staging: vboxvideo: Atomic phase 2: Wire up state object handlers
[linux/fpc-iii.git] / fs / aio.c
blobb9350f3360c698f7dfca64042447c3d942a4171e
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
49 #include "internal.h"
51 #define KIOCB_KEY 0
53 #define AIO_RING_MAGIC 0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES 1
55 #define AIO_RING_INCOMPAT_FEATURES 0
56 struct aio_ring {
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
61 unsigned tail;
63 unsigned magic;
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
69 struct io_event io_events[0];
70 }; /* 128 bytes + ring size */
72 #define AIO_RING_PAGES 8
74 struct kioctx_table {
75 struct rcu_head rcu;
76 unsigned nr;
77 struct kioctx __rcu *table[];
80 struct kioctx_cpu {
81 unsigned reqs_available;
84 struct ctx_rq_wait {
85 struct completion comp;
86 atomic_t count;
89 struct kioctx {
90 struct percpu_ref users;
91 atomic_t dead;
93 struct percpu_ref reqs;
95 unsigned long user_id;
97 struct __percpu kioctx_cpu *cpu;
100 * For percpu reqs_available, number of slots we move to/from global
101 * counter at a time:
103 unsigned req_batch;
105 * This is what userspace passed to io_setup(), it's not used for
106 * anything but counting against the global max_reqs quota.
108 * The real limit is nr_events - 1, which will be larger (see
109 * aio_setup_ring())
111 unsigned max_reqs;
113 /* Size of ringbuffer, in units of struct io_event */
114 unsigned nr_events;
116 unsigned long mmap_base;
117 unsigned long mmap_size;
119 struct page **ring_pages;
120 long nr_pages;
122 struct rcu_work free_rwork; /* see free_ioctx() */
125 * signals when all in-flight requests are done
127 struct ctx_rq_wait *rq_wait;
129 struct {
131 * This counts the number of available slots in the ringbuffer,
132 * so we avoid overflowing it: it's decremented (if positive)
133 * when allocating a kiocb and incremented when the resulting
134 * io_event is pulled off the ringbuffer.
136 * We batch accesses to it with a percpu version.
138 atomic_t reqs_available;
139 } ____cacheline_aligned_in_smp;
141 struct {
142 spinlock_t ctx_lock;
143 struct list_head active_reqs; /* used for cancellation */
144 } ____cacheline_aligned_in_smp;
146 struct {
147 struct mutex ring_lock;
148 wait_queue_head_t wait;
149 } ____cacheline_aligned_in_smp;
151 struct {
152 unsigned tail;
153 unsigned completed_events;
154 spinlock_t completion_lock;
155 } ____cacheline_aligned_in_smp;
157 struct page *internal_pages[AIO_RING_PAGES];
158 struct file *aio_ring_file;
160 unsigned id;
163 struct fsync_iocb {
164 struct work_struct work;
165 struct file *file;
166 bool datasync;
169 struct poll_iocb {
170 struct file *file;
171 struct wait_queue_head *head;
172 __poll_t events;
173 bool woken;
174 bool cancelled;
175 struct wait_queue_entry wait;
176 struct work_struct work;
179 struct aio_kiocb {
180 union {
181 struct kiocb rw;
182 struct fsync_iocb fsync;
183 struct poll_iocb poll;
186 struct kioctx *ki_ctx;
187 kiocb_cancel_fn *ki_cancel;
189 struct iocb __user *ki_user_iocb; /* user's aiocb */
190 __u64 ki_user_data; /* user's data for completion */
192 struct list_head ki_list; /* the aio core uses this
193 * for cancellation */
194 refcount_t ki_refcnt;
197 * If the aio_resfd field of the userspace iocb is not zero,
198 * this is the underlying eventfd context to deliver events to.
200 struct eventfd_ctx *ki_eventfd;
203 /*------ sysctl variables----*/
204 static DEFINE_SPINLOCK(aio_nr_lock);
205 unsigned long aio_nr; /* current system wide number of aio requests */
206 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
207 /*----end sysctl variables---*/
209 static struct kmem_cache *kiocb_cachep;
210 static struct kmem_cache *kioctx_cachep;
212 static struct vfsmount *aio_mnt;
214 static const struct file_operations aio_ring_fops;
215 static const struct address_space_operations aio_ctx_aops;
217 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
219 struct file *file;
220 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
221 if (IS_ERR(inode))
222 return ERR_CAST(inode);
224 inode->i_mapping->a_ops = &aio_ctx_aops;
225 inode->i_mapping->private_data = ctx;
226 inode->i_size = PAGE_SIZE * nr_pages;
228 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
229 O_RDWR, &aio_ring_fops);
230 if (IS_ERR(file))
231 iput(inode);
232 return file;
235 static struct dentry *aio_mount(struct file_system_type *fs_type,
236 int flags, const char *dev_name, void *data)
238 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
239 AIO_RING_MAGIC);
241 if (!IS_ERR(root))
242 root->d_sb->s_iflags |= SB_I_NOEXEC;
243 return root;
246 /* aio_setup
247 * Creates the slab caches used by the aio routines, panic on
248 * failure as this is done early during the boot sequence.
250 static int __init aio_setup(void)
252 static struct file_system_type aio_fs = {
253 .name = "aio",
254 .mount = aio_mount,
255 .kill_sb = kill_anon_super,
257 aio_mnt = kern_mount(&aio_fs);
258 if (IS_ERR(aio_mnt))
259 panic("Failed to create aio fs mount.");
261 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
262 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
263 return 0;
265 __initcall(aio_setup);
267 static void put_aio_ring_file(struct kioctx *ctx)
269 struct file *aio_ring_file = ctx->aio_ring_file;
270 struct address_space *i_mapping;
272 if (aio_ring_file) {
273 truncate_setsize(file_inode(aio_ring_file), 0);
275 /* Prevent further access to the kioctx from migratepages */
276 i_mapping = aio_ring_file->f_mapping;
277 spin_lock(&i_mapping->private_lock);
278 i_mapping->private_data = NULL;
279 ctx->aio_ring_file = NULL;
280 spin_unlock(&i_mapping->private_lock);
282 fput(aio_ring_file);
286 static void aio_free_ring(struct kioctx *ctx)
288 int i;
290 /* Disconnect the kiotx from the ring file. This prevents future
291 * accesses to the kioctx from page migration.
293 put_aio_ring_file(ctx);
295 for (i = 0; i < ctx->nr_pages; i++) {
296 struct page *page;
297 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
298 page_count(ctx->ring_pages[i]));
299 page = ctx->ring_pages[i];
300 if (!page)
301 continue;
302 ctx->ring_pages[i] = NULL;
303 put_page(page);
306 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
307 kfree(ctx->ring_pages);
308 ctx->ring_pages = NULL;
312 static int aio_ring_mremap(struct vm_area_struct *vma)
314 struct file *file = vma->vm_file;
315 struct mm_struct *mm = vma->vm_mm;
316 struct kioctx_table *table;
317 int i, res = -EINVAL;
319 spin_lock(&mm->ioctx_lock);
320 rcu_read_lock();
321 table = rcu_dereference(mm->ioctx_table);
322 for (i = 0; i < table->nr; i++) {
323 struct kioctx *ctx;
325 ctx = rcu_dereference(table->table[i]);
326 if (ctx && ctx->aio_ring_file == file) {
327 if (!atomic_read(&ctx->dead)) {
328 ctx->user_id = ctx->mmap_base = vma->vm_start;
329 res = 0;
331 break;
335 rcu_read_unlock();
336 spin_unlock(&mm->ioctx_lock);
337 return res;
340 static const struct vm_operations_struct aio_ring_vm_ops = {
341 .mremap = aio_ring_mremap,
342 #if IS_ENABLED(CONFIG_MMU)
343 .fault = filemap_fault,
344 .map_pages = filemap_map_pages,
345 .page_mkwrite = filemap_page_mkwrite,
346 #endif
349 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
351 vma->vm_flags |= VM_DONTEXPAND;
352 vma->vm_ops = &aio_ring_vm_ops;
353 return 0;
356 static const struct file_operations aio_ring_fops = {
357 .mmap = aio_ring_mmap,
360 #if IS_ENABLED(CONFIG_MIGRATION)
361 static int aio_migratepage(struct address_space *mapping, struct page *new,
362 struct page *old, enum migrate_mode mode)
364 struct kioctx *ctx;
365 unsigned long flags;
366 pgoff_t idx;
367 int rc;
370 * We cannot support the _NO_COPY case here, because copy needs to
371 * happen under the ctx->completion_lock. That does not work with the
372 * migration workflow of MIGRATE_SYNC_NO_COPY.
