4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
27 #include <trace/events/f2fs.h>
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
31 static struct kmem_cache
*discard_entry_slab
;
32 static struct kmem_cache
*discard_cmd_slab
;
33 static struct kmem_cache
*sit_entry_set_slab
;
34 static struct kmem_cache
*inmem_entry_slab
;
36 static unsigned long __reverse_ulong(unsigned char *str
)
38 unsigned long tmp
= 0;
39 int shift
= 24, idx
= 0;
41 #if BITS_PER_LONG == 64
45 tmp
|= (unsigned long)str
[idx
++] << shift
;
46 shift
-= BITS_PER_BYTE
;
52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53 * MSB and LSB are reversed in a byte by f2fs_set_bit.
55 static inline unsigned long __reverse_ffs(unsigned long word
)
59 #if BITS_PER_LONG == 64
60 if ((word
& 0xffffffff00000000UL
) == 0)
65 if ((word
& 0xffff0000) == 0)
70 if ((word
& 0xff00) == 0)
75 if ((word
& 0xf0) == 0)
80 if ((word
& 0xc) == 0)
85 if ((word
& 0x2) == 0)
91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92 * f2fs_set_bit makes MSB and LSB reversed in a byte.
93 * @size must be integral times of unsigned long.
96 * f2fs_set_bit(0, bitmap) => 1000 0000
97 * f2fs_set_bit(7, bitmap) => 0000 0001
99 static unsigned long __find_rev_next_bit(const unsigned long *addr
,
100 unsigned long size
, unsigned long offset
)
102 const unsigned long *p
= addr
+ BIT_WORD(offset
);
103 unsigned long result
= size
;
109 size
-= (offset
& ~(BITS_PER_LONG
- 1));
110 offset
%= BITS_PER_LONG
;
116 tmp
= __reverse_ulong((unsigned char *)p
);
118 tmp
&= ~0UL >> offset
;
119 if (size
< BITS_PER_LONG
)
120 tmp
&= (~0UL << (BITS_PER_LONG
- size
));
124 if (size
<= BITS_PER_LONG
)
126 size
-= BITS_PER_LONG
;
132 return result
- size
+ __reverse_ffs(tmp
);
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr
,
136 unsigned long size
, unsigned long offset
)
138 const unsigned long *p
= addr
+ BIT_WORD(offset
);
139 unsigned long result
= size
;
145 size
-= (offset
& ~(BITS_PER_LONG
- 1));
146 offset
%= BITS_PER_LONG
;
152 tmp
= __reverse_ulong((unsigned char *)p
);
155 tmp
|= ~0UL << (BITS_PER_LONG
- offset
);
156 if (size
< BITS_PER_LONG
)
161 if (size
<= BITS_PER_LONG
)
163 size
-= BITS_PER_LONG
;
169 return result
- size
+ __reverse_ffz(tmp
);
172 bool f2fs_need_SSR(struct f2fs_sb_info
*sbi
)
174 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
175 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
176 int imeta_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_IMETA
);
178 if (test_opt(sbi
, LFS
))
180 if (sbi
->gc_mode
== GC_URGENT
)
183 return free_sections(sbi
) <= (node_secs
+ 2 * dent_secs
+ imeta_secs
+
184 SM_I(sbi
)->min_ssr_sections
+ reserved_sections(sbi
));
187 void f2fs_register_inmem_page(struct inode
*inode
, struct page
*page
)
189 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
190 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
191 struct inmem_pages
*new;
193 f2fs_trace_pid(page
);
195 set_page_private(page
, (unsigned long)ATOMIC_WRITTEN_PAGE
);
196 SetPagePrivate(page
);
198 new = f2fs_kmem_cache_alloc(inmem_entry_slab
, GFP_NOFS
);
200 /* add atomic page indices to the list */
202 INIT_LIST_HEAD(&new->list
);
204 /* increase reference count with clean state */
205 mutex_lock(&fi
->inmem_lock
);
207 list_add_tail(&new->list
, &fi
->inmem_pages
);
208 spin_lock(&sbi
->inode_lock
[ATOMIC_FILE
]);
209 if (list_empty(&fi
->inmem_ilist
))
210 list_add_tail(&fi
->inmem_ilist
, &sbi
->inode_list
[ATOMIC_FILE
]);
211 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
212 inc_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
213 mutex_unlock(&fi
->inmem_lock
);
215 trace_f2fs_register_inmem_page(page
, INMEM
);
218 static int __revoke_inmem_pages(struct inode
*inode
,
219 struct list_head
*head
, bool drop
, bool recover
)
221 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
222 struct inmem_pages
*cur
, *tmp
;
225 list_for_each_entry_safe(cur
, tmp
, head
, list
) {
226 struct page
*page
= cur
->page
;
229 trace_f2fs_commit_inmem_page(page
, INMEM_DROP
);
233 f2fs_wait_on_page_writeback(page
, DATA
, true);
236 struct dnode_of_data dn
;
239 trace_f2fs_commit_inmem_page(page
, INMEM_REVOKE
);
241 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
242 err
= f2fs_get_dnode_of_data(&dn
, page
->index
,
245 if (err
== -ENOMEM
) {
246 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
254 err
= f2fs_get_node_info(sbi
, dn
.nid
, &ni
);
260 if (cur
->old_addr
== NEW_ADDR
) {
261 f2fs_invalidate_blocks(sbi
, dn
.data_blkaddr
);
262 f2fs_update_data_blkaddr(&dn
, NEW_ADDR
);
264 f2fs_replace_block(sbi
, &dn
, dn
.data_blkaddr
,
265 cur
->old_addr
, ni
.version
, true, true);
269 /* we don't need to invalidate this in the sccessful status */
271 ClearPageUptodate(page
);
272 set_page_private(page
, 0);
273 ClearPagePrivate(page
);
274 f2fs_put_page(page
, 1);
276 list_del(&cur
->list
);
277 kmem_cache_free(inmem_entry_slab
, cur
);
278 dec_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
283 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info
*sbi
, bool gc_failure
)
285 struct list_head
*head
= &sbi
->inode_list
[ATOMIC_FILE
];
287 struct f2fs_inode_info
*fi
;
289 spin_lock(&sbi
->inode_lock
[ATOMIC_FILE
]);
290 if (list_empty(head
)) {
291 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
294 fi
= list_first_entry(head
, struct f2fs_inode_info
, inmem_ilist
);
295 inode
= igrab(&fi
->vfs_inode
);
296 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
300 if (fi
->i_gc_failures
[GC_FAILURE_ATOMIC
])
305 set_inode_flag(inode
, FI_ATOMIC_REVOKE_REQUEST
);
306 f2fs_drop_inmem_pages(inode
);
310 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
315 void f2fs_drop_inmem_pages(struct inode
*inode
)
317 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
318 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
320 mutex_lock(&fi
->inmem_lock
);
321 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
322 spin_lock(&sbi
->inode_lock
[ATOMIC_FILE
]);
323 if (!list_empty(&fi
->inmem_ilist
))
324 list_del_init(&fi
->inmem_ilist
);
325 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
326 mutex_unlock(&fi
->inmem_lock
);
328 clear_inode_flag(inode
, FI_ATOMIC_FILE
);
329 fi
->i_gc_failures
[GC_FAILURE_ATOMIC
] = 0;
330 stat_dec_atomic_write(inode
);
333 void f2fs_drop_inmem_page(struct inode
*inode
, struct page
*page
)
335 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
336 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
337 struct list_head
*head
= &fi
->inmem_pages
;
338 struct inmem_pages
*cur
= NULL
;
340 f2fs_bug_on(sbi
, !IS_ATOMIC_WRITTEN_PAGE(page
));
342 mutex_lock(&fi
->inmem_lock
);
343 list_for_each_entry(cur
, head
, list
) {
344 if (cur
->page
== page
)
348 f2fs_bug_on(sbi
, list_empty(head
) || cur
->page
!= page
);
349 list_del(&cur
->list
);
350 mutex_unlock(&fi
->inmem_lock
);
352 dec_page_count(sbi
, F2FS_INMEM_PAGES
);
353 kmem_cache_free(inmem_entry_slab
, cur
);
355 ClearPageUptodate(page
);
356 set_page_private(page
, 0);
357 ClearPagePrivate(page
);
358 f2fs_put_page(page
, 0);
360 trace_f2fs_commit_inmem_page(page
, INMEM_INVALIDATE
);
363 static int __f2fs_commit_inmem_pages(struct inode
*inode
)
365 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
366 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
367 struct inmem_pages
*cur
, *tmp
;
368 struct f2fs_io_info fio
= {
373 .op_flags
= REQ_SYNC
| REQ_PRIO
,
374 .io_type
= FS_DATA_IO
,
376 struct list_head revoke_list
;
377 pgoff_t last_idx
= ULONG_MAX
;
380 INIT_LIST_HEAD(&revoke_list
);
382 list_for_each_entry_safe(cur
, tmp
, &fi
->inmem_pages
, list
) {
383 struct page
*page
= cur
->page
;
386 if (page
->mapping
== inode
->i_mapping
) {
387 trace_f2fs_commit_inmem_page(page
, INMEM
);
389 set_page_dirty(page
);
390 f2fs_wait_on_page_writeback(page
, DATA
, true);
391 if (clear_page_dirty_for_io(page
)) {
392 inode_dec_dirty_pages(inode
);
393 f2fs_remove_dirty_inode(inode
);
397 fio
.old_blkaddr
= NULL_ADDR
;
398 fio
.encrypted_page
= NULL
;
399 fio
.need_lock
= LOCK_DONE
;
400 err
= f2fs_do_write_data_page(&fio
);
402 if (err
== -ENOMEM
) {
403 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
410 /* record old blkaddr for revoking */
411 cur
->old_addr
= fio
.old_blkaddr
;
412 last_idx
= page
->index
;
415 list_move_tail(&cur
->list
, &revoke_list
);
418 if (last_idx
!= ULONG_MAX
)
419 f2fs_submit_merged_write_cond(sbi
, inode
, 0, last_idx
, DATA
);
423 * try to revoke all committed pages, but still we could fail
424 * due to no memory or other reason, if that happened, EAGAIN
425 * will be returned, which means in such case, transaction is
426 * already not integrity, caller should use journal to do the
427 * recovery or rewrite & commit last transaction. For other
428 * error number, revoking was done by filesystem itself.
430 err
= __revoke_inmem_pages(inode
, &revoke_list
, false, true);
432 /* drop all uncommitted pages */
433 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
435 __revoke_inmem_pages(inode
, &revoke_list
, false, false);
441 int f2fs_commit_inmem_pages(struct inode
*inode
)
443 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
444 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
447 f2fs_balance_fs(sbi
, true);
449 down_write(&fi
->i_gc_rwsem
[WRITE
]);
452 set_inode_flag(inode
, FI_ATOMIC_COMMIT
);
454 mutex_lock(&fi
->inmem_lock
);
455 err
= __f2fs_commit_inmem_pages(inode
);
457 spin_lock(&sbi
->inode_lock
[ATOMIC_FILE
]);
458 if (!list_empty(&fi
->inmem_ilist
))
459 list_del_init(&fi
->inmem_ilist
);
460 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
461 mutex_unlock(&fi
->inmem_lock
);
463 clear_inode_flag(inode
, FI_ATOMIC_COMMIT
);
466 up_write(&fi
->i_gc_rwsem
[WRITE
]);
472 * This function balances dirty node and dentry pages.
473 * In addition, it controls garbage collection.
475 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
, bool need
)
477 if (time_to_inject(sbi
, FAULT_CHECKPOINT
)) {
478 f2fs_show_injection_info(FAULT_CHECKPOINT
);
479 f2fs_stop_checkpoint(sbi
, false);
482 /* balance_fs_bg is able to be pending */
483 if (need
&& excess_cached_nats(sbi
))
484 f2fs_balance_fs_bg(sbi
);
487 * We should do GC or end up with checkpoint, if there are so many dirty
488 * dir/node pages without enough free segments.
490 if (has_not_enough_free_secs(sbi
, 0, 0)) {
491 mutex_lock(&sbi
->gc_mutex
);
492 f2fs_gc(sbi
, false, false, NULL_SEGNO
);
496 void f2fs_balance_fs_bg(struct f2fs_sb_info
*sbi
)
498 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
501 /* try to shrink extent cache when there is no enough memory */
502 if (!f2fs_available_free_memory(sbi
, EXTENT_CACHE
))
503 f2fs_shrink_extent_tree(sbi
, EXTENT_CACHE_SHRINK_NUMBER
);
505 /* check the # of cached NAT entries */
506 if (!f2fs_available_free_memory(sbi
, NAT_ENTRIES
))
507 f2fs_try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
);
509 if (!f2fs_available_free_memory(sbi
, FREE_NIDS
))
510 f2fs_try_to_free_nids(sbi
, MAX_FREE_NIDS
);
512 f2fs_build_free_nids(sbi
, false, false);
515 (!excess_dirty_nats(sbi
) && !excess_dirty_nodes(sbi
)))
518 /* checkpoint is the only way to shrink partial cached entries */
519 if (!f2fs_available_free_memory(sbi
, NAT_ENTRIES
) ||
520 !f2fs_available_free_memory(sbi
, INO_ENTRIES
) ||
521 excess_prefree_segs(sbi
) ||
522 excess_dirty_nats(sbi
) ||
523 excess_dirty_nodes(sbi
) ||
524 f2fs_time_over(sbi
, CP_TIME
)) {
525 if (test_opt(sbi
, DATA_FLUSH
)) {
526 struct blk_plug plug
;
528 blk_start_plug(&plug
);
529 f2fs_sync_dirty_inodes(sbi
, FILE_INODE
);
530 blk_finish_plug(&plug
);
532 f2fs_sync_fs(sbi
->sb
, true);
533 stat_inc_bg_cp_count(sbi
->stat_info
);
537 static int __submit_flush_wait(struct f2fs_sb_info
*sbi
,
538 struct block_device
*bdev
)
540 struct bio
*bio
= f2fs_bio_alloc(sbi
, 0, true);
543 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
| REQ_PREFLUSH
;
544 bio_set_dev(bio
, bdev
);
545 ret
= submit_bio_wait(bio
);
548 trace_f2fs_issue_flush(bdev
, test_opt(sbi
, NOBARRIER
),
549 test_opt(sbi
, FLUSH_MERGE
), ret
);
553 static int submit_flush_wait(struct f2fs_sb_info
*sbi
, nid_t ino
)
559 return __submit_flush_wait(sbi
, sbi
->sb
->s_bdev
);
561 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
562 if (!f2fs_is_dirty_device(sbi
, ino
, i
, FLUSH_INO
))
564 ret
= __submit_flush_wait(sbi
, FDEV(i
).bdev
);
571 static int issue_flush_thread(void *data
)
573 struct f2fs_sb_info
*sbi
= data
;
574 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
575 wait_queue_head_t
*q
= &fcc
->flush_wait_queue
;
577 if (kthread_should_stop())
580 sb_start_intwrite(sbi
->sb
);
582 if (!llist_empty(&fcc
->issue_list
)) {
583 struct flush_cmd
*cmd
, *next
;
586 fcc
->dispatch_list
= llist_del_all(&fcc
->issue_list
);
587 fcc
->dispatch_list
= llist_reverse_order(fcc
->dispatch_list
);
589 cmd
= llist_entry(fcc
->dispatch_list
, struct flush_cmd
, llnode
);
591 ret
= submit_flush_wait(sbi
, cmd
->ino
);
592 atomic_inc(&fcc
->issued_flush
);
594 llist_for_each_entry_safe(cmd
, next
,
595 fcc
->dispatch_list
, llnode
) {
597 complete(&cmd
->wait
);
599 fcc
->dispatch_list
= NULL
;
602 sb_end_intwrite(sbi
->sb
);
604 wait_event_interruptible(*q
,
605 kthread_should_stop() || !llist_empty(&fcc
->issue_list
));
609 int f2fs_issue_flush(struct f2fs_sb_info
*sbi
, nid_t ino
)
611 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
612 struct flush_cmd cmd
;
615 if (test_opt(sbi
, NOBARRIER
))
618 if (!test_opt(sbi
, FLUSH_MERGE
)) {
619 ret
= submit_flush_wait(sbi
, ino
);
620 atomic_inc(&fcc
->issued_flush
);
624 if (atomic_inc_return(&fcc
->issing_flush
) == 1 || sbi
->s_ndevs
> 1) {
625 ret
= submit_flush_wait(sbi
, ino
);
626 atomic_dec(&fcc
->issing_flush
);
628 atomic_inc(&fcc
->issued_flush
);
633 init_completion(&cmd
.wait
);
635 llist_add(&cmd
.llnode
, &fcc
->issue_list
);
637 /* update issue_list before we wake up issue_flush thread */
640 if (waitqueue_active(&fcc
->flush_wait_queue
))
641 wake_up(&fcc
->flush_wait_queue
);
643 if (fcc
->f2fs_issue_flush
) {
644 wait_for_completion(&cmd
.wait
);
645 atomic_dec(&fcc
->issing_flush
);
647 struct llist_node
*list
;
649 list
= llist_del_all(&fcc
->issue_list
);
651 wait_for_completion(&cmd
.wait
);
652 atomic_dec(&fcc
->issing_flush
);
654 struct flush_cmd
*tmp
, *next
;
656 ret
= submit_flush_wait(sbi
, ino
);
658 llist_for_each_entry_safe(tmp
, next
, list
, llnode
) {
661 atomic_dec(&fcc
->issing_flush
);
665 complete(&tmp
->wait
);
673 int f2fs_create_flush_cmd_control(struct f2fs_sb_info
*sbi
)
675 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
676 struct flush_cmd_control
*fcc
;
679 if (SM_I(sbi
)->fcc_info
) {
680 fcc
= SM_I(sbi
)->fcc_info
;
681 if (fcc
->f2fs_issue_flush
)
686 fcc
= f2fs_kzalloc(sbi
, sizeof(struct flush_cmd_control
), GFP_KERNEL
);
689 atomic_set(&fcc
->issued_flush
, 0);
690 atomic_set(&fcc
->issing_flush
, 0);
691 init_waitqueue_head(&fcc
->flush_wait_queue
);
692 init_llist_head(&fcc
->issue_list
);
693 SM_I(sbi
)->fcc_info
= fcc
;
694 if (!test_opt(sbi
, FLUSH_MERGE
))
698 fcc
->f2fs_issue_flush
= kthread_run(issue_flush_thread
, sbi
,
699 "f2fs_flush-%u:%u", MAJOR(dev
), MINOR(dev
));
700 if (IS_ERR(fcc
->f2fs_issue_flush
)) {
701 err
= PTR_ERR(fcc
->f2fs_issue_flush
);
703 SM_I(sbi
)->fcc_info
= NULL
;
710 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info
*sbi
, bool free
)
712 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
714 if (fcc
&& fcc
->f2fs_issue_flush
) {
715 struct task_struct
*flush_thread
= fcc
->f2fs_issue_flush
;
717 fcc
->f2fs_issue_flush
= NULL
;
718 kthread_stop(flush_thread
);
722 SM_I(sbi
)->fcc_info
= NULL
;
726 int f2fs_flush_device_cache(struct f2fs_sb_info
*sbi
)
733 for (i
= 1; i
< sbi
->s_ndevs
; i
++) {
734 if (!f2fs_test_bit(i
, (char *)&sbi
->dirty_device
))
736 ret
= __submit_flush_wait(sbi
, FDEV(i
).bdev
);
740 spin_lock(&sbi
->dev_lock
);
741 f2fs_clear_bit(i
, (char *)&sbi
->dirty_device
);
742 spin_unlock(&sbi
->dev_lock
);
748 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
749 enum dirty_type dirty_type
)
751 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
753 /* need not be added */
754 if (IS_CURSEG(sbi
, segno
))
757 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
758 dirty_i
->nr_dirty
[dirty_type
]++;
760 if (dirty_type
== DIRTY
) {
761 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
762 enum dirty_type t
= sentry
->type
;
764 if (unlikely(t
>= DIRTY
)) {
768 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[t
]))
769 dirty_i
->nr_dirty
[t
]++;
773 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
774 enum dirty_type dirty_type
)
776 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
778 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
779 dirty_i
->nr_dirty
[dirty_type
]--;
781 if (dirty_type
== DIRTY
) {
782 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
783 enum dirty_type t
= sentry
->type
;
785 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[t
]))
786 dirty_i
->nr_dirty
[t
]--;
788 if (get_valid_blocks(sbi
, segno
, true) == 0)
789 clear_bit(GET_SEC_FROM_SEG(sbi
, segno
),
790 dirty_i
->victim_secmap
);
795 * Should not occur error such as -ENOMEM.
