USB: image: Remove redundant license text
[linux/fpc-iii.git] / kernel / sched / debug.c
blob2f93e4a2d9f623915d0023f9b3a7d8b7d7b95cf7
1 /*
2 * kernel/sched/debug.c
4 * Print the CFS rbtree
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/proc_fs.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/seq_file.h>
17 #include <linux/kallsyms.h>
18 #include <linux/utsname.h>
19 #include <linux/mempolicy.h>
20 #include <linux/debugfs.h>
22 #include "sched.h"
24 static DEFINE_SPINLOCK(sched_debug_lock);
27 * This allows printing both to /proc/sched_debug and
28 * to the console
30 #define SEQ_printf(m, x...) \
31 do { \
32 if (m) \
33 seq_printf(m, x); \
34 else \
35 printk(x); \
36 } while (0)
39 * Ease the printing of nsec fields:
41 static long long nsec_high(unsigned long long nsec)
43 if ((long long)nsec < 0) {
44 nsec = -nsec;
45 do_div(nsec, 1000000);
46 return -nsec;
48 do_div(nsec, 1000000);
50 return nsec;
53 static unsigned long nsec_low(unsigned long long nsec)
55 if ((long long)nsec < 0)
56 nsec = -nsec;
58 return do_div(nsec, 1000000);
61 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
63 #define SCHED_FEAT(name, enabled) \
64 #name ,
66 static const char * const sched_feat_names[] = {
67 #include "features.h"
70 #undef SCHED_FEAT
72 static int sched_feat_show(struct seq_file *m, void *v)
74 int i;
76 for (i = 0; i < __SCHED_FEAT_NR; i++) {
77 if (!(sysctl_sched_features & (1UL << i)))
78 seq_puts(m, "NO_");
79 seq_printf(m, "%s ", sched_feat_names[i]);
81 seq_puts(m, "\n");
83 return 0;
86 #ifdef HAVE_JUMP_LABEL
88 #define jump_label_key__true STATIC_KEY_INIT_TRUE
89 #define jump_label_key__false STATIC_KEY_INIT_FALSE
91 #define SCHED_FEAT(name, enabled) \
92 jump_label_key__##enabled ,
94 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
95 #include "features.h"
98 #undef SCHED_FEAT
100 static void sched_feat_disable(int i)
102 static_key_disable(&sched_feat_keys[i]);
105 static void sched_feat_enable(int i)
107 static_key_enable(&sched_feat_keys[i]);
109 #else
110 static void sched_feat_disable(int i) { };
111 static void sched_feat_enable(int i) { };
112 #endif /* HAVE_JUMP_LABEL */
114 static int sched_feat_set(char *cmp)
116 int i;
117 int neg = 0;
119 if (strncmp(cmp, "NO_", 3) == 0) {
120 neg = 1;
121 cmp += 3;
124 for (i = 0; i < __SCHED_FEAT_NR; i++) {
125 if (strcmp(cmp, sched_feat_names[i]) == 0) {
126 if (neg) {
127 sysctl_sched_features &= ~(1UL << i);
128 sched_feat_disable(i);
129 } else {
130 sysctl_sched_features |= (1UL << i);
131 sched_feat_enable(i);
133 break;
137 return i;
140 static ssize_t
141 sched_feat_write(struct file *filp, const char __user *ubuf,
142 size_t cnt, loff_t *ppos)
144 char buf[64];
145 char *cmp;
146 int i;
147 struct inode *inode;
149 if (cnt > 63)
150 cnt = 63;
152 if (copy_from_user(&buf, ubuf, cnt))
153 return -EFAULT;
155 buf[cnt] = 0;
156 cmp = strstrip(buf);
158 /* Ensure the static_key remains in a consistent state */
159 inode = file_inode(filp);
160 inode_lock(inode);
161 i = sched_feat_set(cmp);
162 inode_unlock(inode);
163 if (i == __SCHED_FEAT_NR)
164 return -EINVAL;
166 *ppos += cnt;
168 return cnt;
171 static int sched_feat_open(struct inode *inode, struct file *filp)
173 return single_open(filp, sched_feat_show, NULL);
176 static const struct file_operations sched_feat_fops = {
177 .open = sched_feat_open,
178 .write = sched_feat_write,
179 .read = seq_read,
180 .llseek = seq_lseek,
181 .release = single_release,
184 __read_mostly bool sched_debug_enabled;
186 static __init int sched_init_debug(void)
188 debugfs_create_file("sched_features", 0644, NULL, NULL,
189 &sched_feat_fops);
191 debugfs_create_bool("sched_debug", 0644, NULL,
192 &sched_debug_enabled);
