outstanding VMAs aren't broken and then shrink the
1766 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1767 * automatically grant mappings that are too large.
1769 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1770 size_t newsize)
1772 struct vm_area_struct *vma;
1773 struct vm_region *region;
1774 pgoff_t low, high;
1775 size_t r_size, r_top;
1777 low = newsize >> PAGE_SHIFT;
1778 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1780 down_write(&nommu_region_sem);
1781 i_mmap_lock_read(inode->i_mapping);
1783 /* search for VMAs that fall within the dead zone */
1784 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1785 /* found one - only interested if it's shared out of the page
1786 * cache */
1787 if (vma->vm_flags & VM_SHARED) {
1788 i_mmap_unlock_read(inode->i_mapping);
1789 up_write(&nommu_region_sem);
1790 return -ETXTBSY; /* not quite true, but near enough */
1794 /* reduce any regions that overlap the dead zone - if in existence,
1795 * these will be pointed to by VMAs that don't overlap the dead zone
1797 * we don't check for any regions that start beyond the EOF as there
1798 * shouldn't be any
1800 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1801 if (!(vma->vm_flags & VM_SHARED))
1802 continue;
1804 region = vma->vm_region;
1805 r_size = region->vm_top - region->vm_start;
1806 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1808 if (r_top > newsize) {
1809 region->vm_top -= r_top - newsize;
1810 if (region->vm_end > region->vm_top)
1811 region->vm_end = region->vm_top;
1815 i_mmap_unlock_read(inode->i_mapping);
1816 up_write(&nommu_region_sem);
1817 return 0;
1821 * Initialise sysctl_user_reserve_kbytes.
1823 * This is intended to prevent a user from starting a single memory hogging
1824 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1825 * mode.
1827 * The default value is min(3% of free memory, 128MB)
1828 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1830 static int __meminit init_user_reserve(void)
1832 unsigned long free_kbytes;
1834 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1836 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1837 return 0;
1839 subsys_initcall(init_user_reserve);
1842 * Initialise sysctl_admin_reserve_kbytes.
1844 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1845 * to log in and kill a memory hogging process.
1847 * Systems with more than 256MB will reserve 8MB, enough to recover
1848 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1849 * only reserve 3% of free pages by default.
1851 static int __meminit init_admin_reserve(void)
1853 unsigned long free_kbytes;
1855 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1857 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1858 return 0;
1860 subsys_initcall(init_admin_reserve);