796 * Adding dirty entry into seglist is not critical operation.
797 * If a given segment is one of current working segments, it won't be added.
799 static void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
801 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
802 unsigned short valid_blocks
;
804 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
807 mutex_lock(&dirty_i
->seglist_lock
);
809 valid_blocks
= get_valid_blocks(sbi
, segno
, false);
811 if (valid_blocks
== 0) {
812 __locate_dirty_segment(sbi
, segno
, PRE
);
813 __remove_dirty_segment(sbi
, segno
, DIRTY
);
814 } else if (valid_blocks
< sbi
->blocks_per_seg
) {
815 __locate_dirty_segment(sbi
, segno
, DIRTY
);
817 /* Recovery routine with SSR needs this */
818 __remove_dirty_segment(sbi
, segno
, DIRTY
);
821 mutex_unlock(&dirty_i
->seglist_lock
);
824 static struct discard_cmd
*__create_discard_cmd(struct f2fs_sb_info
*sbi
,
825 struct block_device
*bdev
, block_t lstart
,
826 block_t start
, block_t len
)
828 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
829 struct list_head
*pend_list
;
830 struct discard_cmd
*dc
;
832 f2fs_bug_on(sbi
, !len
);
834 pend_list
= &dcc
->pend_list
[plist_idx(len
)];
836 dc
= f2fs_kmem_cache_alloc(discard_cmd_slab
, GFP_NOFS
);
837 INIT_LIST_HEAD(&dc
->list
);
846 init_completion(&dc
->wait
);
847 list_add_tail(&dc
->list
, pend_list
);
848 spin_lock_init(&dc
->lock
);
850 atomic_inc(&dcc
->discard_cmd_cnt
);
851 dcc
->undiscard_blks
+= len
;
856 static struct discard_cmd
*__attach_discard_cmd(struct f2fs_sb_info
*sbi
,
857 struct block_device
*bdev
, block_t lstart
,
858 block_t start
, block_t len
,
859 struct rb_node
*parent
, struct rb_node
**p
)
861 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
862 struct discard_cmd
*dc
;
864 dc
= __create_discard_cmd(sbi
, bdev
, lstart
, start
, len
);
866 rb_link_node(&dc
->rb_node
, parent
, p
);
867 rb_insert_color(&dc
->rb_node
, &dcc
->root
);
872 static void __detach_discard_cmd(struct discard_cmd_control
*dcc
,
873 struct discard_cmd
*dc
)
875 if (dc
->state
== D_DONE
)
876 atomic_sub(dc
->issuing
, &dcc
->issing_discard
);
879 rb_erase(&dc
->rb_node
, &dcc
->root
);
880 dcc
->undiscard_blks
-= dc
->len
;
882 kmem_cache_free(discard_cmd_slab
, dc
);
884 atomic_dec(&dcc
->discard_cmd_cnt
);
887 static void __remove_discard_cmd(struct f2fs_sb_info
*sbi
,
888 struct discard_cmd
*dc
)
890 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
893 trace_f2fs_remove_discard(dc
->bdev
, dc
->start
, dc
->len
);
895 spin_lock_irqsave(&dc
->lock
, flags
);
897 spin_unlock_irqrestore(&dc
->lock
, flags
);
900 spin_unlock_irqrestore(&dc
->lock
, flags
);
902 f2fs_bug_on(sbi
, dc
->ref
);
904 if (dc
->error
== -EOPNOTSUPP
)
908 f2fs_msg(sbi
->sb
, KERN_INFO
,
909 "Issue discard(%u, %u, %u) failed, ret: %d",
910 dc
->lstart
, dc
->start
, dc
->len
, dc
->error
);
911 __detach_discard_cmd(dcc
, dc
);
914 static void f2fs_submit_discard_endio(struct bio
*bio
)
916 struct discard_cmd
*dc
= (struct discard_cmd
*)bio
->bi_private
;
919 dc
->error
= blk_status_to_errno(bio
->bi_status
);
921 spin_lock_irqsave(&dc
->lock
, flags
);
923 if (!dc
->bio_ref
&& dc
->state
== D_SUBMIT
) {
925 complete_all(&dc
->wait
);
927 spin_unlock_irqrestore(&dc
->lock
, flags
);
931 static void __check_sit_bitmap(struct f2fs_sb_info
*sbi
,
932 block_t start
, block_t end
)
934 #ifdef CONFIG_F2FS_CHECK_FS
935 struct seg_entry
*sentry
;
938 unsigned long offset
, size
, max_blocks
= sbi
->blocks_per_seg
;
942 segno
= GET_SEGNO(sbi
, blk
);
943 sentry
= get_seg_entry(sbi
, segno
);
944 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blk
);
946 if (end
< START_BLOCK(sbi
, segno
+ 1))
947 size
= GET_BLKOFF_FROM_SEG0(sbi
, end
);
950 map
= (unsigned long *)(sentry
->cur_valid_map
);
951 offset
= __find_rev_next_bit(map
, size
, offset
);
952 f2fs_bug_on(sbi
, offset
!= size
);
953 blk
= START_BLOCK(sbi
, segno
+ 1);
958 static void __init_discard_policy(struct f2fs_sb_info
*sbi
,
959 struct discard_policy
*dpolicy
,
960 int discard_type
, unsigned int granularity
)
963 dpolicy
->type
= discard_type
;
964 dpolicy
->sync
= true;
965 dpolicy
->ordered
= false;
966 dpolicy
->granularity
= granularity
;
968 dpolicy
->max_requests
= DEF_MAX_DISCARD_REQUEST
;
969 dpolicy
->io_aware_gran
= MAX_PLIST_NUM
;
971 if (discard_type
== DPOLICY_BG
) {
972 dpolicy
->min_interval
= DEF_MIN_DISCARD_ISSUE_TIME
;
973 dpolicy
->mid_interval
= DEF_MID_DISCARD_ISSUE_TIME
;
974 dpolicy
->max_interval
= DEF_MAX_DISCARD_ISSUE_TIME
;
975 dpolicy
->io_aware
= true;
976 dpolicy
->sync
= false;
977 dpolicy
->ordered
= true;
978 if (utilization(sbi
) > DEF_DISCARD_URGENT_UTIL
) {
979 dpolicy
->granularity
= 1;
980 dpolicy
->max_interval
= DEF_MIN_DISCARD_ISSUE_TIME
;
982 } else if (discard_type
== DPOLICY_FORCE
) {
983 dpolicy
->min_interval
= DEF_MIN_DISCARD_ISSUE_TIME
;
984 dpolicy
->mid_interval
= DEF_MID_DISCARD_ISSUE_TIME
;
985 dpolicy
->max_interval
= DEF_MAX_DISCARD_ISSUE_TIME
;
986 dpolicy
->io_aware
= false;
987 } else if (discard_type
== DPOLICY_FSTRIM
) {
988 dpolicy
->io_aware
= false;
989 } else if (discard_type
== DPOLICY_UMOUNT
) {
990 dpolicy
->max_requests
= UINT_MAX
;
991 dpolicy
->io_aware
= false;
995 static void __update_discard_tree_range(struct f2fs_sb_info
*sbi
,
996 struct block_device
*bdev
, block_t lstart
,
997 block_t start
, block_t len
);
998 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
999 static int __submit_discard_cmd(struct f2fs_sb_info
*sbi
,
1000 struct discard_policy
*dpolicy
,
1001 struct discard_cmd
*dc
,
1002 unsigned int *issued
)
1004 struct block_device
*bdev
= dc
->bdev
;
1005 struct request_queue
*q
= bdev_get_queue(bdev
);
1006 unsigned int max_discard_blocks
=
1007 SECTOR_TO_BLOCK(q
->limits
.max_discard_sectors
);
1008 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1009 struct list_head
*wait_list
= (dpolicy
->type
== DPOLICY_FSTRIM
) ?
