2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
27 #include <net/inet_common.h>
30 int sysctl_tcp_syncookies __read_mostly
= 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies
);
33 int sysctl_tcp_abort_on_overflow __read_mostly
;
35 struct inet_timewait_death_row tcp_death_row
= {
36 .sysctl_max_tw_buckets
= NR_FILE
* 2,
37 .period
= TCP_TIMEWAIT_LEN
/ INET_TWDR_TWKILL_SLOTS
,
38 .death_lock
= __SPIN_LOCK_UNLOCKED(tcp_death_row
.death_lock
),
39 .hashinfo
= &tcp_hashinfo
,
40 .tw_timer
= TIMER_INITIALIZER(inet_twdr_hangman
, 0,
41 (unsigned long)&tcp_death_row
),
42 .twkill_work
= __WORK_INITIALIZER(tcp_death_row
.twkill_work
,
43 inet_twdr_twkill_work
),
44 /* Short-time timewait calendar */
47 .twcal_timer
= TIMER_INITIALIZER(inet_twdr_twcal_tick
, 0,
48 (unsigned long)&tcp_death_row
),
50 EXPORT_SYMBOL_GPL(tcp_death_row
);
52 static bool tcp_in_window(u32 seq
, u32 end_seq
, u32 s_win
, u32 e_win
)
56 if (after(end_seq
, s_win
) && before(seq
, e_win
))
58 return seq
== e_win
&& seq
== end_seq
;
62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
63 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64 * (and, probably, tail of data) and one or more our ACKs are lost.
65 * * What is TIME-WAIT timeout? It is associated with maximal packet
66 * lifetime in the internet, which results in wrong conclusion, that
67 * it is set to catch "old duplicate segments" wandering out of their path.
68 * It is not quite correct. This timeout is calculated so that it exceeds
69 * maximal retransmission timeout enough to allow to lose one (or more)
70 * segments sent by peer and our ACKs. This time may be calculated from RTO.
71 * * When TIME-WAIT socket receives RST, it means that another end
72 * finally closed and we are allowed to kill TIME-WAIT too.
73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
74 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
75 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76 * * If we invented some more clever way to catch duplicates
77 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81 * from the very beginning.
83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
84 * is _not_ stateless. It means, that strictly speaking we must
85 * spinlock it. I do not want! Well, probability of misbehaviour
86 * is ridiculously low and, seems, we could use some mb() tricks
87 * to avoid misread sequence numbers, states etc. --ANK
89 * We don't need to initialize tmp_out.sack_ok as we don't use the results
92 tcp_timewait_state_process(struct inet_timewait_sock
*tw
, struct sk_buff
*skb
,
93 const struct tcphdr
*th
)
95 struct tcp_options_received tmp_opt
;
96 const u8
*hash_location
;
97 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
98 bool paws_reject
= false;
100 tmp_opt
.saw_tstamp
= 0;
101 if (th
->doff
> (sizeof(*th
) >> 2) && tcptw
->tw_ts_recent_stamp
) {
102 tcp_parse_options(skb
, &tmp_opt
, &hash_location
, 0, NULL
);
104 if (tmp_opt
.saw_tstamp
) {
105 tmp_opt
.ts_recent
= tcptw
->tw_ts_recent
;
106 tmp_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
107 paws_reject
= tcp_paws_reject(&tmp_opt
, th
->rst
);
111 if (tw
->tw_substate
== TCP_FIN_WAIT2
) {
112 /* Just repeat all the checks of tcp_rcv_state_process() */
114 /* Out of window, send ACK */
116 !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
118 tcptw
->tw_rcv_nxt
+ tcptw
->tw_rcv_wnd
))
124 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
))
129 !after(TCP_SKB_CB(skb
)->end_seq
, tcptw
->tw_rcv_nxt
) ||
130 TCP_SKB_CB(skb
)->end_seq
== TCP_SKB_CB(skb
)->seq
) {
132 return TCP_TW_SUCCESS
;
135 /* New data or FIN. If new data arrive after half-duplex close,
139 TCP_SKB_CB(skb
)->end_seq
!= tcptw
->tw_rcv_nxt
+ 1) {
141 inet_twsk_deschedule(tw
, &tcp_death_row
);
146 /* FIN arrived, enter true time-wait state. */
147 tw
->tw_substate
= TCP_TIME_WAIT
;
148 tcptw
->tw_rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
149 if (tmp_opt
.saw_tstamp
) {
150 tcptw
->tw_ts_recent_stamp
= get_seconds();
151 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
154 if (tcp_death_row
.sysctl_tw_recycle
&&
155 tcptw
->tw_ts_recent_stamp
&&
156 tcp_tw_remember_stamp(tw
))
157 inet_twsk_schedule(tw
, &tcp_death_row
, tw
->tw_timeout
,
160 inet_twsk_schedule(tw
, &tcp_death_row
, TCP_TIMEWAIT_LEN
,
166 * Now real TIME-WAIT state.
