4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
47 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
49 static void free_swap_count_continuations(struct swap_info_struct
*);
50 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
52 DEFINE_SPINLOCK(swap_lock
);
53 static unsigned int nr_swapfiles
;
54 atomic_long_t nr_swap_pages
;
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
60 EXPORT_SYMBOL_GPL(nr_swap_pages
);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages
;
63 static int least_priority
= -1;
65 static const char Bad_file
[] = "Bad swap file entry ";
66 static const char Unused_file
[] = "Unused swap file entry ";
67 static const char Bad_offset
[] = "Bad swap offset entry ";
68 static const char Unused_offset
[] = "Unused swap offset entry ";
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
74 PLIST_HEAD(swap_active_head
);
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
88 static struct plist_head
*swap_avail_heads
;
89 static DEFINE_SPINLOCK(swap_avail_lock
);
91 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
93 static DEFINE_MUTEX(swapon_mutex
);
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
99 atomic_t nr_rotate_swap
= ATOMIC_INIT(0);
101 static inline unsigned char swap_count(unsigned char ent
)
103 return ent
& ~SWAP_HAS_CACHE
; /* may include COUNT_CONTINUED flag */
106 /* returns 1 if swap entry is freed */
108 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
110 swp_entry_t entry
= swp_entry(si
->type
, offset
);
114 page
= find_get_page(swap_address_space(entry
), swp_offset(entry
));
118 * This function is called from scan_swap_map() and it's called
119 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120 * We have to use trylock for avoiding deadlock. This is a special
121 * case and you should use try_to_free_swap() with explicit lock_page()
122 * in usual operations.
124 if (trylock_page(page
)) {
125 ret
= try_to_free_swap(page
);
133 * swapon tell device that all the old swap contents can be discarded,
134 * to allow the swap device to optimize its wear-levelling.
136 static int discard_swap(struct swap_info_struct
*si
)
138 struct swap_extent
*se
;
139 sector_t start_block
;
143 /* Do not discard the swap header page! */
144 se
= &si
->first_swap_extent
;
145 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
146 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
148 err
= blkdev_issue_discard(si
->bdev
, start_block
,
149 nr_blocks
, GFP_KERNEL
, 0);
155 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
156 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
157 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
159 err
= blkdev_issue_discard(si
->bdev
, start_block
,
160 nr_blocks
, GFP_KERNEL
, 0);
166 return err
; /* That will often be -EOPNOTSUPP */
170 * swap allocation tell device that a cluster of swap can now be discarded,
171 * to allow the swap device to optimize its wear-levelling.
173 static void discard_swap_cluster(struct swap_info_struct
*si
,
174 pgoff_t start_page
, pgoff_t nr_pages
)
176 struct swap_extent
*se
= si
->curr_swap_extent
;
177 int found_extent
= 0;
180 if (se
->start_page
<= start_page
&&
181 start_page
< se
->start_page
+ se
->nr_pages
) {
182 pgoff_t offset
= start_page
- se
->start_page
;
183 sector_t start_block
= se
->start_block
+ offset
;
184 sector_t nr_blocks
= se
->nr_pages
- offset
;
186 if (nr_blocks
> nr_pages
)
187 nr_blocks
= nr_pages
;
188 start_page
+= nr_blocks
;
189 nr_pages
-= nr_blocks
;
192 si
->curr_swap_extent
= se
;
194 start_block
<<= PAGE_SHIFT
- 9;
195 nr_blocks
<<= PAGE_SHIFT
- 9;
196 if (blkdev_issue_discard(si
->bdev
, start_block
,
197 nr_blocks
, GFP_NOIO
, 0))
201 se
= list_next_entry(se
, list
);
205 #ifdef CONFIG_THP_SWAP
206 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
208 #define swap_entry_size(size) (size)
210 #define SWAPFILE_CLUSTER 256
213 * Define swap_entry_size() as constant to let compiler to optimize
214 * out some code if !CONFIG_THP_SWAP
216 #define swap_entry_size(size) 1
218 #define LATENCY_LIMIT 256
220 static inline void cluster_set_flag(struct swap_cluster_info
*info
,
226 static inline unsigned int cluster_count(struct swap_cluster_info
*info
)
231 static inline void cluster_set_count(struct swap_cluster_info
*info
,
237 static inline void cluster_set_count_flag(struct swap_cluster_info
*info
,
238 unsigned int c
, unsigned int f
)
244 static inline unsigned int cluster_next(struct swap_cluster_info
*info
)
249 static inline void cluster_set_next(struct swap_cluster_info
*info
,
255 static inline void cluster_set_next_flag(struct swap_cluster_info
*info
,
256 unsigned int n
, unsigned int f
)
262 static inline bool cluster_is_free(struct swap_cluster_info
*info
)
264 return info
->flags
& CLUSTER_FLAG_FREE
;
267 static inline bool cluster_is_null(struct swap_cluster_info
*info
)
269 return info
->flags
& CLUSTER_FLAG_NEXT_NULL
;
272 static inline void cluster_set_null(struct swap_cluster_info
*info
)
274 info
->flags
= CLUSTER_FLAG_NEXT_NULL
;
278 static inline bool cluster_is_huge(struct swap_cluster_info
*info
)
280 if (IS_ENABLED(CONFIG_THP_SWAP
))
281 return info
->flags
& CLUSTER_FLAG_HUGE
;
285 static inline void cluster_clear_huge(struct swap_cluster_info
*info
)
287 info
->flags
&= ~CLUSTER_FLAG_HUGE
;
290 static inline struct swap_cluster_info
*lock_cluster(struct swap_info_struct
*si
,
291 unsigned long offset
)
293 struct swap_cluster_info
*ci
;
295 ci
= si
->cluster_info
;
297 ci
+= offset
/ SWAPFILE_CLUSTER
;
298 spin_lock(&ci
->lock
);
303 static inline void unlock_cluster(struct swap_cluster_info
*ci
)
306 spin_unlock(&ci
->lock
);
310 * Determine the locking method in use for this device. Return
311 * swap_cluster_info if SSD-style cluster-based locking is in place.
313 static inline struct swap_cluster_info
*lock_cluster_or_swap_info(
314 struct swap_info_struct
*si
, unsigned long offset
)
316 struct swap_cluster_info
*ci
;
318 /* Try to use fine-grained SSD-style locking if available: */
319 ci
= lock_cluster(si
, offset
);
320 /* Otherwise, fall back to traditional, coarse locking: */
322 spin_lock(&si
->lock
);
327 static inline void unlock_cluster_or_swap_info(struct swap_info_struct
*si
,
328 struct swap_cluster_info
*ci
)
333 spin_unlock(&si
->lock
);
336 static inline bool cluster_list_empty(struct swap_cluster_list
*list
)
338 return cluster_is_null(&list
->head
);
341 static inline unsigned int cluster_list_first(struct swap_cluster_list
*list
)
343 return cluster_next(&list
->head
);
346 static void cluster_list_init(struct swap_cluster_list
*list
)
348 cluster_set_null(&list
->head
);
349 cluster_set_null(&list
->tail
);
352 static void cluster_list_add_tail(struct swap_cluster_list
*list
,
353 struct swap_cluster_info
*ci
,
356 if (cluster_list_empty(list
)) {
357 cluster_set_next_flag(&list
->head
, idx
, 0);
358 cluster_set_next_flag(&list
->tail
, idx
, 0);
360 struct swap_cluster_info
*ci_tail
;
361 unsigned int tail
= cluster_next(&list
->tail
);
364 * Nested cluster lock, but both cluster locks are
365 * only acquired when we held swap_info_struct->lock
368 spin_lock_nested(&ci_tail
->lock
, SINGLE_DEPTH_NESTING
);
369 cluster_set_next(ci_tail
, idx
);
370 spin_unlock(&ci_tail
->lock
);
371 cluster_set_next_flag(&list
->tail
, idx
, 0);
375 static unsigned int cluster_list_del_first(struct swap_cluster_list
*list
,
376 struct swap_cluster_info
*ci
)
380 idx
= cluster_next(&list
->head
);
381 if (cluster_next(&list
->tail
) == idx
) {
382 cluster_set_null(&list
->head
);
383 cluster_set_null(&list
->tail
);
385 cluster_set_next_flag(&list
->head
,
386 cluster_next(&ci
[idx
]), 0);
391 /* Add a cluster to discard list and schedule it to do discard */
392 static void swap_cluster_schedule_discard(struct swap_info_struct
*si
,
396 * If scan_swap_map() can't find a free cluster, it will check
397 * si->swap_map directly. To make sure the discarding cluster isn't
398 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
399 * will be cleared after discard
401 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
402 SWAP_MAP_BAD
, SWAPFILE_CLUSTER
);
404 cluster_list_add_tail(&si
->discard_clusters
, si
->cluster_info
, idx
);
406 schedule_work(&si
->discard_work
);
409 static void __free_cluster(struct swap_info_struct
*si
, unsigned long idx
)
411 struct swap_cluster_info
*ci
= si
->cluster_info
;
413 cluster_set_flag(ci
+ idx
, CLUSTER_FLAG_FREE
);
414 cluster_list_add_tail(&si
->free_clusters
, ci
, idx
);
418 * Doing discard actually. After a cluster discard is finished, the cluster
419 * will be added to free cluster list. caller should hold si->lock.
421 static void swap_do_scheduled_discard(struct swap_info_struct
*si
)
423 struct swap_cluster_info
*info
, *ci
;
426 info
= si
->cluster_info
;
428 while (!cluster_list_empty(&si
->discard_clusters
)) {
429 idx
= cluster_list_del_first(&si
->discard_clusters
, info
);
430 spin_unlock(&si
->lock
);
432 discard_swap_cluster(si
, idx
* SWAPFILE_CLUSTER
,
435 spin_lock(&si
->lock
);
436 ci
= lock_cluster(si
, idx
* SWAPFILE_CLUSTER
);
437 __free_cluster(si
, idx
);
438 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
439 0, SWAPFILE_CLUSTER
);
444 static void swap_discard_work(struct work_struct
*work
)
446 struct swap_info_struct
*si
;
448 si
= container_of(work
, struct swap_info_struct
, discard_work
);
450 spin_lock(&si
->lock
);
451 swap_do_scheduled_discard(si
);
452 spin_unlock(&si
->lock
);
455 static void alloc_cluster(struct swap_info_struct
*si
, unsigned long idx
)
457 struct swap_cluster_info
*ci
= si
->cluster_info
;
459 VM_BUG_ON(cluster_list_first(&si
->free_clusters
) != idx
);
460 cluster_list_del_first(&si
->free_clusters
, ci
);
461 cluster_set_count_flag(ci
+ idx
, 0, 0);
464 static void free_cluster(struct swap_info_struct
*si
, unsigned long idx
)
466 struct swap_cluster_info
*ci
= si
->cluster_info
+ idx
;
468 VM_BUG_ON(cluster_count(ci
) != 0);
470 * If the swap is discardable, prepare discard the cluster
471 * instead of free it immediately. The cluster will be freed
474 if ((si
->flags
& (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) ==
475 (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) {
476 swap_cluster_schedule_discard(si
, idx
);
480 __free_cluster(si
, idx
);
484 * The cluster corresponding to page_nr will be used. The cluster will be
485 * removed from free cluster list and its usage counter will be increased.
487 static void inc_cluster_info_page(struct swap_info_struct
*p
,
488 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
490 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
494 if (cluster_is_free(&cluster_info
[idx
]))
495 alloc_cluster(p
, idx
);
497 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) >= SWAPFILE_CLUSTER
);
498 cluster_set_count(&cluster_info
[idx
],
499 cluster_count(&cluster_info
[idx
]) + 1);
503 * The cluster corresponding to page_nr decreases one usage. If the usage
504 * counter becomes 0, which means no page in the cluster is in using, we can
505 * optionally discard the cluster and add it to free cluster list.