1010 &(dcc
->fstrim_list
) : &(dcc
->wait_list
);
1011 int flag
= dpolicy
->sync
? REQ_SYNC
: 0;
1012 block_t lstart
, start
, len
, total_len
;
1015 if (dc
->state
!= D_PREP
)
1018 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1021 trace_f2fs_issue_discard(bdev
, dc
->start
, dc
->len
);
1023 lstart
= dc
->lstart
;
1030 while (total_len
&& *issued
< dpolicy
->max_requests
&& !err
) {
1031 struct bio
*bio
= NULL
;
1032 unsigned long flags
;
1035 if (len
> max_discard_blocks
) {
1036 len
= max_discard_blocks
;
1041 if (*issued
== dpolicy
->max_requests
)
1046 if (time_to_inject(sbi
, FAULT_DISCARD
)) {
1047 f2fs_show_injection_info(FAULT_DISCARD
);
1051 err
= __blkdev_issue_discard(bdev
,
1052 SECTOR_FROM_BLOCK(start
),
1053 SECTOR_FROM_BLOCK(len
),
1057 spin_lock_irqsave(&dc
->lock
, flags
);
1058 if (dc
->state
== D_PARTIAL
)
1059 dc
->state
= D_SUBMIT
;
1060 spin_unlock_irqrestore(&dc
->lock
, flags
);
1065 f2fs_bug_on(sbi
, !bio
);
1068 * should keep before submission to avoid D_DONE
1071 spin_lock_irqsave(&dc
->lock
, flags
);
1073 dc
->state
= D_SUBMIT
;
1075 dc
->state
= D_PARTIAL
;
1077 spin_unlock_irqrestore(&dc
->lock
, flags
);
1079 atomic_inc(&dcc
->issing_discard
);
1081 list_move_tail(&dc
->list
, wait_list
);
1083 /* sanity check on discard range */
1084 __check_sit_bitmap(sbi
, start
, start
+ len
);
1086 bio
->bi_private
= dc
;
1087 bio
->bi_end_io
= f2fs_submit_discard_endio
;
1088 bio
->bi_opf
|= flag
;
1091 atomic_inc(&dcc
->issued_discard
);
1093 f2fs_update_iostat(sbi
, FS_DISCARD
, 1);
1102 __update_discard_tree_range(sbi
, bdev
, lstart
, start
, len
);
1106 static struct discard_cmd
*__insert_discard_tree(struct f2fs_sb_info
*sbi
,
1107 struct block_device
*bdev
, block_t lstart
,
1108 block_t start
, block_t len
,
1109 struct rb_node
**insert_p
,
1110 struct rb_node
*insert_parent
)
1112 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1114 struct rb_node
*parent
= NULL
;
1115 struct discard_cmd
*dc
= NULL
;
1117 if (insert_p
&& insert_parent
) {
1118 parent
= insert_parent
;
1123 p
= f2fs_lookup_rb_tree_for_insert(sbi
, &dcc
->root
, &parent
, lstart
);
1125 dc
= __attach_discard_cmd(sbi
, bdev
, lstart
, start
, len
, parent
, p
);
1132 static void __relocate_discard_cmd(struct discard_cmd_control
*dcc
,
1133 struct discard_cmd
*dc
)
1135 list_move_tail(&dc
->list
, &dcc
->pend_list
[plist_idx(dc
->len
)]);
1138 static void __punch_discard_cmd(struct f2fs_sb_info
*sbi
,
1139 struct discard_cmd
*dc
, block_t blkaddr
)
1141 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1142 struct discard_info di
= dc
->di
;
1143 bool modified
= false;
1145 if (dc
->state
== D_DONE
|| dc
->len
== 1) {
1146 __remove_discard_cmd(sbi
, dc
);
1150 dcc
->undiscard_blks
-= di
.len
;
1152 if (blkaddr
> di
.lstart
) {
1153 dc
->len
= blkaddr
- dc
->lstart
;
1154 dcc
->undiscard_blks
+= dc
->len
;
1155 __relocate_discard_cmd(dcc
, dc
);
1159 if (blkaddr
< di
.lstart
+ di
.len
- 1) {
1161 __insert_discard_tree(sbi
, dc
->bdev
, blkaddr
+ 1,
1162 di
.start
+ blkaddr
+ 1 - di
.lstart
,
1163 di
.lstart
+ di
.len
- 1 - blkaddr
,
1169 dcc
->undiscard_blks
+= dc
->len
;
1170 __relocate_discard_cmd(dcc
, dc
);
1175 static void __update_discard_tree_range(struct f2fs_sb_info
*sbi
,
1176 struct block_device
*bdev
, block_t lstart
,
1177 block_t start
, block_t len
)
1179 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1180 struct discard_cmd
*prev_dc
= NULL
, *next_dc
= NULL
;
1181 struct discard_cmd
*dc
;
1182 struct discard_info di
= {0};
1183 struct rb_node
**insert_p
= NULL
, *insert_parent
= NULL
;
1184 struct request_queue
*q
= bdev_get_queue(bdev
);
1185 unsigned int max_discard_blocks
=
1186 SECTOR_TO_BLOCK(q
->limits
.max_discard_sectors
);
1187 block_t end
= lstart
+ len
;
1189 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree_ret(&dcc
->root
,
1191 (struct rb_entry
**)&prev_dc
,
1192 (struct rb_entry
**)&next_dc
,
1193 &insert_p
, &insert_parent
, true);
1199 di
.len
= next_dc
? next_dc
->lstart
- lstart
: len
;
1200 di
.len
= min(di
.len
, len
);
1205 struct rb_node
*node
;
1206 bool merged
= false;
1207 struct discard_cmd
*tdc
= NULL
;
1210 di
.lstart
= prev_dc
->lstart
+ prev_dc
->len
;
1211 if (di
.lstart
< lstart
)
1213 if (di
.lstart
>= end
)
1216 if (!next_dc
|| next_dc
->lstart
> end
)
1217 di
.len
= end
- di
.lstart
;
1219 di
.len
= next_dc
->lstart
- di
.lstart
;
1220 di
.start
= start
+ di
.lstart
- lstart
;
1226 if (prev_dc
&& prev_dc
->state
== D_PREP
&&
1227 prev_dc
->bdev
== bdev
&&
1228 __is_discard_back_mergeable(&di
, &prev_dc
->di
,
1229 max_discard_blocks
)) {
1230 prev_dc
->di
.len
+= di
.len
;
1231 dcc
->undiscard_blks
+= di
.len
;
1232 __relocate_discard_cmd(dcc
, prev_dc
);
1238 if (next_dc
&& next_dc
->state
== D_PREP
&&
1239 next_dc
->bdev
== bdev
&&
1240 __is_discard_front_mergeable(&di
, &next_dc
->di
,
1241 max_discard_blocks
)) {
1242 next_dc
->di
.lstart
= di
.lstart
;
1243 next_dc
->di
.len
+= di
.len
;
1244 next_dc
->di
.start
= di
.start
;
1245 dcc
->undiscard_blks
+= di
.len
;
1246 __relocate_discard_cmd(dcc
, next_dc
);
1248 __remove_discard_cmd(sbi
, tdc
);
1253 __insert_discard_tree(sbi
, bdev
, di
.lstart
, di
.start
,
1254 di
.len
, NULL
, NULL
);
1261 node
= rb_next(&prev_dc
->rb_node
);
1262 next_dc
= rb_entry_safe(node
, struct discard_cmd
, rb_node
);
1266 static int __queue_discard_cmd(struct f2fs_sb_info
*sbi
,
1267 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
1269 block_t lblkstart
= blkstart
;
1271 trace_f2fs_queue_discard(bdev
, blkstart
, blklen
);
1274 int devi
= f2fs_target_device_index(sbi
, blkstart
);
1276 blkstart
-= FDEV(devi
).start_blk
;
1278 mutex_lock(&SM_I(sbi
)->dcc_info
->cmd_lock
);
1279 __update_discard_tree_range(sbi
, bdev
, lblkstart
, blkstart
, blklen
);
1280 mutex_unlock(&SM_I(sbi
)->dcc_info
->cmd_lock
);
1284 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info
*sbi
,
1285 struct discard_policy
*dpolicy
)
1287 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1288 struct discard_cmd
*prev_dc
= NULL
, *next_dc
= NULL
;
1289 struct rb_node
**insert_p
= NULL
, *insert_parent
= NULL
;
1290 struct discard_cmd
*dc
;
1291 struct blk_plug plug
;
1292 unsigned int pos
= dcc
->next_pos
;
1293 unsigned int issued
= 0;
1294 bool io_interrupted
= false;
1296 mutex_lock(&dcc
->cmd_lock
);
1297 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree_ret(&dcc
->root
,
1299 (struct rb_entry
**)&prev_dc
,
1300 (struct rb_entry
**)&next_dc
,
1301 &insert_p
, &insert_parent
, true);
1305 blk_start_plug(&plug
);
1308 struct rb_node
*node
;
1311 if (dc
->state
!= D_PREP
)
1314 if (dpolicy
->io_aware
&& !is_idle(sbi
)) {
1315 io_interrupted
= true;
1319 dcc
->next_pos
= dc
->lstart
+ dc
->len
;
1320 err
= __submit_discard_cmd(sbi
, dpolicy
, dc
, &issued
);
1322 if (issued
>= dpolicy
->max_requests
)
1325 node
= rb_next(&dc
->rb_node
);
1327 __remove_discard_cmd(sbi
, dc
);
1328 dc
= rb_entry_safe(node
, struct discard_cmd
, rb_node
);
1331 blk_finish_plug(&plug
);
1336 mutex_unlock(&dcc
->cmd_lock
);
1338 if (!issued
&& io_interrupted
)
1344 static int __issue_discard_cmd(struct f2fs_sb_info
*sbi
,
1345 struct discard_policy
*dpolicy
)
1347 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1348 struct list_head
*pend_list
;
1349 struct discard_cmd
*dc
, *tmp
;
1350 struct blk_plug plug
;
1352 bool io_interrupted
= false;
1354 for (i
= MAX_PLIST_NUM
- 1; i
>= 0; i
--) {
1355 if (i
+ 1 < dpolicy
->granularity
)
1358 if (i
< DEFAULT_DISCARD_GRANULARITY
&& dpolicy
->ordered
)
1359 return __issue_discard_cmd_orderly(sbi
, dpolicy
);
1361 pend_list
= &dcc
->pend_list
[i
];
1363 mutex_lock(&dcc
->cmd_lock
);
1364 if (list_empty(pend_list
))
1366 if (unlikely(dcc
->rbtree_check
))
1367 f2fs_bug_on(sbi
, !f2fs_check_rb_tree_consistence(sbi
,
1369 blk_start_plug(&plug
);
1370 list_for_each_entry_safe(dc
, tmp
, pend_list
, list
) {
1371 f2fs_bug_on(sbi
, dc
->state
!= D_PREP
);
1373 if (dpolicy
->io_aware
&& i
< dpolicy
->io_aware_gran
&&
1375 io_interrupted
= true;
1379 __submit_discard_cmd(sbi
, dpolicy
, dc
, &issued
);
1381 if (issued
>= dpolicy
->max_requests
)
1384 blk_finish_plug(&plug
);
1386 mutex_unlock(&dcc
->cmd_lock
);
1388 if (issued
>= dpolicy
->max_requests
|| io_interrupted
)
1392 if (!issued
&& io_interrupted
)
1398 static bool __drop_discard_cmd(struct f2fs_sb_info
*sbi
)
1400 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1401 struct list_head
*pend_list
;
1402 struct discard_cmd
*dc
, *tmp
;
1404 bool dropped
= false;
1406 mutex_lock(&dcc
->cmd_lock
);
1407 for (i
= MAX_PLIST_NUM
- 1; i
>= 0; i
--) {
1408 pend_list
= &dcc
->pend_list
[i
];
1409 list_for_each_entry_safe(dc
, tmp
, pend_list
, list
) {
1410 f2fs_bug_on(sbi
, dc
->state
!= D_PREP
);
1411 __remove_discard_cmd(sbi
, dc
);
1415 mutex_unlock(&dcc
->cmd_lock
);
1420 void f2fs_drop_discard_cmd(struct f2fs_sb_info
*sbi
)
1422 __drop_discard_cmd(sbi
);
1425 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info
*sbi
,
1426 struct discard_cmd
*dc
)
1428 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1429 unsigned int len
= 0;
1431 wait_for_completion_io(&dc
->wait
);
1432 mutex_lock(&dcc
->cmd_lock
);
1433 f2fs_bug_on(sbi
, dc
->state
!= D_DONE
);
1438 __remove_discard_cmd(sbi
, dc
);
1440 mutex_unlock(&dcc
->cmd_lock
);
1445 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info
*sbi
,
1446 struct discard_policy
*dpolicy
,
1447 block_t start
, block_t end
)
1449 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1450 struct list_head
*wait_list
= (dpolicy
->type
== DPOLICY_FSTRIM
) ?
1451 &(dcc
->fstrim_list
) : &(dcc
->wait_list
);
1452 struct discard_cmd
*dc
, *tmp
;
1454 unsigned int trimmed
= 0;
1459 mutex_lock(&dcc
->cmd_lock
);
1460 list_for_each_entry_safe(dc
, tmp
, wait_list
, list
) {
1461 if (dc
->lstart
+ dc
->len
<= start
|| end
<= dc
->lstart
)
1463 if (dc
->len
< dpolicy
->granularity
)
1465 if (dc
->state
== D_DONE
&& !dc
->ref
) {
1466 wait_for_completion_io(&dc
->wait
);
1469 __remove_discard_cmd(sbi
, dc
);
1476 mutex_unlock(&dcc
->cmd_lock
);
1479 trimmed
+= __wait_one_discard_bio(sbi
, dc
);
1486 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info
*sbi
,
1487 struct discard_policy
*dpolicy
)
1489 struct discard_policy dp
;
1490 unsigned int discard_blks
;
1493 return __wait_discard_cmd_range(sbi
, dpolicy
, 0, UINT_MAX
);
1496 __init_discard_policy(sbi
, &dp
, DPOLICY_FSTRIM
, 1);
1497 discard_blks
= __wait_discard_cmd_range(sbi
, &dp
, 0, UINT_MAX
);
1498 __init_discard_policy(sbi
, &dp
, DPOLICY_UMOUNT
, 1);
1499 discard_blks
+= __wait_discard_cmd_range(sbi
, &dp
, 0, UINT_MAX
);
1501 return discard_blks
;
1504 /* This should be covered by global mutex, &sit_i->sentry_lock */
1505 static void f2fs_wait_discard_bio(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1507 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1508 struct discard_cmd
*dc
;
1509 bool need_wait
= false;
1511 mutex_lock(&dcc
->cmd_lock
);
1512 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree(&dcc
->root
,
1515 if (dc
->state
== D_PREP
) {
1516 __punch_discard_cmd(sbi
, dc
, blkaddr
);
1522 mutex_unlock(&dcc
->cmd_lock
);
1525 __wait_one_discard_bio(sbi
, dc
);
1528 void f2fs_stop_discard_thread(struct f2fs_sb_info
*sbi
)
1530 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1532 if (dcc
&& dcc
->f2fs_issue_discard
) {
1533 struct task_struct
*discard_thread
= dcc
->f2fs_issue_discard
;
1535 dcc
->f2fs_issue_discard
= NULL
;
1536 kthread_stop(discard_thread
);
1540 /* This comes from f2fs_put_super */
1541 bool f2fs_wait_discard_bios(struct f2fs_sb_info
*sbi
)
1543 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1544 struct discard_policy dpolicy
;
1547 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_UMOUNT
,
1548 dcc
->discard_granularity
);
1549 __issue_discard_cmd(sbi
, &dpolicy
);
1550 dropped
= __drop_discard_cmd(sbi
);
1552 /* just to make sure there is no pending discard commands */
1553 __wait_all_discard_cmd(sbi
, NULL
);
1555 f2fs_bug_on(sbi
, atomic_read(&dcc
->discard_cmd_cnt
));
1559 static int issue_discard_thread(void *data
)
1561 struct f2fs_sb_info
*sbi
= data
;
1562 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1563 wait_queue_head_t
*q
= &dcc
->discard_wait_queue
;
1564 struct discard_policy dpolicy
;
1565 unsigned int wait_ms
= DEF_MIN_DISCARD_ISSUE_TIME
;
1571 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_BG
,
1572 dcc
->discard_granularity
);
1574 wait_event_interruptible_timeout(*q
,
1575 kthread_should_stop() || freezing(current
) ||
1577 msecs_to_jiffies(wait_ms
));
1579 if (dcc
->discard_wake
)
1580 dcc
->discard_wake
= 0;
1582 if (try_to_freeze())
1584 if (f2fs_readonly(sbi
->sb
))
1586 if (kthread_should_stop())
1588 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
)) {
1589 wait_ms
= dpolicy
.max_interval
;
1593 if (sbi
->gc_mode
== GC_URGENT
)
1594 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_FORCE
, 1);
1596 sb_start_intwrite(sbi
->sb
);
1598 issued
= __issue_discard_cmd(sbi
, &dpolicy
);
1600 __wait_all_discard_cmd(sbi
, &dpolicy
);
1601 wait_ms
= dpolicy
.min_interval
;
1602 } else if (issued
== -1){
1603 wait_ms
= dpolicy
.mid_interval
;
1605 wait_ms
= dpolicy
.max_interval
;
1608 sb_end_intwrite(sbi
->sb
);
1610 } while (!kthread_should_stop());
1614 #ifdef CONFIG_BLK_DEV_ZONED
1615 static int __f2fs_issue_discard_zone(struct f2fs_sb_info
*sbi
,
1616 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
1618 sector_t sector
, nr_sects
;
1619 block_t lblkstart
= blkstart
;
1623 devi
= f2fs_target_device_index(sbi
, blkstart
);
1624 blkstart
-= FDEV(devi
).start_blk
;
1628 * We need to know the type of the zone: for conventional zones,
1629 * use regular discard if the drive supports it. For sequential
1630 * zones, reset the zone write pointer.
