2 * linux/kernel/time/tick-common.c
4 * This file contains the base functions to manage periodic tick
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/module.h>
23 #include <asm/irq_regs.h>
25 #include "tick-internal.h"
30 DEFINE_PER_CPU(struct tick_device
, tick_cpu_device
);
32 * Tick next event: keeps track of the tick time
34 ktime_t tick_next_period
;
38 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
39 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
40 * variable has two functions:
42 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
43 * timekeeping lock all at once. Only the CPU which is assigned to do the
44 * update is handling it.
46 * 2) Hand off the duty in the NOHZ idle case by setting the value to
47 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
48 * at it will take over and keep the time keeping alive. The handover
49 * procedure also covers cpu hotplug.
51 int tick_do_timer_cpu __read_mostly
= TICK_DO_TIMER_BOOT
;
54 * Debugging: see timer_list.c
56 struct tick_device
*tick_get_device(int cpu
)
58 return &per_cpu(tick_cpu_device
, cpu
);
62 * tick_is_oneshot_available - check for a oneshot capable event device
64 int tick_is_oneshot_available(void)
66 struct clock_event_device
*dev
= __this_cpu_read(tick_cpu_device
.evtdev
);
68 if (!dev
|| !(dev
->features
& CLOCK_EVT_FEAT_ONESHOT
))
70 if (!(dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
72 return tick_broadcast_oneshot_available();
78 static void tick_periodic(int cpu
)
80 if (tick_do_timer_cpu
== cpu
) {
81 write_seqlock(&jiffies_lock
);
83 /* Keep track of the next tick event */
84 tick_next_period
= ktime_add(tick_next_period
, tick_period
);
87 write_sequnlock(&jiffies_lock
);
91 update_process_times(user_mode(get_irq_regs()));
92 profile_tick(CPU_PROFILING
);
96 * Event handler for periodic ticks
98 void tick_handle_periodic(struct clock_event_device
*dev
)
100 int cpu
= smp_processor_id();
105 if (dev
->mode
!= CLOCK_EVT_MODE_ONESHOT
)
108 * Setup the next period for devices, which do not have
111 next
= ktime_add(dev
->next_event
, tick_period
);
113 if (!clockevents_program_event(dev
, next
, false))
116 * Have to be careful here. If we're in oneshot mode,
117 * before we call tick_periodic() in a loop, we need
118 * to be sure we're using a real hardware clocksource.
119 * Otherwise we could get trapped in an infinite
120 * loop, as the tick_periodic() increments jiffies,
121 * when then will increment time, posibly causing
122 * the loop to trigger again and again.
124 if (timekeeping_valid_for_hres())
126 next
= ktime_add(next
, tick_period
);
131 * Setup the device for a periodic tick
133 void tick_setup_periodic(struct clock_event_device
*dev
, int broadcast
)
135 tick_set_periodic_handler(dev
, broadcast
);
137 /* Broadcast setup ? */
138 if (!tick_device_is_functional(dev
))
141 if ((dev
->features
& CLOCK_EVT_FEAT_PERIODIC
) &&
142 !tick_broadcast_oneshot_active()) {
143 clockevents_set_mode(dev
, CLOCK_EVT_MODE_PERIODIC
);
149 seq
= read_seqbegin(&jiffies_lock
);
150 next
= tick_next_period
;
151 } while (read_seqretry(&jiffies_lock
, seq
));
153 clockevents_set_mode(dev
, CLOCK_EVT_MODE_ONESHOT
);
156 if (!clockevents_program_event(dev
, next
, false))
158 next
= ktime_add(next
, tick_period
);
164 * Setup the tick device
166 static void tick_setup_device(struct tick_device
*td
,
167 struct clock_event_device
*newdev
, int cpu
,
168 const struct cpumask
*cpumask
)
171 void (*handler
)(struct clock_event_device
*) = NULL
;
174 * First device setup ?
178 * If no cpu took the do_timer update, assign it to
181 if (tick_do_timer_cpu
== TICK_DO_TIMER_BOOT
) {
182 if (!tick_nohz_full_cpu(cpu
))
183 tick_do_timer_cpu
= cpu
;
185 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
186 tick_next_period
= ktime_get();
187 tick_period
= ktime_set(0, NSEC_PER_SEC
/ HZ
);
191 * Startup in periodic mode first.
193 td
->mode
= TICKDEV_MODE_PERIODIC
;
195 handler
= td
->evtdev
->event_handler
;
196 next_event
= td
->evtdev
->next_event
;
197 td
->evtdev
->event_handler
= clockevents_handle_noop
;
203 * When the device is not per cpu, pin the interrupt to the
206 if (!cpumask_equal(newdev
->cpumask
, cpumask
))
207 irq_set_affinity(newdev
->irq
, cpumask
);
210 * When global broadcasting is active, check if the current
211 * device is registered as a placeholder for broadcast mode.
212 * This allows us to handle this x86 misfeature in a generic
213 * way. This function also returns !=0 when we keep the
214 * current active broadcast state for this CPU.