507 static void dec_cluster_info_page(struct swap_info_struct
*p
,
508 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
510 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
515 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) == 0);
516 cluster_set_count(&cluster_info
[idx
],
517 cluster_count(&cluster_info
[idx
]) - 1);
519 if (cluster_count(&cluster_info
[idx
]) == 0)
520 free_cluster(p
, idx
);
524 * It's possible scan_swap_map() uses a free cluster in the middle of free
525 * cluster list. Avoiding such abuse to avoid list corruption.
528 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct
*si
,
529 unsigned long offset
)
531 struct percpu_cluster
*percpu_cluster
;
534 offset
/= SWAPFILE_CLUSTER
;
535 conflict
= !cluster_list_empty(&si
->free_clusters
) &&
536 offset
!= cluster_list_first(&si
->free_clusters
) &&
537 cluster_is_free(&si
->cluster_info
[offset
]);
542 percpu_cluster
= this_cpu_ptr(si
->percpu_cluster
);
543 cluster_set_null(&percpu_cluster
->index
);
548 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
549 * might involve allocating a new cluster for current CPU too.
551 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct
*si
,
552 unsigned long *offset
, unsigned long *scan_base
)
554 struct percpu_cluster
*cluster
;
555 struct swap_cluster_info
*ci
;
557 unsigned long tmp
, max
;
560 cluster
= this_cpu_ptr(si
->percpu_cluster
);
561 if (cluster_is_null(&cluster
->index
)) {
562 if (!cluster_list_empty(&si
->free_clusters
)) {
563 cluster
->index
= si
->free_clusters
.head
;
564 cluster
->next
= cluster_next(&cluster
->index
) *
566 } else if (!cluster_list_empty(&si
->discard_clusters
)) {
568 * we don't have free cluster but have some clusters in
569 * discarding, do discard now and reclaim them
571 swap_do_scheduled_discard(si
);
572 *scan_base
= *offset
= si
->cluster_next
;
581 * Other CPUs can use our cluster if they can't find a free cluster,
582 * check if there is still free entry in the cluster
585 max
= min_t(unsigned long, si
->max
,
586 (cluster_next(&cluster
->index
) + 1) * SWAPFILE_CLUSTER
);
588 cluster_set_null(&cluster
->index
);
591 ci
= lock_cluster(si
, tmp
);
593 if (!si
->swap_map
[tmp
]) {
601 cluster_set_null(&cluster
->index
);
604 cluster
->next
= tmp
+ 1;
610 static void __del_from_avail_list(struct swap_info_struct
*p
)
615 plist_del(&p
->avail_lists
[nid
], &swap_avail_heads
[nid
]);
618 static void del_from_avail_list(struct swap_info_struct
*p
)
620 spin_lock(&swap_avail_lock
);
621 __del_from_avail_list(p
);
622 spin_unlock(&swap_avail_lock
);
625 static void swap_range_alloc(struct swap_info_struct
*si
, unsigned long offset
,
626 unsigned int nr_entries
)
628 unsigned int end
= offset
+ nr_entries
- 1;
630 if (offset
== si
->lowest_bit
)
631 si
->lowest_bit
+= nr_entries
;
632 if (end
== si
->highest_bit
)
633 si
->highest_bit
-= nr_entries
;
634 si
->inuse_pages
+= nr_entries
;
635 if (si
->inuse_pages
== si
->pages
) {
636 si
->lowest_bit
= si
->max
;
638 del_from_avail_list(si
);
642 static void add_to_avail_list(struct swap_info_struct
*p
)
646 spin_lock(&swap_avail_lock
);
648 WARN_ON(!plist_node_empty(&p
->avail_lists
[nid
]));
649 plist_add(&p
->avail_lists
[nid
], &swap_avail_heads
[nid
]);
651 spin_unlock(&swap_avail_lock
);
654 static void swap_range_free(struct swap_info_struct
*si
, unsigned long offset
,
655 unsigned int nr_entries
)
657 unsigned long end
= offset
+ nr_entries
- 1;
658 void (*swap_slot_free_notify
)(struct block_device
*, unsigned long);
660 if (offset
< si
->lowest_bit
)
661 si
->lowest_bit
= offset
;
662 if (end
> si
->highest_bit
) {
663 bool was_full
= !si
->highest_bit
;
665 si
->highest_bit
= end
;
666 if (was_full
&& (si
->flags
& SWP_WRITEOK
))
667 add_to_avail_list(si
);
669 atomic_long_add(nr_entries
, &nr_swap_pages
);
670 si
->inuse_pages
-= nr_entries
;
671 if (si
->flags
& SWP_BLKDEV
)
672 swap_slot_free_notify
=
673 si
->bdev
->bd_disk
->fops
->swap_slot_free_notify
;
675 swap_slot_free_notify
= NULL
;
676 while (offset
<= end
) {
677 frontswap_invalidate_page(si
->type
, offset
);
678 if (swap_slot_free_notify
)
679 swap_slot_free_notify(si
->bdev
, offset
);
684 static int scan_swap_map_slots(struct swap_info_struct
*si
,
685 unsigned char usage
, int nr
,
688 struct swap_cluster_info
*ci
;
689 unsigned long offset
;
690 unsigned long scan_base
;
691 unsigned long last_in_cluster
= 0;
692 int latency_ration
= LATENCY_LIMIT
;
699 * We try to cluster swap pages by allocating them sequentially
700 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
701 * way, however, we resort to first-free allocation, starting
702 * a new cluster. This prevents us from scattering swap pages
703 * all over the entire swap partition, so that we reduce
704 * overall disk seek times between swap pages. -- sct
705 * But we do now try to find an empty cluster. -Andrea
706 * And we let swap pages go all over an SSD partition. Hugh
709 si
->flags
+= SWP_SCANNING
;
710 scan_base
= offset
= si
->cluster_next
;
713 if (si
->cluster_info
) {
714 if (scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
))
720 if (unlikely(!si
->cluster_nr
--)) {
721 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
722 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
726 spin_unlock(&si
->lock
);
729 * If seek is expensive, start searching for new cluster from
730 * start of partition, to minimize the span of allocated swap.
731 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
732 * case, just handled by scan_swap_map_try_ssd_cluster() above.
734 scan_base
= offset
= si
->lowest_bit
;
735 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
737 /* Locate the first empty (unaligned) cluster */
738 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
739 if (si
->swap_map
[offset
])
740 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
741 else if (offset
== last_in_cluster
) {
742 spin_lock(&si
->lock
);
743 offset
-= SWAPFILE_CLUSTER
- 1;
744 si
->cluster_next
= offset
;
745 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
748 if (unlikely(--latency_ration
< 0)) {
750 latency_ration
= LATENCY_LIMIT
;
755 spin_lock(&si
->lock
);
756 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
760 if (si
->cluster_info
) {
761 while (scan_swap_map_ssd_cluster_conflict(si
, offset
)) {
762 /* take a break if we already got some slots */
765 if (!scan_swap_map_try_ssd_cluster(si
, &offset
,
770 if (!(si
->flags
& SWP_WRITEOK
))
772 if (!si
->highest_bit
)
774 if (offset
> si
->highest_bit
)
775 scan_base
= offset
= si
->lowest_bit
;
777 ci
= lock_cluster(si
, offset
);
778 /* reuse swap entry of cache-only swap if not busy. */
779 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
782 spin_unlock(&si
->lock
);
783 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
784 spin_lock(&si
->lock
);
785 /* entry was freed successfully, try to use this again */
788 goto scan
; /* check next one */
791 if (si
->swap_map
[offset
]) {
798 si
->swap_map
[offset
] = usage
;
799 inc_cluster_info_page(si
, si
->cluster_info
, offset
);
802 swap_range_alloc(si
, offset
, 1);
803 si
->cluster_next
= offset
+ 1;
804 slots
[n_ret
++] = swp_entry(si
->type
, offset
);
806 /* got enough slots or reach max slots? */
807 if ((n_ret
== nr
) || (offset
>= si
->highest_bit
))
810 /* search for next available slot */
812 /* time to take a break? */
813 if (unlikely(--latency_ration
< 0)) {
816 spin_unlock(&si
->lock
);
818 spin_lock(&si
->lock
);
819 latency_ration
= LATENCY_LIMIT
;
822 /* try to get more slots in cluster */
823 if (si
->cluster_info
) {
824 if (scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
))
832 /* non-ssd case, still more slots in cluster? */
833 if (si
->cluster_nr
&& !si
->swap_map
[offset
]) {
839 si
->flags
-= SWP_SCANNING
;
843 spin_unlock(&si
->lock
);
844 while (++offset
<= si
->highest_bit
) {
845 if (!si
->swap_map
[offset
]) {
846 spin_lock(&si
->lock
);
849 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
850 spin_lock(&si
->lock
);
853 if (unlikely(--latency_ration
< 0)) {
855 latency_ration
= LATENCY_LIMIT
;
858 offset
= si
->lowest_bit
;
859 while (offset
< scan_base
) {
860 if (!si
->swap_map
[offset
]) {
861 spin_lock(&si
->lock
);
864 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
865 spin_lock(&si
->lock
);
868 if (unlikely(--latency_ration
< 0)) {
870 latency_ration
= LATENCY_LIMIT
;
874 spin_lock(&si
->lock
);
877 si
->flags
-= SWP_SCANNING
;
881 static int swap_alloc_cluster(struct swap_info_struct
*si
, swp_entry_t
*slot
)
884 struct swap_cluster_info
*ci
;
885 unsigned long offset
, i
;
889 * Should not even be attempting cluster allocations when huge
890 * page swap is disabled. Warn and fail the allocation.
892 if (!IS_ENABLED(CONFIG_THP_SWAP
)) {
897 if (cluster_list_empty(&si
->free_clusters
))
900 idx
= cluster_list_first(&si
->free_clusters
);
901 offset
= idx
* SWAPFILE_CLUSTER
;
902 ci
= lock_cluster(si
, offset
);
903 alloc_cluster(si
, idx
);
904 cluster_set_count_flag(ci
, SWAPFILE_CLUSTER
, CLUSTER_FLAG_HUGE
);
906 map
= si
->swap_map
+ offset
;
907 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++)
908 map
[i
] = SWAP_HAS_CACHE
;
910 swap_range_alloc(si
, offset
, SWAPFILE_CLUSTER
);
911 *slot
= swp_entry(si
->type
, offset
);
916 static void swap_free_cluster(struct swap_info_struct
*si
, unsigned long idx
)
918 unsigned long offset
= idx
* SWAPFILE_CLUSTER
;
919 struct swap_cluster_info
*ci
;
921 ci
= lock_cluster(si
, offset
);
922 cluster_set_count_flag(ci
, 0, 0);
923 free_cluster(si
, idx
);
925 swap_range_free(si
, offset
, SWAPFILE_CLUSTER
);
928 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
934 n_ret
= scan_swap_map_slots(si
, usage
, 1, &entry
);
937 return swp_offset(entry
);
943 int get_swap_pages(int n_goal
, swp_entry_t swp_entries
[], int entry_size
)
945 unsigned long size
= swap_entry_size(entry_size
);
946 struct swap_info_struct
*si
, *next
;
951 /* Only single cluster request supported */
952 WARN_ON_ONCE(n_goal
> 1 && size
== SWAPFILE_CLUSTER
);
954 avail_pgs
= atomic_long_read(&nr_swap_pages
) / size
;
958 if (n_goal
> SWAP_BATCH
)
961 if (n_goal
> avail_pgs
)
964 atomic_long_sub(n_goal
* size
, &nr_swap_pages
);
966 spin_lock(&swap_avail_lock
);
969 node
= numa_node_id();
970 plist_for_each_entry_safe(si
, next
, &swap_avail_heads
[node
], avail_lists
[node
]) {
971 /* requeue si to after same-priority siblings */
972 plist_requeue(&si
->avail_lists
[node
], &swap_avail_heads
[node
]);
973 spin_unlock(&swap_avail_lock
);
974 spin_lock(&si
->lock
);
975 if (!si
->highest_bit
|| !(si
->flags
& SWP_WRITEOK
)) {
976 spin_lock(&swap_avail_lock
);
977 if (plist_node_empty(&si
->avail_lists
[node
])) {
978 spin_unlock(&si
->lock
);
981 WARN(!si
->highest_bit
,
982 "swap_info %d in list but !highest_bit\n",
984 WARN(!(si
->flags
& SWP_WRITEOK
),
985 "swap_info %d in list but !SWP_WRITEOK\n",
987 __del_from_avail_list(si
);
988 spin_unlock(&si
->lock
);
991 if (size
== SWAPFILE_CLUSTER
) {
992 if (!(si
->flags
& SWP_FILE
))
993 n_ret
= swap_alloc_cluster(si
, swp_entries
);
995 n_ret
= scan_swap_map_slots(si
, SWAP_HAS_CACHE
,
996 n_goal
, swp_entries
);
997 spin_unlock(&si
->lock
);
998 if (n_ret
|| size
== SWAPFILE_CLUSTER
)
1000 pr_debug("scan_swap_map of si %d failed to find offset\n",
1003 spin_lock(&swap_avail_lock
);
1006 * if we got here, it's likely that si was almost full before,
1007 * and since scan_swap_map() can drop the si->lock, multiple
1008 * callers probably all tried to get a page from the same si
1009 * and it filled up before we could get one; or, the si filled
1010 * up between us dropping swap_avail_lock and taking si->lock.
