sched: add wait_for_completion_io[_timeout]
[linux/fpc-iii.git] / net / ipv4 / tcp_memcontrol.c
blobb6f3583ddfe83eae73370c9070c567e452518f57
1 #include <net/tcp.h>
2 #include <net/tcp_memcontrol.h>
3 #include <net/sock.h>
4 #include <net/ip.h>
5 #include <linux/nsproxy.h>
6 #include <linux/memcontrol.h>
7 #include <linux/module.h>
9 static inline struct tcp_memcontrol *tcp_from_cgproto(struct cg_proto *cg_proto)
11 return container_of(cg_proto, struct tcp_memcontrol, cg_proto);
14 static void memcg_tcp_enter_memory_pressure(struct sock *sk)
16 if (sk->sk_cgrp->memory_pressure)
17 *sk->sk_cgrp->memory_pressure = 1;
19 EXPORT_SYMBOL(memcg_tcp_enter_memory_pressure);
21 int tcp_init_cgroup(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
24 * The root cgroup does not use res_counters, but rather,
25 * rely on the data already collected by the network
26 * subsystem
28 struct res_counter *res_parent = NULL;
29 struct cg_proto *cg_proto, *parent_cg;
30 struct tcp_memcontrol *tcp;
31 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
32 struct net *net = current->nsproxy->net_ns;
34 cg_proto = tcp_prot.proto_cgroup(memcg);
35 if (!cg_proto)
36 return 0;
38 tcp = tcp_from_cgproto(cg_proto);
40 tcp->tcp_prot_mem[0] = net->ipv4.sysctl_tcp_mem[0];
41 tcp->tcp_prot_mem[1] = net->ipv4.sysctl_tcp_mem[1];
42 tcp->tcp_prot_mem[2] = net->ipv4.sysctl_tcp_mem[2];
43 tcp->tcp_memory_pressure = 0;
45 parent_cg = tcp_prot.proto_cgroup(parent);
46 if (parent_cg)
47 res_parent = parent_cg->memory_allocated;
49 res_counter_init(&tcp->tcp_memory_allocated, res_parent);
50 percpu_counter_init(&tcp->tcp_sockets_allocated, 0);
52 cg_proto->enter_memory_pressure = memcg_tcp_enter_memory_pressure;
53 cg_proto->memory_pressure = &tcp->tcp_memory_pressure;
54 cg_proto->sysctl_mem = tcp->tcp_prot_mem;
55 cg_proto->memory_allocated = &tcp->tcp_memory_allocated;
56 cg_proto->sockets_allocated = &tcp->tcp_sockets_allocated;
57 cg_proto->memcg = memcg;
59 return 0;
61 EXPORT_SYMBOL(tcp_init_cgroup);
63 void tcp_destroy_cgroup(struct mem_cgroup *memcg)
65 struct cg_proto *cg_proto;
66 struct tcp_memcontrol *tcp;
67 u64 val;
69 cg_proto = tcp_prot.proto_cgroup(memcg);
70 if (!cg_proto)
71 return;
73 tcp = tcp_from_cgproto(cg_proto);
74 percpu_counter_destroy(&tcp->tcp_sockets_allocated);
76 val = res_counter_read_u64(&tcp->tcp_memory_allocated, RES_LIMIT);
78 EXPORT_SYMBOL(tcp_destroy_cgroup);
80 static int tcp_update_limit(struct mem_cgroup *memcg, u64 val)
82 struct net *net = current->nsproxy->net_ns;
83 struct tcp_memcontrol *tcp;
84 struct cg_proto *cg_proto;
85 u64 old_lim;
86 int i;
87 int ret;
89 cg_proto = tcp_prot.proto_cgroup(memcg);
90 if (!cg_proto)
91 return -EINVAL;
93 if (val > RESOURCE_MAX)
94 val = RESOURCE_MAX;
96 tcp = tcp_from_cgproto(cg_proto);
98 old_lim = res_counter_read_u64(&tcp->tcp_memory_allocated, RES_LIMIT);
99 ret = res_counter_set_limit(&tcp->tcp_memory_allocated, val);
100 if (ret)
101 return ret;
103 for (i = 0; i < 3; i++)
104 tcp->tcp_prot_mem[i] = min_t(long, val >> PAGE_SHIFT,
105 net->ipv4.sysctl_tcp_mem[i]);
107 if (val == RESOURCE_MAX)
108 clear_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
109 else if (val != RESOURCE_MAX) {
111 * The active bit needs to be written after the static_key
112 * update. This is what guarantees that the socket activation
113 * function is the last one to run. See sock_update_memcg() for
114 * details, and note that we don't mark any socket as belonging
115 * to this memcg until that flag is up.
117 * We need to do this, because static_keys will span multiple
118 * sites, but we can't control their order. If we mark a socket
119 * as accounted, but the accounting functions are not patched in
120 * yet, we'll lose accounting.
122 * We never race with the readers in sock_update_memcg(),
123 * because when this value change, the code to process it is not
124 * patched in yet.