374 if (mode == MIGRATE_SYNC_NO_COPY)
375 return -EINVAL;
377 rc = 0;
379 /* mapping->private_lock here protects against the kioctx teardown. */
380 spin_lock(&mapping->private_lock);
381 ctx = mapping->private_data;
382 if (!ctx) {
383 rc = -EINVAL;
384 goto out;
387 /* The ring_lock mutex. The prevents aio_read_events() from writing
388 * to the ring's head, and prevents page migration from mucking in
389 * a partially initialized kiotx.
391 if (!mutex_trylock(&ctx->ring_lock)) {
392 rc = -EAGAIN;
393 goto out;
396 idx = old->index;
397 if (idx < (pgoff_t)ctx->nr_pages) {
398 /* Make sure the old page hasn't already been changed */
399 if (ctx->ring_pages[idx] != old)
400 rc = -EAGAIN;
401 } else
402 rc = -EINVAL;
404 if (rc != 0)
405 goto out_unlock;
407 /* Writeback must be complete */
408 BUG_ON(PageWriteback(old));
409 get_page(new);
411 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
412 if (rc != MIGRATEPAGE_SUCCESS) {
413 put_page(new);
414 goto out_unlock;
417 /* Take completion_lock to prevent other writes to the ring buffer
418 * while the old page is copied to the new. This prevents new
419 * events from being lost.
421 spin_lock_irqsave(&ctx->completion_lock, flags);
422 migrate_page_copy(new, old);
423 BUG_ON(ctx->ring_pages[idx] != old);
424 ctx->ring_pages[idx] = new;
425 spin_unlock_irqrestore(&ctx->completion_lock, flags);
427 /* The old page is no longer accessible. */
428 put_page(old);
430 out_unlock:
431 mutex_unlock(&ctx->ring_lock);
432 out:
433 spin_unlock(&mapping->private_lock);
434 return rc;
436 #endif
438 static const struct address_space_operations aio_ctx_aops = {
439 .set_page_dirty = __set_page_dirty_no_writeback,
440 #if IS_ENABLED(CONFIG_MIGRATION)
441 .migratepage = aio_migratepage,
442 #endif
445 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
447 struct aio_ring *ring;
448 struct mm_struct *mm = current->mm;
449 unsigned long size, unused;
450 int nr_pages;
451 int i;
452 struct file *file;
454 /* Compensate for the ring buffer's head/tail overlap entry */
455 nr_events += 2; /* 1 is required, 2 for good luck */
457 size = sizeof(struct aio_ring);
458 size += sizeof(struct io_event) * nr_events;
460 nr_pages = PFN_UP(size);
461 if (nr_pages < 0)
462 return -EINVAL;
464 file = aio_private_file(ctx, nr_pages);
465 if (IS_ERR(file)) {
466 ctx->aio_ring_file = NULL;
467 return -ENOMEM;
470 ctx->aio_ring_file = file;
471 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
472 / sizeof(struct io_event);
474 ctx->ring_pages = ctx->internal_pages;
475 if (nr_pages > AIO_RING_PAGES) {
476 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
477 GFP_KERNEL);
478 if (!ctx->ring_pages) {
479 put_aio_ring_file(ctx);
480 return -ENOMEM;
484 for (i = 0; i < nr_pages; i++) {
485 struct page *page;
486 page = find_or_create_page(file->f_mapping,
487 i, GFP_HIGHUSER | __GFP_ZERO);
488 if (!page)
489 break;
490 pr_debug("pid(%d) page[%d]->count=%d\n",
491 current->pid, i, page_count(page));
492 SetPageUptodate(page);
493 unlock_page(page);
495 ctx->ring_pages[i] = page;
497 ctx->nr_pages = i;
499 if (unlikely(i != nr_pages)) {
500 aio_free_ring(ctx);
501 return -ENOMEM;
504 ctx->mmap_size = nr_pages * PAGE_SIZE;
505 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
507 if (down_write_killable(&mm->mmap_sem)) {
508 ctx->mmap_size = 0;
509 aio_free_ring(ctx);
510 return -EINTR;
513 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
514 PROT_READ | PROT_WRITE,
515 MAP_SHARED, 0, &unused, NULL);
516 up_write(&mm->mmap_sem);
517 if (IS_ERR((void *)ctx->mmap_base)) {
518 ctx->mmap_size = 0;
519 aio_free_ring(ctx);
520 return -ENOMEM;
523 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
525 ctx->user_id = ctx->mmap_base;
526 ctx->nr_events = nr_events; /* trusted copy */
528 ring = kmap_atomic(ctx->ring_pages[0]);
529 ring->nr = nr_events; /* user copy */
530 ring->id = ~0U;
531 ring->head = ring->tail = 0;
532 ring->magic = AIO_RING_MAGIC;
533 ring->compat_features = AIO_RING_COMPAT_FEATURES;
534 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
535 ring->header_length = sizeof(struct aio_ring);
536 kunmap_atomic(ring);
537 flush_dcache_page(ctx->ring_pages[0]);
539 return 0;
542 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
543 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
544 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
546 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
548 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
549 struct kioctx *ctx = req->ki_ctx;
550 unsigned long flags;
552 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
553 return;
555 spin_lock_irqsave(&ctx->ctx_lock, flags);
556 list_add_tail(&req->ki_list, &ctx->active_reqs);
557 req->ki_cancel = cancel;
558 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
560 EXPORT_SYMBOL(kiocb_set_cancel_fn);
563 * free_ioctx() should be RCU delayed to synchronize against the RCU
564 * protected lookup_ioctx() and also needs process context to call
565 * aio_free_ring(). Use rcu_work.
567 static void free_ioctx(struct work_struct *work)
569 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
570 free_rwork);
571 pr_debug("freeing %p\n", ctx);
573 aio_free_ring(ctx);
574 free_percpu(ctx->cpu);
575 percpu_ref_exit(&ctx->reqs);
576 percpu_ref_exit(&ctx->users);
577 kmem_cache_free(kioctx_cachep, ctx);
580 static void free_ioctx_reqs(struct percpu_ref *ref)
582 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
584 /* At this point we know that there are no any in-flight requests */
585 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
586 complete(&ctx->rq_wait->comp);
588 /* Synchronize against RCU protected table->table[] dereferences */
589 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
590 queue_rcu_work(system_wq, &ctx->free_rwork);
594 * When this function runs, the kioctx has been removed from the "hash table"
595 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
596 * now it's safe to cancel any that need to be.