1011 * Since we dropped the swap_avail_lock, the swap_avail_head
1012 * list may have been modified; so if next is still in the
1013 * swap_avail_head list then try it, otherwise start over
1014 * if we have not gotten any slots.
1016 if (plist_node_empty(&next
->avail_lists
[node
]))
1020 spin_unlock(&swap_avail_lock
);
1024 atomic_long_add((long)(n_goal
- n_ret
) * size
,
1030 /* The only caller of this function is now suspend routine */
1031 swp_entry_t
get_swap_page_of_type(int type
)
1033 struct swap_info_struct
*si
;
1036 si
= swap_info
[type
];
1037 spin_lock(&si
->lock
);
1038 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
1039 atomic_long_dec(&nr_swap_pages
);
1040 /* This is called for allocating swap entry, not cache */
1041 offset
= scan_swap_map(si
, 1);
1043 spin_unlock(&si
->lock
);
1044 return swp_entry(type
, offset
);
1046 atomic_long_inc(&nr_swap_pages
);
1048 spin_unlock(&si
->lock
);
1049 return (swp_entry_t
) {0};
1052 static struct swap_info_struct
*__swap_info_get(swp_entry_t entry
)
1054 struct swap_info_struct
*p
;
1055 unsigned long offset
, type
;
1059 type
= swp_type(entry
);
1060 if (type
>= nr_swapfiles
)
1062 p
= swap_info
[type
];
1063 if (!(p
->flags
& SWP_USED
))
1065 offset
= swp_offset(entry
);
1066 if (offset
>= p
->max
)
1071 pr_err("swap_info_get: %s%08lx\n", Bad_offset
, entry
.val
);
1074 pr_err("swap_info_get: %s%08lx\n", Unused_file
, entry
.val
);
1077 pr_err("swap_info_get: %s%08lx\n", Bad_file
, entry
.val
);
1082 static struct swap_info_struct
*_swap_info_get(swp_entry_t entry
)
1084 struct swap_info_struct
*p
;
1086 p
= __swap_info_get(entry
);
1089 if (!p
->swap_map
[swp_offset(entry
)])
1094 pr_err("swap_info_get: %s%08lx\n", Unused_offset
, entry
.val
);
1100 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
1102 struct swap_info_struct
*p
;
1104 p
= _swap_info_get(entry
);
1106 spin_lock(&p
->lock
);
1110 static struct swap_info_struct
*swap_info_get_cont(swp_entry_t entry
,
1111 struct swap_info_struct
*q
)
1113 struct swap_info_struct
*p
;
1115 p
= _swap_info_get(entry
);
1119 spin_unlock(&q
->lock
);
1121 spin_lock(&p
->lock
);
1126 static unsigned char __swap_entry_free_locked(struct swap_info_struct
*p
,
1127 unsigned long offset
,
1128 unsigned char usage
)
1130 unsigned char count
;
1131 unsigned char has_cache
;
1133 count
= p
->swap_map
[offset
];
1135 has_cache
= count
& SWAP_HAS_CACHE
;
1136 count
&= ~SWAP_HAS_CACHE
;
1138 if (usage
== SWAP_HAS_CACHE
) {
1139 VM_BUG_ON(!has_cache
);
1141 } else if (count
== SWAP_MAP_SHMEM
) {
1143 * Or we could insist on shmem.c using a special
1144 * swap_shmem_free() and free_shmem_swap_and_cache()...
1147 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
1148 if (count
== COUNT_CONTINUED
) {
1149 if (swap_count_continued(p
, offset
, count
))
1150 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
1152 count
= SWAP_MAP_MAX
;
1157 usage
= count
| has_cache
;
1158 p
->swap_map
[offset
] = usage
? : SWAP_HAS_CACHE
;
1163 static unsigned char __swap_entry_free(struct swap_info_struct
*p
,
1164 swp_entry_t entry
, unsigned char usage
)
1166 struct swap_cluster_info
*ci
;
1167 unsigned long offset
= swp_offset(entry
);
1169 ci
= lock_cluster_or_swap_info(p
, offset
);
1170 usage
= __swap_entry_free_locked(p
, offset
, usage
);
1171 unlock_cluster_or_swap_info(p
, ci
);
1176 static void swap_entry_free(struct swap_info_struct
*p
, swp_entry_t entry
)
1178 struct swap_cluster_info
*ci
;
1179 unsigned long offset
= swp_offset(entry
);
1180 unsigned char count
;
1182 ci
= lock_cluster(p
, offset
);
1183 count
= p
->swap_map
[offset
];
1184 VM_BUG_ON(count
!= SWAP_HAS_CACHE
);
1185 p
->swap_map
[offset
] = 0;
1186 dec_cluster_info_page(p
, p
->cluster_info
, offset
);
1189 mem_cgroup_uncharge_swap(entry
, 1);
1190 swap_range_free(p
, offset
, 1);
1194 * Caller has made sure that the swap device corresponding to entry
1195 * is still around or has not been recycled.
1197 void swap_free(swp_entry_t entry
)
1199 struct swap_info_struct
*p
;
1201 p
= _swap_info_get(entry
);
1203 if (!__swap_entry_free(p
, entry
, 1))
1204 free_swap_slot(entry
);
1209 * Called after dropping swapcache to decrease refcnt to swap entries.
1211 void put_swap_page(struct page
*page
, swp_entry_t entry
)
1213 unsigned long offset
= swp_offset(entry
);
1214 unsigned long idx
= offset
/ SWAPFILE_CLUSTER
;
1215 struct swap_cluster_info
*ci
;
1216 struct swap_info_struct
*si
;
1218 unsigned int i
, free_entries
= 0;
1220 int size
= swap_entry_size(hpage_nr_pages(page
));
1222 si
= _swap_info_get(entry
);
1226 ci
= lock_cluster_or_swap_info(si
, offset
);
1227 if (size
== SWAPFILE_CLUSTER
) {
1228 VM_BUG_ON(!cluster_is_huge(ci
));
1229 map
= si
->swap_map
+ offset
;
1230 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++) {
1232 VM_BUG_ON(!(val
& SWAP_HAS_CACHE
));
1233 if (val
== SWAP_HAS_CACHE
)
1236 cluster_clear_huge(ci
);
1237 if (free_entries
== SWAPFILE_CLUSTER
) {
1238 unlock_cluster_or_swap_info(si
, ci
);
1239 spin_lock(&si
->lock
);
1240 ci
= lock_cluster(si
, offset
);
1241 memset(map
, 0, SWAPFILE_CLUSTER
);
1243 mem_cgroup_uncharge_swap(entry
, SWAPFILE_CLUSTER
);
1244 swap_free_cluster(si
, idx
);
1245 spin_unlock(&si
->lock
);
1249 for (i
= 0; i
< size
; i
++, entry
.val
++) {
1250 if (!__swap_entry_free_locked(si
, offset
+ i
, SWAP_HAS_CACHE
)) {
1251 unlock_cluster_or_swap_info(si
, ci
);
1252 free_swap_slot(entry
);
1255 lock_cluster_or_swap_info(si
, offset
);
1258 unlock_cluster_or_swap_info(si
, ci
);
1261 #ifdef CONFIG_THP_SWAP
1262 int split_swap_cluster(swp_entry_t entry
)
1264 struct swap_info_struct
*si
;
1265 struct swap_cluster_info
*ci
;
1266 unsigned long offset
= swp_offset(entry
);
1268 si
= _swap_info_get(entry
);
1271 ci
= lock_cluster(si
, offset
);
1272 cluster_clear_huge(ci
);
1278 static int swp_entry_cmp(const void *ent1
, const void *ent2
)
1280 const swp_entry_t
*e1
= ent1
, *e2
= ent2
;
1282 return (int)swp_type(*e1
) - (int)swp_type(*e2
);
1285 void swapcache_free_entries(swp_entry_t
*entries
, int n
)
1287 struct swap_info_struct
*p
, *prev
;
1297 * Sort swap entries by swap device, so each lock is only taken once.
1298 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1299 * so low that it isn't necessary to optimize further.
1301 if (nr_swapfiles
> 1)
1302 sort(entries
, n
, sizeof(entries
[0]), swp_entry_cmp
, NULL
);
1303 for (i
= 0; i
< n
; ++i
) {
1304 p
= swap_info_get_cont(entries
[i
], prev
);
1306 swap_entry_free(p
, entries
[i
]);
1310 spin_unlock(&p
->lock
);
1314 * How many references to page are currently swapped out?
1315 * This does not give an exact answer when swap count is continued,
1316 * but does include the high COUNT_CONTINUED flag to allow for that.
1318 int page_swapcount(struct page
*page
)
1321 struct swap_info_struct
*p
;
1322 struct swap_cluster_info
*ci
;
1324 unsigned long offset
;
1326 entry
.val
= page_private(page
);
1327 p
= _swap_info_get(entry
);
1329 offset
= swp_offset(entry
);
1330 ci
= lock_cluster_or_swap_info(p
, offset
);
1331 count
= swap_count(p
->swap_map
[offset
]);
1332 unlock_cluster_or_swap_info(p
, ci
);
1337 int __swap_count(struct swap_info_struct
*si
, swp_entry_t entry
)
1339 pgoff_t offset
= swp_offset(entry
);
1341 return swap_count(si
->swap_map
[offset
]);
1344 static int swap_swapcount(struct swap_info_struct
*si
, swp_entry_t entry
)
1347 pgoff_t offset
= swp_offset(entry
);
1348 struct swap_cluster_info
*ci
;
1350 ci
= lock_cluster_or_swap_info(si
, offset
);
1351 count
= swap_count(si
->swap_map
[offset
]);
1352 unlock_cluster_or_swap_info(si
, ci
);
1357 * How many references to @entry are currently swapped out?
1358 * This does not give an exact answer when swap count is continued,
1359 * but does include the high COUNT_CONTINUED flag to allow for that.
1361 int __swp_swapcount(swp_entry_t entry
)
1364 struct swap_info_struct
*si
;
1366 si
= __swap_info_get(entry
);
1368 count
= swap_swapcount(si
, entry
);
1373 * How many references to @entry are currently swapped out?
1374 * This considers COUNT_CONTINUED so it returns exact answer.