1632 switch (get_blkz_type(sbi
, bdev
, blkstart
)) {
1634 case BLK_ZONE_TYPE_CONVENTIONAL
:
1635 if (!blk_queue_discard(bdev_get_queue(bdev
)))
1637 return __queue_discard_cmd(sbi
, bdev
, lblkstart
, blklen
);
1638 case BLK_ZONE_TYPE_SEQWRITE_REQ
:
1639 case BLK_ZONE_TYPE_SEQWRITE_PREF
:
1640 sector
= SECTOR_FROM_BLOCK(blkstart
);
1641 nr_sects
= SECTOR_FROM_BLOCK(blklen
);
1643 if (sector
& (bdev_zone_sectors(bdev
) - 1) ||
1644 nr_sects
!= bdev_zone_sectors(bdev
)) {
1645 f2fs_msg(sbi
->sb
, KERN_INFO
,
1646 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1647 devi
, sbi
->s_ndevs
? FDEV(devi
).path
: "",
1651 trace_f2fs_issue_reset_zone(bdev
, blkstart
);
1652 return blkdev_reset_zones(bdev
, sector
,
1653 nr_sects
, GFP_NOFS
);
1655 /* Unknown zone type: broken device ? */
1661 static int __issue_discard_async(struct f2fs_sb_info
*sbi
,
1662 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
1664 #ifdef CONFIG_BLK_DEV_ZONED
1665 if (f2fs_sb_has_blkzoned(sbi
->sb
) &&
1666 bdev_zoned_model(bdev
) != BLK_ZONED_NONE
)
1667 return __f2fs_issue_discard_zone(sbi
, bdev
, blkstart
, blklen
);
1669 return __queue_discard_cmd(sbi
, bdev
, blkstart
, blklen
);
1672 static int f2fs_issue_discard(struct f2fs_sb_info
*sbi
,
1673 block_t blkstart
, block_t blklen
)
1675 sector_t start
= blkstart
, len
= 0;
1676 struct block_device
*bdev
;
1677 struct seg_entry
*se
;
1678 unsigned int offset
;
1682 bdev
= f2fs_target_device(sbi
, blkstart
, NULL
);
1684 for (i
= blkstart
; i
< blkstart
+ blklen
; i
++, len
++) {
1686 struct block_device
*bdev2
=
1687 f2fs_target_device(sbi
, i
, NULL
);
1689 if (bdev2
!= bdev
) {
1690 err
= __issue_discard_async(sbi
, bdev
,
1700 se
= get_seg_entry(sbi
, GET_SEGNO(sbi
, i
));
1701 offset
= GET_BLKOFF_FROM_SEG0(sbi
, i
);
1703 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
1704 sbi
->discard_blks
--;
1708 err
= __issue_discard_async(sbi
, bdev
, start
, len
);
1712 static bool add_discard_addrs(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
,
1715 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
1716 int max_blocks
= sbi
->blocks_per_seg
;
1717 struct seg_entry
*se
= get_seg_entry(sbi
, cpc
->trim_start
);
1718 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
1719 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
1720 unsigned long *discard_map
= (unsigned long *)se
->discard_map
;
1721 unsigned long *dmap
= SIT_I(sbi
)->tmp_map
;
1722 unsigned int start
= 0, end
= -1;
1723 bool force
= (cpc
->reason
& CP_DISCARD
);
1724 struct discard_entry
*de
= NULL
;
1725 struct list_head
*head
= &SM_I(sbi
)->dcc_info
->entry_list
;
1728 if (se
->valid_blocks
== max_blocks
|| !f2fs_discard_en(sbi
))
1732 if (!test_opt(sbi
, DISCARD
) || !se
->valid_blocks
||
1733 SM_I(sbi
)->dcc_info
->nr_discards
>=
1734 SM_I(sbi
)->dcc_info
->max_discards
)
1738 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1739 for (i
= 0; i
< entries
; i
++)
1740 dmap
[i
] = force
? ~ckpt_map
[i
] & ~discard_map
[i
] :
1741 (cur_map
[i
] ^ ckpt_map
[i
]) & ckpt_map
[i
];
1743 while (force
|| SM_I(sbi
)->dcc_info
->nr_discards
<=
1744 SM_I(sbi
)->dcc_info
->max_discards
) {
1745 start
= __find_rev_next_bit(dmap
, max_blocks
, end
+ 1);
1746 if (start
>= max_blocks
)
1749 end
= __find_rev_next_zero_bit(dmap
, max_blocks
, start
+ 1);
1750 if (force
&& start
&& end
!= max_blocks
1751 && (end
- start
) < cpc
->trim_minlen
)
1758 de
= f2fs_kmem_cache_alloc(discard_entry_slab
,
1760 de
->start_blkaddr
= START_BLOCK(sbi
, cpc
->trim_start
);
1761 list_add_tail(&de
->list
, head
);
1764 for (i
= start
; i
< end
; i
++)
1765 __set_bit_le(i
, (void *)de
->discard_map
);
1767 SM_I(sbi
)->dcc_info
->nr_discards
+= end
- start
;
1772 static void release_discard_addr(struct discard_entry
*entry
)
1774 list_del(&entry
->list
);
1775 kmem_cache_free(discard_entry_slab
, entry
);
1778 void f2fs_release_discard_addrs(struct f2fs_sb_info
*sbi
)
1780 struct list_head
*head
= &(SM_I(sbi
)->dcc_info
->entry_list
);
1781 struct discard_entry
*entry
, *this;
1784 list_for_each_entry_safe(entry
, this, head
, list
)
1785 release_discard_addr(entry
);
1789 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1791 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
1793 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1796 mutex_lock(&dirty_i
->seglist_lock
);
1797 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[PRE
], MAIN_SEGS(sbi
))
1798 __set_test_and_free(sbi
, segno
);
1799 mutex_unlock(&dirty_i
->seglist_lock
);
1802 void f2fs_clear_prefree_segments(struct f2fs_sb_info
*sbi
,
1803 struct cp_control
*cpc
)
1805 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1806 struct list_head
*head
= &dcc
->entry_list
;
1807 struct discard_entry
*entry
, *this;
1808 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1809 unsigned long *prefree_map
= dirty_i
->dirty_segmap
[PRE
];
1810 unsigned int start
= 0, end
= -1;
1811 unsigned int secno
, start_segno
;
1812 bool force
= (cpc
->reason
& CP_DISCARD
);
1813 bool need_align
= test_opt(sbi
, LFS
) && sbi
->segs_per_sec
> 1;
1815 mutex_lock(&dirty_i
->seglist_lock
);
1820 if (need_align
&& end
!= -1)
1822 start
= find_next_bit(prefree_map
, MAIN_SEGS(sbi
), end
+ 1);
1823 if (start
>= MAIN_SEGS(sbi
))
1825 end
= find_next_zero_bit(prefree_map
, MAIN_SEGS(sbi
),
1829 start
= rounddown(start
, sbi
->segs_per_sec
);
1830 end
= roundup(end
, sbi
->segs_per_sec
);
1833 for (i
= start
; i
< end
; i
++) {
1834 if (test_and_clear_bit(i
, prefree_map
))
1835 dirty_i
->nr_dirty
[PRE
]--;
1838 if (!test_opt(sbi
, DISCARD
))
1841 if (force
&& start
>= cpc
->trim_start
&&
1842 (end
- 1) <= cpc
->trim_end
)
1845 if (!test_opt(sbi
, LFS
) || sbi
->segs_per_sec
== 1) {
1846 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start
),
1847 (end
- start
) << sbi
->log_blocks_per_seg
);
1851 secno
= GET_SEC_FROM_SEG(sbi
, start
);
1852 start_segno
= GET_SEG_FROM_SEC(sbi
, secno
);
1853 if (!IS_CURSEC(sbi
, secno
) &&
1854 !get_valid_blocks(sbi
, start
, true))
1855 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start_segno
),
1856 sbi
->segs_per_sec
<< sbi
->log_blocks_per_seg
);
1858 start
= start_segno
+ sbi
->segs_per_sec
;
1864 mutex_unlock(&dirty_i
->seglist_lock
);
1866 /* send small discards */
1867 list_for_each_entry_safe(entry
, this, head
, list
) {
1868 unsigned int cur_pos
= 0, next_pos
, len
, total_len
= 0;
1869 bool is_valid
= test_bit_le(0, entry
->discard_map
);
1873 next_pos
= find_next_zero_bit_le(entry
->discard_map
,
1874 sbi
->blocks_per_seg
, cur_pos
);
1875 len
= next_pos
- cur_pos
;
1877 if (f2fs_sb_has_blkzoned(sbi
->sb
) ||
1878 (force
&& len
< cpc
->trim_minlen
))
1881 f2fs_issue_discard(sbi
, entry
->start_blkaddr
+ cur_pos
,
1885 next_pos
= find_next_bit_le(entry
->discard_map
,
1886 sbi
->blocks_per_seg
, cur_pos
);
1890 is_valid
= !is_valid
;
1892 if (cur_pos
< sbi
->blocks_per_seg
)
1895 release_discard_addr(entry
);
1896 dcc
->nr_discards
-= total_len
;
1899 wake_up_discard_thread(sbi
, false);
1902 static int create_discard_cmd_control(struct f2fs_sb_info
*sbi
)
1904 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
1905 struct discard_cmd_control
*dcc
;
1908 if (SM_I(sbi
)->dcc_info
) {
1909 dcc
= SM_I(sbi
)->dcc_info
;
1913 dcc
= f2fs_kzalloc(sbi
, sizeof(struct discard_cmd_control
), GFP_KERNEL
);
1917 dcc
->discard_granularity
= DEFAULT_DISCARD_GRANULARITY
;
1918 INIT_LIST_HEAD(&dcc
->entry_list
);
1919 for (i
= 0; i
< MAX_PLIST_NUM
; i
++)
1920 INIT_LIST_HEAD(&dcc
->pend_list
[i
]);
1921 INIT_LIST_HEAD(&dcc
->wait_list
);
1922 INIT_LIST_HEAD(&dcc
->fstrim_list
);
1923 mutex_init(&dcc
->cmd_lock
);
1924 atomic_set(&dcc
->issued_discard
, 0);
1925 atomic_set(&dcc
->issing_discard
, 0);
1926 atomic_set(&dcc
->discard_cmd_cnt
, 0);
1927 dcc
->nr_discards
= 0;
1928 dcc
->max_discards
= MAIN_SEGS(sbi
) << sbi
->log_blocks_per_seg
;
1929 dcc
->undiscard_blks
= 0;
1931 dcc
->root
= RB_ROOT
;
1932 dcc
->rbtree_check
= false;
1934 init_waitqueue_head(&dcc
->discard_wait_queue
);
1935 SM_I(sbi
)->dcc_info
= dcc
;
1937 dcc
->f2fs_issue_discard
= kthread_run(issue_discard_thread
, sbi
,
1938 "f2fs_discard-%u:%u", MAJOR(dev
), MINOR(dev
));
1939 if (IS_ERR(dcc
->f2fs_issue_discard
)) {
1940 err
= PTR_ERR(dcc
->f2fs_issue_discard
);
1942 SM_I(sbi
)->dcc_info
= NULL
;
1949 static void destroy_discard_cmd_control(struct f2fs_sb_info
*sbi
)
1951 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1956 f2fs_stop_discard_thread(sbi
);
1959 SM_I(sbi
)->dcc_info
= NULL
;
1962 static bool __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
1964 struct sit_info
*sit_i
= SIT_I(sbi
);
1966 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
)) {
1967 sit_i
->dirty_sentries
++;
1974 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
1975 unsigned int segno
, int modified
)
1977 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
1980 __mark_sit_entry_dirty(sbi
, segno
);
1983 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
1985 struct seg_entry
*se
;
1986 unsigned int segno
, offset
;
1987 long int new_vblocks
;
1989 #ifdef CONFIG_F2FS_CHECK_FS
1993 segno
= GET_SEGNO(sbi
, blkaddr
);
1995 se
= get_seg_entry(sbi
, segno
);
1996 new_vblocks
= se
->valid_blocks
+ del
;
1997 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
1999 f2fs_bug_on(sbi
, (new_vblocks
>> (sizeof(unsigned short) << 3) ||
2000 (new_vblocks
> sbi
->blocks_per_seg
)));
2002 se
->valid_blocks
= new_vblocks
;
2003 se
->mtime
= get_mtime(sbi
, false);
2004 if (se
->mtime
> SIT_I(sbi
)->max_mtime
)
2005 SIT_I(sbi
)->max_mtime
= se
->mtime
;
2007 /* Update valid block bitmap */
2009 exist
= f2fs_test_and_set_bit(offset
, se
->cur_valid_map
);
2010 #ifdef CONFIG_F2FS_CHECK_FS
2011 mir_exist
= f2fs_test_and_set_bit(offset
,
2012 se
->cur_valid_map_mir
);
2013 if (unlikely(exist
!= mir_exist
)) {
2014 f2fs_msg(sbi
->sb
, KERN_ERR
, "Inconsistent error "
2015 "when setting bitmap, blk:%u, old bit:%d",
2017 f2fs_bug_on(sbi
, 1);
2020 if (unlikely(exist
)) {
2021 f2fs_msg(sbi
->sb
, KERN_ERR
,
2022 "Bitmap was wrongly set, blk:%u", blkaddr
);
2023 f2fs_bug_on(sbi
, 1);
2028 if (f2fs_discard_en(sbi
) &&
2029 !f2fs_test_and_set_bit(offset
, se
->discard_map
))
2030 sbi
->discard_blks
--;
2032 /* don't overwrite by SSR to keep node chain */
2033 if (IS_NODESEG(se
->type
)) {
2034 if (!f2fs_test_and_set_bit(offset
, se
->ckpt_valid_map
))
2035 se
->ckpt_valid_blocks
++;
2038 exist
= f2fs_test_and_clear_bit(offset
, se
->cur_valid_map
);
2039 #ifdef CONFIG_F2FS_CHECK_FS
2040 mir_exist
= f2fs_test_and_clear_bit(offset
,
2041 se
->cur_valid_map_mir
);
2042 if (unlikely(exist
!= mir_exist
)) {
2043 f2fs_msg(sbi
->sb
, KERN_ERR
, "Inconsistent error "
2044 "when clearing bitmap, blk:%u, old bit:%d",
2046 f2fs_bug_on(sbi
, 1);
2049 if (unlikely(!exist
)) {
2050 f2fs_msg(sbi
->sb
, KERN_ERR
,
2051 "Bitmap was wrongly cleared, blk:%u", blkaddr
);
2052 f2fs_bug_on(sbi
, 1);
2057 if (f2fs_discard_en(sbi
) &&
2058 f2fs_test_and_clear_bit(offset
, se
->discard_map
))
2059 sbi
->discard_blks
++;
2061 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
2062 se
->ckpt_valid_blocks
+= del
;
2064 __mark_sit_entry_dirty(sbi
, segno
);
2066 /* update total number of valid blocks to be written in ckpt area */
2067 SIT_I(sbi
)->written_valid_blocks
+= del
;
2069 if (sbi
->segs_per_sec
> 1)
2070 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
2073 void f2fs_invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
2075 unsigned int segno
= GET_SEGNO(sbi
, addr
);
2076 struct sit_info
*sit_i
= SIT_I(sbi
);
2078 f2fs_bug_on(sbi
, addr
== NULL_ADDR
);
2079 if (addr
== NEW_ADDR
)
2082 invalidate_mapping_pages(META_MAPPING(sbi
), addr
, addr
);
2084 /* add it into sit main buffer */
2085 down_write(&sit_i
->sentry_lock
);
2087 update_sit_entry(sbi
, addr
, -1);
2089 /* add it into dirty seglist */
2090 locate_dirty_segment(sbi
, segno
);
2092 up_write(&sit_i
->sentry_lock
);
2095 bool f2fs_is_checkpointed_data(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
2097 struct sit_info
*sit_i
= SIT_I(sbi
);
2098 unsigned int segno
, offset
;
2099 struct seg_entry
*se
;
2102 if (!is_valid_data_blkaddr(sbi
, blkaddr
))
2105 down_read(&sit_i
->sentry_lock
);
2107 segno
= GET_SEGNO(sbi
, blkaddr
);
2108 se
= get_seg_entry(sbi
, segno
);
2109 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
2111 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
))
2114 up_read(&sit_i
->sentry_lock
);
2120 * This function should be resided under the curseg_mutex lock
2122 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
2123 struct f2fs_summary
*sum
)
2125 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2126 void *addr
= curseg
->sum_blk
;
2127 addr
+= curseg
->next_blkoff
* sizeof(struct f2fs_summary
);
2128 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
2132 * Calculate the number of current summary pages for writing
2134 int f2fs_npages_for_summary_flush(struct f2fs_sb_info
*sbi
, bool for_ra
)
2136 int valid_sum_count
= 0;
2139 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
2140 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
2141 valid_sum_count
+= sbi
->blocks_per_seg
;
2144 valid_sum_count
+= le16_to_cpu(
2145 F2FS_CKPT(sbi
)->cur_data_blkoff
[i
]);
2147 valid_sum_count
+= curseg_blkoff(sbi
, i
);
2151 sum_in_page
= (PAGE_SIZE
- 2 * SUM_JOURNAL_SIZE
-
2152 SUM_FOOTER_SIZE
) / SUMMARY_SIZE
;
2153 if (valid_sum_count
<= sum_in_page
)
2155 else if ((valid_sum_count
- sum_in_page
) <=
2156 (PAGE_SIZE
- SUM_FOOTER_SIZE
) / SUMMARY_SIZE
)
2162 * Caller should put this summary page
2164 struct page
*f2fs_get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
2166 return f2fs_get_meta_page_nofail(sbi
, GET_SUM_BLOCK(sbi
, segno
));
2169 void f2fs_update_meta_page(struct f2fs_sb_info
*sbi
,
2170 void *src
, block_t blk_addr
)
2172 struct page
*page
= f2fs_grab_meta_page(sbi
, blk_addr
);
2174 memcpy(page_address(page
), src
, PAGE_SIZE
);
2175 set_page_dirty(page
);
2176 f2fs_put_page(page
, 1);
2179 static void write_sum_page(struct f2fs_sb_info
*sbi
,
2180 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
2182 f2fs_update_meta_page(sbi
, (void *)sum_blk
, blk_addr
);
2185 static void write_current_sum_page(struct f2fs_sb_info
*sbi
,
2186 int type
, block_t blk_addr
)
2188 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2189 struct page