194 return 0;
196 late_initcall(sched_init_debug);
198 #ifdef CONFIG_SMP
200 #ifdef CONFIG_SYSCTL
202 static struct ctl_table sd_ctl_dir[] = {
204 .procname = "sched_domain",
205 .mode = 0555,
210 static struct ctl_table sd_ctl_root[] = {
212 .procname = "kernel",
213 .mode = 0555,
214 .child = sd_ctl_dir,
219 static struct ctl_table *sd_alloc_ctl_entry(int n)
221 struct ctl_table *entry =
222 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
224 return entry;
227 static void sd_free_ctl_entry(struct ctl_table **tablep)
229 struct ctl_table *entry;
232 * In the intermediate directories, both the child directory and
233 * procname are dynamically allocated and could fail but the mode
234 * will always be set. In the lowest directory the names are
235 * static strings and all have proc handlers.
237 for (entry = *tablep; entry->mode; entry++) {
238 if (entry->child)
239 sd_free_ctl_entry(&entry->child);
240 if (entry->proc_handler == NULL)
241 kfree(entry->procname);
244 kfree(*tablep);
245 *tablep = NULL;
248 static int min_load_idx = 0;
249 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
251 static void
252 set_table_entry(struct ctl_table *entry,
253 const char *procname, void *data, int maxlen,
254 umode_t mode, proc_handler *proc_handler,
255 bool load_idx)
257 entry->procname = procname;
258 entry->data = data;
259 entry->maxlen = maxlen;
260 entry->mode = mode;
261 entry->proc_handler = proc_handler;
263 if (load_idx) {
264 entry->extra1 = &min_load_idx;
265 entry->extra2 = &max_load_idx;
269 static struct ctl_table *
270 sd_alloc_ctl_domain_table(struct sched_domain *sd)
272 struct ctl_table *table = sd_alloc_ctl_entry(14);
274 if (table == NULL)
275 return NULL;
277 set_table_entry(&table[0], "min_interval", &sd->min_interval,
278 sizeof(long), 0644, proc_doulongvec_minmax, false);
279 set_table_entry(&table[1], "max_interval", &sd->max_interval,
280 sizeof(long), 0644, proc_doulongvec_minmax, false);
281 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
282 sizeof(int), 0644, proc_dointvec_minmax, true);
283 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
284 sizeof(int), 0644, proc_dointvec_minmax, true);
285 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
286 sizeof(int), 0644, proc_dointvec_minmax, true);
287 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
288 sizeof(int), 0644, proc_dointvec_minmax, true);
289 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
290 sizeof(int), 0644, proc_dointvec_minmax, true);
291 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
292 sizeof(int), 0644, proc_dointvec_minmax, false);
293 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
294 sizeof(int), 0644, proc_dointvec_minmax, false);
295 set_table_entry(&table[9], "cache_nice_tries",
296 &sd->cache_nice_tries,
297 sizeof(int), 0644, proc_dointvec_minmax, false);
298 set_table_entry(&table[10], "flags", &sd->flags,
299 sizeof(int), 0644, proc_dointvec_minmax, false);
300 set_table_entry(&table[11], "max_newidle_lb_cost",
301 &sd->max_newidle_lb_cost,
302 sizeof(long), 0644, proc_doulongvec_minmax, false);
303 set_table_entry(&table[12], "name", sd->name,
304 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
305 /* &table[13] is terminator */
307 return table;
310 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
312 struct ctl_table *entry, *table;
313 struct sched_domain *sd;
314 int domain_num = 0, i;
315 char buf[32];
317 for_each_domain(cpu, sd)
318 domain_num++;
319 entry = table = sd_alloc_ctl_entry(domain_num + 1);
320 if (table == NULL)
321 return NULL;
323 i = 0;
324 for_each_domain(cpu, sd) {
325 snprintf(buf, 32, "domain%d", i);
326 entry->procname = kstrdup(buf, GFP_KERNEL);