1376 int swp_swapcount(swp_entry_t entry
)
1378 int count
, tmp_count
, n
;
1379 struct swap_info_struct
*p
;
1380 struct swap_cluster_info
*ci
;
1385 p
= _swap_info_get(entry
);
1389 offset
= swp_offset(entry
);
1391 ci
= lock_cluster_or_swap_info(p
, offset
);
1393 count
= swap_count(p
->swap_map
[offset
]);
1394 if (!(count
& COUNT_CONTINUED
))
1397 count
&= ~COUNT_CONTINUED
;
1398 n
= SWAP_MAP_MAX
+ 1;
1400 page
= vmalloc_to_page(p
->swap_map
+ offset
);
1401 offset
&= ~PAGE_MASK
;
1402 VM_BUG_ON(page_private(page
) != SWP_CONTINUED
);
1405 page
= list_next_entry(page
, lru
);
1406 map
= kmap_atomic(page
);
1407 tmp_count
= map
[offset
];
1410 count
+= (tmp_count
& ~COUNT_CONTINUED
) * n
;
1411 n
*= (SWAP_CONT_MAX
+ 1);
1412 } while (tmp_count
& COUNT_CONTINUED
);
1414 unlock_cluster_or_swap_info(p
, ci
);
1418 static bool swap_page_trans_huge_swapped(struct swap_info_struct
*si
,
1421 struct swap_cluster_info
*ci
;
1422 unsigned char *map
= si
->swap_map
;
1423 unsigned long roffset
= swp_offset(entry
);
1424 unsigned long offset
= round_down(roffset
, SWAPFILE_CLUSTER
);
1428 ci
= lock_cluster_or_swap_info(si
, offset
);
1429 if (!ci
|| !cluster_is_huge(ci
)) {
1430 if (swap_count(map
[roffset
]))
1434 for (i
= 0; i
< SWAPFILE_CLUSTER
; i
++) {
1435 if (swap_count(map
[offset
+ i
])) {
1441 unlock_cluster_or_swap_info(si
, ci
);
1445 static bool page_swapped(struct page
*page
)
1448 struct swap_info_struct
*si
;
1450 if (!IS_ENABLED(CONFIG_THP_SWAP
) || likely(!PageTransCompound(page
)))
1451 return page_swapcount(page
) != 0;
1453 page
= compound_head(page
);
1454 entry
.val
= page_private(page
);
1455 si
= _swap_info_get(entry
);
1457 return swap_page_trans_huge_swapped(si
, entry
);
1461 static int page_trans_huge_map_swapcount(struct page
*page
, int *total_mapcount
,
1462 int *total_swapcount
)
1464 int i
, map_swapcount
, _total_mapcount
, _total_swapcount
;
1465 unsigned long offset
= 0;
1466 struct swap_info_struct
*si
;
1467 struct swap_cluster_info
*ci
= NULL
;
1468 unsigned char *map
= NULL
;
1469 int mapcount
, swapcount
= 0;
1471 /* hugetlbfs shouldn't call it */
1472 VM_BUG_ON_PAGE(PageHuge(page
), page
);
1474 if (!IS_ENABLED(CONFIG_THP_SWAP
) || likely(!PageTransCompound(page
))) {
1475 mapcount
= page_trans_huge_mapcount(page
, total_mapcount
);
1476 if (PageSwapCache(page
))
1477 swapcount
= page_swapcount(page
);
1478 if (total_swapcount
)
1479 *total_swapcount
= swapcount
;
1480 return mapcount
+ swapcount
;
1483 page
= compound_head(page
);
1485 _total_mapcount
= _total_swapcount
= map_swapcount
= 0;
1486 if (PageSwapCache(page
)) {
1489 entry
.val
= page_private(page
);
1490 si
= _swap_info_get(entry
);
1493 offset
= swp_offset(entry
);
1497 ci
= lock_cluster(si
, offset
);
1498 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1499 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
1500 _total_mapcount
+= mapcount
;
1502 swapcount
= swap_count(map
[offset
+ i
]);
1503 _total_swapcount
+= swapcount
;
1505 map_swapcount
= max(map_swapcount
, mapcount
+ swapcount
);
1508 if (PageDoubleMap(page
)) {
1510 _total_mapcount
-= HPAGE_PMD_NR
;
1512 mapcount
= compound_mapcount(page
);
1513 map_swapcount
+= mapcount
;
1514 _total_mapcount
+= mapcount
;
1516 *total_mapcount
= _total_mapcount
;
1517 if (total_swapcount
)
1518 *total_swapcount
= _total_swapcount
;
1520 return map_swapcount
;
1524 * We can write to an anon page without COW if there are no other references
1525 * to it. And as a side-effect, free up its swap: because the old content
1526 * on disk will never be read, and seeking back there to write new content
1527 * later would only waste time away from clustering.
1529 * NOTE: total_map_swapcount should not be relied upon by the caller if
1530 * reuse_swap_page() returns false, but it may be always overwritten
1531 * (see the other implementation for CONFIG_SWAP=n).
1533 bool reuse_swap_page(struct page
*page
, int *total_map_swapcount
)
1535 int count
, total_mapcount
, total_swapcount
;
1537 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1538 if (unlikely(PageKsm(page
)))
1540 count
= page_trans_huge_map_swapcount(page
, &total_mapcount
,
1542 if (total_map_swapcount
)
1543 *total_map_swapcount
= total_mapcount
+ total_swapcount
;
1544 if (count
== 1 && PageSwapCache(page
) &&
1545 (likely(!PageTransCompound(page
)) ||
1546 /* The remaining swap count will be freed soon */
1547 total_swapcount
== page_swapcount(page
))) {
1548 if (!PageWriteback(page
)) {
1549 page
= compound_head(page
);
1550 delete_from_swap_cache(page
);
1554 struct swap_info_struct
*p
;
1556 entry
.val
= page_private(page
);
1557 p
= swap_info_get(entry
);
1558 if (p
->flags
& SWP_STABLE_WRITES
) {
1559 spin_unlock(&p
->lock
);
1562 spin_unlock(&p
->lock
);
1570 * If swap is getting full, or if there are no more mappings of this page,
1571 * then try_to_free_swap is called to free its swap space.
1573 int try_to_free_swap(struct page
*page
)
1575 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1577 if (!PageSwapCache(page
))
1579 if (PageWriteback(page
))
1581 if (page_swapped(page
))
1585 * Once hibernation has begun to create its image of memory,
1586 * there's a danger that one of the calls to try_to_free_swap()
1587 * - most probably a call from __try_to_reclaim_swap() while
1588 * hibernation is allocating its own swap pages for the image,
1589 * but conceivably even a call from memory reclaim - will free
1590 * the swap from a page which has already been recorded in the
1591 * image as a clean swapcache page, and then reuse its swap for
1592 * another page of the image. On waking from hibernation, the
1593 * original page might be freed under memory pressure, then
1594 * later read back in from swap, now with the wrong data.
1596 * Hibernation suspends storage while it is writing the image
1597 * to disk so check that here.
1599 if (pm_suspended_storage())
1602 page
= compound_head(page
);
1603 delete_from_swap_cache(page
);
1609 * Free the swap entry like above, but also try to
1610 * free the page cache entry if it is the last user.
1612 int free_swap_and_cache(swp_entry_t entry
)
1614 struct swap_info_struct
*p
;
1615 struct page
*page
= NULL
;
1616 unsigned char count
;
1618 if (non_swap_entry(entry
))
1621 p
= _swap_info_get(entry
);
1623 count
= __swap_entry_free(p
, entry
, 1);
1624 if (count
== SWAP_HAS_CACHE
&&
1625 !swap_page_trans_huge_swapped(p
, entry
)) {
1626 page
= find_get_page(swap_address_space(entry
),
1628 if (page
&& !trylock_page(page
)) {
1633 free_swap_slot(entry
);
1637 * Not mapped elsewhere, or swap space full? Free it!
1638 * Also recheck PageSwapCache now page is locked (above).
1640 if (PageSwapCache(page
) && !PageWriteback(page
) &&
1641 (!page_mapped(page
) || mem_cgroup_swap_full(page
)) &&
1642 !swap_page_trans_huge_swapped(p
, entry
)) {
1643 page
= compound_head(page
);
1644 delete_from_swap_cache(page
);
1653 #ifdef CONFIG_HIBERNATION
1655 * Find the swap type that corresponds to given device (if any).
1657 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1658 * from 0, in which the swap header is expected to be located.
1660 * This is needed for the suspend to disk (aka swsusp).
1662 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
1664 struct block_device
*bdev
= NULL
;
1668 bdev
= bdget(device
);
1670 spin_lock(&swap_lock
);
1671 for (type
= 0; type
< nr_swapfiles
; type
++) {
1672 struct swap_info_struct
*sis
= swap_info
[type
];
1674 if (!(sis
->flags
& SWP_WRITEOK
))
1679 *bdev_p
= bdgrab(sis
->bdev
);
1681 spin_unlock(&swap_lock
);
1684 if (bdev
== sis
->bdev
) {
1685 struct swap_extent
*se
= &sis
->first_swap_extent
;
1687 if (se
->start_block
== offset
) {
1689 *bdev_p
= bdgrab(sis
->bdev
);
1691 spin_unlock(&swap_lock
);
1697 spin_unlock(&swap_lock
);
1705 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1706 * corresponding to given index in swap_info (swap type).
1708 sector_t
swapdev_block(int type
, pgoff_t offset
)
1710 struct block_device
*bdev
;
1712 if ((unsigned int)type
>= nr_swapfiles
)
1714 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
1716 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
1720 * Return either the total number of swap pages of given type, or the number
1721 * of free pages of that type (depending on @free)
1723 * This is needed for software suspend
1725 unsigned int count_swap_pages(int type
, int free
)
1729 spin_lock(&swap_lock
);
1730 if ((unsigned int)type
< nr_swapfiles
) {
1731 struct swap_info_struct
*sis
= swap_info
[type
];
1733 spin_lock(&sis
->lock
);
1734 if (sis
->flags
& SWP_WRITEOK
) {
1737 n
-= sis
->inuse_pages
;
1739 spin_unlock(&sis
->lock
);
1741 spin_unlock(&swap_lock
);
1744 #endif /* CONFIG_HIBERNATION */
1746 static inline int pte_same_as_swp(pte_t pte
, pte_t swp_pte
)
1748 return pte_same(pte_swp_clear_soft_dirty(pte
), swp_pte
);
1752 * No need to decide whether this PTE shares the swap entry with others,
1753 * just let do_wp_page work it out if a write is requested later - to
1754 * force COW, vm_page_prot omits write permission from any private vma.
1756 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1757 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
1759 struct page
*swapcache
;
1760 struct mem_cgroup
*memcg
;
1766 page
= ksm_might_need_to_copy(page
, vma
, addr
);
1767 if (unlikely(!page
))
1770 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
1776 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1777 if (unlikely(!pte_same_as_swp(*pte
, swp_entry_to_pte(entry
)))) {
1778 mem_cgroup_cancel_charge(page
, memcg
, false);
1783 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
1784 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
1786 set_pte_at(vma
->vm_mm
, addr
, pte
,
1787 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
1788 if (page
== swapcache
) {
1789 page_add_anon_rmap(page
, vma
, addr
, false);
1790 mem_cgroup_commit_charge(page
, memcg
, true, false);
1791 } else { /* ksm created a completely new copy */
1792 page_add_new_anon_rmap(page
, vma
, addr
, false);
1793 mem_cgroup_commit_charge(page
, memcg
, false, false);
1794 lru_cache_add_active_or_unevictable(page
, vma
);
1798 * Move the page to the active list so it is not
1799 * immediately swapped out again after swapon.
1801 activate_page(page
);
1803 pte_unmap_unlock(pte
, ptl
);
1805 if (page
!= swapcache
) {
1812 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1813 unsigned long addr
, unsigned long end
,
1814 swp_entry_t entry
, struct page
*page
)
1816 pte_t swp_pte
= swp_entry_to_pte(entry
);
1821 * We don't actually need pte lock while scanning for swp_pte: since
1822 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1823 * page table while we're scanning; though it could get zapped, and on
1824 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1825 * of unmatched parts which look like swp_pte, so unuse_pte must
1826 * recheck under pte lock. Scanning without pte lock lets it be
1827 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1829 pte
= pte_offset_map(pmd
, addr
);
1832 * swapoff spends a _lot_ of time in this loop!
1833 * Test inline before going to call unuse_pte.