598 static void free_ioctx_users(struct percpu_ref *ref)
600 struct kioctx *ctx = container_of(ref, struct kioctx, users);
601 struct aio_kiocb *req;
603 spin_lock_irq(&ctx->ctx_lock);
605 while (!list_empty(&ctx->active_reqs)) {
606 req = list_first_entry(&ctx->active_reqs,
607 struct aio_kiocb, ki_list);
608 req->ki_cancel(&req->rw);
609 list_del_init(&req->ki_list);
612 spin_unlock_irq(&ctx->ctx_lock);
614 percpu_ref_kill(&ctx->reqs);
615 percpu_ref_put(&ctx->reqs);
618 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
620 unsigned i, new_nr;
621 struct kioctx_table *table, *old;
622 struct aio_ring *ring;
624 spin_lock(&mm->ioctx_lock);
625 table = rcu_dereference_raw(mm->ioctx_table);
627 while (1) {
628 if (table)
629 for (i = 0; i < table->nr; i++)
630 if (!rcu_access_pointer(table->table[i])) {
631 ctx->id = i;
632 rcu_assign_pointer(table->table[i], ctx);
633 spin_unlock(&mm->ioctx_lock);
635 /* While kioctx setup is in progress,
636 * we are protected from page migration
637 * changes ring_pages by ->ring_lock.
639 ring = kmap_atomic(ctx->ring_pages[0]);
640 ring->id = ctx->id;
641 kunmap_atomic(ring);
642 return 0;
645 new_nr = (table ? table->nr : 1) * 4;
646 spin_unlock(&mm->ioctx_lock);
648 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
649 new_nr, GFP_KERNEL);
650 if (!table)
651 return -ENOMEM;
653 table->nr = new_nr;
655 spin_lock(&mm->ioctx_lock);
656 old = rcu_dereference_raw(mm->ioctx_table);
658 if (!old) {
659 rcu_assign_pointer(mm->ioctx_table, table);
660 } else if (table->nr > old->nr) {
661 memcpy(table->table, old->table,
662 old->nr * sizeof(struct kioctx *));
664 rcu_assign_pointer(mm->ioctx_table, table);
665 kfree_rcu(old, rcu);
666 } else {
667 kfree(table);
668 table = old;
673 static void aio_nr_sub(unsigned nr)
675 spin_lock(&aio_nr_lock);
676 if (WARN_ON(aio_nr - nr > aio_nr))
677 aio_nr = 0;
678 else
679 aio_nr -= nr;
680 spin_unlock(&aio_nr_lock);
683 /* ioctx_alloc
684 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
686 static struct kioctx *ioctx_alloc(unsigned nr_events)
688 struct mm_struct *mm = current->mm;
689 struct kioctx *ctx;
690 int err = -ENOMEM;
693 * Store the original nr_events -- what userspace passed to io_setup(),
694 * for counting against the global limit -- before it changes.
696 unsigned int max_reqs = nr_events;
699 * We keep track of the number of available ringbuffer slots, to prevent
700 * overflow (reqs_available), and we also use percpu counters for this.
702 * So since up to half the slots might be on other cpu's percpu counters
703 * and unavailable, double nr_events so userspace sees what they
704 * expected: additionally, we move req_batch slots to/from percpu
705 * counters at a time, so make sure that isn't 0:
707 nr_events = max(nr_events, num_possible_cpus() * 4);
708 nr_events *= 2;
710 /* Prevent overflows */
711 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
712 pr_debug("ENOMEM: nr_events too high\n");
713 return ERR_PTR(-EINVAL);
716 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
717 return ERR_PTR(-EAGAIN);
719 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
720 if (!ctx)
721 return ERR_PTR(-ENOMEM);
723 ctx->max_reqs = max_reqs;
725 spin_lock_init(&ctx->ctx_lock);
726 spin_lock_init(&ctx->completion_lock);
727 mutex_init(&ctx->ring_lock);
728 /* Protect against page migration throughout kiotx setup by keeping
729 * the ring_lock mutex held until setup is complete. */
730 mutex_lock(&ctx->ring_lock);
731 init_waitqueue_head(&ctx->wait);
733 INIT_LIST_HEAD(&ctx->active_reqs);
735 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
736 goto err;
738 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
739 goto err;
741 ctx->cpu = alloc_percpu(struct kioctx_cpu);
742 if (!ctx->cpu)
743 goto err;
745 err = aio_setup_ring(ctx, nr_events);
746 if (err < 0)
747 goto err;
749 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
750 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
751 if (ctx->req_batch < 1)
752 ctx->req_batch = 1;
754 /* limit the number of system wide aios */
755 spin_lock(&aio_nr_lock);
756 if (aio_nr + ctx->max_reqs > aio_max_nr ||
757 aio_nr + ctx->max_reqs < aio_nr) {
758 spin_unlock(&aio_nr_lock);
759 err = -EAGAIN;
760 goto err_ctx;
762 aio_nr += ctx->max_reqs;
763 spin_unlock(&aio_nr_lock);
765 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
766 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
768 err = ioctx_add_table(ctx, mm);
769 if (err)
770 goto err_cleanup;
772 /* Release the ring_lock mutex now that all setup is complete. */
773 mutex_unlock(&ctx->ring_lock);
775 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
776 ctx, ctx->user_id, mm, ctx->nr_events);
777 return ctx;
779 err_cleanup:
780 aio_nr_sub(ctx->max_reqs);
781 err_ctx:
782 atomic_set(&ctx->dead, 1);
783 if (ctx->mmap_size)
784 vm_munmap(ctx->mmap_base, ctx->mmap_size);
785 aio_free_ring(ctx);
786 err:
787 mutex_unlock(&ctx->ring_lock);
788 free_percpu(ctx->cpu);
789 percpu_ref_exit(&ctx->reqs);
790 percpu_ref_exit(&ctx->users);
791 kmem_cache_free(kioctx_cachep, ctx);
792 pr_debug("error allocating ioctx %d\n", err);
793 return ERR_PTR(err);
796 /* kill_ioctx
797 * Cancels all outstanding aio requests on an aio context. Used
798 * when the processes owning a context have all exited to encourage
799 * the rapid destruction of the kioctx.
801 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
802 struct ctx_rq_wait *wait)
804 struct kioctx_table *table;
806 spin_lock(&mm->ioctx_lock);
807 if (atomic_xchg(&ctx->dead, 1)) {
808 spin_unlock(&mm->ioctx_lock);
809 return -EINVAL;
812 table = rcu_dereference_raw(mm->ioctx_table);
813 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
814 RCU_INIT_POINTER(table->table[ctx->id], NULL);
815 spin_unlock(&mm->ioctx_lock);
817 /* free_ioctx_reqs() will do the necessary RCU synchronization */
818 wake_up_all(&ctx->wait);
821 * It'd be more correct to do this in free_ioctx(), after all
822 * the outstanding kiocbs have finished - but by then io_destroy
823 * has already returned, so io_setup() could potentially return
824 * -EAGAIN with no ioctxs actually in use (as far as userspace
825 * could tell).
827 aio_nr_sub(ctx->max_reqs);
829 if (ctx->mmap_size)
830 vm_munmap(ctx->mmap_base, ctx->mmap_size);
832 ctx->rq_wait = wait;
833 percpu_ref_kill(&ctx->users);
834 return 0;
838 * exit_aio: called when the last user of mm goes away. At this point, there is
839 * no way for any new requests to be submited or any of the io_* syscalls to be
840 * called on the context.
842 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
843 * them.