169 * "When a connection is [...] on TIME-WAIT state [...]
170 * [a TCP] MAY accept a new SYN from the remote TCP to
171 * reopen the connection directly, if it:
173 * (1) assigns its initial sequence number for the new
174 * connection to be larger than the largest sequence
175 * number it used on the previous connection incarnation,
178 * (2) returns to TIME-WAIT state if the SYN turns out
179 * to be an old duplicate".
183 (TCP_SKB_CB(skb
)->seq
== tcptw
->tw_rcv_nxt
&&
184 (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
|| th
->rst
))) {
185 /* In window segment, it may be only reset or bare ack. */
188 /* This is TIME_WAIT assassination, in two flavors.
189 * Oh well... nobody has a sufficient solution to this
192 if (sysctl_tcp_rfc1337
== 0) {
194 inet_twsk_deschedule(tw
, &tcp_death_row
);
196 return TCP_TW_SUCCESS
;
199 inet_twsk_schedule(tw
, &tcp_death_row
, TCP_TIMEWAIT_LEN
,
202 if (tmp_opt
.saw_tstamp
) {
203 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
204 tcptw
->tw_ts_recent_stamp
= get_seconds();
208 return TCP_TW_SUCCESS
;
211 /* Out of window segment.
213 All the segments are ACKed immediately.
215 The only exception is new SYN. We accept it, if it is
216 not old duplicate and we are not in danger to be killed
217 by delayed old duplicates. RFC check is that it has
218 newer sequence number works at rates <40Mbit/sec.
219 However, if paws works, it is reliable AND even more,
220 we even may relax silly seq space cutoff.
222 RED-PEN: we violate main RFC requirement, if this SYN will appear
223 old duplicate (i.e. we receive RST in reply to SYN-ACK),
224 we must return socket to time-wait state. It is not good,
228 if (th
->syn
&& !th
->rst
&& !th
->ack
&& !paws_reject
&&
229 (after(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
) ||
230 (tmp_opt
.saw_tstamp
&&
231 (s32
)(tcptw
->tw_ts_recent
- tmp_opt
.rcv_tsval
) < 0))) {
232 u32 isn
= tcptw
->tw_snd_nxt
+ 65535 + 2;
235 TCP_SKB_CB(skb
)->when
= isn
;
240 NET_INC_STATS_BH(twsk_net(tw
), LINUX_MIB_PAWSESTABREJECTED
);
243 /* In this case we must reset the TIMEWAIT timer.
245 * If it is ACKless SYN it may be both old duplicate
246 * and new good SYN with random sequence number <rcv_nxt.
247 * Do not reschedule in the last case.
249 if (paws_reject
|| th
->ack
)
250 inet_twsk_schedule(tw
, &tcp_death_row
, TCP_TIMEWAIT_LEN
,
253 /* Send ACK. Note, we do not put the bucket,
254 * it will be released by caller.
259 return TCP_TW_SUCCESS
;
261 EXPORT_SYMBOL(tcp_timewait_state_process
);
264 * Move a socket to time-wait or dead fin-wait-2 state.