*page
= f2fs_grab_meta_page(sbi
, blk_addr
);
2190 struct f2fs_summary_block
*src
= curseg
->sum_blk
;
2191 struct f2fs_summary_block
*dst
;
2193 dst
= (struct f2fs_summary_block
*)page_address(page
);
2194 memset(dst
, 0, PAGE_SIZE
);
2196 mutex_lock(&curseg
->curseg_mutex
);
2198 down_read(&curseg
->journal_rwsem
);
2199 memcpy(&dst
->journal
, curseg
->journal
, SUM_JOURNAL_SIZE
);
2200 up_read(&curseg
->journal_rwsem
);
2202 memcpy(dst
->entries
, src
->entries
, SUM_ENTRY_SIZE
);
2203 memcpy(&dst
->footer
, &src
->footer
, SUM_FOOTER_SIZE
);
2205 mutex_unlock(&curseg
->curseg_mutex
);
2207 set_page_dirty(page
);
2208 f2fs_put_page(page
, 1);
2211 static int is_next_segment_free(struct f2fs_sb_info
*sbi
, int type
)
2213 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2214 unsigned int segno
= curseg
->segno
+ 1;
2215 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2217 if (segno
< MAIN_SEGS(sbi
) && segno
% sbi
->segs_per_sec
)
2218 return !test_bit(segno
, free_i
->free_segmap
);
2223 * Find a new segment from the free segments bitmap to right order
2224 * This function should be returned with success, otherwise BUG
2226 static void get_new_segment(struct f2fs_sb_info
*sbi
,
2227 unsigned int *newseg
, bool new_sec
, int dir
)
2229 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2230 unsigned int segno
, secno
, zoneno
;
2231 unsigned int total_zones
= MAIN_SECS(sbi
) / sbi
->secs_per_zone
;
2232 unsigned int hint
= GET_SEC_FROM_SEG(sbi
, *newseg
);
2233 unsigned int old_zoneno
= GET_ZONE_FROM_SEG(sbi
, *newseg
);
2234 unsigned int left_start
= hint
;
2239 spin_lock(&free_i
->segmap_lock
);
2241 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
2242 segno
= find_next_zero_bit(free_i
->free_segmap
,
2243 GET_SEG_FROM_SEC(sbi
, hint
+ 1), *newseg
+ 1);
2244 if (segno
< GET_SEG_FROM_SEC(sbi
, hint
+ 1))
2248 secno
= find_next_zero_bit(free_i
->free_secmap
, MAIN_SECS(sbi
), hint
);
2249 if (secno
>= MAIN_SECS(sbi
)) {
2250 if (dir
== ALLOC_RIGHT
) {
2251 secno
= find_next_zero_bit(free_i
->free_secmap
,
2253 f2fs_bug_on(sbi
, secno
>= MAIN_SECS(sbi
));
2256 left_start
= hint
- 1;
2262 while (test_bit(left_start
, free_i
->free_secmap
)) {
2263 if (left_start
> 0) {
2267 left_start
= find_next_zero_bit(free_i
->free_secmap
,
2269 f2fs_bug_on(sbi
, left_start
>= MAIN_SECS(sbi
));
2274 segno
= GET_SEG_FROM_SEC(sbi
, secno
);
2275 zoneno
= GET_ZONE_FROM_SEC(sbi
, secno
);
2277 /* give up on finding another zone */
2280 if (sbi
->secs_per_zone
== 1)
2282 if (zoneno
== old_zoneno
)
2284 if (dir
== ALLOC_LEFT
) {
2285 if (!go_left
&& zoneno
+ 1 >= total_zones
)
2287 if (go_left
&& zoneno
== 0)
2290 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
2291 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
2294 if (i
< NR_CURSEG_TYPE
) {
2295 /* zone is in user, try another */
2297 hint
= zoneno
* sbi
->secs_per_zone
- 1;
2298 else if (zoneno
+ 1 >= total_zones
)
2301 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
2303 goto find_other_zone
;
2306 /* set it as dirty segment in free segmap */
2307 f2fs_bug_on(sbi
, test_bit(segno
, free_i
->free_segmap
));
2308 __set_inuse(sbi
, segno
);
2310 spin_unlock(&free_i
->segmap_lock
);
2313 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
2315 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2316 struct summary_footer
*sum_footer
;
2318 curseg
->segno
= curseg
->next_segno
;
2319 curseg
->zone
= GET_ZONE_FROM_SEG(sbi
, curseg
->segno
);
2320 curseg
->next_blkoff
= 0;
2321 curseg
->next_segno
= NULL_SEGNO
;
2323 sum_footer
= &(curseg
->sum_blk
->footer
);
2324 memset(sum_footer
, 0, sizeof(struct summary_footer
));
2325 if (IS_DATASEG(type
))
2326 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
2327 if (IS_NODESEG(type
))
2328 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
2329 __set_sit_entry_type(sbi
, type
, curseg
->segno
, modified
);
2332 static unsigned int __get_next_segno(struct f2fs_sb_info
*sbi
, int type
)
2334 /* if segs_per_sec is large than 1, we need to keep original policy. */
2335 if (sbi
->segs_per_sec
!= 1)
2336 return CURSEG_I(sbi
, type
)->segno
;
2338 if (test_opt(sbi
, NOHEAP
) &&
2339 (type
== CURSEG_HOT_DATA
|| IS_NODESEG(type
)))
2342 if (SIT_I(sbi
)->last_victim
[ALLOC_NEXT
])
2343 return SIT_I(sbi
)->last_victim
[ALLOC_NEXT
];
2345 /* find segments from 0 to reuse freed segments */
2346 if (F2FS_OPTION(sbi
).alloc_mode
== ALLOC_MODE_REUSE
)
2349 return CURSEG_I(sbi
, type
)->segno
;
2353 * Allocate a current working segment.
2354 * This function always allocates a free segment in LFS manner.
2356 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
2358 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2359 unsigned int segno
= curseg
->segno
;
2360 int dir
= ALLOC_LEFT
;
2362 write_sum_page(sbi
, curseg
->sum_blk
,
2363 GET_SUM_BLOCK(sbi
, segno
));
2364 if (type
== CURSEG_WARM_DATA
|| type
== CURSEG_COLD_DATA
)
2367 if (test_opt(sbi
, NOHEAP
))
2370 segno
= __get_next_segno(sbi
, type
);
2371 get_new_segment(sbi
, &segno
, new_sec
, dir
);
2372 curseg
->next_segno
= segno
;
2373 reset_curseg(sbi
, type
, 1);
2374 curseg
->alloc_type
= LFS
;
2377 static void __next_free_blkoff(struct f2fs_sb_info
*sbi
,
2378 struct curseg_info
*seg
, block_t start
)
2380 struct seg_entry
*se
= get_seg_entry(sbi
, seg
->segno
);
2381 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
2382 unsigned long *target_map
= SIT_I(sbi
)->tmp_map
;
2383 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
2384 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
2387 for (i
= 0; i
< entries
; i
++)
2388 target_map
[i
] = ckpt_map
[i
] | cur_map
[i
];
2390 pos
= __find_rev_next_zero_bit(target_map
, sbi
->blocks_per_seg
, start
);
2392 seg
->next_blkoff
= pos
;
2396 * If a segment is written by LFS manner, next block offset is just obtained
2397 * by increasing the current block offset. However, if a segment is written by
2398 * SSR manner, next block offset obtained by calling __next_free_blkoff
2400 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
2401 struct curseg_info
*seg
)
2403 if (seg
->alloc_type
== SSR
)
2404 __next_free_blkoff(sbi
, seg
, seg
->next_blkoff
+ 1);
2410 * This function always allocates a used segment(from dirty seglist) by SSR
2411 * manner, so it should recover the existing segment information of valid blocks
2413 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
)
2415 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2416 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2417 unsigned int new_segno
= curseg
->next_segno
;
2418 struct f2fs_summary_block
*sum_node
;
2419 struct page
*sum_page
;
2421 write_sum_page(sbi
, curseg
->sum_blk
,
2422 GET_SUM_BLOCK(sbi
, curseg
->segno
));
2423 __set_test_and_inuse(sbi
, new_segno
);
2425 mutex_lock(&dirty_i
->seglist_lock
);
2426 __remove_dirty_segment(sbi
, new_segno
, PRE
);
2427 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
2428 mutex_unlock(&dirty_i
->seglist_lock
);
2430 reset_curseg(sbi
, type
, 1);
2431 curseg
->alloc_type
= SSR
;
2432 __next_free_blkoff(sbi
, curseg
, 0);
2434 sum_page
= f2fs_get_sum_page(sbi
, new_segno
);
2435 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
2436 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
2437 f2fs_put_page(sum_page
, 1);
2440 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
)
2442 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2443 const struct victim_selection
*v_ops
= DIRTY_I(sbi
)->v_ops
;
2444 unsigned segno
= NULL_SEGNO
;
2446 bool reversed
= false;
2448 /* f2fs_need_SSR() already forces to do this */
2449 if (v_ops
->get_victim(sbi
, &segno
, BG_GC
, type
, SSR
)) {
2450 curseg
->next_segno
= segno
;
2454 /* For node segments, let's do SSR more intensively */
2455 if (IS_NODESEG(type
)) {
2456 if (type
>= CURSEG_WARM_NODE
) {
2458 i
= CURSEG_COLD_NODE
;
2460 i
= CURSEG_HOT_NODE
;
2462 cnt
= NR_CURSEG_NODE_TYPE
;
2464 if (type
>= CURSEG_WARM_DATA
) {
2466 i
= CURSEG_COLD_DATA
;
2468 i
= CURSEG_HOT_DATA
;
2470 cnt
= NR_CURSEG_DATA_TYPE
;
2473 for (; cnt
-- > 0; reversed
? i
-- : i
++) {
2476 if (v_ops
->get_victim(sbi
, &segno
, BG_GC
, i
, SSR
)) {
2477 curseg
->next_segno
= segno
;
2485 * flush out current segment and replace it with new segment
2486 * This function should be returned with success, otherwise BUG
2488 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
2489 int type
, bool force
)
2491 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2494 new_curseg(sbi
, type
, true);
2495 else if (!is_set_ckpt_flags(sbi
, CP_CRC_RECOVERY_FLAG
) &&
2496 type
== CURSEG_WARM_NODE
)
2497 new_curseg(sbi
, type
, false);
2498 else if (curseg
->alloc_type
== LFS
&& is_next_segment_free(sbi
, type
))
2499 new_curseg(sbi
, type
, false);
2500 else if (f2fs_need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
2501 change_curseg(sbi
, type
);
2503 new_curseg(sbi
, type
, false);
2505 stat_inc_seg_type(sbi
, curseg
);
2508 void f2fs_allocate_new_segments(struct f2fs_sb_info
*sbi
)
2510 struct curseg_info
*curseg
;
2511 unsigned int old_segno
;
2514 down_write(&SIT_I(sbi
)->sentry_lock
);
2516 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
2517 curseg
= CURSEG_I(sbi
, i
);
2518 old_segno
= curseg
->segno
;
2519 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, i
, true);
2520 locate_dirty_segment(sbi
, old_segno
);
2523 up_write(&SIT_I(sbi
)->sentry_lock
);
2526 static const struct segment_allocation default_salloc_ops
= {
2527 .allocate_segment
= allocate_segment_by_default
,
2530 bool f2fs_exist_trim_candidates(struct f2fs_sb_info
*sbi
,
2531 struct cp_control
*cpc
)
2533 __u64 trim_start
= cpc
->trim_start
;
2534 bool has_candidate
= false;
2536 down_write(&SIT_I(sbi
)->sentry_lock
);
2537 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++) {
2538 if (add_discard_addrs(sbi
, cpc
, true)) {
2539 has_candidate
= true;
2543 up_write(&SIT_I(sbi
)->sentry_lock
);
2545 cpc
->trim_start
= trim_start
;
2546 return has_candidate
;
2549 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info
*sbi
,
2550 struct discard_policy
*dpolicy
,
2551 unsigned int start
, unsigned int end
)
2553 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
2554 struct discard_cmd
*prev_dc
= NULL
, *next_dc
= NULL
;
2555 struct rb_node
**insert_p
= NULL
, *insert_parent
= NULL
;
2556 struct discard_cmd
*dc
;
2557 struct blk_plug plug
;
2559 unsigned int trimmed
= 0;
2564 mutex_lock(&dcc
->cmd_lock
);
2565 if (unlikely(dcc
->rbtree_check
))
2566 f2fs_bug_on(sbi
, !f2fs_check_rb_tree_consistence(sbi
,
2569 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree_ret(&dcc
->root
,
2571 (struct rb_entry
**)&prev_dc
,
2572 (struct rb_entry
**)&next_dc
,
2573 &insert_p
, &insert_parent
, true);
2577 blk_start_plug(&plug
);
2579 while (dc
&& dc
->lstart
<= end
) {
2580 struct rb_node
*node
;
2583 if (dc
->len
< dpolicy
->granularity
)
2586 if (dc
->state
!= D_PREP
) {
2587 list_move_tail(&dc
->list
, &dcc
->fstrim_list
);
2591 err
= __submit_discard_cmd(sbi
, dpolicy
, dc
, &issued
);
2593 if (issued
>= dpolicy
->max_requests
) {
2594 start
= dc
->lstart
+ dc
->len
;
2597 __remove_discard_cmd(sbi
, dc
);
2599 blk_finish_plug(&plug
);
2600 mutex_unlock(&dcc
->cmd_lock
);
2601 trimmed
+= __wait_all_discard_cmd(sbi
, NULL
);
2602 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
2606 node
= rb_next(&dc
->rb_node
);
2608 __remove_discard_cmd(sbi
, dc
);
2609 dc
= rb_entry_safe(node
, struct discard_cmd
, rb_node
);
2611 if (fatal_signal_pending(current
))
2615 blk_finish_plug(&plug
);
2616 mutex_unlock(&dcc
->cmd_lock
);
2621 int f2fs_trim_fs(struct f2fs_sb_info
*sbi
, struct fstrim_range
*range
)
2623 __u64 start
= F2FS_BYTES_TO_BLK(range
->start
);
2624 __u64 end
= start
+ F2FS_BYTES_TO_BLK(range
->len
) - 1;
2625 unsigned int start_segno
, end_segno
;
2626 block_t start_block
, end_block
;
2627 struct cp_control cpc
;
2628 struct discard_policy dpolicy
;
2629 unsigned long long trimmed
= 0;
2631 bool need_align
= test_opt(sbi
, LFS
) && sbi
->segs_per_sec
> 1;
2633 if (start
>= MAX_BLKADDR(sbi
) || range
->len
< sbi
->blocksize
)
2636 if (end
< MAIN_BLKADDR(sbi
))
2639 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
)) {
2640 f2fs_msg(sbi
->sb
, KERN_WARNING
,
2641 "Found FS corruption, run fsck to fix.");
2645 /* start/end segment number in main_area */
2646 start_segno
= (start
<= MAIN_BLKADDR(sbi
)) ? 0 : GET_SEGNO(sbi
, start
);
2647 end_segno
= (end
>= MAX_BLKADDR(sbi
)) ? MAIN_SEGS(sbi
) - 1 :
2648 GET_SEGNO(sbi
, end
);
2650 start_segno
= rounddown(start_segno
, sbi
->segs_per_sec
);
2651 end_segno
= roundup(end_segno
+ 1, sbi
->segs_per_sec
) - 1;
2654 cpc
.reason
= CP_DISCARD
;
2655 cpc
.trim_minlen
= max_t(__u64
, 1, F2FS_BYTES_TO_BLK(range
->minlen
));
2656 cpc
.trim_start
= start_segno
;
2657 cpc
.trim_end
= end_segno
;
2659 if (sbi
->discard_blks
== 0)
2662 mutex_lock(&sbi
->gc_mutex
);
2663 err
= f2fs_write_checkpoint(sbi
, &cpc
);
2664 mutex_unlock(&sbi
->gc_mutex
);
2669 * We filed discard candidates, but actually we don't need to wait for
2670 * all of them, since they'll be issued in idle time along with runtime
2671 * discard option. User configuration looks like using runtime discard
2672 * or periodic fstrim instead of it.
2674 if (test_opt(sbi
, DISCARD
))
2677 start_block
= START_BLOCK(sbi
, start_segno
);
2678 end_block
= START_BLOCK(sbi
, end_segno
+ 1);
2680 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_FSTRIM
, cpc
.trim_minlen
);
2681 trimmed
= __issue_discard_cmd_range(sbi
, &dpolicy
,
2682 start_block
, end_block
);
2684 trimmed
+= __wait_discard_cmd_range(sbi
, &dpolicy
,
2685 start_block
, end_block
);
2688 range
->len
= F2FS_BLK_TO_BYTES(trimmed
);
2692 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
, int type
)
2694 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2695 if (curseg
->next_blkoff
< sbi
->blocks_per_seg
)
2700 int f2fs_rw_hint_to_seg_type(enum rw_hint hint
)
2703 case WRITE_LIFE_SHORT
:
2704 return CURSEG_HOT_DATA
;
2705 case WRITE_LIFE_EXTREME
:
2706 return CURSEG_COLD_DATA
;
2708 return CURSEG_WARM_DATA
;
2712 /* This returns write hints for each segment type. This hints will be
2713 * passed down to block layer. There are mapping tables which depend on
2714 * the mount option 'whint_mode'.