845 void exit_aio(struct mm_struct *mm)
847 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
848 struct ctx_rq_wait wait;
849 int i, skipped;
851 if (!table)
852 return;
854 atomic_set(&wait.count, table->nr);
855 init_completion(&wait.comp);
857 skipped = 0;
858 for (i = 0; i < table->nr; ++i) {
859 struct kioctx *ctx =
860 rcu_dereference_protected(table->table[i], true);
862 if (!ctx) {
863 skipped++;
864 continue;
868 * We don't need to bother with munmap() here - exit_mmap(mm)
869 * is coming and it'll unmap everything. And we simply can't,
870 * this is not necessarily our ->mm.
871 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
872 * that it needs to unmap the area, just set it to 0.
874 ctx->mmap_size = 0;
875 kill_ioctx(mm, ctx, &wait);
878 if (!atomic_sub_and_test(skipped, &wait.count)) {
879 /* Wait until all IO for the context are done. */
880 wait_for_completion(&wait.comp);
883 RCU_INIT_POINTER(mm->ioctx_table, NULL);
884 kfree(table);
887 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
889 struct kioctx_cpu *kcpu;
890 unsigned long flags;
892 local_irq_save(flags);
893 kcpu = this_cpu_ptr(ctx->cpu);
894 kcpu->reqs_available += nr;
896 while (kcpu->reqs_available >= ctx->req_batch * 2) {
897 kcpu->reqs_available -= ctx->req_batch;
898 atomic_add(ctx->req_batch, &ctx->reqs_available);
901 local_irq_restore(flags);
904 static bool get_reqs_available(struct kioctx *ctx)
906 struct kioctx_cpu *kcpu;
907 bool ret = false;
908 unsigned long flags;
910 local_irq_save(flags);
911 kcpu = this_cpu_ptr(ctx->cpu);
912 if (!kcpu->reqs_available) {
913 int old, avail = atomic_read(&ctx->reqs_available);
915 do {
916 if (avail < ctx->req_batch)
917 goto out;
919 old = avail;
920 avail = atomic_cmpxchg(&ctx->reqs_available,
921 avail, avail - ctx->req_batch);
922 } while (avail != old);
924 kcpu->reqs_available += ctx->req_batch;
927 ret = true;
928 kcpu->reqs_available--;
929 out:
930 local_irq_restore(flags);
931 return ret;
934 /* refill_reqs_available
935 * Updates the reqs_available reference counts used for tracking the
936 * number of free slots in the completion ring. This can be called
937 * from aio_complete() (to optimistically update reqs_available) or
938 * from aio_get_req() (the we're out of events case). It must be
939 * called holding ctx->completion_lock.
941 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
942 unsigned tail)
944 unsigned events_in_ring, completed;
946 /* Clamp head since userland can write to it. */
947 head %= ctx->nr_events;
948 if (head <= tail)
949 events_in_ring = tail - head;
950 else
951 events_in_ring = ctx->nr_events - (head - tail);
953 completed = ctx->completed_events;
954 if (events_in_ring < completed)
955 completed -= events_in_ring;
956 else
957 completed = 0;
959 if (!completed)
960 return;
962 ctx->completed_events -= completed;
963 put_reqs_available(ctx, completed);
966 /* user_refill_reqs_available
967 * Called to refill reqs_available when aio_get_req() encounters an
968 * out of space in the completion ring.
970 static void user_refill_reqs_available(struct kioctx *ctx)
972 spin_lock_irq(&ctx->completion_lock);
973 if (ctx->completed_events) {
974 struct aio_ring *ring;
975 unsigned head;
977 /* Access of ring->head may race with aio_read_events_ring()
978 * here, but that's okay since whether we read the old version
979 * or the new version, and either will be valid. The important
980 * part is that head cannot pass tail since we prevent
981 * aio_complete() from updating tail by holding
982 * ctx->completion_lock. Even if head is invalid, the check
983 * against ctx->completed_events below will make sure we do the
984 * safe/right thing.
986 ring = kmap_atomic(ctx->ring_pages[0]);
987 head = ring->head;
988 kunmap_atomic(ring);
990 refill_reqs_available(ctx, head, ctx->tail);
993 spin_unlock_irq(&ctx->completion_lock);
996 /* aio_get_req
997 * Allocate a slot for an aio request.
998 * Returns NULL if no requests are free.
1000 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1002 struct aio_kiocb *req;
1004 if (!get_reqs_available(ctx)) {
1005 user_refill_reqs_available(ctx);
1006 if (!get_reqs_available(ctx))
1007 return NULL;
1010 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1011 if (unlikely(!req))
1012 goto out_put;
1014 percpu_ref_get(&ctx->reqs);
1015 INIT_LIST_HEAD(&req->ki_list);
1016 refcount_set(&req->ki_refcnt, 0);
1017 req->ki_ctx = ctx;
1018 return req;
1019 out_put:
1020 put_reqs_available(ctx, 1);
1021 return NULL;
1024 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1026 struct aio_ring __user *ring = (void __user *)ctx_id;
1027 struct mm_struct *mm = current->mm;
1028 struct kioctx *ctx, *ret = NULL;
1029 struct kioctx_table *table;
1030 unsigned id;
1032 if (get_user(id, &ring->id))
1033 return NULL;
1035 rcu_read_lock();
1036 table = rcu_dereference(mm->ioctx_table);
1038 if (!table || id >= table->nr)
1039 goto out;
1041 ctx = rcu_dereference(table->table[id]);
1042 if (ctx && ctx->user_id == ctx_id) {
1043 if (percpu_ref_tryget_live(&ctx->users))
1044 ret = ctx;
1046 out:
1047 rcu_read_unlock();
1048 return ret;
1051 static inline void iocb_put(struct aio_kiocb *iocb)
1053 if (refcount_read(&iocb->ki_refcnt) == 0 ||
1054 refcount_dec_and_test(&iocb->ki_refcnt)) {
1055 percpu_ref_put(&iocb->ki_ctx->reqs);
1056 kmem_cache_free(kiocb_cachep, iocb);
1060 /* aio_complete
1061 * Called when the io request on the given iocb is complete.
1063 static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1065 struct kioctx *ctx = iocb->ki_ctx;
1066 struct aio_ring *ring;
1067 struct io_event *ev_page, *event;
1068 unsigned tail, pos, head;
1069 unsigned long flags;
1072 * Add a completion event to the ring buffer. Must be done holding
1073 * ctx->completion_lock to prevent other code from messing with the tail
1074 * pointer since we might be called from irq context.
1076 spin_lock_irqsave(&ctx->completion_lock, flags);
1078 tail = ctx->tail;
1079 pos = tail + AIO_EVENTS_OFFSET;
1081 if (++tail >= ctx->nr_events)
1082 tail = 0;
1084 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1085 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1087 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1088 event->data = iocb->ki_user_data;
1089 event->res = res;
1090 event->res2 = res2;
1092 kunmap_atomic(ev_page);
1093 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1095 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1096 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1097 res, res2);
1099 /* after flagging the request as done, we
1100 * must never even look at it again
1102 smp_wmb(); /* make event visible before updating tail */
1104 ctx->tail = tail;
1106 ring = kmap_atomic(ctx->ring_pages[0]);
1107 head = ring->head;
1108 ring->tail = tail;
1109 kunmap_atomic(ring);
1110 flush_dcache_page(ctx->ring_pages[0]);
1112 ctx->completed_events++;
1113 if (ctx->completed_events > 1)
1114 refill_reqs_available(ctx, head, tail);
1115 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1117 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1120 * Check if the user asked us to deliver the result through an
1121 * eventfd. The eventfd_signal() function is safe to be called
1122 * from IRQ context.