327 entry->mode = 0555;
328 entry->child = sd_alloc_ctl_domain_table(sd);
329 entry++;
330 i++;
332 return table;
335 static cpumask_var_t sd_sysctl_cpus;
336 static struct ctl_table_header *sd_sysctl_header;
338 void register_sched_domain_sysctl(void)
340 static struct ctl_table *cpu_entries;
341 static struct ctl_table **cpu_idx;
342 char buf[32];
343 int i;
345 if (!cpu_entries) {
346 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
347 if (!cpu_entries)
348 return;
350 WARN_ON(sd_ctl_dir[0].child);
351 sd_ctl_dir[0].child = cpu_entries;
354 if (!cpu_idx) {
355 struct ctl_table *e = cpu_entries;
357 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
358 if (!cpu_idx)
359 return;
361 /* deal with sparse possible map */
362 for_each_possible_cpu(i) {
363 cpu_idx[i] = e;
364 e++;
368 if (!cpumask_available(sd_sysctl_cpus)) {
369 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
370 return;
372 /* init to possible to not have holes in @cpu_entries */
373 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
376 for_each_cpu(i, sd_sysctl_cpus) {
377 struct ctl_table *e = cpu_idx[i];
379 if (e->child)
380 sd_free_ctl_entry(&e->child);
382 if (!e->procname) {
383 snprintf(buf, 32, "cpu%d", i);
384 e->procname = kstrdup(buf, GFP_KERNEL);
386 e->mode = 0555;
387 e->child = sd_alloc_ctl_cpu_table(i);
389 __cpumask_clear_cpu(i, sd_sysctl_cpus);
392 WARN_ON(sd_sysctl_header);
393 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
396 void dirty_sched_domain_sysctl(int cpu)
398 if (cpumask_available(sd_sysctl_cpus))
399 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
402 /* may be called multiple times per register */
403 void unregister_sched_domain_sysctl(void)
405 unregister_sysctl_table(sd_sysctl_header);
406 sd_sysctl_header = NULL;
408 #endif /* CONFIG_SYSCTL */
409 #endif /* CONFIG_SMP */
411 #ifdef CONFIG_FAIR_GROUP_SCHED
412 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
414 struct sched_entity *se = tg->se[cpu];
416 #define P(F) \
417 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
418 #define P_SCHEDSTAT(F) \
419 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
420 #define PN(F) \
421 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
422 #define PN_SCHEDSTAT(F) \
423 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
425 if (!se)
426 return;
428 PN(se->exec_start);
429 PN(se->vruntime);
430 PN(se->sum_exec_runtime);
431 if (schedstat_enabled()) {
432 PN_SCHEDSTAT(se->statistics.wait_start);
433 PN_SCHEDSTAT(se->statistics.sleep_start);
434 PN_SCHEDSTAT(se->statistics.block_start);
435 PN_SCHEDSTAT(se->statistics.sleep_max);
436 PN_SCHEDSTAT(se->statistics.block_max);
437 PN_SCHEDSTAT(se->statistics.exec_max);
438 PN_SCHEDSTAT(se->statistics.slice_max);
439 PN_SCHEDSTAT(se->statistics.wait_max);
440 PN_SCHEDSTAT(se->statistics.wait_sum);
441 P_SCHEDSTAT(se->statistics.wait_count);
443 P(se->load.weight);
444 #ifdef CONFIG_SMP
445 P(se->avg.load_avg);
446 P(se->avg.util_avg);
447 #endif
449 #undef PN_SCHEDSTAT
450 #undef PN
451 #undef P_SCHEDSTAT
452 #undef P
454 #endif
456 #ifdef CONFIG_CGROUP_SCHED
457 static char group_path[PATH_MAX];
459 static char *task_group_path(struct task_group *tg)
461 if (autogroup_path(tg, group_path, PATH_MAX))
462 return group_path;
464 cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
465 return group_path;
467 #endif
469 static void
470 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
472 if (rq->curr == p)
473 SEQ_printf(m, ">R");
474 else
475 SEQ_printf(m, " %c", task_state_to_char(p));
477 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
478 p->comm, task_pid_nr(p),
479 SPLIT_NS(p->se.vruntime),
480 (long long)(p->nvcsw + p->nivcsw),