2716 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2718 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2722 * META WRITE_LIFE_NOT_SET
2726 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2727 * extension list " "
2730 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2731 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2732 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2733 * WRITE_LIFE_NONE " "
2734 * WRITE_LIFE_MEDIUM " "
2735 * WRITE_LIFE_LONG " "
2738 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2739 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2740 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2741 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2742 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2743 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2745 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2749 * META WRITE_LIFE_MEDIUM;
2750 * HOT_NODE WRITE_LIFE_NOT_SET
2752 * COLD_NODE WRITE_LIFE_NONE
2753 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2754 * extension list " "
2757 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2758 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2759 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2760 * WRITE_LIFE_NONE " "
2761 * WRITE_LIFE_MEDIUM " "
2762 * WRITE_LIFE_LONG " "
2765 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2766 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2767 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2768 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2769 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2770 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2773 enum rw_hint
f2fs_io_type_to_rw_hint(struct f2fs_sb_info
*sbi
,
2774 enum page_type type
, enum temp_type temp
)
2776 if (F2FS_OPTION(sbi
).whint_mode
== WHINT_MODE_USER
) {
2779 return WRITE_LIFE_NOT_SET
;
2780 else if (temp
== HOT
)
2781 return WRITE_LIFE_SHORT
;
2782 else if (temp
== COLD
)
2783 return WRITE_LIFE_EXTREME
;
2785 return WRITE_LIFE_NOT_SET
;
2787 } else if (F2FS_OPTION(sbi
).whint_mode
== WHINT_MODE_FS
) {
2790 return WRITE_LIFE_LONG
;
2791 else if (temp
== HOT
)
2792 return WRITE_LIFE_SHORT
;
2793 else if (temp
== COLD
)
2794 return WRITE_LIFE_EXTREME
;
2795 } else if (type
== NODE
) {
2796 if (temp
== WARM
|| temp
== HOT
)
2797 return WRITE_LIFE_NOT_SET
;
2798 else if (temp
== COLD
)
2799 return WRITE_LIFE_NONE
;
2800 } else if (type
== META
) {
2801 return WRITE_LIFE_MEDIUM
;
2804 return WRITE_LIFE_NOT_SET
;
2807 static int __get_segment_type_2(struct f2fs_io_info
*fio
)
2809 if (fio
->type
== DATA
)
2810 return CURSEG_HOT_DATA
;
2812 return CURSEG_HOT_NODE
;
2815 static int __get_segment_type_4(struct f2fs_io_info
*fio
)
2817 if (fio
->type
== DATA
) {
2818 struct inode
*inode
= fio
->page
->mapping
->host
;
2820 if (S_ISDIR(inode
->i_mode
))
2821 return CURSEG_HOT_DATA
;
2823 return CURSEG_COLD_DATA
;
2825 if (IS_DNODE(fio
->page
) && is_cold_node(fio
->page
))
2826 return CURSEG_WARM_NODE
;
2828 return CURSEG_COLD_NODE
;
2832 static int __get_segment_type_6(struct f2fs_io_info
*fio
)
2834 if (fio
->type
== DATA
) {
2835 struct inode
*inode
= fio
->page
->mapping
->host
;
2837 if (is_cold_data(fio
->page
) || file_is_cold(inode
))
2838 return CURSEG_COLD_DATA
;
2839 if (file_is_hot(inode
) ||
2840 is_inode_flag_set(inode
, FI_HOT_DATA
) ||
2841 f2fs_is_atomic_file(inode
) ||
2842 f2fs_is_volatile_file(inode
))
2843 return CURSEG_HOT_DATA
;
2844 return f2fs_rw_hint_to_seg_type(inode
->i_write_hint
);
2846 if (IS_DNODE(fio
->page
))
2847 return is_cold_node(fio
->page
) ? CURSEG_WARM_NODE
:
2849 return CURSEG_COLD_NODE
;
2853 static int __get_segment_type(struct f2fs_io_info
*fio
)
2857 switch (F2FS_OPTION(fio
->sbi
).active_logs
) {
2859 type
= __get_segment_type_2(fio
);
2862 type
= __get_segment_type_4(fio
);
2865 type
= __get_segment_type_6(fio
);
2868 f2fs_bug_on(fio
->sbi
, true);
2873 else if (IS_WARM(type
))
2880 void f2fs_allocate_data_block(struct f2fs_sb_info
*sbi
, struct page
*page
,
2881 block_t old_blkaddr
, block_t
*new_blkaddr
,
2882 struct f2fs_summary
*sum
, int type
,
2883 struct f2fs_io_info
*fio
, bool add_list
)
2885 struct sit_info
*sit_i
= SIT_I(sbi
);
2886 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2888 down_read(&SM_I(sbi
)->curseg_lock
);
2890 mutex_lock(&curseg
->curseg_mutex
);
2891 down_write(&sit_i
->sentry_lock
);
2893 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
2895 f2fs_wait_discard_bio(sbi
, *new_blkaddr
);
2898 * __add_sum_entry should be resided under the curseg_mutex
2899 * because, this function updates a summary entry in the
2900 * current summary block.
2902 __add_sum_entry(sbi
, type
, sum
);
2904 __refresh_next_blkoff(sbi
, curseg
);
2906 stat_inc_block_count(sbi
, curseg
);
2909 * SIT information should be updated before segment allocation,
2910 * since SSR needs latest valid block information.
2912 update_sit_entry(sbi
, *new_blkaddr
, 1);
2913 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
2914 update_sit_entry(sbi
, old_blkaddr
, -1);
2916 if (!__has_curseg_space(sbi
, type
))
2917 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
2920 * segment dirty status should be updated after segment allocation,
2921 * so we just need to update status only one time after previous
2922 * segment being closed.
2924 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
2925 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, *new_blkaddr
));
2927 up_write(&sit_i
->sentry_lock
);
2929 if (page
&& IS_NODESEG(type
)) {
2930 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
2932 f2fs_inode_chksum_set(sbi
, page
);
2936 struct f2fs_bio_info
*io
;
2938 INIT_LIST_HEAD(&fio
->list
);
2939 fio
->in_list
= true;
2941 io
= sbi
->write_io
[fio
->type
] + fio
->temp
;
2942 spin_lock(&io
->io_lock
);
2943 list_add_tail(&fio
->list
, &io
->io_list
);
2944 spin_unlock(&io
->io_lock
);
2947 mutex_unlock(&curseg
->curseg_mutex
);
2949 up_read(&SM_I(sbi
)->curseg_lock
);
2952 static void update_device_state(struct f2fs_io_info
*fio
)
2954 struct f2fs_sb_info
*sbi
= fio
->sbi
;
2955 unsigned int devidx
;
2960 devidx
= f2fs_target_device_index(sbi
, fio
->new_blkaddr
);
2962 /* update device state for fsync */
2963 f2fs_set_dirty_device(sbi
, fio
->ino
, devidx
, FLUSH_INO
);
2965 /* update device state for checkpoint */
2966 if (!f2fs_test_bit(devidx
, (char *)&sbi
->dirty_device
)) {
2967 spin_lock(&sbi
->dev_lock
);
2968 f2fs_set_bit(devidx
, (char *)&sbi
->dirty_device
);
2969 spin_unlock(&sbi
->dev_lock
);
2973 static void do_write_page(struct f2fs_summary
*sum
, struct f2fs_io_info
*fio
)
2975 int type
= __get_segment_type(fio
);
2976 bool keep_order
= (test_opt(fio
->sbi
, LFS
) && type
== CURSEG_COLD_DATA
);
2979 down_read(&fio
->sbi
->io_order_lock
);
2981 f2fs_allocate_data_block(fio
->sbi
, fio
->page
, fio
->old_blkaddr
,
2982 &fio
->new_blkaddr
, sum
, type
, fio
, true);
2983 if (GET_SEGNO(fio
->sbi
, fio
->old_blkaddr
) != NULL_SEGNO
)
2984 invalidate_mapping_pages(META_MAPPING(fio
->sbi
),
2985 fio
->old_blkaddr
, fio
->old_blkaddr
);
2987 /* writeout dirty page into bdev */
2988 f2fs_submit_page_write(fio
);
2990 fio
->old_blkaddr
= fio
->new_blkaddr
;
2994 update_device_state(fio
);
2997 up_read(&fio
->sbi
->io_order_lock
);
3000 void f2fs_do_write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
,
3001 enum iostat_type io_type
)
3003 struct f2fs_io_info fio
= {
3008 .op_flags
= REQ_SYNC
| REQ_META
| REQ_PRIO
,
3009 .old_blkaddr
= page
->index
,
3010 .new_blkaddr
= page
->index
,
3012 .encrypted_page
= NULL
,
3016 if (unlikely(page
->index
>= MAIN_BLKADDR(sbi
)))
3017 fio
.op_flags
&= ~REQ_META
;
3019 set_page_writeback(page
);
3020 ClearPageError(page
);
3021 f2fs_submit_page_write(&fio
);
3023 f2fs_update_iostat(sbi
, io_type
, F2FS_BLKSIZE
);
3026 void f2fs_do_write_node_page(unsigned int nid
, struct f2fs_io_info
*fio
)
3028 struct f2fs_summary sum
;
3030 set_summary(&sum
, nid
, 0, 0);
3031 do_write_page(&sum
, fio
);
3033 f2fs_update_iostat(fio
->sbi
, fio
->io_type
, F2FS_BLKSIZE
);
3036 void f2fs_outplace_write_data(struct dnode_of_data
*dn
,
3037 struct f2fs_io_info
*fio
)
3039 struct f2fs_sb_info
*sbi
= fio
->sbi
;
3040 struct f2fs_summary sum
;
3042 f2fs_bug_on(sbi
, dn
->data_blkaddr
== NULL_ADDR
);
3043 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, fio
->version
);
3044 do_write_page(&sum
, fio
);
3045 f2fs_update_data_blkaddr(dn
, fio
->new_blkaddr
);
3047 f2fs_update_iostat(sbi
, fio
->io_type
, F2FS_BLKSIZE
);
3050 int f2fs_inplace_write_data(struct f2fs_io_info
*fio
)
3053 struct f2fs_sb_info
*sbi
= fio
->sbi
;
3055 fio
->new_blkaddr
= fio
->old_blkaddr
;
3056 /* i/o temperature is needed for passing down write hints */
3057 __get_segment_type(fio
);
3059 f2fs_bug_on(sbi
, !IS_DATASEG(get_seg_entry(sbi
,
3060 GET_SEGNO(sbi
, fio
->new_blkaddr
))->type
));
3062 stat_inc_inplace_blocks(fio
->sbi
);
3064 err
= f2fs_submit_page_bio(fio
);
3066 update_device_state(fio
);
3068 f2fs_update_iostat(fio
->sbi
, fio
->io_type
, F2FS_BLKSIZE
);
3073 static inline int __f2fs_get_curseg(struct f2fs_sb_info
*sbi
,
3078 for (i
= CURSEG_HOT_DATA
; i
< NO_CHECK_TYPE
; i
++) {
3079 if (CURSEG_I(sbi
, i
)->segno
== segno
)
3085 void f2fs_do_replace_block(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
3086 block_t old_blkaddr
, block_t new_blkaddr
,
3087 bool recover_curseg
, bool recover_newaddr
)
3089 struct sit_info
*sit_i
= SIT_I(sbi
);
3090 struct curseg_info
*curseg
;
3091 unsigned int segno
, old_cursegno
;
3092 struct seg_entry
*se
;
3094 unsigned short old_blkoff
;
3096 segno
= GET_SEGNO(sbi
, new_blkaddr
);
3097 se
= get_seg_entry(sbi
, segno
);
3100 down_write(&SM_I(sbi
)->curseg_lock
);
3102 if (!recover_curseg
) {
3103 /* for recovery flow */
3104 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
3105 if (old_blkaddr
== NULL_ADDR
)
3106 type
= CURSEG_COLD_DATA
;
3108 type
= CURSEG_WARM_DATA
;
3111 if (IS_CURSEG(sbi
, segno
)) {
3112 /* se->type is volatile as SSR allocation */
3113 type
= __f2fs_get_curseg(sbi
, segno
);
3114 f2fs_bug_on(sbi
, type
== NO_CHECK_TYPE
);
3116 type
= CURSEG_WARM_DATA
;
3120 f2fs_bug_on(sbi
, !IS_DATASEG(type
));
3121 curseg
= CURSEG_I(sbi
, type
);
3123 mutex_lock(&curseg
->curseg_mutex
);
3124 down_write(&sit_i
->sentry_lock
);
3126 old_cursegno
= curseg
->segno
;
3127 old_blkoff
= curseg
->next_blkoff
;
3129 /* change the current segment */
3130 if (segno
!= curseg
->segno
) {
3131 curseg
->next_segno
= segno
;
3132 change_curseg(sbi
, type
);
3135 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
3136 __add_sum_entry(sbi
, type
, sum
);
3138 if (!recover_curseg
|| recover_newaddr
)
3139 update_sit_entry(sbi
, new_blkaddr
, 1);
3140 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
) {
3141 invalidate_mapping_pages(META_MAPPING(sbi
),
3142 old_blkaddr
, old_blkaddr
);
3143 update_sit_entry(sbi
, old_blkaddr
, -1);
3146 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
3147 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new_blkaddr
));
3149 locate_dirty_segment(sbi
, old_cursegno
);
3151 if (recover_curseg
) {
3152 if (old_cursegno
!= curseg
->segno
) {
3153 curseg
->next_segno
= old_cursegno
;
3154 change_curseg(sbi
, type
);
3156 curseg
->next_blkoff
= old_blkoff
;
3159 up_write(&sit_i
->sentry_lock
);
3160 mutex_unlock(&curseg
->curseg_mutex
);
3161 up_write(&SM_I(sbi
)->curseg_lock
);
3164 void f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct dnode_of_data
*dn
,
3165 block_t old_addr
, block_t new_addr
,
3166 unsigned char version
, bool recover_curseg
,
3167 bool recover_newaddr
)
3169 struct f2fs_summary sum
;
3171 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, version
);
3173 f2fs_do_replace_block(sbi
, &sum
, old_addr
, new_addr
,
3174 recover_curseg
, recover_newaddr
);
3176 f2fs_update_data_blkaddr(dn
, new_addr
);
3179 void f2fs_wait_on_page_writeback(struct page
*page
,
3180 enum page_type type
, bool ordered
)
3182 if (PageWriteback(page
)) {
3183 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
3185 f2fs_submit_merged_write_cond(sbi
, page
->mapping
->host
,
3186 0, page
->index
, type
);
3188 wait_on_page_writeback(page
);
3190 wait_for_stable_page(page
);
3194 void f2fs_wait_on_block_writeback(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
3198 if (!is_valid_data_blkaddr(sbi
, blkaddr
))
3201 cpage
= find_lock_page(META_MAPPING(sbi
), blkaddr
);
3203 f2fs_wait_on_page_writeback(cpage
, DATA
, true);
3204 f2fs_put_page(cpage
, 1);
3208 static int read_compacted_summaries(struct f2fs_sb_info
*sbi
)
3210 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
3211 struct curseg_info
*seg_i
;
3212 unsigned char *kaddr
;
3217 start
= start_sum_block(sbi
);
3219 page
= f2fs_get_meta_page(sbi
, start
++);
3221 return PTR_ERR(page
);
3222 kaddr
= (unsigned char *)page_address(page
);
3224 /* Step 1: restore nat cache */
3225 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
3226 memcpy(seg_i
->journal
, kaddr
, SUM_JOURNAL_SIZE
);
3228 /* Step 2: restore sit cache */
3229 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3230 memcpy(seg_i
->journal
, kaddr
+ SUM_JOURNAL_SIZE
, SUM_JOURNAL_SIZE
);
3231 offset
= 2 * SUM_JOURNAL_SIZE
;
3233 /* Step 3: restore summary entries */
3234 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
3235 unsigned short blk_off
;
3238 seg_i
= CURSEG_I(sbi
, i
);
3239 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
3240 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
3241 seg_i
->next_segno
= segno
;
3242 reset_curseg(sbi
, i
, 0);
3243 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
3244 seg_i
->next_blkoff
= blk_off
;
3246 if (seg_i
->alloc_type
== SSR
)
3247 blk_off
= sbi
->blocks_per_seg
;
3249 for (j
= 0; j
< blk_off
; j
++) {
3250 struct f2fs_summary
*s
;
3251 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
3252 seg_i
->sum_blk
->entries
[j
] = *s
;
3253 offset