266 void tcp_time_wait(struct sock
*sk
, int state
, int timeo
)
268 struct inet_timewait_sock
*tw
= NULL
;
269 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
270 const struct tcp_sock
*tp
= tcp_sk(sk
);
271 bool recycle_ok
= false;
273 if (tcp_death_row
.sysctl_tw_recycle
&& tp
->rx_opt
.ts_recent_stamp
)
274 recycle_ok
= tcp_remember_stamp(sk
);
276 if (tcp_death_row
.tw_count
< tcp_death_row
.sysctl_max_tw_buckets
)
277 tw
= inet_twsk_alloc(sk
, state
);
280 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
281 const int rto
= (icsk
->icsk_rto
<< 2) - (icsk
->icsk_rto
>> 1);
282 struct inet_sock
*inet
= inet_sk(sk
);
284 tw
->tw_transparent
= inet
->transparent
;
285 tw
->tw_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
286 tcptw
->tw_rcv_nxt
= tp
->rcv_nxt
;
287 tcptw
->tw_snd_nxt
= tp
->snd_nxt
;
288 tcptw
->tw_rcv_wnd
= tcp_receive_window(tp
);
289 tcptw
->tw_ts_recent
= tp
->rx_opt
.ts_recent
;
290 tcptw
->tw_ts_recent_stamp
= tp
->rx_opt
.ts_recent_stamp
;
292 #if IS_ENABLED(CONFIG_IPV6)
293 if (tw
->tw_family
== PF_INET6
) {
294 struct ipv6_pinfo
*np
= inet6_sk(sk
);
295 struct inet6_timewait_sock
*tw6
;
297 tw
->tw_ipv6_offset
= inet6_tw_offset(sk
->sk_prot
);
298 tw6
= inet6_twsk((struct sock
*)tw
);
299 tw6
->tw_v6_daddr
= np
->daddr
;
300 tw6
->tw_v6_rcv_saddr
= np
->rcv_saddr
;
301 tw
->tw_tclass
= np
->tclass
;
302 tw
->tw_ipv6only
= np
->ipv6only
;
306 #ifdef CONFIG_TCP_MD5SIG
308 * The timewait bucket does not have the key DB from the
309 * sock structure. We just make a quick copy of the
310 * md5 key being used (if indeed we are using one)
311 * so the timewait ack generating code has the key.
314 struct tcp_md5sig_key
*key
;
315 tcptw
->tw_md5_key
= NULL
;
316 key
= tp
->af_specific
->md5_lookup(sk
, sk
);
318 tcptw
->tw_md5_key
= kmemdup(key
, sizeof(*key
), GFP_ATOMIC
);
319 if (tcptw
->tw_md5_key
&& tcp_alloc_md5sig_pool(sk
) == NULL
)
325 /* Linkage updates. */
326 __inet_twsk_hashdance(tw
, sk
, &tcp_hashinfo
);
328 /* Get the TIME_WAIT timeout firing. */
333 tw
->tw_timeout
= rto
;
335 tw
->tw_timeout
= TCP_TIMEWAIT_LEN
;
336 if (state
== TCP_TIME_WAIT
)
337 timeo
= TCP_TIMEWAIT_LEN
;
340 inet_twsk_schedule(tw
, &tcp_death_row
, timeo
,
344 /* Sorry, if we're out of memory, just CLOSE this
345 * socket up. We've got bigger problems than
346 * non-graceful socket closings.
348 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPTIMEWAITOVERFLOW
);
351 tcp_update_metrics(sk
);
355 void tcp_twsk_destructor(struct sock
*sk
)
357 #ifdef CONFIG_TCP_MD5SIG
358 struct tcp_timewait_sock
*twsk
= tcp_twsk(sk
);
360 if (twsk
->tw_md5_key
) {
361 tcp_free_md5sig_pool();
362 kfree_rcu(twsk
->tw_md5_key
, rcu
);
366 EXPORT_SYMBOL_GPL(tcp_twsk_destructor
);
368 static inline void TCP_ECN_openreq_child(struct tcp_sock
*tp
,
369 struct request_sock
*req
)
371 tp
->ecn_flags
= inet_rsk(req
)->ecn_ok
? TCP_ECN_OK
: 0;
374 /* This is not only more efficient than what we used to do, it eliminates
375 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
377 * Actually, we could lots of memory writes here. tp of listening
378 * socket contains all necessary default parameters.