481 p->prio);
483 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
484 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
485 SPLIT_NS(p->se.sum_exec_runtime),
486 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
488 #ifdef CONFIG_NUMA_BALANCING
489 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
490 #endif
491 #ifdef CONFIG_CGROUP_SCHED
492 SEQ_printf(m, " %s", task_group_path(task_group(p)));
493 #endif
495 SEQ_printf(m, "\n");
498 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
500 struct task_struct *g, *p;
502 SEQ_printf(m,
503 "\nrunnable tasks:\n"
504 " S task PID tree-key switches prio"
505 " wait-time sum-exec sum-sleep\n"
506 "-------------------------------------------------------"
507 "----------------------------------------------------\n");
509 rcu_read_lock();
510 for_each_process_thread(g, p) {
511 if (task_cpu(p) != rq_cpu)
512 continue;
514 print_task(m, rq, p);
516 rcu_read_unlock();
519 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
521 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
522 spread, rq0_min_vruntime, spread0;
523 struct rq *rq = cpu_rq(cpu);
524 struct sched_entity *last;
525 unsigned long flags;
527 #ifdef CONFIG_FAIR_GROUP_SCHED
528 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
529 #else
530 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
531 #endif
532 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
533 SPLIT_NS(cfs_rq->exec_clock));
535 raw_spin_lock_irqsave(&rq->lock, flags);
536 if (rb_first_cached(&cfs_rq->tasks_timeline))
537 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
538 last = __pick_last_entity(cfs_rq);
539 if (last)
540 max_vruntime = last->vruntime;
541 min_vruntime = cfs_rq->min_vruntime;
542 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
543 raw_spin_unlock_irqrestore(&rq->lock, flags);
544 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
545 SPLIT_NS(MIN_vruntime));
546 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
547 SPLIT_NS(min_vruntime));
548 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
549 SPLIT_NS(max_vruntime));
550 spread = max_vruntime - MIN_vruntime;
551 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
552 SPLIT_NS(spread));
553 spread0 = min_vruntime - rq0_min_vruntime;
554 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
555 SPLIT_NS(spread0));
556 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
557 cfs_rq->nr_spread_over);
558 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
559 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
560 #ifdef CONFIG_SMP
561 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
562 cfs_rq->avg.load_avg);
563 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
564 cfs_rq->runnable_load_avg);
565 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
566 cfs_rq->avg.util_avg);
567 SEQ_printf(m, " .%-30s: %ld\n", "removed_load_avg",
568 atomic_long_read(&cfs_rq->removed_load_avg));
569 SEQ_printf(m, " .%-30s: %ld\n", "removed_util_avg",
570 atomic_long_read(&cfs_rq->removed_util_avg));
571 #ifdef CONFIG_FAIR_GROUP_SCHED
572 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
573 cfs_rq->tg_load_avg_contrib);
574 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
575 atomic_long_read(&cfs_rq->tg->load_avg));
576 #endif
577 #endif
578 #ifdef CONFIG_CFS_BANDWIDTH
579 SEQ_printf(m, " .%-30s: %d\n", "throttled",
580 cfs_rq->throttled);
581 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
582 cfs_rq->throttle_count);
583 #endif
585 #ifdef CONFIG_FAIR_GROUP_SCHED
586 print_cfs_group_stats(m, cpu, cfs_rq->tg);
587 #endif
590 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
592 #ifdef CONFIG_RT_GROUP_SCHED