1835 if (unlikely(pte_same_as_swp(*pte
, swp_pte
))) {
1837 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
1840 pte
= pte_offset_map(pmd
, addr
);
1842 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1848 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
1849 unsigned long addr
, unsigned long end
,
1850 swp_entry_t entry
, struct page
*page
)
1856 pmd
= pmd_offset(pud
, addr
);
1859 next
= pmd_addr_end(addr
, end
);
1860 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1862 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
1865 } while (pmd
++, addr
= next
, addr
!= end
);
1869 static inline int unuse_pud_range(struct vm_area_struct
*vma
, p4d_t
*p4d
,
1870 unsigned long addr
, unsigned long end
,
1871 swp_entry_t entry
, struct page
*page
)
1877 pud
= pud_offset(p4d
, addr
);
1879 next
= pud_addr_end(addr
, end
);
1880 if (pud_none_or_clear_bad(pud
))
1882 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
1885 } while (pud
++, addr
= next
, addr
!= end
);
1889 static inline int unuse_p4d_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
1890 unsigned long addr
, unsigned long end
,
1891 swp_entry_t entry
, struct page
*page
)
1897 p4d
= p4d_offset(pgd
, addr
);
1899 next
= p4d_addr_end(addr
, end
);
1900 if (p4d_none_or_clear_bad(p4d
))
1902 ret
= unuse_pud_range(vma
, p4d
, addr
, next
, entry
, page
);
1905 } while (p4d
++, addr
= next
, addr
!= end
);
1909 static int unuse_vma(struct vm_area_struct
*vma
,
1910 swp_entry_t entry
, struct page
*page
)
1913 unsigned long addr
, end
, next
;
1916 if (page_anon_vma(page
)) {
1917 addr
= page_address_in_vma(page
, vma
);
1918 if (addr
== -EFAULT
)
1921 end
= addr
+ PAGE_SIZE
;
1923 addr
= vma
->vm_start
;
1927 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1929 next
= pgd_addr_end(addr
, end
);
1930 if (pgd_none_or_clear_bad(pgd
))
1932 ret
= unuse_p4d_range(vma
, pgd
, addr
, next
, entry
, page
);
1935 } while (pgd
++, addr
= next
, addr
!= end
);
1939 static int unuse_mm(struct mm_struct
*mm
,
1940 swp_entry_t entry
, struct page
*page
)
1942 struct vm_area_struct
*vma
;
1945 if (!down_read_trylock(&mm
->mmap_sem
)) {
1947 * Activate page so shrink_inactive_list is unlikely to unmap
1948 * its ptes while lock is dropped, so swapoff can make progress.
1950 activate_page(page
);
1952 down_read(&mm
->mmap_sem
);
1955 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1956 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1960 up_read(&mm
->mmap_sem
);
1961 return (ret
< 0)? ret
: 0;
1965 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1966 * from current position to next entry still in use.
1967 * Recycle to start on reaching the end, returning 0 when empty.
1969 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1970 unsigned int prev
, bool frontswap
)
1972 unsigned int max
= si
->max
;
1973 unsigned int i
= prev
;
1974 unsigned char count
;
1977 * No need for swap_lock here: we're just looking
1978 * for whether an entry is in use, not modifying it; false
1979 * hits are okay, and sys_swapoff() has already prevented new
1980 * allocations from this area (while holding swap_lock).
1989 * No entries in use at top of swap_map,
1990 * loop back to start and recheck there.
1996 count
= READ_ONCE(si
->swap_map
[i
]);
1997 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1998 if (!frontswap
|| frontswap_test(si
, i
))
2000 if ((i
% LATENCY_LIMIT
) == 0)
2007 * We completely avoid races by reading each swap page in advance,
2008 * and then search for the process using it. All the necessary
2009 * page table adjustments can then be made atomically.
2011 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2012 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2014 int try_to_unuse(unsigned int type
, bool frontswap
,
2015 unsigned long pages_to_unuse
)
2017 struct swap_info_struct
*si
= swap_info
[type
];
2018 struct mm_struct
*start_mm
;
2019 volatile unsigned char *swap_map
; /* swap_map is accessed without
2020 * locking. Mark it as volatile
2021 * to prevent compiler doing
2024 unsigned char swcount
;
2031 * When searching mms for an entry, a good strategy is to
2032 * start at the first mm we freed the previous entry from
2033 * (though actually we don't notice whether we or coincidence
2034 * freed the entry). Initialize this start_mm with a hold.
2036 * A simpler strategy would be to start at the last mm we
2037 * freed the previous entry from; but that would take less
2038 * advantage of mmlist ordering, which clusters forked mms
2039 * together, child after parent. If we race with dup_mmap(), we
2040 * prefer to resolve parent before child, lest we miss entries
2041 * duplicated after we scanned child: using last mm would invert
2044 start_mm
= &init_mm
;
2048 * Keep on scanning until all entries have gone. Usually,
2049 * one pass through swap_map is enough, but not necessarily:
2050 * there are races when an instance of an entry might be missed.
2052 while ((i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
2053 if (signal_pending(current
)) {
2059 * Get a page for the entry, using the existing swap
2060 * cache page if there is one. Otherwise, get a clean
2061 * page and read the swap into it.
2063 swap_map
= &si
->swap_map
[i
];
2064 entry
= swp_entry(type
, i
);
2065 page
= read_swap_cache_async(entry
,
2066 GFP_HIGHUSER_MOVABLE
, NULL
, 0, false);
2069 * Either swap_duplicate() failed because entry
2070 * has been freed independently, and will not be
2071 * reused since sys_swapoff() already disabled
2072 * allocation from here, or alloc_page() failed.
2074 swcount
= *swap_map
;
2076 * We don't hold lock here, so the swap entry could be
2077 * SWAP_MAP_BAD (when the cluster is discarding).
2078 * Instead of fail out, We can just skip the swap
2079 * entry because swapoff will wait for discarding
2082 if (!swcount
|| swcount
== SWAP_MAP_BAD
)
2089 * Don't hold on to start_mm if it looks like exiting.
2091 if (atomic_read(&start_mm
->mm_users
) == 1) {
2093 start_mm
= &init_mm
;
2098 * Wait for and lock page. When do_swap_page races with
2099 * try_to_unuse, do_swap_page can handle the fault much
2100 * faster than try_to_unuse can locate the entry. This
2101 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2102 * defer to do_swap_page in such a case - in some tests,
2103 * do_swap_page and try_to_unuse repeatedly compete.
2105 wait_on_page_locked(page
);
2106 wait_on_page_writeback(page
);
2108 wait_on_page_writeback(page
);
2111 * Remove all references to entry.
2113 swcount
= *swap_map
;
2114 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
2115 retval
= shmem_unuse(entry
, page
);
2116 /* page has already been unlocked and released */
2121 if (swap_count(swcount
) && start_mm
!= &init_mm
)
2122 retval
= unuse_mm(start_mm
, entry
, page
);
2124 if (swap_count(*swap_map
)) {
2125 int set_start_mm
= (*swap_map
>= swcount
);
2126 struct list_head
*p
= &start_mm
->mmlist
;
2127 struct mm_struct
*new_start_mm
= start_mm
;
2128 struct mm_struct
*prev_mm
= start_mm
;
2129 struct mm_struct
*mm
;
2131 mmget(new_start_mm
);
2133 spin_lock(&mmlist_lock
);
2134 while (swap_count(*swap_map
) && !retval
&&
2135 (p
= p
->next
) != &start_mm
->mmlist
) {
2136 mm
= list_entry(p
, struct mm_struct
, mmlist
);
2137 if (!mmget_not_zero(mm
))
2139 spin_unlock(&mmlist_lock
);
2145 swcount
= *swap_map
;
2146 if (!swap_count(swcount
)) /* any usage ? */
2148 else if (mm
== &init_mm
)
2151 retval
= unuse_mm(mm
, entry
, page
);
2153 if (set_start_mm
&& *swap_map
< swcount
) {
2154 mmput(new_start_mm
);
2159 spin_lock(&mmlist_lock
);
2161 spin_unlock(&mmlist_lock
);
2164 start_mm
= new_start_mm
;
2173 * If a reference remains (rare), we would like to leave
2174 * the page in the swap cache; but try_to_unmap could
2175 * then re-duplicate the entry once we drop page lock,
2176 * so we might loop indefinitely; also, that page could
2177 * not be swapped out to other storage meanwhile. So:
2178 * delete from cache even if there's another reference,
2179 * after ensuring that the data has been saved to disk -
2180 * since if the reference remains (rarer), it will be
2181 * read from disk into another page. Splitting into two
2182 * pages would be incorrect if swap supported "shared
2183 * private" pages, but they are handled by tmpfs files.
2185 * Given how unuse_vma() targets one particular offset
2186 * in an anon_vma, once the anon_vma has been determined,
2187 * this splitting happens to be just what is needed to
2188 * handle where KSM pages have been swapped out: re-reading
2189 * is unnecessarily slow, but we can fix that later on.
2191 if (swap_count(*swap_map
) &&
2192 PageDirty(page
) && PageSwapCache(page
)) {
2193 struct writeback_control wbc
= {
2194 .sync_mode
= WB_SYNC_NONE
,
2197 swap_writepage(compound_head(page
), &wbc
);
2199 wait_on_page_writeback(page
);
2203 * It is conceivable that a racing task removed this page from
2204 * swap cache just before we acquired the page lock at the top,
2205 * or while we dropped it in unuse_mm(). The page might even
2206 * be back in swap cache on another swap area: that we must not
2207 * delete, since it may not have been written out to swap yet.
2209 if (PageSwapCache(page
) &&
2210 likely(page_private(page
) == entry
.val
) &&
2211 !page_swapped(page
))
2212 delete_from_swap_cache(compound_head(page
));
2215 * So we could skip searching mms once swap count went
2216 * to 1, we did not mark any present ptes as dirty: must
2217 * mark page dirty so shrink_page_list will preserve it.
2224 * Make sure that we aren't completely killing
2225 * interactive performance.
2228 if (frontswap
&& pages_to_unuse
> 0) {
2229 if (!--pages_to_unuse
)
2239 * After a successful try_to_unuse, if no swap is now in use, we know
2240 * we can empty the mmlist. swap_lock must be held on entry and exit.
2241 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2242 * added to the mmlist just after page_duplicate - before would be racy.
2244 static void drain_mmlist(void)
2246 struct list_head
*p
, *next
;
2249 for (type
= 0; type
< nr_swapfiles
; type
++)
2250 if (swap_info
[type
]->inuse_pages
)
2252 spin_lock(&mmlist_lock
);
2253 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
2255 spin_unlock(&mmlist_lock
);
2259 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2260 * corresponds to page offset for the specified swap entry.
2261 * Note that the type of this function is sector_t, but it returns page offset
2262 * into the bdev, not sector offset.
2264 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
2266 struct swap_info_struct
*sis
;
2267 struct swap_extent
*start_se
;
2268 struct swap_extent
*se
;
2271 sis
= swap_info
[swp_type(entry
)];
2274 offset
= swp_offset(entry
);
2275 start_se
= sis
->curr_swap_extent
;
2279 if (se
->start_page
<= offset
&&
2280 offset
< (se
->start_page
+ se
->nr_pages
)) {
2281 return se
->start_block
+ (offset
- se
->start_page
);
2283 se
= list_next_entry(se
, list
);
2284 sis
->curr_swap_extent
= se
;
2285 BUG_ON(se
== start_se
); /* It *must* be present */
2290 * Returns the page offset into bdev for the specified page's swap entry.
2292 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
2295 entry
.val
= page_private(page
);
2296 return map_swap_entry(entry
, bdev
);
2300 * Free all of a swapdev's extent information
2302 static void destroy_swap_extents(struct swap_info_struct
*sis
)
2304 while (!list_empty(&sis
->first_swap_extent
.list
)) {
2305 struct swap_extent
*se
;
2307 se
= list_first_entry(&sis
->first_swap_extent
.list
,
2308 struct swap_extent
, list
);
2309 list_del(&se
->list
);
2313 if (sis
->flags
& SWP_FILE
) {
2314 struct file
*swap_file
= sis
->swap_file
;
2315 struct address_space
*mapping
= swap_file
->f_mapping
;
2317 sis
->flags
&= ~SWP_FILE
;
2318 mapping
->a_ops
->swap_deactivate(swap_file
);
2323 * Add a block range (and the corresponding page range) into this swapdev's
2324 * extent list. The extent list is kept sorted in page order.
2326 * This function rather assumes that it is called in ascending page order.