380 struct sock
*tcp_create_openreq_child(struct sock
*sk
, struct request_sock
*req
, struct sk_buff
*skb
)
382 struct sock
*newsk
= inet_csk_clone_lock(sk
, req
, GFP_ATOMIC
);
385 const struct inet_request_sock
*ireq
= inet_rsk(req
);
386 struct tcp_request_sock
*treq
= tcp_rsk(req
);
387 struct inet_connection_sock
*newicsk
= inet_csk(newsk
);
388 struct tcp_sock
*newtp
= tcp_sk(newsk
);
389 struct tcp_sock
*oldtp
= tcp_sk(sk
);
390 struct tcp_cookie_values
*oldcvp
= oldtp
->cookie_values
;
392 /* TCP Cookie Transactions require space for the cookie pair,
393 * as it differs for each connection. There is no need to
394 * copy any s_data_payload stored at the original socket.
395 * Failure will prevent resuming the connection.
397 * Presumed copied, in order of appearance:
398 * cookie_in_always, cookie_out_never
400 if (oldcvp
!= NULL
) {
401 struct tcp_cookie_values
*newcvp
=
402 kzalloc(sizeof(*newtp
->cookie_values
),
405 if (newcvp
!= NULL
) {
406 kref_init(&newcvp
->kref
);
407 newcvp
->cookie_desired
=
408 oldcvp
->cookie_desired
;
409 newtp
->cookie_values
= newcvp
;
411 /* Not Yet Implemented */
412 newtp
->cookie_values
= NULL
;
416 /* Now setup tcp_sock */
417 newtp
->pred_flags
= 0;
419 newtp
->rcv_wup
= newtp
->copied_seq
=
420 newtp
->rcv_nxt
= treq
->rcv_isn
+ 1;
422 newtp
->snd_sml
= newtp
->snd_una
=
423 newtp
->snd_nxt
= newtp
->snd_up
=
424 treq
->snt_isn
+ 1 + tcp_s_data_size(oldtp
);
426 tcp_prequeue_init(newtp
);
427 INIT_LIST_HEAD(&newtp
->tsq_node
);
429 tcp_init_wl(newtp
, treq
->rcv_isn
);
432 newtp
->mdev
= TCP_TIMEOUT_INIT
;
433 newicsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
435 newtp
->packets_out
= 0;
436 newtp
->retrans_out
= 0;
437 newtp
->sacked_out
= 0;
438 newtp
->fackets_out
= 0;
439 newtp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
440 tcp_enable_early_retrans(newtp
);
442 /* So many TCP implementations out there (incorrectly) count the
443 * initial SYN frame in their delayed-ACK and congestion control
444 * algorithms that we must have the following bandaid to talk
445 * efficiently to them. -DaveM
447 newtp
->snd_cwnd
= TCP_INIT_CWND
;
448 newtp
->snd_cwnd_cnt
= 0;
449 newtp
->bytes_acked
= 0;
451 newtp
->frto_counter
= 0;
452 newtp
->frto_highmark
= 0;
454 if (newicsk
->icsk_ca_ops
!= &tcp_init_congestion_ops
&&
455 !try_module_get(newicsk
->icsk_ca_ops
->owner
))
456 newicsk
->icsk_ca_ops
= &tcp_init_congestion_ops
;
458 tcp_set_ca_state(newsk
, TCP_CA_Open
);
459 tcp_init_xmit_timers(newsk
);
460 skb_queue_head_init(&newtp
->out_of_order_queue
);
461 newtp
->write_seq
= newtp
->pushed_seq
=
462 treq
->snt_isn
+ 1 + tcp_s_data_size(oldtp
);
464 newtp
->rx_opt
.saw_tstamp
= 0;
466 newtp
->rx_opt
.dsack
= 0;
467 newtp
->rx_opt
.num_sacks
= 0;
471 if (sock_flag(newsk
, SOCK_KEEPOPEN
))
472 inet_csk_reset_keepalive_timer(newsk
,
473 keepalive_time_when(newtp
));
475 newtp
->rx_opt
.tstamp_ok
= ireq
->tstamp_ok
;
476 if ((newtp
->rx_opt
.sack_ok
= ireq
->sack_ok
) != 0) {
478 tcp_enable_fack(newtp
);
480 newtp