216 if (tick_device_uses_broadcast(newdev
, cpu
))
219 if (td
->mode
== TICKDEV_MODE_PERIODIC
)
220 tick_setup_periodic(newdev
, 0);
222 tick_setup_oneshot(newdev
, handler
, next_event
);
225 void tick_install_replacement(struct clock_event_device
*newdev
)
227 struct tick_device
*td
= &__get_cpu_var(tick_cpu_device
);
228 int cpu
= smp_processor_id();
230 clockevents_exchange_device(td
->evtdev
, newdev
);
231 tick_setup_device(td
, newdev
, cpu
, cpumask_of(cpu
));
232 if (newdev
->features
& CLOCK_EVT_FEAT_ONESHOT
)
233 tick_oneshot_notify();
236 static bool tick_check_percpu(struct clock_event_device
*curdev
,
237 struct clock_event_device
*newdev
, int cpu
)
239 if (!cpumask_test_cpu(cpu
, newdev
->cpumask
))
241 if (cpumask_equal(newdev
->cpumask
, cpumask_of(cpu
)))
243 /* Check if irq affinity can be set */
244 if (newdev
->irq
>= 0 && !irq_can_set_affinity(newdev
->irq
))
246 /* Prefer an existing cpu local device */
247 if (curdev
&& cpumask_equal(curdev
->cpumask
, cpumask_of(cpu
)))
252 static bool tick_check_preferred(struct clock_event_device
*curdev
,
253 struct clock_event_device
*newdev
)
255 /* Prefer oneshot capable device */
256 if (!(newdev
->features
& CLOCK_EVT_FEAT_ONESHOT
)) {
257 if (curdev
&& (curdev
->features
& CLOCK_EVT_FEAT_ONESHOT
))
259 if (tick_oneshot_mode_active())
264 * Use the higher rated one, but prefer a CPU local device with a lower
265 * rating than a non-CPU local device
268 newdev
->rating
> curdev
->rating
||
269 !cpumask_equal(curdev
->cpumask
, newdev
->cpumask
);
273 * Check whether the new device is a better fit than curdev. curdev
276 bool tick_check_replacement(struct clock_event_device
*curdev
,
277 struct clock_event_device
*newdev
)
279 if (tick_check_percpu(curdev
, newdev
, smp_processor_id()))
282 return tick_check_preferred(curdev
, newdev
);
286 * Check, if the new registered device should be used. Called with
287 * clockevents_lock held and interrupts disabled.
289 void tick_check_new_device(struct clock_event_device
*newdev
)
291 struct clock_event_device
*curdev
;
292 struct tick_device
*td
;
295 cpu
= smp_processor_id();
296 if (!cpumask_test_cpu(cpu
, newdev
->cpumask
))
299 td
= &per_cpu(tick_cpu_device
, cpu
);
302 /* cpu local device ? */
303 if (!tick_check_percpu(curdev
, newdev
, cpu
))
306 /* Preference decision */
307 if (!tick_check_preferred(curdev
, newdev
))
310 if (!try_module_get(newdev
->owner
))
314 * Replace the eventually existing device by the new
315 * device. If the current device is the broadcast device, do
316 * not give it back to the clockevents layer !
318 if (tick_is_broadcast_device(curdev
)) {
319 clockevents_shutdown(curdev
);
322 clockevents_exchange_device(curdev
, newdev
);
323 tick_setup_device(td
, newdev
, cpu
, cpumask_of(cpu
));
324 if (newdev
->features
& CLOCK_EVT_FEAT_ONESHOT
)
325 tick_oneshot_notify();
330 * Can the new device be used as a broadcast device ?
332 tick_install_broadcast_device(newdev
);
336 * Transfer the do_timer job away from a dying cpu.
338 * Called with interrupts disabled.
340 void tick_handover_do_timer(int *cpup
)
342 if (*cpup
== tick_do_timer_cpu
) {
343 int cpu
= cpumask_first(cpu_online_mask
);
345 tick_do_timer_cpu
= (cpu
< nr_cpu_ids
) ? cpu
:
351 * Shutdown an event device on a given cpu:
353 * This is called on a life CPU, when a CPU is dead. So we cannot
354 * access the hardware device itself.
355 * We just set the mode and remove it from the lists.
357 void tick_shutdown(unsigned int *cpup
)
359 struct tick_device
*td
= &per_cpu(tick_cpu_device
, *cpup
);
360 struct clock_event_device
*dev
= td
->evtdev
;
362 td
->mode
= TICKDEV_MODE_PERIODIC
;
365 * Prevent that the clock events layer tries to call
366 * the set mode function!
368 dev
->mode
= CLOCK_EVT_MODE_UNUSED
;
369 clockevents_exchange_device(dev
, NULL
);
370 dev
->event_handler
= clockevents_handle_noop
;
375 void tick_suspend(void)
377 struct tick_device
*td
= &__get_cpu_var(tick_cpu_device
);
379 clockevents_shutdown(td
->evtdev
);
382 void tick_resume(void)
384 struct tick_device
*td
= &__get_cpu_var(tick_cpu_device
);
385 int broadcast
= tick_resume_broadcast();
387 clockevents_set_mode(td
->evtdev
, CLOCK_EVT_MODE_RESUME
);
390 if (td
->mode
== TICKDEV_MODE_PERIODIC
)
391 tick_setup_periodic(td
->evtdev
, 0);
393 tick_resume_oneshot();
398 * tick_init - initialize the tick control
400 void __init
tick_init(void)
402 tick_broadcast_init();