593 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
594 #else
595 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
596 #endif
598 #define P(x) \
599 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
600 #define PU(x) \
601 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
602 #define PN(x) \
603 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
605 PU(rt_nr_running);
606 #ifdef CONFIG_SMP
607 PU(rt_nr_migratory);
608 #endif
609 P(rt_throttled);
610 PN(rt_time);
611 PN(rt_runtime);
613 #undef PN
614 #undef PU
615 #undef P
618 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
620 struct dl_bw *dl_bw;
622 SEQ_printf(m, "\ndl_rq[%d]:\n", cpu);
624 #define PU(x) \
625 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
627 PU(dl_nr_running);
628 #ifdef CONFIG_SMP
629 PU(dl_nr_migratory);
630 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
631 #else
632 dl_bw = &dl_rq->dl_bw;
633 #endif
634 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
635 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
637 #undef PU
640 extern __read_mostly int sched_clock_running;
642 static void print_cpu(struct seq_file *m, int cpu)
644 struct rq *rq = cpu_rq(cpu);
645 unsigned long flags;
647 #ifdef CONFIG_X86
649 unsigned int freq = cpu_khz ? : 1;
651 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
652 cpu, freq / 1000, (freq % 1000));
654 #else
655 SEQ_printf(m, "cpu#%d\n", cpu);
656 #endif
658 #define P(x) \
659 do { \
660 if (sizeof(rq->x) == 4) \
661 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
662 else \
663 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
664 } while (0)
666 #define PN(x) \
667 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
669 P(nr_running);
670 SEQ_printf(m, " .%-30s: %lu\n", "load",
671 rq->load.weight);
672 P(nr_switches);
673 P(nr_load_updates);
674 P(nr_uninterruptible);
675 PN(next_balance);
676 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
677 PN(clock);
678 PN(clock_task);
679 P(cpu_load[0]);
680 P(cpu_load[1]);
681 P(cpu_load[2]);
682 P(cpu_load[3]);
683 P(cpu_load[4]);
684 #undef P
685 #undef PN
687 #ifdef CONFIG_SMP
688 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
689 P64(avg_idle);
690 P64(max_idle_balance_cost);
691 #undef P64
692 #endif
694 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
695 if (schedstat_enabled()) {
696 P(yld_count);
697 P(sched_count);
698 P(sched_goidle);
699 P(ttwu_count);
700 P(ttwu_local);
702 #undef P
704 spin_lock_irqsave(&sched_debug_lock, flags);
705 print_cfs_stats(m, cpu);
706 print_rt_stats(m, cpu);
707 print_dl_stats(m, cpu);
709 print_rq(m, rq, cpu);
710 spin_unlock_irqrestore(&sched_debug_lock, flags);
711 SEQ_printf(m, "\n");
714 static const char *sched_tunable_scaling_names[] = {
715 "none",
716 "logaritmic",
717 "linear"
720 static void sched_debug_header(struct seq_file *m)
722 u64 ktime, sched_clk, cpu_clk;
723 unsigned long flags;
725 local_irq_save(flags);
726 ktime = ktime_to_ns(ktime_get());
727 sched_clk = sched_clock();
728 cpu_clk = local_clock();
729 local_irq_restore(flags);
731 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
732 init_utsname()->release,
733 (int)strcspn(init_utsname()->version, " "),
734 init_utsname()->version);
736 #define P(x) \
737 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
738 #define PN(x) \
739 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
740 PN(ktime);
741 PN(sched_clk);
742 PN(cpu_clk);
743 P(jiffies);
744 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
745 P(sched_clock_stable());
746 #endif
747 #undef PN
748 #undef P
750 SEQ_printf(m, "\n");
751 SEQ_printf(m, "sysctl_sched\n");
753 #define P(x) \