2329 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
2330 unsigned long nr_pages
, sector_t start_block
)
2332 struct swap_extent
*se
;
2333 struct swap_extent
*new_se
;
2334 struct list_head
*lh
;
2336 if (start_page
== 0) {
2337 se
= &sis
->first_swap_extent
;
2338 sis
->curr_swap_extent
= se
;
2340 se
->nr_pages
= nr_pages
;
2341 se
->start_block
= start_block
;
2344 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
2345 se
= list_entry(lh
, struct swap_extent
, list
);
2346 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
2347 if (se
->start_block
+ se
->nr_pages
== start_block
) {
2349 se
->nr_pages
+= nr_pages
;
2355 * No merge. Insert a new extent, preserving ordering.
2357 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
2360 new_se
->start_page
= start_page
;
2361 new_se
->nr_pages
= nr_pages
;
2362 new_se
->start_block
= start_block
;
2364 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
2369 * A `swap extent' is a simple thing which maps a contiguous range of pages
2370 * onto a contiguous range of disk blocks. An ordered list of swap extents
2371 * is built at swapon time and is then used at swap_writepage/swap_readpage
2372 * time for locating where on disk a page belongs.
2374 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2375 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2376 * swap files identically.
2378 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2379 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2380 * swapfiles are handled *identically* after swapon time.
2382 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2383 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2384 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2385 * requirements, they are simply tossed out - we will never use those blocks
2388 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2389 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2390 * which will scribble on the fs.
2392 * The amount of disk space which a single swap extent represents varies.
2393 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2394 * extents in the list. To avoid much list walking, we cache the previous
2395 * search location in `curr_swap_extent', and start new searches from there.
2396 * This is extremely effective. The average number of iterations in
2397 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2399 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
2401 struct file
*swap_file
= sis
->swap_file
;
2402 struct address_space
*mapping
= swap_file
->f_mapping
;
2403 struct inode
*inode
= mapping
->host
;
2406 if (S_ISBLK(inode
->i_mode
)) {
2407 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
2412 if (mapping
->a_ops
->swap_activate
) {
2413 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
2415 sis
->flags
|= SWP_FILE
;
2416 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
2422 return generic_swapfile_activate(sis
, swap_file
, span
);
2425 static int swap_node(struct swap_info_struct
*p
)
2427 struct block_device
*bdev
;
2432 bdev
= p
->swap_file
->f_inode
->i_sb
->s_bdev
;
2434 return bdev
? bdev
->bd_disk
->node_id
: NUMA_NO_NODE
;
2437 static void _enable_swap_info(struct swap_info_struct
*p
, int prio
,
2438 unsigned char *swap_map
,
2439 struct swap_cluster_info
*cluster_info
)
2446 p
->prio
= --least_priority
;
2448 * the plist prio is negated because plist ordering is
2449 * low-to-high, while swap ordering is high-to-low
2451 p
->list
.prio
= -p
->prio
;
2454 p
->avail_lists
[i
].prio
= -p
->prio
;
2456 if (swap_node(p
) == i
)
2457 p
->avail_lists
[i
].prio
= 1;
2459 p
->avail_lists
[i
].prio
= -p
->prio
;
2462 p
->swap_map
= swap_map
;
2463 p
->cluster_info
= cluster_info
;
2464 p
->flags
|= SWP_WRITEOK
;
2465 atomic_long_add(p
->pages
, &nr_swap_pages
);
2466 total_swap_pages
+= p
->pages
;
2468 assert_spin_locked(&swap_lock
);
2470 * both lists are plists, and thus priority ordered.
2471 * swap_active_head needs to be priority ordered for swapoff(),
2472 * which on removal of any swap_info_struct with an auto-assigned
2473 * (i.e. negative) priority increments the auto-assigned priority
2474 * of any lower-priority swap_info_structs.
2475 * swap_avail_head needs to be priority ordered for get_swap_page(),
2476 * which allocates swap pages from the highest available priority
2479 plist_add(&p
->list
, &swap_active_head
);
2480 add_to_avail_list(p
);
2483 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
2484 unsigned char *swap_map
,
2485 struct swap_cluster_info
*cluster_info
,
2486 unsigned long *frontswap_map
)
2488 frontswap_init(p
->type
, frontswap_map
);
2489 spin_lock(&swap_lock
);
2490 spin_lock(&p
->lock
);
2491 _enable_swap_info(p
, prio
, swap_map
, cluster_info
);
2492 spin_unlock(&p
->lock
);
2493 spin_unlock(&swap_lock
);
2496 static void reinsert_swap_info(struct swap_info_struct
*p
)
2498 spin_lock(&swap_lock
);
2499 spin_lock(&p
->lock
);
2500 _enable_swap_info(p
, p
->prio
, p
->swap_map
, p
->cluster_info
);
2501 spin_unlock(&p
->lock
);
2502 spin_unlock(&swap_lock
);
2505 bool has_usable_swap(void)
2509 spin_lock(&swap_lock
);
2510 if (plist_head_empty(&swap_active_head
))
2512 spin_unlock(&swap_lock
);
2516 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
2518 struct swap_info_struct
*p
= NULL
;
2519 unsigned char *swap_map
;
2520 struct swap_cluster_info
*cluster_info
;
2521 unsigned long *frontswap_map
;
2522 struct file
*swap_file
, *victim
;
2523 struct address_space
*mapping
;
2524 struct inode
*inode
;
2525 struct filename
*pathname
;
2527 unsigned int old_block_size
;
2529 if (!capable(CAP_SYS_ADMIN
))
2532 BUG_ON(!current
->mm
);
2534 pathname
= getname(specialfile
);
2535 if (IS_ERR(pathname
))
2536 return PTR_ERR(pathname
);
2538 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
2539 err
= PTR_ERR(victim
);
2543 mapping
= victim
->f_mapping
;
2544 spin_lock(&swap_lock
);
2545 plist_for_each_entry(p
, &swap_active_head
, list
) {
2546 if (p
->flags
& SWP_WRITEOK
) {
2547 if (p
->swap_file
->f_mapping
== mapping
) {
2555 spin_unlock(&swap_lock
);
2558 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
2559 vm_unacct_memory(p
->pages
);
2562 spin_unlock(&swap_lock
);
2565 del_from_avail_list(p
);
2566 spin_lock(&p
->lock
);
2568 struct swap_info_struct
*si
= p
;
2571 plist_for_each_entry_continue(si
, &swap_active_head
, list
) {
2574 for_each_node(nid
) {
2575 if (si
->avail_lists
[nid
].prio
!= 1)
2576 si
->avail_lists
[nid
].prio
--;
2581 plist_del(&p
->list
, &swap_active_head
);
2582 atomic_long_sub(p
->pages
, &nr_swap_pages
);
2583 total_swap_pages
-= p
->pages
;
2584 p
->flags
&= ~SWP_WRITEOK
;
2585 spin_unlock(&p
->lock
);
2586 spin_unlock(&swap_lock
);
2588 disable_swap_slots_cache_lock();
2590 set_current_oom_origin();
2591 err
= try_to_unuse(p
->type
, false, 0); /* force unuse all pages */
2592 clear_current_oom_origin();
2595 /* re-insert swap space back into swap_list */
2596 reinsert_swap_info(p
);
2597 reenable_swap_slots_cache_unlock();
2601 reenable_swap_slots_cache_unlock();
2603 flush_work(&p
->discard_work
);
2605 destroy_swap_extents(p
);
2606 if (p
->flags
& SWP_CONTINUED
)
2607 free_swap_count_continuations(p
);
2609 if (!p
->bdev
|| !blk_queue_nonrot(bdev_get_queue(p
->bdev
)))
2610 atomic_dec(&nr_rotate_swap
);
2612 mutex_lock(&swapon_mutex
);
2613 spin_lock(&swap_lock
);
2614 spin_lock(&p
->lock
);
2617 /* wait for anyone still in scan_swap_map */
2618 p
->highest_bit
= 0; /* cuts scans short */
2619 while (p
->flags
>= SWP_SCANNING
) {
2620 spin_unlock(&p
->lock
);
2621 spin_unlock(&swap_lock
);
2622 schedule_timeout_uninterruptible(1);
2623 spin_lock(&swap_lock
);
2624 spin_lock(&p
->lock
);
2627 swap_file
= p
->swap_file
;
2628 old_block_size
= p
->old_block_size
;
2629 p
->swap_file
= NULL
;
2631 swap_map
= p
->swap_map
;
2633 cluster_info
= p
->cluster_info
;
2634 p
->cluster_info
= NULL
;
2635 frontswap_map
= frontswap_map_get(p
);
2636 spin_unlock(&p
->lock
);
2637 spin_unlock(&swap_lock
);
2638 frontswap_invalidate_area(p
->type
);
2639 frontswap_map_set(p
, NULL
);
2640 mutex_unlock(&swapon_mutex
);
2641 free_percpu(p
->percpu_cluster
);
2642 p
->percpu_cluster
= NULL
;
2644 kvfree(cluster_info
);
2645 kvfree(frontswap_map
);
2646 /* Destroy swap account information */
2647 swap_cgroup_swapoff(p
->type
);
2648 exit_swap_address_space(p
->type
);
2650 inode
= mapping
->host
;
2651 if (S_ISBLK(inode
->i_mode
)) {
2652 struct block_device
*bdev
= I_BDEV(inode
);
2653 set_blocksize(bdev
, old_block_size
);
2654 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2657 inode
->i_flags
&= ~S_SWAPFILE
;
2658 inode_unlock(inode
);
2660 filp_close(swap_file
, NULL
);
2663 * Clear the SWP_USED flag after all resources are freed so that swapon
2664 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2665 * not hold p->lock after we cleared its SWP_WRITEOK.
2667 spin_lock(&swap_lock
);
2669 spin_unlock(&swap_lock
);
2672 atomic_inc(&proc_poll_event
);
2673 wake_up_interruptible(&proc_poll_wait
);
2676 filp_close(victim
, NULL
);
2682 #ifdef CONFIG_PROC_FS
2683 static __poll_t
swaps_poll(struct file
*file
, poll_table
*wait
)
2685 struct seq_file
*seq
= file
->private_data
;
2687 poll_wait(file
, &proc_poll_wait
, wait
);
2689 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
2690 seq
->poll_event
= atomic_read(&proc_poll_event
);
2691 return EPOLLIN
| EPOLLRDNORM
| EPOLLERR
| EPOLLPRI
;
2694 return EPOLLIN
| EPOLLRDNORM
;
2698 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
2700 struct swap_info_struct
*si
;
2704 mutex_lock(&swapon_mutex
);
2707 return SEQ_START_TOKEN
;
2709 for (type
= 0; type
< nr_swapfiles
; type
++) {
2710 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2711 si
= swap_info
[type
];
2712 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2721 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
2723 struct swap_info_struct
*si
= v
;
2726 if (v
== SEQ_START_TOKEN
)
2729 type
= si
->type
+ 1;
2731 for (; type
< nr_swapfiles
; type
++) {
2732 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2733 si
= swap_info
[type
];
2734 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2743 static void swap_stop(struct seq_file
*swap
, void *v
)
2745 mutex_unlock(&swapon_mutex
);
2748 static int swap_show(struct seq_file
*swap
, void *v
)
2750 struct swap_info_struct
*si
= v
;
2754 if (si
== SEQ_START_TOKEN
) {
2755 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2759 file
= si
->swap_file
;
2760 len
= seq_file_path(swap
, file
, " \t\n\\");
2761 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
2762 len
< 40 ? 40 - len
: 1, " ",
2763 S_ISBLK(file_inode(file
)->i_mode
) ?