1124 if (iocb->ki_eventfd) {
1125 eventfd_signal(iocb->ki_eventfd, 1);
1126 eventfd_ctx_put(iocb->ki_eventfd);
1130 * We have to order our ring_info tail store above and test
1131 * of the wait list below outside the wait lock. This is
1132 * like in wake_up_bit() where clearing a bit has to be
1133 * ordered with the unlocked test.
1135 smp_mb();
1137 if (waitqueue_active(&ctx->wait))
1138 wake_up(&ctx->wait);
1139 iocb_put(iocb);
1142 /* aio_read_events_ring
1143 * Pull an event off of the ioctx's event ring. Returns the number of
1144 * events fetched
1146 static long aio_read_events_ring(struct kioctx *ctx,
1147 struct io_event __user *event, long nr)
1149 struct aio_ring *ring;
1150 unsigned head, tail, pos;
1151 long ret = 0;
1152 int copy_ret;
1155 * The mutex can block and wake us up and that will cause
1156 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1157 * and repeat. This should be rare enough that it doesn't cause
1158 * peformance issues. See the comment in read_events() for more detail.
1160 sched_annotate_sleep();
1161 mutex_lock(&ctx->ring_lock);
1163 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1164 ring = kmap_atomic(ctx->ring_pages[0]);
1165 head = ring->head;
1166 tail = ring->tail;
1167 kunmap_atomic(ring);
1170 * Ensure that once we've read the current tail pointer, that
1171 * we also see the events that were stored up to the tail.
1173 smp_rmb();
1175 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1177 if (head == tail)
1178 goto out;
1180 head %= ctx->nr_events;
1181 tail %= ctx->nr_events;
1183 while (ret < nr) {
1184 long avail;
1185 struct io_event *ev;
1186 struct page *page;
1188 avail = (head <= tail ? tail : ctx->nr_events) - head;
1189 if (head == tail)
1190 break;
1192 pos = head + AIO_EVENTS_OFFSET;
1193 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1194 pos %= AIO_EVENTS_PER_PAGE;
1196 avail = min(avail, nr - ret);
1197 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1199 ev = kmap(page);
1200 copy_ret = copy_to_user(event + ret, ev + pos,
1201 sizeof(*ev) * avail);
1202 kunmap(page);
1204 if (unlikely(copy_ret)) {
1205 ret = -EFAULT;
1206 goto out;
1209 ret += avail;
1210 head += avail;
1211 head %= ctx->nr_events;
1214 ring = kmap_atomic(ctx->ring_pages[0]);
1215 ring->head = head;
1216 kunmap_atomic(ring);
1217 flush_dcache_page(ctx->ring_pages[0]);
1219 pr_debug("%li h%u t%u\n", ret, head, tail);
1220 out:
1221 mutex_unlock(&ctx->ring_lock);
1223 return ret;
1226 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1227 struct io_event __user *event, long *i)
1229 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1231 if (ret > 0)
1232 *i += ret;
1234 if (unlikely(atomic_read(&ctx->dead)))
1235 ret = -EINVAL;
1237 if (!*i)
1238 *i = ret;
1240 return ret < 0 || *i >= min_nr;
1243 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1244 struct io_event __user *event,
1245 ktime_t until)
1247 long ret = 0;
1250 * Note that aio_read_events() is being called as the conditional - i.e.
1251 * we're calling it after prepare_to_wait() has set task state to
1252 * TASK_INTERRUPTIBLE.
1254 * But aio_read_events() can block, and if it blocks it's going to flip
1255 * the task state back to TASK_RUNNING.
1257 * This should be ok, provided it doesn't flip the state back to
1258 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1259 * will only happen if the mutex_lock() call blocks, and we then find
1260 * the ringbuffer empty. So in practice we should be ok, but it's
1261 * something to be aware of when touching this code.
1263 if (until == 0)
1264 aio_read_events(ctx, min_nr, nr, event, &ret);
1265 else
1266 wait_event_interruptible_hrtimeout(ctx->wait,
1267 aio_read_events(ctx, min_nr, nr, event, &ret),
1268 until);
1269 return ret;
1272 /* sys_io_setup:
1273 * Create an aio_context capable of receiving at least nr_events.
1274 * ctxp must not point to an aio_context that already exists, and
1275 * must be initialized to 0 prior to the call. On successful
1276 * creation of the aio_context, *ctxp is filled in with the resulting
1277 * handle. May fail with -EINVAL if *ctxp is not initialized,
1278 * if the specified nr_events exceeds internal limits. May fail
1279 * with -EAGAIN if the specified nr_events exceeds the user's limit
1280 * of available events. May fail with -ENOMEM if insufficient kernel
1281 * resources are available. May fail with -EFAULT if an invalid
1282 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1283 * implemented.
1285 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1287 struct kioctx *ioctx = NULL;
1288 unsigned long ctx;
1289 long ret;
1291 ret = get_user(ctx, ctxp);
1292 if (unlikely(ret))
1293 goto out;
1295 ret = -EINVAL;
1296 if (unlikely(ctx || nr_events == 0)) {
1297 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1298 ctx, nr_events);
1299 goto out;
1302 ioctx = ioctx_alloc(nr_events);
1303 ret = PTR_ERR(ioctx);
1304 if (!IS_ERR(ioctx)) {
1305 ret = put_user(ioctx->user_id, ctxp);
1306 if (ret)
1307 kill_ioctx(current->mm, ioctx, NULL);
1308 percpu_ref_put(&ioctx->users);
1311 out:
1312 return ret;
1315 #ifdef CONFIG_COMPAT
1316 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1318 struct kioctx *ioctx = NULL;
1319 unsigned long ctx;
1320 long ret;
1322 ret = get_user(ctx, ctx32p);
1323 if (unlikely(ret))
1324 goto out;
1326 ret = -EINVAL;
1327 if (unlikely(ctx || nr_events == 0)) {
1328 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1329 ctx, nr_events);
1330 goto out;
1333 ioctx = ioctx_alloc(nr_events);
1334 ret = PTR_ERR(ioctx);
1335 if (!IS_ERR(ioctx)) {
1336 /* truncating is ok because it's a user address */
1337 ret = put_user((u32)ioctx->user_id, ctx32p);
1338 if (ret)
1339 kill_ioctx(current->mm, ioctx, NULL);
1340 percpu_ref_put(&ioctx->users);
1343 out:
1344 return ret;
1346 #endif
1348 /* sys_io_destroy:
1349 * Destroy the aio_context specified. May cancel any outstanding
1350 * AIOs and block on completion. Will fail with -ENOSYS if not
1351 * implemented. May fail with -EINVAL if the context pointed to
1352 * is invalid.
1354 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1356 struct kioctx *ioctx = lookup_ioctx(ctx);
1357 if (likely(NULL != ioctx)) {
1358 struct ctx_rq_wait wait;
1359 int ret;
1361 init_completion(&wait.comp);
1362 atomic_set(&wait.count, 1);
1364 /* Pass requests_done to kill_ioctx() where it can be set
1365 * in a thread-safe way. If we try to set it here then we have
1366 * a race condition if two io_destroy() called simultaneously.
1368 ret = kill_ioctx(current->mm, ioctx, &wait);
1369 percpu_ref_put(&ioctx->users);
1371 /* Wait until all IO for the context are done. Otherwise kernel
1372 * keep using user-space buffers even if user thinks the context
1373 * is destroyed.