+= SUMMARY_SIZE
;
3254 if (offset
+ SUMMARY_SIZE
<= PAGE_SIZE
-
3258 f2fs_put_page(page
, 1);
3261 page
= f2fs_get_meta_page(sbi
, start
++);
3263 return PTR_ERR(page
);
3264 kaddr
= (unsigned char *)page_address(page
);
3268 f2fs_put_page(page
, 1);
3272 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
3274 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
3275 struct f2fs_summary_block
*sum
;
3276 struct curseg_info
*curseg
;
3278 unsigned short blk_off
;
3279 unsigned int segno
= 0;
3280 block_t blk_addr
= 0;
3283 /* get segment number and block addr */
3284 if (IS_DATASEG(type
)) {
3285 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
3286 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
3288 if (__exist_node_summaries(sbi
))
3289 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
);
3291 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
3293 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
3295 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
3297 if (__exist_node_summaries(sbi
))
3298 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
3299 type
- CURSEG_HOT_NODE
);
3301 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
3304 new = f2fs_get_meta_page(sbi
, blk_addr
);
3306 return PTR_ERR(new);
3307 sum
= (struct f2fs_summary_block
*)page_address(new);
3309 if (IS_NODESEG(type
)) {
3310 if (__exist_node_summaries(sbi
)) {
3311 struct f2fs_summary
*ns
= &sum
->entries
[0];
3313 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
3315 ns
->ofs_in_node
= 0;
3318 err
= f2fs_restore_node_summary(sbi
, segno
, sum
);
3324 /* set uncompleted segment to curseg */
3325 curseg
= CURSEG_I(sbi
, type
);
3326 mutex_lock(&curseg
->curseg_mutex
);
3328 /* update journal info */
3329 down_write(&curseg
->journal_rwsem
);
3330 memcpy(curseg
->journal
, &sum
->journal
, SUM_JOURNAL_SIZE
);
3331 up_write(&curseg
->journal_rwsem
);
3333 memcpy(curseg
->sum_blk
->entries
, sum
->entries
, SUM_ENTRY_SIZE
);
3334 memcpy(&curseg
->sum_blk
->footer
, &sum
->footer
, SUM_FOOTER_SIZE
);
3335 curseg
->next_segno
= segno
;
3336 reset_curseg(sbi
, type
, 0);
3337 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
3338 curseg
->next_blkoff
= blk_off
;
3339 mutex_unlock(&curseg
->curseg_mutex
);
3341 f2fs_put_page(new, 1);
3345 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
3347 struct f2fs_journal
*sit_j
= CURSEG_I(sbi
, CURSEG_COLD_DATA
)->journal
;
3348 struct f2fs_journal
*nat_j
= CURSEG_I(sbi
, CURSEG_HOT_DATA
)->journal
;
3349 int type
= CURSEG_HOT_DATA
;
3352 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
)) {
3353 int npages
= f2fs_npages_for_summary_flush(sbi
, true);
3356 f2fs_ra_meta_pages(sbi
, start_sum_block(sbi
), npages
,
3359 /* restore for compacted data summary */
3360 err
= read_compacted_summaries(sbi
);
3363 type
= CURSEG_HOT_NODE
;
3366 if (__exist_node_summaries(sbi
))
3367 f2fs_ra_meta_pages(sbi
, sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
),
3368 NR_CURSEG_TYPE
- type
, META_CP
, true);
3370 for (; type
<= CURSEG_COLD_NODE
; type
++) {
3371 err
= read_normal_summaries(sbi
, type
);
3376 /* sanity check for summary blocks */
3377 if (nats_in_cursum(nat_j
) > NAT_JOURNAL_ENTRIES
||
3378 sits_in_cursum(sit_j
) > SIT_JOURNAL_ENTRIES
)
3384 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
3387 unsigned char *kaddr
;
3388 struct f2fs_summary
*summary
;
3389 struct curseg_info
*seg_i
;
3390 int written_size
= 0;
3393 page
= f2fs_grab_meta_page(sbi
, blkaddr
++);
3394 kaddr
= (unsigned char *)page_address(page
);
3395 memset(kaddr
, 0, PAGE_SIZE
);
3397 /* Step 1: write nat cache */
3398 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
3399 memcpy(kaddr
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
3400 written_size
+= SUM_JOURNAL_SIZE
;
3402 /* Step 2: write sit cache */
3403 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3404 memcpy(kaddr
+ written_size
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
3405 written_size
+= SUM_JOURNAL_SIZE
;
3407 /* Step 3: write summary entries */
3408 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
3409 unsigned short blkoff
;
3410 seg_i
= CURSEG_I(sbi
, i
);
3411 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
3412 blkoff
= sbi
->blocks_per_seg
;
3414 blkoff
= curseg_blkoff(sbi
, i
);
3416 for (j
= 0; j
< blkoff
; j
++) {
3418 page
= f2fs_grab_meta_page(sbi
, blkaddr
++);
3419 kaddr
= (unsigned char *)page_address(page
);
3420 memset(kaddr
, 0, PAGE_SIZE
);
3423 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
3424 *summary
= seg_i
->sum_blk
->entries
[j
];
3425 written_size
+= SUMMARY_SIZE
;
3427 if (written_size
+ SUMMARY_SIZE
<= PAGE_SIZE
-
3431 set_page_dirty(page
);
3432 f2fs_put_page(page
, 1);
3437 set_page_dirty(page
);
3438 f2fs_put_page(page
, 1);
3442 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
3443 block_t blkaddr
, int type
)
3446 if (IS_DATASEG(type
))
3447 end
= type
+ NR_CURSEG_DATA_TYPE
;
3449 end
= type
+ NR_CURSEG_NODE_TYPE
;
3451 for (i
= type
; i
< end
; i
++)
3452 write_current_sum_page(sbi
, i
, blkaddr
+ (i
- type
));
3455 void f2fs_write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
3457 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
))
3458 write_compacted_summaries(sbi
, start_blk
);
3460 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
3463 void f2fs_write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
3465 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
3468 int f2fs_lookup_journal_in_cursum(struct f2fs_journal
*journal
, int type
,
3469 unsigned int val
, int alloc
)
3473 if (type
== NAT_JOURNAL
) {
3474 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
3475 if (le32_to_cpu(nid_in_journal(journal
, i
)) == val
)
3478 if (alloc
&& __has_cursum_space(journal
, 1, NAT_JOURNAL
))
3479 return update_nats_in_cursum(journal
, 1);
3480 } else if (type
== SIT_JOURNAL
) {
3481 for (i
= 0; i
< sits_in_cursum(journal
); i
++)
3482 if (le32_to_cpu(segno_in_journal(journal
, i
)) == val
)
3484 if (alloc
&& __has_cursum_space(journal
, 1, SIT_JOURNAL
))
3485 return update_sits_in_cursum(journal
, 1);
3490 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
3493 return f2fs_get_meta_page_nofail(sbi
, current_sit_addr(sbi
, segno
));
3496 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
3499 struct sit_info
*sit_i
= SIT_I(sbi
);
3501 pgoff_t src_off
, dst_off
;
3503 src_off
= current_sit_addr(sbi
, start
);
3504 dst_off
= next_sit_addr(sbi
, src_off
);
3506 page
= f2fs_grab_meta_page(sbi
, dst_off
);
3507 seg_info_to_sit_page(sbi
, page
, start
);
3509 set_page_dirty(page
);
3510 set_to_next_sit(sit_i
, start
);
3515 static struct sit_entry_set
*grab_sit_entry_set(void)
3517 struct sit_entry_set
*ses
=
3518 f2fs_kmem_cache_alloc(sit_entry_set_slab
, GFP_NOFS
);
3521 INIT_LIST_HEAD(&ses
->set_list
);
3525 static void release_sit_entry_set(struct sit_entry_set
*ses
)
3527 list_del(&ses
->set_list
);
3528 kmem_cache_free(sit_entry_set_slab
, ses
);
3531 static void adjust_sit_entry_set(struct sit_entry_set
*ses
,
3532 struct list_head
*head
)
3534 struct sit_entry_set
*next
= ses
;
3536 if (list_is_last(&ses
->set_list
, head
))
3539 list_for_each_entry_continue(next
, head
, set_list
)
3540 if (ses
->entry_cnt
<= next
->entry_cnt
)
3543 list_move_tail(&ses
->set_list
, &next
->set_list
);
3546 static void add_sit_entry(unsigned int segno
, struct list_head
*head
)
3548 struct sit_entry_set
*ses
;
3549 unsigned int start_segno
= START_SEGNO(segno
);
3551 list_for_each_entry(ses
, head
, set_list
) {
3552 if (ses
->start_segno
== start_segno
) {
3554 adjust_sit_entry_set(ses
, head
);
3559 ses
= grab_sit_entry_set();
3561 ses
->start_segno
= start_segno
;
3563 list_add(&ses
->set_list
, head
);
3566 static void add_sits_in_set(struct f2fs_sb_info
*sbi
)
3568 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
3569 struct list_head
*set_list
= &sm_info
->sit_entry_set
;
3570 unsigned long *bitmap
= SIT_I(sbi
)->dirty_sentries_bitmap
;
3573 for_each_set_bit(segno
, bitmap
, MAIN_SEGS(sbi
))
3574 add_sit_entry(segno
, set_list
);
3577 static void remove_sits_in_journal(struct f2fs_sb_info
*sbi
)
3579 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3580 struct f2fs_journal
*journal
= curseg
->journal
;
3583 down_write(&curseg
->journal_rwsem
);
3584 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
3588 segno
= le32_to_cpu(segno_in_journal(journal
, i
));
3589 dirtied
= __mark_sit_entry_dirty(sbi
, segno
);
3592 add_sit_entry(segno
, &SM_I(sbi
)->sit_entry_set
);
3594 update_sits_in_cursum(journal
, -i
);
3595 up_write(&curseg
->journal_rwsem
);
3599 * CP calls this function, which flushes SIT entries including sit_journal,
3600 * and moves prefree segs to free segs.
3602 void f2fs_flush_sit_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
3604 struct sit_info
*sit_i
= SIT_I(sbi
);
3605 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
3606 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3607 struct f2fs_journal
*journal
= curseg
->journal
;
3608 struct sit_entry_set
*ses
, *tmp
;
3609 struct list_head
*head
= &SM_I(sbi
)->sit_entry_set
;
3610 bool to_journal
= true;
3611 struct seg_entry
*se
;
3613 down_write(&sit_i
->sentry_lock
);
3615 if (!sit_i
->dirty_sentries
)
3619 * add and account sit entries of dirty bitmap in sit entry
3622 add_sits_in_set(sbi
);
3625 * if there are no enough space in journal to store dirty sit
3626 * entries, remove all entries from journal and add and account
3627 * them in sit entry set.
3629 if (!__has_cursum_space(journal
, sit_i
->dirty_sentries
, SIT_JOURNAL
))
3630 remove_sits_in_journal(sbi
);
3633 * there are two steps to flush sit entries:
3634 * #1, flush sit entries to journal in current cold data summary block.
3635 * #2, flush sit entries to sit page.
3637 list_for_each_entry_safe(ses
, tmp
, head
, set_list
) {
3638 struct page
*page
= NULL
;
3639 struct f2fs_sit_block
*raw_sit
= NULL
;
3640 unsigned int start_segno
= ses
->start_segno
;
3641 unsigned int end
= min(start_segno
+ SIT_ENTRY_PER_BLOCK
,
3642 (unsigned long)MAIN_SEGS(sbi
));
3643 unsigned int segno
= start_segno
;
3646 !__has_cursum_space(journal
, ses
->entry_cnt
, SIT_JOURNAL
))
3650 down_write(&curseg
->journal_rwsem
);
3652 page
= get_next_sit_page(sbi
, start_segno
);
3653 raw_sit
= page_address(page
);
3656 /* flush dirty sit entries in region of current sit set */
3657 for_each_set_bit_from(segno
, bitmap
, end
) {
3658 int offset
, sit_offset
;
3660 se
= get_seg_entry(sbi
, segno
);
3661 #ifdef CONFIG_F2FS_CHECK_FS
3662 if (memcmp(se
->cur_valid_map
, se
->cur_valid_map_mir
,
3663 SIT_VBLOCK_MAP_SIZE
))
3664 f2fs_bug_on(sbi
, 1);
3667 /* add discard candidates */
3668 if (!(cpc
->reason
& CP_DISCARD
)) {
3669 cpc
->trim_start
= segno
;
3670 add_discard_addrs(sbi
, cpc
, false);
3674 offset
= f2fs_lookup_journal_in_cursum(journal
,
3675 SIT_JOURNAL
, segno
, 1);
3676 f2fs_bug_on(sbi
, offset
< 0);
3677 segno_in_journal(journal
, offset
) =
3679 seg_info_to_raw_sit(se
,
3680 &sit_in_journal(journal
, offset
));
3681 check_block_count(sbi
, segno
,
3682 &sit_in_journal(journal
, offset
));
3684 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
3685 seg_info_to_raw_sit(se
,
3686 &raw_sit
->entries
[sit_offset
]);
3687 check_block_count(sbi
, segno
,
3688 &raw_sit
->entries
[sit_offset
]);
3691 __clear_bit(segno
, bitmap
);
3692 sit_i
->dirty_sentries
--;
3697 up_write(&curseg
->journal_rwsem
);
3699 f2fs_put_page(page
, 1);
3701 f2fs_bug_on(sbi
, ses
->entry_cnt
);
3702 release_sit_entry_set(ses
);
3705 f2fs_bug_on(sbi
, !list_empty(head
));
3706 f2fs_bug_on(sbi
, sit_i
->dirty_sentries
);
3708 if (cpc
->reason
& CP_DISCARD
) {
3709 __u64 trim_start
= cpc
->trim_start
;
3711 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++)
3712 add_discard_addrs(sbi
, cpc
, false);
3714 cpc
->trim_start
= trim_start
;
3716 up_write(&sit_i
->sentry_lock
);
3718 set_prefree_as_free_segments(sbi
);
3721 static int build_sit_info(struct f2fs_sb_info
*sbi
)
3723 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
3724 struct sit_info
*sit_i
;
3725 unsigned int sit_segs
, start
;
3727 unsigned int bitmap_size
;
3729 /* allocate memory for SIT information */
3730 sit_i
= f2fs_kzalloc(sbi
, sizeof(struct sit_info
), GFP_KERNEL
);
3734 SM_I(sbi
)->sit_info
= sit_i
;
3737 f2fs_kvzalloc(sbi
, array_size(sizeof(struct seg_entry
),
3740 if (!sit_i
->sentries
)
3743 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
3744 sit_i
->dirty_sentries_bitmap
= f2fs_kvzalloc(sbi
, bitmap_size
,
3746 if (!sit_i
->dirty_sentries_bitmap
)
3749 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
3750 sit_i
->sentries
[start
].cur_valid_map
3751 = f2fs_kzalloc(sbi
, SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
3752 sit_i
->sentries
[start
].ckpt_valid_map
3753 = f2fs_kzalloc(sbi
, SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
3754 if (!sit_i
->sentries
[start
].cur_valid_map
||
3755 !sit_i
->sentries
[start
].ckpt_valid_map
)
3758 #ifdef CONFIG_F2FS_CHECK_FS
3759 sit_i
->sentries
[start
].cur_valid_map_mir
3760 = f2fs_kzalloc(sbi
, SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
3761 if (!sit_i
->sentries
[start
].cur_valid_map_mir
)
3765 if (f2fs_discard_en(sbi
)) {
3766 sit_i
->sentries
[start
].discard_map
3767 = f2fs_kzalloc(sbi
, SIT_VBLOCK_MAP_SIZE
,
3769 if (!sit_i
->sentries
[start
].discard_map
)
3774 sit_i
->tmp_map
= f2fs_kzalloc(sbi
, SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
3775 if (!sit_i
->tmp_map
)
3778 if (sbi
->segs_per_sec
> 1) {
3779 sit_i
->sec_entries
=
3780 f2fs_kvzalloc(sbi
, array_size(sizeof(struct sec_entry
),
3783 if (!sit_i
->sec_entries
)
3787 /* get information related with SIT */
3788 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
3790 /* setup SIT bitmap from ckeckpoint pack */
3791 bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
3792 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