->window_clamp
= req
->window_clamp
;
481 newtp
->rcv_ssthresh
= req
->rcv_wnd
;
482 newtp
->rcv_wnd
= req
->rcv_wnd
;
483 newtp
->rx_opt
.wscale_ok
= ireq
->wscale_ok
;
484 if (newtp
->rx_opt
.wscale_ok
) {
485 newtp
->rx_opt
.snd_wscale
= ireq
->snd_wscale
;
486 newtp
->rx_opt
.rcv_wscale
= ireq
->rcv_wscale
;
488 newtp
->rx_opt
.snd_wscale
= newtp
->rx_opt
.rcv_wscale
= 0;
489 newtp
->window_clamp
= min(newtp
->window_clamp
, 65535U);
491 newtp
->snd_wnd
= (ntohs(tcp_hdr(skb
)->window
) <<
492 newtp
->rx_opt
.snd_wscale
);
493 newtp
->max_window
= newtp
->snd_wnd
;
495 if (newtp
->rx_opt
.tstamp_ok
) {
496 newtp
->rx_opt
.ts_recent
= req
->ts_recent
;
497 newtp
->rx_opt
.ts_recent_stamp
= get_seconds();
498 newtp
->tcp_header_len
= sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
500 newtp
->rx_opt
.ts_recent_stamp
= 0;
501 newtp
->tcp_header_len
= sizeof(struct tcphdr
);
503 #ifdef CONFIG_TCP_MD5SIG
504 newtp
->md5sig_info
= NULL
; /*XXX*/
505 if (newtp
->af_specific
->md5_lookup(sk
, newsk
))
506 newtp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
508 if (skb
->len
>= TCP_MSS_DEFAULT
+ newtp
->tcp_header_len
)
509 newicsk
->icsk_ack
.last_seg_size
= skb
->len
- newtp
->tcp_header_len
;
510 newtp
->rx_opt
.mss_clamp
= req
->mss
;
511 TCP_ECN_openreq_child(newtp
, req
);
512 newtp
->fastopen_rsk
= NULL
;
513 newtp
->syn_data_acked
= 0;
515 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_PASSIVEOPENS
);
519 EXPORT_SYMBOL(tcp_create_openreq_child
);
522 * Process an incoming packet for SYN_RECV sockets represented as a
523 * request_sock. Normally sk is the listener socket but for TFO it
524 * points to the child socket.
526 * XXX (TFO) - The current impl contains a special check for ack
527 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
529 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
532 struct sock
*tcp_check_req(struct sock
*sk
, struct sk_buff
*skb
,
533 struct request_sock
*req
,
534 struct request_sock
**prev
,
537 struct tcp_options_received tmp_opt
;
538 const u8
*hash_location
;
540 const struct tcphdr
*th
= tcp_hdr(skb
);
541 __be32 flg
= tcp_flag_word(th
) & (TCP_FLAG_RST
|TCP_FLAG_SYN
|TCP_FLAG_ACK
);
542 bool paws_reject
= false;
544 BUG_ON(fastopen
== (sk
->sk_state
== TCP_LISTEN
));
546 tmp_opt
.saw_tstamp
= 0;
547 if (th
->doff
> (sizeof(struct tcphdr
)>>2)) {
548 tcp_parse_options(skb
, &tmp_opt
, &hash_location
, 0, NULL
);
550 if (tmp_opt
.saw_tstamp
) {
551 tmp_opt
.ts_recent
= req
->ts_recent
;
552 /* We do not store true stamp, but it is not required,
553 * it can be estimated (approximately)
556 tmp_opt
.ts_recent_stamp
= get_seconds() - ((TCP_TIMEOUT_INIT
/HZ
)<<req
->num_timeout
);
557 paws_reject
= tcp_paws_reject(&tmp_opt
, th
->rst
);
561 /* Check for pure retransmitted SYN. */
562 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
&&
563 flg
== TCP_FLAG_SYN
&&
566 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
567 * this case on figure 6 and figure 8, but formal
568 * protocol description says NOTHING.