1375 if (!ret)
1376 wait_for_completion(&wait.comp);
1378 return ret;
1380 pr_debug("EINVAL: invalid context id\n");
1381 return -EINVAL;
1384 static void aio_remove_iocb(struct aio_kiocb *iocb)
1386 struct kioctx *ctx = iocb->ki_ctx;
1387 unsigned long flags;
1389 spin_lock_irqsave(&ctx->ctx_lock, flags);
1390 list_del(&iocb->ki_list);
1391 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1394 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1396 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1398 if (!list_empty_careful(&iocb->ki_list))
1399 aio_remove_iocb(iocb);
1401 if (kiocb->ki_flags & IOCB_WRITE) {
1402 struct inode *inode = file_inode(kiocb->ki_filp);
1405 * Tell lockdep we inherited freeze protection from submission
1406 * thread.
1408 if (S_ISREG(inode->i_mode))
1409 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1410 file_end_write(kiocb->ki_filp);
1413 fput(kiocb->ki_filp);
1414 aio_complete(iocb, res, res2);
1417 static int aio_prep_rw(struct kiocb *req, struct iocb *iocb)
1419 int ret;
1421 req->ki_filp = fget(iocb->aio_fildes);
1422 if (unlikely(!req->ki_filp))
1423 return -EBADF;
1424 req->ki_complete = aio_complete_rw;
1425 req->ki_pos = iocb->aio_offset;
1426 req->ki_flags = iocb_flags(req->ki_filp);
1427 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1428 req->ki_flags |= IOCB_EVENTFD;
1429 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1430 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1432 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1433 * aio_reqprio is interpreted as an I/O scheduling
1434 * class and priority.
1436 ret = ioprio_check_cap(iocb->aio_reqprio);
1437 if (ret) {
1438 pr_debug("aio ioprio check cap error: %d\n", ret);
1439 return ret;
1442 req->ki_ioprio = iocb->aio_reqprio;
1443 } else
1444 req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1446 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1447 if (unlikely(ret))
1448 fput(req->ki_filp);
1449 return ret;
1452 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1453 bool vectored, bool compat, struct iov_iter *iter)
1455 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1456 size_t len = iocb->aio_nbytes;
1458 if (!vectored) {
1459 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1460 *iovec = NULL;
1461 return ret;
1463 #ifdef CONFIG_COMPAT
1464 if (compat)
1465 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1466 iter);
1467 #endif
1468 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1471 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1473 switch (ret) {
1474 case -EIOCBQUEUED:
1475 break;
1476 case -ERESTARTSYS:
1477 case -ERESTARTNOINTR:
1478 case -ERESTARTNOHAND:
1479 case -ERESTART_RESTARTBLOCK:
1481 * There's no easy way to restart the syscall since other AIO's
1482 * may be already running. Just fail this IO with EINTR.
1484 ret = -EINTR;
1485 /*FALLTHRU*/
1486 default:
1487 aio_complete_rw(req, ret, 0);
1491 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1492 bool compat)
1494 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1495 struct iov_iter iter;
1496 struct file *file;
1497 ssize_t ret;
1499 ret = aio_prep_rw(req, iocb);
1500 if (ret)
1501 return ret;
1502 file = req->ki_filp;
1504 ret = -EBADF;
1505 if (unlikely(!(file->f_mode & FMODE_READ)))
1506 goto out_fput;
1507 ret = -EINVAL;
1508 if (unlikely(!file->f_op->read_iter))
1509 goto out_fput;
1511 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1512 if (ret)
1513 goto out_fput;
1514 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1515 if (!ret)
1516 aio_rw_done(req, call_read_iter(file, req, &iter));
1517 kfree(iovec);
1518 out_fput:
1519 if (unlikely(ret))
1520 fput(file);
1521 return ret;
1524 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1525 bool compat)
1527 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1528 struct iov_iter iter;
1529 struct file *file;
1530 ssize_t ret;
1532 ret = aio_prep_rw(req, iocb);
1533 if (ret)
1534 return ret;
1535 file = req->ki_filp;
1537 ret = -EBADF;
1538 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1539 goto out_fput;
1540 ret = -EINVAL;
1541 if (unlikely(!file->f_op->write_iter))
1542 goto out_fput;
1544 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1545 if (ret)
1546 goto out_fput;
1547 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1548 if (!ret) {
1550 * Open-code file_start_write here to grab freeze protection,
1551 * which will be released by another thread in
1552 * aio_complete_rw(). Fool lockdep by telling it the lock got
1553 * released so that it doesn't complain about the held lock when
1554 * we return to userspace.
1556 if (S_ISREG(file_inode(file)->i_mode)) {
1557 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1558 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1560 req->ki_flags |= IOCB_WRITE;
1561 aio_rw_done(req, call_write_iter(file, req, &iter));
1563 kfree(iovec);
1564 out_fput:
1565 if (unlikely(ret))
1566 fput(file);
1567 return ret;
1570 static void aio_fsync_work(struct work_struct *work)
1572 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1573 int ret;
1575 ret = vfs_fsync(req->file, req->datasync);
1576 fput(req->file);
1577 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1580 static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync)
1582 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1583 iocb->aio_rw_flags))
1584 return -EINVAL;
1586 req->file = fget(iocb->aio_fildes);
1587 if (unlikely(!req->file))
1588 return -EBADF;
1589 if (unlikely(!req->file->f_op->fsync)) {
1590 fput(req->file);
1591 return -EINVAL;
1594 req->datasync = datasync;
1595 INIT_WORK(&req->work, aio_fsync_work);
1596 schedule_work(&req->work);
1597 return 0;
1600 static inline void aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask)
1602 struct file *file = iocb->poll.file;
1604 aio_complete(iocb, mangle_poll(mask), 0);
1605 fput(file);
1608 static void aio_poll_complete_work(struct work_struct *work)
1610 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1611 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1612 struct poll_table_struct pt = { ._key = req->events };
1613 struct kioctx *ctx = iocb->ki_ctx;
1614 __poll_t mask = 0;
1616 if (!READ_ONCE(req->cancelled))
1617 mask = vfs_poll(req->file, &pt) & req->events;
1620 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1621 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1622 * synchronize with them. In the cancellation case the list_del_init
1623 * itself is not actually needed, but harmless so we keep it in to
1624 * avoid further branches in the fast path.