3794 sit_i
->sit_bitmap
= kmemdup(src_bitmap
, bitmap_size
, GFP_KERNEL
);
3795 if (!sit_i
->sit_bitmap
)
3798 #ifdef CONFIG_F2FS_CHECK_FS
3799 sit_i
->sit_bitmap_mir
= kmemdup(src_bitmap
, bitmap_size
, GFP_KERNEL
);
3800 if (!sit_i
->sit_bitmap_mir
)
3804 /* init SIT information */
3805 sit_i
->s_ops
= &default_salloc_ops
;
3807 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
3808 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
3809 sit_i
->written_valid_blocks
= 0;
3810 sit_i
->bitmap_size
= bitmap_size
;
3811 sit_i
->dirty_sentries
= 0;
3812 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
3813 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
3814 sit_i
->mounted_time
= ktime_get_real_seconds();
3815 init_rwsem(&sit_i
->sentry_lock
);
3819 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
3821 struct free_segmap_info
*free_i
;
3822 unsigned int bitmap_size
, sec_bitmap_size
;
3824 /* allocate memory for free segmap information */
3825 free_i
= f2fs_kzalloc(sbi
, sizeof(struct free_segmap_info
), GFP_KERNEL
);
3829 SM_I(sbi
)->free_info
= free_i
;
3831 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
3832 free_i
->free_segmap
= f2fs_kvmalloc(sbi
, bitmap_size
, GFP_KERNEL
);
3833 if (!free_i
->free_segmap
)
3836 sec_bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
3837 free_i
->free_secmap
= f2fs_kvmalloc(sbi
, sec_bitmap_size
, GFP_KERNEL
);
3838 if (!free_i
->free_secmap
)
3841 /* set all segments as dirty temporarily */
3842 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
3843 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
3845 /* init free segmap information */
3846 free_i
->start_segno
= GET_SEGNO_FROM_SEG0(sbi
, MAIN_BLKADDR(sbi
));
3847 free_i
->free_segments
= 0;
3848 free_i
->free_sections
= 0;
3849 spin_lock_init(&free_i
->segmap_lock
);
3853 static int build_curseg(struct f2fs_sb_info
*sbi
)
3855 struct curseg_info
*array
;
3858 array
= f2fs_kzalloc(sbi
, array_size(NR_CURSEG_TYPE
, sizeof(*array
)),
3863 SM_I(sbi
)->curseg_array
= array
;
3865 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
3866 mutex_init(&array
[i
].curseg_mutex
);
3867 array
[i
].sum_blk
= f2fs_kzalloc(sbi
, PAGE_SIZE
, GFP_KERNEL
);
3868 if (!array
[i
].sum_blk
)
3870 init_rwsem(&array
[i
].journal_rwsem
);
3871 array
[i
].journal
= f2fs_kzalloc(sbi
,
3872 sizeof(struct f2fs_journal
), GFP_KERNEL
);
3873 if (!array
[i
].journal
)
3875 array
[i
].segno
= NULL_SEGNO
;
3876 array
[i
].next_blkoff
= 0;
3878 return restore_curseg_summaries(sbi
);
3881 static int build_sit_entries(struct f2fs_sb_info
*sbi
)
3883 struct sit_info
*sit_i
= SIT_I(sbi
);
3884 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3885 struct f2fs_journal
*journal
= curseg
->journal
;
3886 struct seg_entry
*se
;
3887 struct f2fs_sit_entry sit
;
3888 int sit_blk_cnt
= SIT_BLK_CNT(sbi
);
3889 unsigned int i
, start
, end
;
3890 unsigned int readed
, start_blk
= 0;
3892 block_t total_node_blocks
= 0;
3895 readed
= f2fs_ra_meta_pages(sbi
, start_blk
, BIO_MAX_PAGES
,
3898 start
= start_blk
* sit_i
->sents_per_block
;
3899 end
= (start_blk
+ readed
) * sit_i
->sents_per_block
;
3901 for (; start
< end
&& start
< MAIN_SEGS(sbi
); start
++) {
3902 struct f2fs_sit_block
*sit_blk
;
3905 se
= &sit_i
->sentries
[start
];
3906 page
= get_current_sit_page(sbi
, start
);
3907 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
3908 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
3909 f2fs_put_page(page
, 1);
3911 err
= check_block_count(sbi
, start
, &sit
);
3914 seg_info_from_raw_sit(se
, &sit
);
3915 if (IS_NODESEG(se
->type
))
3916 total_node_blocks
+= se
->valid_blocks
;
3918 /* build discard map only one time */
3919 if (f2fs_discard_en(sbi
)) {
3920 if (is_set_ckpt_flags(sbi
, CP_TRIMMED_FLAG
)) {
3921 memset(se
->discard_map
, 0xff,
3922 SIT_VBLOCK_MAP_SIZE
);
3924 memcpy(se
->discard_map
,
3926 SIT_VBLOCK_MAP_SIZE
);
3927 sbi
->discard_blks
+=
3928 sbi
->blocks_per_seg
-
3933 if (sbi
->segs_per_sec
> 1)
3934 get_sec_entry(sbi
, start
)->valid_blocks
+=
3937 start_blk
+= readed
;
3938 } while (start_blk
< sit_blk_cnt
);
3940 down_read(&curseg
->journal_rwsem
);
3941 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
3942 unsigned int old_valid_blocks
;
3944 start
= le32_to_cpu(segno_in_journal(journal
, i
));
3945 if (start
>= MAIN_SEGS(sbi
)) {
3946 f2fs_msg(sbi
->sb
, KERN_ERR
,
3947 "Wrong journal entry on segno %u",
3949 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
3954 se
= &sit_i
->sentries
[start
];
3955 sit
= sit_in_journal(journal
, i
);
3957 old_valid_blocks
= se
->valid_blocks
;
3958 if (IS_NODESEG(se
->type
))
3959 total_node_blocks
-= old_valid_blocks
;
3961 err
= check_block_count(sbi
, start
, &sit
);
3964 seg_info_from_raw_sit(se
, &sit
);
3965 if (IS_NODESEG(se
->type
))
3966 total_node_blocks
+= se
->valid_blocks
;
3968 if (f2fs_discard_en(sbi
)) {
3969 if (is_set_ckpt_flags(sbi
, CP_TRIMMED_FLAG
)) {
3970 memset(se
->discard_map
, 0xff,
3971 SIT_VBLOCK_MAP_SIZE
);
3973 memcpy(se
->discard_map
, se
->cur_valid_map
,
3974 SIT_VBLOCK_MAP_SIZE
);
3975 sbi
->discard_blks
+= old_valid_blocks
;
3976 sbi
->discard_blks
-= se
->valid_blocks
;
3980 if (sbi
->segs_per_sec
> 1) {
3981 get_sec_entry(sbi
, start
)->valid_blocks
+=
3983 get_sec_entry(sbi
, start
)->valid_blocks
-=
3987 up_read(&curseg
->journal_rwsem
);
3989 if (!err
&& total_node_blocks
!= valid_node_count(sbi
)) {
3990 f2fs_msg(sbi
->sb
, KERN_ERR
,
3991 "SIT is corrupted node# %u vs %u",
3992 total_node_blocks
, valid_node_count(sbi
));
3993 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
4000 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
4005 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
4006 struct seg_entry
*sentry
= get_seg_entry(sbi
, start
);
4007 if (!sentry
->valid_blocks
)
4008 __set_free(sbi
, start
);
4010 SIT_I(sbi
)->written_valid_blocks
+=
4011 sentry
->valid_blocks
;
4014 /* set use the current segments */
4015 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
4016 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
4017 __set_test_and_inuse(sbi
, curseg_t
->segno
);
4021 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
4023 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4024 struct free_segmap_info
*free_i
= FREE_I(sbi
);
4025 unsigned int segno
= 0, offset
= 0;
4026 unsigned short valid_blocks
;
4029 /* find dirty segment based on free segmap */
4030 segno
= find_next_inuse(free_i
, MAIN_SEGS(sbi
), offset
);
4031 if (segno
>= MAIN_SEGS(sbi
))
4034 valid_blocks
= get_valid_blocks(sbi
, segno
, false);
4035 if (valid_blocks
== sbi
->blocks_per_seg
|| !valid_blocks
)
4037 if (valid_blocks
> sbi
->blocks_per_seg
) {
4038 f2fs_bug_on(sbi
, 1);
4041 mutex_lock(&dirty_i
->seglist_lock
);
4042 __locate_dirty_segment(sbi
, segno
, DIRTY
);
4043 mutex_unlock(&dirty_i
->seglist_lock
);
4047 static int init_victim_secmap(struct f2fs_sb_info
*sbi
)
4049 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4050 unsigned int bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
4052 dirty_i
->victim_secmap
= f2fs_kvzalloc(sbi
, bitmap_size
, GFP_KERNEL
);
4053 if (!dirty_i
->victim_secmap
)
4058 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
4060 struct dirty_seglist_info
*dirty_i
;
4061 unsigned int bitmap_size
, i
;
4063 /* allocate memory for dirty segments list information */
4064 dirty_i
= f2fs_kzalloc(sbi
, sizeof(struct dirty_seglist_info
),
4069 SM_I(sbi
)->dirty_info
= dirty_i
;
4070 mutex_init(&dirty_i
->seglist_lock
);
4072 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
4074 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
4075 dirty_i
->dirty_segmap
[i
] = f2fs_kvzalloc(sbi
, bitmap_size
,
4077 if (!dirty_i
->dirty_segmap
[i
])
4081 init_dirty_segmap(sbi
);
4082 return init_victim_secmap(sbi
);
4086 * Update min, max modified time for cost-benefit GC algorithm
4088 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
4090 struct sit_info
*sit_i
= SIT_I(sbi
);
4093 down_write(&sit_i
->sentry_lock
);
4095 sit_i
->min_mtime
= ULLONG_MAX
;
4097 for (segno
= 0; segno
< MAIN_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
4099 unsigned long long mtime
= 0;
4101 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
4102 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
4104 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
4106 if (sit_i
->min_mtime
> mtime
)
4107 sit_i
->min_mtime
= mtime
;
4109 sit_i
->max_mtime
= get_mtime(sbi
, false);
4110 up_write(&sit_i
->sentry_lock
);
4113 int f2fs_build_segment_manager(struct f2fs_sb_info
*sbi
)
4115 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
4116 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
4117 struct f2fs_sm_info
*sm_info
;
4120 sm_info
= f2fs_kzalloc(sbi
, sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
4125 sbi
->sm_info
= sm_info
;
4126 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
4127 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
4128 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
4129 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
4130 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
4131 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
4132 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
4133 sm_info
->rec_prefree_segments
= sm_info
->main_segments
*
4134 DEF_RECLAIM_PREFREE_SEGMENTS
/ 100;
4135 if (sm_info
->rec_prefree_segments
> DEF_MAX_RECLAIM_PREFREE_SEGMENTS
)
4136 sm_info
->rec_prefree_segments
= DEF_MAX_RECLAIM_PREFREE_SEGMENTS
;
4138 if (!test_opt(sbi
, LFS
))
4139 sm_info
->ipu_policy
= 1 << F2FS_IPU_FSYNC
;
4140 sm_info
->min_ipu_util
= DEF_MIN_IPU_UTIL
;
4141 sm_info
->min_fsync_blocks
= DEF_MIN_FSYNC_BLOCKS
;
4142 sm_info
->min_seq_blocks
= sbi
->blocks_per_seg
* sbi
->segs_per_sec
;
4143 sm_info
->min_hot_blocks
= DEF_MIN_HOT_BLOCKS
;
4144 sm_info
->min_ssr_sections
= reserved_sections(sbi
);
4146 INIT_LIST_HEAD(&sm_info
->sit_entry_set
);
4148 init_rwsem(&sm_info
->curseg_lock
);
4150 if (!f2fs_readonly(sbi
->sb
)) {
4151 err
= f2fs_create_flush_cmd_control(sbi
);
4156 err
= create_discard_cmd_control(sbi
);
4160 err
= build_sit_info(sbi
);
4163 err
= build_free_segmap(sbi
);
4166 err
= build_curseg(sbi
);
4170 /* reinit free segmap based on SIT */
4171 err
= build_sit_entries(sbi
);
4175 init_free_segmap(sbi
);
4176 err
= build_dirty_segmap(sbi
);
4180 init_min_max_mtime(sbi
);
4184 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
4185 enum dirty_type dirty_type
)
4187 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4189 mutex_lock(&dirty_i
->seglist_lock
);
4190 kvfree(dirty_i
->dirty_segmap
[dirty_type
]);
4191 dirty_i
->nr_dirty
[dirty_type
] = 0;
4192 mutex_unlock(&dirty_i
->seglist_lock
);
4195 static void destroy_victim_secmap(struct f2fs_sb_info
*sbi
)
4197 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4198 kvfree(dirty_i
->victim_secmap
);
4201 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
4203 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4209 /* discard pre-free/dirty segments list */
4210 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
4211 discard_dirty_segmap(sbi
, i
);
4213 destroy_victim_secmap(sbi
);
4214 SM_I(sbi
)->dirty_info
= NULL
;
4218 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
4220 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
4225 SM_I(sbi
)->curseg_array
= NULL
;
4226 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
4227 kfree(array
[i
].sum_blk
);
4228 kfree(array
[i
].journal
);
4233 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
4235 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
4238 SM_I(sbi
)->free_info
= NULL
;
4239 kvfree(free_i
->free_segmap
);
4240 kvfree(free_i
->free_secmap
);
4244 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
4246 struct sit_info
*sit_i
= SIT_I(sbi
);
4252 if (sit_i
->sentries
) {
4253 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
4254 kfree(sit_i
->sentries
[start
].cur_valid_map
);
4255 #ifdef CONFIG_F2FS_CHECK_FS
4256 kfree(sit_i
->sentries
[start
].cur_valid_map_mir
);
4258 kfree(sit_i
->sentries
[start
].ckpt_valid_map
);
4259 kfree(sit_i
->sentries
[start
].discard_map
);
4262 kfree(sit_i
->tmp_map
);
4264 kvfree(sit_i
->sentries
);
4265 kvfree(sit_i
->sec_entries
);
4266 kvfree(sit_i
->dirty_sentries_bitmap
);
4268 SM_I(sbi
)->sit_info
= NULL
;
4269 kfree(sit_i
->sit_bitmap
);
4270 #ifdef CONFIG_F2FS_CHECK_FS
4271 kfree(sit_i
->sit_bitmap_mir
);
4276 void f2fs_destroy_segment_manager(struct f2fs_sb_info
*sbi
)
4278 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
4282 f2fs_destroy_flush_cmd_control(sbi
, true);
4283 destroy_discard_cmd_control(sbi
);
4284 destroy_dirty_segmap(sbi
);
4285 destroy_curseg(sbi
);
4286 destroy_free_segmap(sbi
);
4287 destroy_sit_info(sbi
);
4288 sbi
->sm_info
= NULL
;
4292 int __init
f2fs_create_segment_manager_caches(void)
4294 discard_entry_slab
= f2fs_kmem_cache_create("discard_entry",
4295 sizeof(struct discard_entry
));
4296 if (!discard_entry_slab
)
4299 discard_cmd_slab
= f2fs_kmem_cache_create("discard_cmd",
4300 sizeof(struct discard_cmd
));
4301 if (!discard_cmd_slab
)
4302 goto destroy_discard_entry
;
4304 sit_entry_set_slab
= f2fs_kmem_cache_create("sit_entry_set",
4305 sizeof(struct sit_entry_set
));
4306 if (!sit_entry_set_slab
)
4307 goto destroy_discard_cmd
;
4309 inmem_entry_slab
= f2fs_kmem_cache_create("inmem_page_entry",
4310 sizeof(struct inmem_pages
));
4311 if (!inmem_entry_slab
)
4312 goto destroy_sit_entry_set
;
4315 destroy_sit_entry_set
:
4316 kmem_cache_destroy(sit_entry_set_slab
);
4317 destroy_discard_cmd
:
4318 kmem_cache_destroy(discard_cmd_slab
);
4319 destroy_discard_entry
:
4320 kmem_cache_destroy(discard_entry_slab
);
4325 void f2fs_destroy_segment_manager_caches(void)
4327 kmem_cache_destroy(sit_entry_set_slab
);
4328 kmem_cache_destroy(discard_cmd_slab
);
4329 kmem_cache_destroy(discard_entry_slab
);
4330 kmem_cache_destroy(inmem_entry_slab
);