754 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
755 #define PN(x) \
756 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
757 PN(sysctl_sched_latency);
758 PN(sysctl_sched_min_granularity);
759 PN(sysctl_sched_wakeup_granularity);
760 P(sysctl_sched_child_runs_first);
761 P(sysctl_sched_features);
762 #undef PN
763 #undef P
765 SEQ_printf(m, " .%-40s: %d (%s)\n",
766 "sysctl_sched_tunable_scaling",
767 sysctl_sched_tunable_scaling,
768 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
769 SEQ_printf(m, "\n");
772 static int sched_debug_show(struct seq_file *m, void *v)
774 int cpu = (unsigned long)(v - 2);
776 if (cpu != -1)
777 print_cpu(m, cpu);
778 else
779 sched_debug_header(m);
781 return 0;
784 void sysrq_sched_debug_show(void)
786 int cpu;
788 sched_debug_header(NULL);
789 for_each_online_cpu(cpu)
790 print_cpu(NULL, cpu);
795 * This itererator needs some explanation.
796 * It returns 1 for the header position.
797 * This means 2 is cpu 0.
798 * In a hotplugged system some cpus, including cpu 0, may be missing so we have
799 * to use cpumask_* to iterate over the cpus.
801 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
803 unsigned long n = *offset;
805 if (n == 0)
806 return (void *) 1;
808 n--;
810 if (n > 0)
811 n = cpumask_next(n - 1, cpu_online_mask);
812 else
813 n = cpumask_first(cpu_online_mask);
815 *offset = n + 1;
817 if (n < nr_cpu_ids)
818 return (void *)(unsigned long)(n + 2);
819 return NULL;
822 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
824 (*offset)++;
825 return sched_debug_start(file, offset);
828 static void sched_debug_stop(struct seq_file *file, void *data)
832 static const struct seq_operations sched_debug_sops = {
833 .start = sched_debug_start,
834 .next = sched_debug_next,
835 .stop = sched_debug_stop,
836 .show = sched_debug_show,
839 static int sched_debug_release(struct inode *inode, struct file *file)
841 seq_release(inode, file);
843 return 0;
846 static int sched_debug_open(struct inode *inode, struct file *filp)
848 int ret = 0;
850 ret = seq_open(filp, &sched_debug_sops);
852 return ret;
855 static const struct file_operations sched_debug_fops = {
856 .open = sched_debug_open,
857 .read = seq_read,
858 .llseek = seq_lseek,
859 .release = sched_debug_release,
862 static int __init init_sched_debug_procfs(void)
864 struct proc_dir_entry *pe;
866 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
867 if (!pe)
868 return -ENOMEM;
869 return 0;
872 __initcall(init_sched_debug_procfs);
874 #define __P(F) \
875 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
876 #define P(F) \
877 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
878 #define __PN(F) \
879 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
880 #define PN(F) \
881 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
884 #ifdef CONFIG_NUMA_BALANCING
885 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
886 unsigned long tpf, unsigned long gsf, unsigned long gpf)
888 SEQ_printf(m, "numa_faults node=%d ", node);
889 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
890 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
892 #endif
895 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
897 #ifdef CONFIG_NUMA_BALANCING
898 struct mempolicy *pol;
900 if (p->mm)
901 P(mm->numa_scan_seq);
903 task_lock(p);
904 pol = p->mempolicy;
905 if (pol && !(pol->flags & MPOL_F_MORON))
906 pol = NULL;
907 mpol_get(pol);
908 task_unlock(p);
910 P(numa_pages_migrated);
911 P(numa_preferred_nid);
912 P(total_numa_faults);
913 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
914 task_node(p), task_numa_group_id(p));
915 show_numa_stats(p, m);
916 mpol_put(pol);
917 #endif