569 * To be more exact, it says that we should send ACK,
570 * because this segment (at least, if it has no data)
573 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
574 * describe SYN-RECV state. All the description
575 * is wrong, we cannot believe to it and should
576 * rely only on common sense and implementation
579 * Enforce "SYN-ACK" according to figure 8, figure 6
580 * of RFC793, fixed by RFC1122.
582 * Note that even if there is new data in the SYN packet
583 * they will be thrown away too.
585 inet_rtx_syn_ack(sk
, req
);
589 /* Further reproduces section "SEGMENT ARRIVES"
590 for state SYN-RECEIVED of RFC793.
591 It is broken, however, it does not work only
592 when SYNs are crossed.
594 You would think that SYN crossing is impossible here, since
595 we should have a SYN_SENT socket (from connect()) on our end,
596 but this is not true if the crossed SYNs were sent to both
597 ends by a malicious third party. We must defend against this,
598 and to do that we first verify the ACK (as per RFC793, page
599 36) and reset if it is invalid. Is this a true full defense?
600 To convince ourselves, let us consider a way in which the ACK
601 test can still pass in this 'malicious crossed SYNs' case.
602 Malicious sender sends identical SYNs (and thus identical sequence
603 numbers) to both A and B:
608 By our good fortune, both A and B select the same initial
609 send sequence number of seven :-)
611 A: sends SYN|ACK, seq=7, ack_seq=8
612 B: sends SYN|ACK, seq=7, ack_seq=8
614 So we are now A eating this SYN|ACK, ACK test passes. So
615 does sequence test, SYN is truncated, and thus we consider
618 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
619 bare ACK. Otherwise, we create an established connection. Both
620 ends (listening sockets) accept the new incoming connection and try
621 to talk to each other. 8-)
623 Note: This case is both harmless, and rare. Possibility is about the
624 same as us discovering intelligent life on another plant tomorrow.
626 But generally, we should (RFC lies!) to accept ACK
627 from SYNACK both here and in tcp_rcv_state_process().
628 tcp_rcv_state_process() does not, hence, we do not too.
630 Note that the case is absolutely generic:
631 we cannot optimize anything here without
632 violating protocol. All the checks must be made
633 before attempt to create socket.
636 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
637 * and the incoming segment acknowledges something not yet
638 * sent (the segment carries an unacceptable ACK) ...
641 * Invalid ACK: reset will be sent by listening socket.
642 * Note that the ACK validity check for a Fast Open socket is done
643 * elsewhere and is checked directly against the child socket rather
644 * than req because user data may have been sent out.
646 if ((flg
& TCP_FLAG_ACK
) && !fastopen
&&
647 (TCP_SKB_CB(skb
)->ack_seq
!=
648 tcp_rsk(req
)->snt_isn
+ 1 + tcp_s_data_size(tcp_sk(sk
))))
651 /* Also, it would be not so bad idea to check rcv_tsecr, which
652 * is essentially ACK extension and too early or too late values
653 * should cause reset in unsynchronized states.