1626 spin_lock_irq(&ctx->ctx_lock);
1627 if (!mask && !READ_ONCE(req->cancelled)) {
1628 add_wait_queue(req->head, &req->wait);
1629 spin_unlock_irq(&ctx->ctx_lock);
1630 return;
1632 list_del_init(&iocb->ki_list);
1633 spin_unlock_irq(&ctx->ctx_lock);
1635 aio_poll_complete(iocb, mask);
1638 /* assumes we are called with irqs disabled */
1639 static int aio_poll_cancel(struct kiocb *iocb)
1641 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1642 struct poll_iocb *req = &aiocb->poll;
1644 spin_lock(&req->head->lock);
1645 WRITE_ONCE(req->cancelled, true);
1646 if (!list_empty(&req->wait.entry)) {
1647 list_del_init(&req->wait.entry);
1648 schedule_work(&aiocb->poll.work);
1650 spin_unlock(&req->head->lock);
1652 return 0;
1655 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1656 void *key)
1658 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1659 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1660 __poll_t mask = key_to_poll(key);
1662 req->woken = true;
1664 /* for instances that support it check for an event match first: */
1665 if (mask) {
1666 if (!(mask & req->events))
1667 return 0;
1669 /* try to complete the iocb inline if we can: */
1670 if (spin_trylock(&iocb->ki_ctx->ctx_lock)) {
1671 list_del(&iocb->ki_list);
1672 spin_unlock(&iocb->ki_ctx->ctx_lock);
1674 list_del_init(&req->wait.entry);
1675 aio_poll_complete(iocb, mask);
1676 return 1;
1680 list_del_init(&req->wait.entry);
1681 schedule_work(&req->work);
1682 return 1;
1685 struct aio_poll_table {
1686 struct poll_table_struct pt;
1687 struct aio_kiocb *iocb;
1688 int error;
1691 static void
1692 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1693 struct poll_table_struct *p)
1695 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1697 /* multiple wait queues per file are not supported */
1698 if (unlikely(pt->iocb->poll.head)) {
1699 pt->error = -EINVAL;
1700 return;
1703 pt->error = 0;
1704 pt->iocb->poll.head = head;
1705 add_wait_queue(head, &pt->iocb->poll.wait);
1708 static ssize_t aio_poll(struct aio_kiocb *aiocb, struct iocb *iocb)
1710 struct kioctx *ctx = aiocb->ki_ctx;
1711 struct poll_iocb *req = &aiocb->poll;
1712 struct aio_poll_table apt;
1713 __poll_t mask;
1715 /* reject any unknown events outside the normal event mask. */
1716 if ((u16)iocb->aio_buf != iocb->aio_buf)
1717 return -EINVAL;
1718 /* reject fields that are not defined for poll */
1719 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1720 return -EINVAL;
1722 INIT_WORK(&req->work, aio_poll_complete_work);
1723 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1724 req->file = fget(iocb->aio_fildes);
1725 if (unlikely(!req->file))
1726 return -EBADF;
1728 apt.pt._qproc = aio_poll_queue_proc;
1729 apt.pt._key = req->events;
1730 apt.iocb = aiocb;
1731 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1733 /* initialized the list so that we can do list_empty checks */
1734 INIT_LIST_HEAD(&req->wait.entry);
1735 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1737 /* one for removal from waitqueue, one for this function */
1738 refcount_set(&aiocb->ki_refcnt, 2);
1740 mask = vfs_poll(req->file, &apt.pt) & req->events;
1741 if (unlikely(!req->head)) {
1742 /* we did not manage to set up a waitqueue, done */
1743 goto out;
1746 spin_lock_irq(&ctx->ctx_lock);
1747 spin_lock(&req->head->lock);
1748 if (req->woken) {
1749 /* wake_up context handles the rest */
1750 mask = 0;
1751 apt.error = 0;
1752 } else if (mask || apt.error) {
1753 /* if we get an error or a mask we are done */
1754 WARN_ON_ONCE(list_empty(&req->wait.entry));
1755 list_del_init(&req->wait.entry);
1756 } else {
1757 /* actually waiting for an event */
1758 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1759 aiocb->ki_cancel = aio_poll_cancel;
1761 spin_unlock(&req->head->lock);
1762 spin_unlock_irq(&ctx->ctx_lock);
1764 out:
1765 if (unlikely(apt.error)) {
1766 fput(req->file);
1767 return apt.error;
1770 if (mask)
1771 aio_poll_complete(aiocb, mask);
1772 iocb_put(aiocb);
1773 return 0;
1776 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1777 bool compat)
1779 struct aio_kiocb *req;
1780 struct iocb iocb;
1781 ssize_t ret;
1783 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1784 return -EFAULT;
1786 /* enforce forwards compatibility on users */
1787 if (unlikely(iocb.aio_reserved2)) {
1788 pr_debug("EINVAL: reserve field set\n");
1789 return -EINVAL;
1792 /* prevent overflows */
1793 if (unlikely(
1794 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1795 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1796 ((ssize_t)iocb.aio_nbytes < 0)
1797 )) {
1798 pr_debug("EINVAL: overflow check\n");
1799 return -EINVAL;
1802 req = aio_get_req(ctx);
1803 if (unlikely(!req))
1804 return -EAGAIN;
1806 if (iocb.aio_flags & IOCB_FLAG_RESFD) {
1808 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1809 * instance of the file* now. The file descriptor must be
1810 * an eventfd() fd, and will be signaled for each completed
1811 * event using the eventfd_signal() function.
1813 req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd);
1814 if (IS_ERR(req->ki_eventfd)) {
1815 ret = PTR_ERR(req->ki_eventfd);
1816 req->ki_eventfd = NULL;
1817 goto out_put_req;
1821 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1822 if (unlikely(ret)) {
1823 pr_debug("EFAULT: aio_key\n");
1824 goto out_put_req;
1827 req->ki_user_iocb = user_iocb;
1828 req->ki_user_data = iocb.aio_data;
1830 switch (iocb.aio_lio_opcode) {
1831 case IOCB_CMD_PREAD:
1832 ret = aio_read(&req->rw, &iocb, false, compat);
1833 break;
1834 case IOCB_CMD_PWRITE:
1835 ret = aio_write(&req->rw, &iocb, false, compat);
1836 break;
1837 case IOCB_CMD_PREADV:
1838 ret = aio_read(&req->rw, &iocb, true, compat);
1839 break;
1840 case IOCB_CMD_PWRITEV:
1841 ret = aio_write(&req->rw, &iocb, true, compat);
1842 break;
1843 case IOCB_CMD_FSYNC:
1844 ret = aio_fsync(&req->fsync, &iocb, false);
1845 break;
1846 case IOCB_CMD_FDSYNC:
1847 ret = aio_fsync(&req->fsync, &iocb, true);
1848 break;
1849 case IOCB_CMD_POLL:
1850 ret = aio_poll(req, &iocb);
1851 break;
1852 default:
1853 pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode);
1854 ret = -EINVAL;
1855 break;
1859 * If ret is 0, we'd either done aio_complete() ourselves or have
1860 * arranged for that to be done asynchronously. Anything non-zero
1861 * means that we need to destroy req ourselves.
1863 if (ret)
1864 goto out_put_req;
1865 return 0;
1866 out_put_req:
1867 put_reqs_available(ctx, 1);
1868 percpu_ref_put(&ctx->reqs);
1869 if (req->ki_eventfd)
1870 eventfd_ctx_put(req->ki_eventfd);
1871 kmem_cache_free(kiocb_cachep, req);
1872 return ret;
1875 /* sys_io_submit:
1876 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1877 * the number of iocbs queued. May return -EINVAL if the aio_context
1878 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1879 * *iocbpp[0] is not properly initialized, if the operation specified
1880 * is invalid for the file descriptor in the iocb. May fail with
1881 * -EFAULT if any of the data structures point to invalid data. May
1882 * fail with -EBADF if the file descriptor specified in the first
1883 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1884 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1885 * fail with -ENOSYS if not implemented.