920 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
921 struct seq_file *m)
923 unsigned long nr_switches;
925 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
926 get_nr_threads(p));
927 SEQ_printf(m,
928 "---------------------------------------------------------"
929 "----------\n");
930 #define __P(F) \
931 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
932 #define P(F) \
933 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
934 #define P_SCHEDSTAT(F) \
935 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
936 #define __PN(F) \
937 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
938 #define PN(F) \
939 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
940 #define PN_SCHEDSTAT(F) \
941 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
943 PN(se.exec_start);
944 PN(se.vruntime);
945 PN(se.sum_exec_runtime);
947 nr_switches = p->nvcsw + p->nivcsw;
949 P(se.nr_migrations);
951 if (schedstat_enabled()) {
952 u64 avg_atom, avg_per_cpu;
954 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
955 PN_SCHEDSTAT(se.statistics.wait_start);
956 PN_SCHEDSTAT(se.statistics.sleep_start);
957 PN_SCHEDSTAT(se.statistics.block_start);
958 PN_SCHEDSTAT(se.statistics.sleep_max);
959 PN_SCHEDSTAT(se.statistics.block_max);
960 PN_SCHEDSTAT(se.statistics.exec_max);
961 PN_SCHEDSTAT(se.statistics.slice_max);
962 PN_SCHEDSTAT(se.statistics.wait_max);
963 PN_SCHEDSTAT(se.statistics.wait_sum);
964 P_SCHEDSTAT(se.statistics.wait_count);
965 PN_SCHEDSTAT(se.statistics.iowait_sum);
966 P_SCHEDSTAT(se.statistics.iowait_count);
967 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
968 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
969 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
970 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
971 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
972 P_SCHEDSTAT(se.statistics.nr_wakeups);
973 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
974 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
975 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
976 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
977 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
978 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
979 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
980 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
982 avg_atom = p->se.sum_exec_runtime;
983 if (nr_switches)
984 avg_atom = div64_ul(avg_atom, nr_switches);
985 else
986 avg_atom = -1LL;
988 avg_per_cpu = p->se.sum_exec_runtime;
989 if (p->se.nr_migrations) {
990 avg_per_cpu = div64_u64(avg_per_cpu,
991 p->se.nr_migrations);
992 } else {
993 avg_per_cpu = -1LL;
996 __PN(avg_atom);
997 __PN(avg_per_cpu);
1000 __P(nr_switches);
1001 SEQ_printf(m, "%-45s:%21Ld\n",
1002 "nr_voluntary_switches", (long long)p->nvcsw);
1003 SEQ_printf(m, "%-45s:%21Ld\n",
1004 "nr_involuntary_switches", (long long)p->nivcsw);
1006 P(se.load.weight);
1007 #ifdef CONFIG_SMP
1008 P(se.avg.load_sum);
1009 P(se.avg.util_sum);
1010 P(se.avg.load_avg);
1011 P(se.avg.util_avg);
1012 P(se.avg.last_update_time);
1013 #endif
1014 P(policy);
1015 P(prio);
1016 if (p->policy == SCHED_DEADLINE) {
1017 P(dl.runtime);
1018 P(dl.deadline);
1020 #undef PN_SCHEDSTAT
1021 #undef PN
1022 #undef __PN
1023 #undef P_SCHEDSTAT
1024 #undef P
1025 #undef __P
1028 unsigned int this_cpu = raw_smp_processor_id();
1029 u64 t0, t1;
1031 t0 = cpu_clock(this_cpu);
1032 t1 = cpu_clock(this_cpu);
1033 SEQ_printf(m, "%-45s:%21Ld\n",
1034 "clock-delta", (long long)(t1-t0));
1037 sched_show_numa(p, m);
1040 void proc_sched_set_task(struct task_struct *p)
1042 #ifdef CONFIG_SCHEDSTATS
1043 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1044 #endif