2764 "partition" : "file\t",
2765 si
->pages
<< (PAGE_SHIFT
- 10),
2766 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
2771 static const struct seq_operations swaps_op
= {
2772 .start
= swap_start
,
2778 static int swaps_open(struct inode
*inode
, struct file
*file
)
2780 struct seq_file
*seq
;
2783 ret
= seq_open(file
, &swaps_op
);
2787 seq
= file
->private_data
;
2788 seq
->poll_event
= atomic_read(&proc_poll_event
);
2792 static const struct file_operations proc_swaps_operations
= {
2795 .llseek
= seq_lseek
,
2796 .release
= seq_release
,
2800 static int __init
procswaps_init(void)
2802 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
2805 __initcall(procswaps_init
);
2806 #endif /* CONFIG_PROC_FS */
2808 #ifdef MAX_SWAPFILES_CHECK
2809 static int __init
max_swapfiles_check(void)
2811 MAX_SWAPFILES_CHECK();
2814 late_initcall(max_swapfiles_check
);
2817 static struct swap_info_struct
*alloc_swap_info(void)
2819 struct swap_info_struct
*p
;
2823 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
2825 return ERR_PTR(-ENOMEM
);
2827 spin_lock(&swap_lock
);
2828 for (type
= 0; type
< nr_swapfiles
; type
++) {
2829 if (!(swap_info
[type
]->flags
& SWP_USED
))
2832 if (type
>= MAX_SWAPFILES
) {
2833 spin_unlock(&swap_lock
);
2835 return ERR_PTR(-EPERM
);
2837 if (type
>= nr_swapfiles
) {
2839 swap_info
[type
] = p
;
2841 * Write swap_info[type] before nr_swapfiles, in case a
2842 * racing procfs swap_start() or swap_next() is reading them.
2843 * (We never shrink nr_swapfiles, we never free this entry.)
2849 p
= swap_info
[type
];
2851 * Do not memset this entry: a racing procfs swap_next()
2852 * would be relying on p->type to remain valid.
2855 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
2856 plist_node_init(&p
->list
, 0);
2858 plist_node_init(&p
->avail_lists
[i
], 0);
2859 p
->flags
= SWP_USED
;
2860 spin_unlock(&swap_lock
);
2861 spin_lock_init(&p
->lock
);
2862 spin_lock_init(&p
->cont_lock
);
2867 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
2871 if (S_ISBLK(inode
->i_mode
)) {
2872 p
->bdev
= bdgrab(I_BDEV(inode
));
2873 error
= blkdev_get(p
->bdev
,
2874 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
, p
);
2879 p
->old_block_size
= block_size(p
->bdev
);
2880 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
2883 p
->flags
|= SWP_BLKDEV
;
2884 } else if (S_ISREG(inode
->i_mode
)) {
2885 p
->bdev
= inode
->i_sb
->s_bdev
;
2887 if (IS_SWAPFILE(inode
))
2897 * Find out how many pages are allowed for a single swap device. There
2898 * are two limiting factors:
2899 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2900 * 2) the number of bits in the swap pte, as defined by the different
2903 * In order to find the largest possible bit mask, a swap entry with
2904 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2905 * decoded to a swp_entry_t again, and finally the swap offset is
2908 * This will mask all the bits from the initial ~0UL mask that can't
2909 * be encoded in either the swp_entry_t or the architecture definition
2912 unsigned long generic_max_swapfile_size(void)
2914 return swp_offset(pte_to_swp_entry(
2915 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2918 /* Can be overridden by an architecture for additional checks. */
2919 __weak
unsigned long max_swapfile_size(void)
2921 return generic_max_swapfile_size();
2924 static unsigned long read_swap_header(struct swap_info_struct
*p
,
2925 union swap_header
*swap_header
,
2926 struct inode
*inode
)
2929 unsigned long maxpages
;
2930 unsigned long swapfilepages
;
2931 unsigned long last_page
;
2933 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
2934 pr_err("Unable to find swap-space signature\n");
2938 /* swap partition endianess hack... */
2939 if (swab32(swap_header
->info
.version
) == 1) {
2940 swab32s(&swap_header
->info
.version
);
2941 swab32s(&swap_header
->info
.last_page
);
2942 swab32s(&swap_header
->info
.nr_badpages
);
2943 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2945 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
2946 swab32s(&swap_header
->info
.badpages
[i
]);
2948 /* Check the swap header's sub-version */
2949 if (swap_header
->info
.version
!= 1) {
2950 pr_warn("Unable to handle swap header version %d\n",
2951 swap_header
->info
.version
);
2956 p
->cluster_next
= 1;
2959 maxpages
= max_swapfile_size();
2960 last_page
= swap_header
->info
.last_page
;
2962 pr_warn("Empty swap-file\n");
2965 if (last_page
> maxpages
) {
2966 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2967 maxpages
<< (PAGE_SHIFT
- 10),
2968 last_page
<< (PAGE_SHIFT
- 10));
2970 if (maxpages
> last_page
) {
2971 maxpages
= last_page
+ 1;
2972 /* p->max is an unsigned int: don't overflow it */
2973 if ((unsigned int)maxpages
== 0)
2974 maxpages
= UINT_MAX
;
2976 p
->highest_bit
= maxpages
- 1;
2980 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
2981 if (swapfilepages
&& maxpages
> swapfilepages
) {
2982 pr_warn("Swap area shorter than signature indicates\n");
2985 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
2987 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2993 #define SWAP_CLUSTER_INFO_COLS \
2994 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2995 #define SWAP_CLUSTER_SPACE_COLS \
2996 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2997 #define SWAP_CLUSTER_COLS \
2998 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3000 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
3001 union swap_header
*swap_header
,
3002 unsigned char *swap_map
,
3003 struct swap_cluster_info
*cluster_info
,
3004 unsigned long maxpages
,
3008 unsigned int nr_good_pages
;
3010 unsigned long nr_clusters
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
3011 unsigned long col
= p
->cluster_next
/ SWAPFILE_CLUSTER
% SWAP_CLUSTER_COLS
;
3012 unsigned long i
, idx
;
3014 nr_good_pages
= maxpages
- 1; /* omit header page */
3016 cluster_list_init(&p
->free_clusters
);
3017 cluster_list_init(&p
->discard_clusters
);
3019 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
3020 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
3021 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
3023 if (page_nr
< maxpages
) {
3024 swap_map
[page_nr
] = SWAP_MAP_BAD
;
3027 * Haven't marked the cluster free yet, no list
3028 * operation involved
3030 inc_cluster_info_page(p
, cluster_info
, page_nr
);
3034 /* Haven't marked the cluster free yet, no list operation involved */
3035 for (i
= maxpages
; i
< round_up(maxpages
, SWAPFILE_CLUSTER
); i
++)
3036 inc_cluster_info_page(p
, cluster_info
, i
);
3038 if (nr_good_pages
) {
3039 swap_map
[0] = SWAP_MAP_BAD
;
3041 * Not mark the cluster free yet, no list
3042 * operation involved
3044 inc_cluster_info_page(p
, cluster_info
, 0);
3046 p
->pages
= nr_good_pages
;
3047 nr_extents
= setup_swap_extents(p
, span
);
3050 nr_good_pages
= p
->pages
;
3052 if (!nr_good_pages
) {
3053 pr_warn("Empty swap-file\n");
3062 * Reduce false cache line sharing between cluster_info and
3063 * sharing same address space.
3065 for (k
= 0; k
< SWAP_CLUSTER_COLS
; k
++) {
3066 j
= (k
+ col
) % SWAP_CLUSTER_COLS
;
3067 for (i
= 0; i
< DIV_ROUND_UP(nr_clusters
, SWAP_CLUSTER_COLS
); i
++) {
3068 idx
= i
* SWAP_CLUSTER_COLS
+ j
;
3069 if (idx
>= nr_clusters
)
3071 if (cluster_count(&cluster_info
[idx
]))
3073 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
3074 cluster_list_add_tail(&p
->free_clusters
, cluster_info
,
3082 * Helper to sys_swapon determining if a given swap
3083 * backing device queue supports DISCARD operations.
3085 static bool swap_discardable(struct swap_info_struct
*si
)
3087 struct request_queue
*q
= bdev_get_queue(si
->bdev
);
3089 if (!q
|| !blk_queue_discard(q
))
3095 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
3097 struct swap_info_struct
*p
;
3098 struct filename
*name
;
3099 struct file
*swap_file
= NULL
;
3100 struct address_space
*mapping
;
3103 union swap_header
*swap_header
;
3106 unsigned long maxpages
;
3107 unsigned char *swap_map
= NULL
;
3108 struct swap_cluster_info
*cluster_info
= NULL
;
3109 unsigned long *frontswap_map
= NULL
;
3110 struct page
*page
= NULL
;
3111 struct inode
*inode
= NULL
;
3112 bool inced_nr_rotate_swap
= false;
3114 if (swap_flags
& ~SWAP_FLAGS_VALID
)
3117 if (!capable(CAP_SYS_ADMIN
))
3120 if (!swap_avail_heads
)
3123 p
= alloc_swap_info();
3127 INIT_WORK(&p
->discard_work
, swap_discard_work
);
3129 name
= getname(specialfile
);
3131 error
= PTR_ERR(name
);
3135 swap_file
= file_open_name(name
, O_RDWR
|O_LARGEFILE
, 0);
3136 if (IS_ERR(swap_file
)) {
3137 error
= PTR_ERR(swap_file
);
3142 p
->swap_file
= swap_file
;
3143 mapping
= swap_file
->f_mapping
;
3144 inode
= mapping
->host
;
3146 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3147 error
= claim_swapfile(p
, inode
);
3148 if (unlikely(error
))
3152 * Read the swap header.
3154 if (!mapping
->a_ops
->readpage
) {
3158 page
= read_mapping_page(mapping
, 0, swap_file
);
3160 error
= PTR_ERR(page
);
3163 swap_header
= kmap(page
);
3165 maxpages
= read_swap_header(p
, swap_header
, inode
);
3166 if (unlikely(!maxpages
)) {
3171 /* OK, set up the swap map and apply the bad block list */
3172 swap_map
= vzalloc(maxpages
);
3178 if (bdi_cap_stable_pages_required(inode_to_bdi(inode
)))
3179 p
->flags
|= SWP_STABLE_WRITES
;
3181 if (bdi_cap_synchronous_io(inode_to_bdi(inode
)))
3182 p
->flags
|= SWP_SYNCHRONOUS_IO
;
3184 if (p
->bdev
&& blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
3186 unsigned long ci
, nr_cluster
;
3188 p
->flags
|= SWP_SOLIDSTATE
;
3190 * select a random position to start with to help wear leveling
3193 p
->cluster_next
= 1 + (prandom_u32() % p
->highest_bit
);
3194 nr_cluster
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
3196 cluster_info
= kvcalloc(nr_cluster
, sizeof(*cluster_info
),
3198 if (!cluster_info
) {
3203 for (ci
= 0; ci
< nr_cluster
; ci
++)
3204 spin_lock_init(&((cluster_info
+ ci
)->lock
));
3206 p
->percpu_cluster
= alloc_percpu(struct percpu_cluster
);
3207 if (!p
->percpu_cluster
) {
3211 for_each_possible_cpu(cpu
) {
3212 struct percpu_cluster
*cluster
;
3213 cluster
= per_cpu_ptr(p
->percpu_cluster
, cpu
);
3214 cluster_set_null(&cluster
->index
);
3217 atomic_inc(&nr_rotate_swap
);
3218 inced_nr_rotate_swap
= true;
3221 error
= swap_cgroup_swapon(p
->type
, maxpages
);
3225 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
3226 cluster_info
, maxpages
, &span
);
3227 if (unlikely(nr_extents
< 0)) {
3231 /* frontswap enabled? set up bit-per-page map for frontswap */
3232 if (IS_ENABLED(CONFIG_FRONTSWAP
))
3233 frontswap_map
= kvcalloc(BITS_TO_LONGS(maxpages
),
3237 if (p
->bdev
&&(swap_flags
& SWAP_FLAG_DISCARD
) && swap_discardable(p
)) {
3239 * When discard is enabled for swap with no particular
3240 * policy flagged, we set all swap discard flags here in
3241 * order to sustain backward compatibility with older
3242 * swapon(8) releases.
3244 p
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
3248 * By flagging sys_swapon, a sysadmin can tell us to
3249 * either do single-time area discards only, or to just
3250 * perform discards for released swap page-clusters.
3251 * Now it's time to adjust the p->flags accordingly.