1887 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1888 struct iocb __user * __user *, iocbpp)
1890 struct kioctx *ctx;
1891 long ret = 0;
1892 int i = 0;
1893 struct blk_plug plug;
1895 if (unlikely(nr < 0))
1896 return -EINVAL;
1898 ctx = lookup_ioctx(ctx_id);
1899 if (unlikely(!ctx)) {
1900 pr_debug("EINVAL: invalid context id\n");
1901 return -EINVAL;
1904 if (nr > ctx->nr_events)
1905 nr = ctx->nr_events;
1907 blk_start_plug(&plug);
1908 for (i = 0; i < nr; i++) {
1909 struct iocb __user *user_iocb;
1911 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1912 ret = -EFAULT;
1913 break;
1916 ret = io_submit_one(ctx, user_iocb, false);
1917 if (ret)
1918 break;
1920 blk_finish_plug(&plug);
1922 percpu_ref_put(&ctx->users);
1923 return i ? i : ret;
1926 #ifdef CONFIG_COMPAT
1927 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1928 int, nr, compat_uptr_t __user *, iocbpp)
1930 struct kioctx *ctx;
1931 long ret = 0;
1932 int i = 0;
1933 struct blk_plug plug;
1935 if (unlikely(nr < 0))
1936 return -EINVAL;
1938 ctx = lookup_ioctx(ctx_id);
1939 if (unlikely(!ctx)) {
1940 pr_debug("EINVAL: invalid context id\n");
1941 return -EINVAL;
1944 if (nr > ctx->nr_events)
1945 nr = ctx->nr_events;
1947 blk_start_plug(&plug);
1948 for (i = 0; i < nr; i++) {
1949 compat_uptr_t user_iocb;
1951 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1952 ret = -EFAULT;
1953 break;
1956 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1957 if (ret)
1958 break;
1960 blk_finish_plug(&plug);
1962 percpu_ref_put(&ctx->users);
1963 return i ? i : ret;
1965 #endif
1967 /* lookup_kiocb
1968 * Finds a given iocb for cancellation.
1970 static struct aio_kiocb *
1971 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
1973 struct aio_kiocb *kiocb;
1975 assert_spin_locked(&ctx->ctx_lock);
1977 /* TODO: use a hash or array, this sucks. */
1978 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1979 if (kiocb->ki_user_iocb == iocb)
1980 return kiocb;
1982 return NULL;
1985 /* sys_io_cancel:
1986 * Attempts to cancel an iocb previously passed to io_submit. If
1987 * the operation is successfully cancelled, the resulting event is
1988 * copied into the memory pointed to by result without being placed
1989 * into the completion queue and 0 is returned. May fail with
1990 * -EFAULT if any of the data structures pointed to are invalid.
1991 * May fail with -EINVAL if aio_context specified by ctx_id is
1992 * invalid. May fail with -EAGAIN if the iocb specified was not
1993 * cancelled. Will fail with -ENOSYS if not implemented.
1995 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1996 struct io_event __user *, result)
1998 struct kioctx *ctx;
1999 struct aio_kiocb *kiocb;
2000 int ret = -EINVAL;
2001 u32 key;
2003 if (unlikely(get_user(key, &iocb->aio_key)))
2004 return -EFAULT;
2005 if (unlikely(key != KIOCB_KEY))
2006 return -EINVAL;
2008 ctx = lookup_ioctx(ctx_id);
2009 if (unlikely(!ctx))
2010 return -EINVAL;
2012 spin_lock_irq(&ctx->ctx_lock);
2013 kiocb = lookup_kiocb(ctx, iocb);
2014 if (kiocb) {
2015 ret = kiocb->ki_cancel(&kiocb->rw);
2016 list_del_init(&kiocb->ki_list);
2018 spin_unlock_irq(&ctx->ctx_lock);
2020 if (!ret) {
2022 * The result argument is no longer used - the io_event is
2023 * always delivered via the ring buffer. -EINPROGRESS indicates
2024 * cancellation is progress:
2026 ret = -EINPROGRESS;
2029 percpu_ref_put(&ctx->users);
2031 return ret;
2034 static long do_io_getevents(aio_context_t ctx_id,
2035 long min_nr,
2036 long nr,
2037 struct io_event __user *events,
2038 struct timespec64 *ts)
2040 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2041 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2042 long ret = -EINVAL;
2044 if (likely(ioctx)) {
2045 if (likely(min_nr <= nr && min_nr >= 0))
2046 ret = read_events(ioctx, min_nr, nr, events, until);
2047 percpu_ref_put(&ioctx->users);
2050 return ret;
2053 /* io_getevents:
2054 * Attempts to read at least min_nr events and up to nr events from
2055 * the completion queue for the aio_context specified by ctx_id. If
2056 * it succeeds, the number of read events is returned. May fail with
2057 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2058 * out of range, if timeout is out of range. May fail with -EFAULT
2059 * if any of the memory specified is invalid. May return 0 or
2060 * < min_nr if the timeout specified by timeout has elapsed
2061 * before sufficient events are available, where timeout == NULL
2062 * specifies an infinite timeout. Note that the timeout pointed to by
2063 * timeout is relative. Will fail with -ENOSYS if not implemented.
2065 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2066 long, min_nr,
2067 long, nr,
2068 struct io_event __user *, events,
2069 struct timespec __user *, timeout)
2071 struct timespec64 ts;
2072 int ret;
2074 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2075 return -EFAULT;
2077 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2078 if (!ret && signal_pending(current))
2079 ret = -EINTR;
2080 return ret;
2083 struct __aio_sigset {
2084 const sigset_t __user *sigmask;
2085 size_t sigsetsize;
2088 SYSCALL_DEFINE6(io_pgetevents,
2089 aio_context_t, ctx_id,
2090 long, min_nr,
2091 long, nr,
2092 struct io_event __user *, events,
2093 struct timespec __user *, timeout,
2094 const struct __aio_sigset __user *, usig)
2096 struct __aio_sigset ksig = { NULL, };
2097 sigset_t ksigmask, sigsaved;
2098 struct timespec64 ts;
2099 int ret;
2101 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2102 return -EFAULT;
2104 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2105 return -EFAULT;
2107 if (ksig.sigmask) {
2108 if (ksig.sigsetsize != sizeof(sigset_t))
2109 return -EINVAL;
2110 if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
2111 return -EFAULT;
2112 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2113 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2116 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2117 if (signal_pending(current)) {
2118 if (ksig.sigmask) {
2119 current->saved_sigmask = sigsaved;
2120 set_restore_sigmask();
2123 if (!ret)
2124 ret = -ERESTARTNOHAND;
2125 } else {
2126 if (ksig.sigmask)
2127 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2130 return ret;
2133 #ifdef CONFIG_COMPAT
2134 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2135 compat_long_t, min_nr,
2136 compat_long_t, nr,
2137 struct io_event __user *, events,
2138 struct compat_timespec __user *, timeout)
2140 struct timespec64 t;
2141 int ret;
2143 if (timeout && compat_get_timespec64(&t, timeout))
2144 return -EFAULT;
2146 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2147 if (!ret && signal_pending(current))
2148 ret = -EINTR;
2149 return ret;
2153 struct __compat_aio_sigset {
2154 compat_sigset_t __user *sigmask;
2155 compat_size_t sigsetsize;
2158 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2159 compat_aio_context_t, ctx_id,
2160 compat_long_t, min_nr,
2161 compat_long_t, nr,
2162 struct io_event __user *, events,
2163 struct compat_timespec __user *, timeout,
2164 const struct __compat_aio_sigset __user *, usig)
2166 struct __compat_aio_sigset ksig = { NULL, };
2167 sigset_t ksigmask, sigsaved;
2168 struct timespec64 t;
2169 int ret;
2171 if (timeout && compat_get_timespec64(&t, timeout))
2172 return -EFAULT;
2174 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2175 return -EFAULT;
2177 if (ksig.sigmask) {
2178 if (ksig.sigsetsize != sizeof(compat_sigset_t))
2179 return -EINVAL;
2180 if (get_compat_sigset(&ksigmask, ksig.sigmask))
2181 return -EFAULT;
2182 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2183 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2186 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2187 if (signal_pending(current)) {
2188 if (ksig.sigmask) {
2189 current->saved_sigmask = sigsaved;
2190 set_restore_sigmask();
2192 if (!ret)
2193 ret = -ERESTARTNOHAND;
2194 } else {
2195 if (ksig.sigmask)
2196 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2199 return ret;
2201 #endif