126 * The activated bit is used to guarantee that no two writers
127 * will do the update in the same memcg. Without that, we can't
128 * properly shutdown the static key.
130 if (!test_and_set_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags))
131 static_key_slow_inc(&memcg_socket_limit_enabled);
132 set_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
135 return 0;
138 static int tcp_cgroup_write(struct cgroup *cont, struct cftype *cft,
139 const char *buffer)
141 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
142 unsigned long long val;
143 int ret = 0;
145 switch (cft->private) {
146 case RES_LIMIT:
147 /* see memcontrol.c */
148 ret = res_counter_memparse_write_strategy(buffer, &val);
149 if (ret)
150 break;
151 ret = tcp_update_limit(memcg, val);
152 break;
153 default:
154 ret = -EINVAL;
155 break;
157 return ret;
160 static u64 tcp_read_stat(struct mem_cgroup *memcg, int type, u64 default_val)
162 struct tcp_memcontrol *tcp;
163 struct cg_proto *cg_proto;
165 cg_proto = tcp_prot.proto_cgroup(memcg);
166 if (!cg_proto)
167 return default_val;
169 tcp = tcp_from_cgproto(cg_proto);
170 return res_counter_read_u64(&tcp->tcp_memory_allocated, type);
173 static u64 tcp_read_usage(struct mem_cgroup *memcg)
175 struct tcp_memcontrol *tcp;
176 struct cg_proto *cg_proto;
178 cg_proto = tcp_prot.proto_cgroup(memcg);
179 if (!cg_proto)
180 return atomic_long_read(&tcp_memory_allocated) << PAGE_SHIFT;
182 tcp = tcp_from_cgproto(cg_proto);
183 return res_counter_read_u64(&tcp->tcp_memory_allocated, RES_USAGE);
186 static u64 tcp_cgroup_read(struct cgroup *cont, struct cftype *cft)
188 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
189 u64 val;
191 switch (cft->private) {
192 case RES_LIMIT:
193 val = tcp_read_stat(memcg, RES_LIMIT, RESOURCE_MAX);
194 break;
195 case RES_USAGE:
196 val = tcp_read_usage(memcg);
197 break;
198 case RES_FAILCNT:
199 case RES_MAX_USAGE:
200 val = tcp_read_stat(memcg, cft->private, 0);
201 break;
202 default:
203 BUG();
205 return val;
208 static int tcp_cgroup_reset(struct cgroup *cont, unsigned int event)
210 struct mem_cgroup *memcg;
211 struct tcp_memcontrol *tcp;
212 struct cg_proto *cg_proto;
214 memcg = mem_cgroup_from_cont(cont);
215 cg_proto = tcp_prot.proto_cgroup(memcg);
216 if (!cg_proto)
217 return 0;
218 tcp = tcp_from_cgproto(cg_proto);
220 switch (event) {
221 case RES_MAX_USAGE:
222 res_counter_reset_max(&tcp->tcp_memory_allocated);
223 break;
224 case RES_FAILCNT:
225 res_counter_reset_failcnt(&tcp->tcp_memory_allocated);
226 break;
229 return 0;
232 unsigned long long tcp_max_memory(const struct mem_cgroup *memcg)
234 struct tcp_memcontrol *tcp;
235 struct cg_proto *cg_proto;
237 cg_proto = tcp_prot.proto_cgroup((struct mem_cgroup *)memcg);
238 if (!cg_proto)
239 return 0;
241 tcp = tcp_from_cgproto(cg_proto);
242 return res_counter_read_u64(&tcp->tcp_memory_allocated, RES_LIMIT);
245 void tcp_prot_mem(struct mem_cgroup *memcg, long val, int idx)
247 struct tcp_memcontrol *tcp;
248 struct cg_proto *cg_proto;
250 cg_proto = tcp_prot.proto_cgroup(memcg);
251 if (!cg_proto)
252 return;
254 tcp = tcp_from_cgproto(cg_proto);
256 tcp->tcp_prot_mem[idx] = val;
259 static struct cftype tcp_files[] = {
261 .name = "kmem.tcp.limit_in_bytes",
262 .write_string = tcp_cgroup_write,
263 .read_u64 = tcp_cgroup_read,
264 .private = RES_LIMIT,
267 .name = "kmem.tcp.usage_in_bytes",
268 .read_u64 = tcp_cgroup_read,
269 .private = RES_USAGE,
272 .name = "kmem.tcp.failcnt",
273 .private = RES_FAILCNT,
274 .trigger = tcp_cgroup_reset,
275 .read_u64 = tcp_cgroup_read,
278 .name = "kmem.tcp.max_usage_in_bytes",
279 .private = RES_MAX_USAGE,
280 .trigger = tcp_cgroup_reset,
281 .read_u64 = tcp_cgroup_read,
283 { } /* terminate */
286 static int __init tcp_memcontrol_init(void)
288 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, tcp_files));
289 return 0;
291 __initcall(tcp_memcontrol_init);