656 /* RFC793: "first check sequence number". */
658 if (paws_reject
|| !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
659 tcp_rsk(req
)->rcv_nxt
, tcp_rsk(req
)->rcv_nxt
+ req
->rcv_wnd
)) {
660 /* Out of window: send ACK and drop. */
661 if (!(flg
& TCP_FLAG_RST
))
662 req
->rsk_ops
->send_ack(sk
, skb
, req
);
664 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
668 /* In sequence, PAWS is OK. */
670 if (tmp_opt
.saw_tstamp
&& !after(TCP_SKB_CB(skb
)->seq
, tcp_rsk(req
)->rcv_nxt
))
671 req
->ts_recent
= tmp_opt
.rcv_tsval
;
673 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
) {
674 /* Truncate SYN, it is out of window starting
675 at tcp_rsk(req)->rcv_isn + 1. */
676 flg
&= ~TCP_FLAG_SYN
;
679 /* RFC793: "second check the RST bit" and
680 * "fourth, check the SYN bit"
682 if (flg
& (TCP_FLAG_RST
|TCP_FLAG_SYN
)) {
683 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
684 goto embryonic_reset
;
687 /* ACK sequence verified above, just make sure ACK is
688 * set. If ACK not set, just silently drop the packet.
690 * XXX (TFO) - if we ever allow "data after SYN", the
691 * following check needs to be removed.
693 if (!(flg
& TCP_FLAG_ACK
))
696 /* Got ACK for our SYNACK, so update baseline for SYNACK RTT sample. */
697 if (tmp_opt
.saw_tstamp
&& tmp_opt
.rcv_tsecr
)
698 tcp_rsk(req
)->snt_synack
= tmp_opt
.rcv_tsecr
;
699 else if (req
->num_retrans
) /* don't take RTT sample if retrans && ~TS */
700 tcp_rsk(req
)->snt_synack
= 0;
702 /* For Fast Open no more processing is needed (sk is the
708 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
709 if (req
->num_timeout
< inet_csk(sk
)->icsk_accept_queue
.rskq_defer_accept
&&
710 TCP_SKB_CB(skb
)->end_seq
== tcp_rsk(req
)->rcv_isn
+ 1) {
711 inet_rsk(req
)->acked
= 1;
712 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPDEFERACCEPTDROP
);
716 /* OK, ACK is valid, create big socket and
717 * feed this segment to it. It will repeat all
718 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
719 * ESTABLISHED STATE. If it will be dropped after
720 * socket is created, wait for troubles.
722 child
= inet_csk(sk
)->icsk_af_ops
->syn_recv_sock(sk
, skb
, req
, NULL
);
724 goto listen_overflow
;
726 inet_csk_reqsk_queue_unlink(sk
, req
, prev
);
727 inet_csk_reqsk_queue_removed(sk
, req
);
729 inet_csk_reqsk_queue_add(sk
, req
, child
);
733 if (!sysctl_tcp_abort_on_overflow
) {
734 inet_rsk(req
)->acked
= 1;
739 if (!(flg
& TCP_FLAG_RST
)) {
740 /* Received a bad SYN pkt - for TFO We try not to reset
741 * the local connection unless it's really necessary to
742 * avoid becoming vulnerable to outside attack aiming at
743 * resetting legit local connections.
745 req
->rsk_ops
->send_reset(sk
, skb
);
746 } else if (fastopen
) { /* received a valid RST pkt */
747 reqsk_fastopen_remove(sk
, req
, true);
751 inet_csk_reqsk_queue_drop(sk
, req
, prev
);
752 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_EMBRYONICRSTS
);
756 EXPORT_SYMBOL(tcp_check_req
);
759 * Queue segment on the new socket if the new socket is active,
760 * otherwise we just shortcircuit this and continue with
763 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
764 * when entering. But other states are possible due to a race condition
765 * where after __inet_lookup_established() fails but before the listener
766 * locked is obtained, other packets cause the same connection to
770 int tcp_child_process(struct sock
*parent
, struct sock
*child
,
774 int state
= child
->sk_state
;
776 if (!sock_owned_by_user(child
)) {
777 ret
= tcp_rcv_state_process(child
, skb
, tcp_hdr(skb
),
779 /* Wakeup parent, send SIGIO */
780 if (state
== TCP_SYN_RECV
&& child
->sk_state
!= state
)
781 parent
->sk_data_ready(parent
, 0);
783 /* Alas, it is possible again, because we do lookup
784 * in main socket hash table and lock on listening
785 * socket does not protect us more.
787 __sk_add_backlog(child
, skb
);
790 bh_unlock_sock(child
);
794 EXPORT_SYMBOL(tcp_child_process
);