3253 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
3254 p
->flags
&= ~SWP_PAGE_DISCARD
;
3255 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
3256 p
->flags
&= ~SWP_AREA_DISCARD
;
3258 /* issue a swapon-time discard if it's still required */
3259 if (p
->flags
& SWP_AREA_DISCARD
) {
3260 int err
= discard_swap(p
);
3262 pr_err("swapon: discard_swap(%p): %d\n",
3267 error
= init_swap_address_space(p
->type
, maxpages
);
3271 mutex_lock(&swapon_mutex
);
3273 if (swap_flags
& SWAP_FLAG_PREFER
)
3275 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
3276 enable_swap_info(p
, prio
, swap_map
, cluster_info
, frontswap_map
);
3278 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3279 p
->pages
<<(PAGE_SHIFT
-10), name
->name
, p
->prio
,
3280 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
3281 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
3282 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
3283 (p
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
3284 (p
->flags
& SWP_PAGE_DISCARD
) ? "c" : "",
3285 (frontswap_map
) ? "FS" : "");
3287 mutex_unlock(&swapon_mutex
);
3288 atomic_inc(&proc_poll_event
);
3289 wake_up_interruptible(&proc_poll_wait
);
3291 if (S_ISREG(inode
->i_mode
))
3292 inode
->i_flags
|= S_SWAPFILE
;
3296 free_percpu(p
->percpu_cluster
);
3297 p
->percpu_cluster
= NULL
;
3298 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
3299 set_blocksize(p
->bdev
, p
->old_block_size
);
3300 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
3302 destroy_swap_extents(p
);
3303 swap_cgroup_swapoff(p
->type
);
3304 spin_lock(&swap_lock
);
3305 p
->swap_file
= NULL
;
3307 spin_unlock(&swap_lock
);
3309 kvfree(cluster_info
);
3310 kvfree(frontswap_map
);
3311 if (inced_nr_rotate_swap
)
3312 atomic_dec(&nr_rotate_swap
);
3314 if (inode
&& S_ISREG(inode
->i_mode
)) {
3315 inode_unlock(inode
);
3318 filp_close(swap_file
, NULL
);
3321 if (page
&& !IS_ERR(page
)) {
3327 if (inode
&& S_ISREG(inode
->i_mode
))
3328 inode_unlock(inode
);
3330 enable_swap_slots_cache();
3334 void si_swapinfo(struct sysinfo
*val
)
3337 unsigned long nr_to_be_unused
= 0;
3339 spin_lock(&swap_lock
);
3340 for (type
= 0; type
< nr_swapfiles
; type
++) {
3341 struct swap_info_struct
*si
= swap_info
[type
];
3343 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
3344 nr_to_be_unused
+= si
->inuse_pages
;
3346 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
3347 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
3348 spin_unlock(&swap_lock
);
3352 * Verify that a swap entry is valid and increment its swap map count.
3354 * Returns error code in following case.
3356 * - swp_entry is invalid -> EINVAL
3357 * - swp_entry is migration entry -> EINVAL
3358 * - swap-cache reference is requested but there is already one. -> EEXIST
3359 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3360 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3362 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
3364 struct swap_info_struct
*p
;
3365 struct swap_cluster_info
*ci
;
3366 unsigned long offset
, type
;
3367 unsigned char count
;
3368 unsigned char has_cache
;
3371 if (non_swap_entry(entry
))
3374 type
= swp_type(entry
);
3375 if (type
>= nr_swapfiles
)
3377 p
= swap_info
[type
];
3378 offset
= swp_offset(entry
);
3379 if (unlikely(offset
>= p
->max
))
3382 ci
= lock_cluster_or_swap_info(p
, offset
);
3384 count
= p
->swap_map
[offset
];
3387 * swapin_readahead() doesn't check if a swap entry is valid, so the
3388 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3390 if (unlikely(swap_count(count
) == SWAP_MAP_BAD
)) {
3395 has_cache
= count
& SWAP_HAS_CACHE
;
3396 count
&= ~SWAP_HAS_CACHE
;
3399 if (usage
== SWAP_HAS_CACHE
) {
3401 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3402 if (!has_cache
&& count
)
3403 has_cache
= SWAP_HAS_CACHE
;
3404 else if (has_cache
) /* someone else added cache */
3406 else /* no users remaining */
3409 } else if (count
|| has_cache
) {
3411 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
3413 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
3415 else if (swap_count_continued(p
, offset
, count
))
3416 count
= COUNT_CONTINUED
;
3420 err
= -ENOENT
; /* unused swap entry */
3422 p
->swap_map
[offset
] = count
| has_cache
;
3425 unlock_cluster_or_swap_info(p
, ci
);
3430 pr_err("swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
3435 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3436 * (in which case its reference count is never incremented).
3438 void swap_shmem_alloc(swp_entry_t entry
)
3440 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
3444 * Increase reference count of swap entry by 1.
3445 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3446 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3447 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3448 * might occur if a page table entry has got corrupted.
3450 int swap_duplicate(swp_entry_t entry
)
3454 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
3455 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
3460 * @entry: swap entry for which we allocate swap cache.
3462 * Called when allocating swap cache for existing swap entry,
3463 * This can return error codes. Returns 0 at success.
3464 * -EBUSY means there is a swap cache.
3465 * Note: return code is different from swap_duplicate().
3467 int swapcache_prepare(swp_entry_t entry
)
3469 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
3472 struct swap_info_struct
*swp_swap_info(swp_entry_t entry
)
3474 return swap_info
[swp_type(entry
)];
3477 struct swap_info_struct
*page_swap_info(struct page
*page
)
3479 swp_entry_t entry
= { .val
= page_private(page
) };
3480 return swp_swap_info(entry
);
3484 * out-of-line __page_file_ methods to avoid include hell.
3486 struct address_space
*__page_file_mapping(struct page
*page
)
3488 return page_swap_info(page
)->swap_file
->f_mapping
;
3490 EXPORT_SYMBOL_GPL(__page_file_mapping
);
3492 pgoff_t
__page_file_index(struct page
*page
)
3494 swp_entry_t swap
= { .val
= page_private(page
) };
3495 return swp_offset(swap
);
3497 EXPORT_SYMBOL_GPL(__page_file_index
);
3500 * add_swap_count_continuation - called when a swap count is duplicated
3501 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3502 * page of the original vmalloc'ed swap_map, to hold the continuation count
3503 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3504 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3506 * These continuation pages are seldom referenced: the common paths all work
3507 * on the original swap_map, only referring to a continuation page when the
3508 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3510 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3511 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3512 * can be called after dropping locks.
3514 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
3516 struct swap_info_struct
*si
;
3517 struct swap_cluster_info
*ci
;
3520 struct page
*list_page
;
3522 unsigned char count
;
3525 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3526 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3528 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
3530 si
= swap_info_get(entry
);
3533 * An acceptable race has occurred since the failing
3534 * __swap_duplicate(): the swap entry has been freed,
3535 * perhaps even the whole swap_map cleared for swapoff.
3540 offset
= swp_offset(entry
);
3542 ci
= lock_cluster(si
, offset
);
3544 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
3546 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
3548 * The higher the swap count, the more likely it is that tasks
3549 * will race to add swap count continuation: we need to avoid
3550 * over-provisioning.
3557 spin_unlock(&si
->lock
);
3562 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3563 * no architecture is using highmem pages for kernel page tables: so it
3564 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3566 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3567 offset
&= ~PAGE_MASK
;
3569 spin_lock(&si
->cont_lock
);
3571 * Page allocation does not initialize the page's lru field,
3572 * but it does always reset its private field.
3574 if (!page_private(head
)) {
3575 BUG_ON(count
& COUNT_CONTINUED
);
3576 INIT_LIST_HEAD(&head
->lru
);
3577 set_page_private(head
, SWP_CONTINUED
);
3578 si
->flags
|= SWP_CONTINUED
;
3581 list_for_each_entry(list_page
, &head
->lru
, lru
) {
3585 * If the previous map said no continuation, but we've found
3586 * a continuation page, free our allocation and use this one.
3588 if (!(count
& COUNT_CONTINUED
))
3589 goto out_unlock_cont
;
3591 map
= kmap_atomic(list_page
) + offset
;
3596 * If this continuation count now has some space in it,
3597 * free our allocation and use this one.
3599 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
3600 goto out_unlock_cont
;
3603 list_add_tail(&page
->lru
, &head
->lru
);
3604 page
= NULL
; /* now it's attached, don't free it */
3606 spin_unlock(&si
->cont_lock
);
3609 spin_unlock(&si
->lock
);
3617 * swap_count_continued - when the original swap_map count is incremented
3618 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3619 * into, carry if so, or else fail until a new continuation page is allocated;
3620 * when the original swap_map count is decremented from 0 with continuation,
3621 * borrow from the continuation and report whether it still holds more.
3622 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3625 static bool swap_count_continued(struct swap_info_struct
*si
,
3626 pgoff_t offset
, unsigned char count
)
3633 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3634 if (page_private(head
) != SWP_CONTINUED
) {
3635 BUG_ON(count
& COUNT_CONTINUED
);
3636 return false; /* need to add count continuation */
3639 spin_lock(&si
->cont_lock
);
3640 offset
&= ~PAGE_MASK
;
3641 page
= list_entry(head
->lru
.next
, struct page
, lru
);
3642 map
= kmap_atomic(page
) + offset
;
3644 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
3645 goto init_map
; /* jump over SWAP_CONT_MAX checks */
3647 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
3649 * Think of how you add 1 to 999
3651 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
3653 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3654 BUG_ON(page
== head
);
3655 map
= kmap_atomic(page
) + offset
;
3657 if (*map
== SWAP_CONT_MAX
) {
3659 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3661 ret
= false; /* add count continuation */
3664 map
= kmap_atomic(page
) + offset
;
3665 init_map
: *map
= 0; /* we didn't zero the page */
3669 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3670 while (page
!= head
) {
3671 map
= kmap_atomic(page
) + offset
;
3672 *map
= COUNT_CONTINUED
;
3674 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3676 ret
= true; /* incremented */
3678 } else { /* decrementing */
3680 * Think of how you subtract 1 from 1000
3682 BUG_ON(count
!= COUNT_CONTINUED
);
3683 while (*map
== COUNT_CONTINUED
) {
3685 page
= list_entry(page
->lru
.next
, struct page
, lru
);
3686 BUG_ON(page
== head
);
3687 map
= kmap_atomic(page
) + offset
;
3694 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3695 while (page
!= head
) {
3696 map
= kmap_atomic(page
) + offset
;
3697 *map
= SWAP_CONT_MAX
| count
;
3698 count
= COUNT_CONTINUED
;
3700 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
3702 ret
= count
== COUNT_CONTINUED
;
3705 spin_unlock(&si
->cont_lock
);
3710 * free_swap_count_continuations - swapoff free all the continuation pages
3711 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3713 static void free_swap_count_continuations(struct swap_info_struct
*si
)
3717 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
3719 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3720 if (page_private(head
)) {
3721 struct page
*page
, *next
;
3723 list_for_each_entry_safe(page
, next
, &head
->lru
, lru
) {
3724 list_del(&page
->lru
);
3731 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3732 void mem_cgroup_throttle_swaprate(struct mem_cgroup
*memcg
, int node
,
3735 struct swap_info_struct
*si
, *next
;
3736 if (!(gfp_mask
& __GFP_IO
) || !memcg
)
3739 if (!blk_cgroup_congested())
3743 * We've already scheduled a throttle, avoid taking the global swap
3746 if (current
->throttle_queue
)
3749 spin_lock(&swap_avail_lock
);
3750 plist_for_each_entry_safe(si
, next
, &swap_avail_heads
[node
],
3751 avail_lists
[node
]) {
3753 blkcg_schedule_throttle(bdev_get_queue(si
->bdev
),
3758 spin_unlock(&swap_avail_lock
);
3762 static int __init
swapfile_init(void)
3766 swap_avail_heads
= kmalloc_array(nr_node_ids
, sizeof(struct plist_head
),
3768 if (!swap_avail_heads
) {
3769 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3774 plist_head_init(&swap_avail_heads
[nid
]);
3778 subsys_initcall(swapfile_init
);