Linux 2.6.31.6
[linux/fpc-iii.git] / arch / blackfin / kernel / process.c
blob9da36bab7ccb10194a3cde2c40628f4e52aeeccb
1 /*
2 * File: arch/blackfin/kernel/process.c
3 * Based on:
4 * Author:
6 * Created:
7 * Description: Blackfin architecture-dependent process handling.
9 * Modified:
10 * Copyright 2004-2006 Analog Devices Inc.
12 * Bugs: Enter bugs at http://blackfin.uclinux.org/
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, see the file COPYING, or write
26 * to the Free Software Foundation, Inc.,
27 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
30 #include <linux/module.h>
31 #include <linux/smp_lock.h>
32 #include <linux/unistd.h>
33 #include <linux/user.h>
34 #include <linux/uaccess.h>
35 #include <linux/sched.h>
36 #include <linux/tick.h>
37 #include <linux/fs.h>
38 #include <linux/err.h>
40 #include <asm/blackfin.h>
41 #include <asm/fixed_code.h>
42 #include <asm/mem_map.h>
44 asmlinkage void ret_from_fork(void);
46 /* Points to the SDRAM backup memory for the stack that is currently in
47 * L1 scratchpad memory.
49 void *current_l1_stack_save;
51 /* The number of tasks currently using a L1 stack area. The SRAM is
52 * allocated/deallocated whenever this changes from/to zero.
54 int nr_l1stack_tasks;
56 /* Start and length of the area in L1 scratchpad memory which we've allocated
57 * for process stacks.
59 void *l1_stack_base;
60 unsigned long l1_stack_len;
63 * Powermanagement idle function, if any..
65 void (*pm_idle)(void) = NULL;
66 EXPORT_SYMBOL(pm_idle);
68 void (*pm_power_off)(void) = NULL;
69 EXPORT_SYMBOL(pm_power_off);
72 * The idle loop on BFIN
74 #ifdef CONFIG_IDLE_L1
75 static void default_idle(void)__attribute__((l1_text));
76 void cpu_idle(void)__attribute__((l1_text));
77 #endif
80 * This is our default idle handler. We need to disable
81 * interrupts here to ensure we don't miss a wakeup call.
83 static void default_idle(void)
85 #ifdef CONFIG_IPIPE
86 ipipe_suspend_domain();
87 #endif
88 local_irq_disable_hw();
89 if (!need_resched())
90 idle_with_irq_disabled();
92 local_irq_enable_hw();
96 * The idle thread. We try to conserve power, while trying to keep
97 * overall latency low. The architecture specific idle is passed
98 * a value to indicate the level of "idleness" of the system.
100 void cpu_idle(void)
102 /* endless idle loop with no priority at all */
103 while (1) {
104 void (*idle)(void) = pm_idle;
106 #ifdef CONFIG_HOTPLUG_CPU
107 if (cpu_is_offline(smp_processor_id()))
108 cpu_die();
109 #endif
110 if (!idle)
111 idle = default_idle;
112 tick_nohz_stop_sched_tick(1);
113 while (!need_resched())
114 idle();
115 tick_nohz_restart_sched_tick();
116 preempt_enable_no_resched();
117 schedule();
118 preempt_disable();
122 /* Fill in the fpu structure for a core dump. */
124 int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpregs)
126 return 1;
130 * This gets run with P1 containing the
131 * function to call, and R1 containing
132 * the "args". Note P0 is clobbered on the way here.
134 void kernel_thread_helper(void);
135 __asm__(".section .text\n"
136 ".align 4\n"
137 "_kernel_thread_helper:\n\t"
138 "\tsp += -12;\n\t"
139 "\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
142 * Create a kernel thread.
144 pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
146 struct pt_regs regs;
148 memset(&regs, 0, sizeof(regs));
150 regs.r1 = (unsigned long)arg;
151 regs.p1 = (unsigned long)fn;
152 regs.pc = (unsigned long)kernel_thread_helper;
153 regs.orig_p0 = -1;
154 /* Set bit 2 to tell ret_from_fork we should be returning to kernel
155 mode. */
156 regs.ipend = 0x8002;
157 __asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):);
158 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL,
159 NULL);
161 EXPORT_SYMBOL(kernel_thread);
164 * Do necessary setup to start up a newly executed thread.
166 * pass the data segment into user programs if it exists,
167 * it can't hurt anything as far as I can tell
169 void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
171 set_fs(USER_DS);
172 regs->pc = new_ip;
173 if (current->mm)
174 regs->p5 = current->mm->start_data;
175 #ifdef CONFIG_SMP
176 task_thread_info(current)->l1_task_info.stack_start =
177 (void *)current->mm->context.stack_start;
178 task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
179 memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
180 sizeof(*L1_SCRATCH_TASK_INFO));
181 #endif
182 wrusp(new_sp);
184 EXPORT_SYMBOL_GPL(start_thread);
186 void flush_thread(void)
190 asmlinkage int bfin_vfork(struct pt_regs *regs)
192 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
193 NULL);
196 asmlinkage int bfin_clone(struct pt_regs *regs)
198 unsigned long clone_flags;
199 unsigned long newsp;
201 #ifdef __ARCH_SYNC_CORE_DCACHE
202 if (current->rt.nr_cpus_allowed == num_possible_cpus()) {
203 current->cpus_allowed = cpumask_of_cpu(smp_processor_id());
204 current->rt.nr_cpus_allowed = 1;
206 #endif
208 /* syscall2 puts clone_flags in r0 and usp in r1 */
209 clone_flags = regs->r0;
210 newsp = regs->r1;
211 if (!newsp)
212 newsp = rdusp();
213 else
214 newsp -= 12;
215 return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
219 copy_thread(unsigned long clone_flags,
220 unsigned long usp, unsigned long topstk,
221 struct task_struct *p, struct pt_regs *regs)
223 struct pt_regs *childregs;
225 childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
226 *childregs = *regs;
227 childregs->r0 = 0;
229 p->thread.usp = usp;
230 p->thread.ksp = (unsigned long)childregs;
231 p->thread.pc = (unsigned long)ret_from_fork;
233 return 0;
237 * sys_execve() executes a new program.
240 asmlinkage int sys_execve(char __user *name, char __user * __user *argv, char __user * __user *envp)
242 int error;
243 char *filename;
244 struct pt_regs *regs = (struct pt_regs *)((&name) + 6);
246 lock_kernel();
247 filename = getname(name);
248 error = PTR_ERR(filename);
249 if (IS_ERR(filename))
250 goto out;
251 error = do_execve(filename, argv, envp, regs);
252 putname(filename);
253 out:
254 unlock_kernel();
255 return error;
258 unsigned long get_wchan(struct task_struct *p)
260 unsigned long fp, pc;
261 unsigned long stack_page;
262 int count = 0;
263 if (!p || p == current || p->state == TASK_RUNNING)
264 return 0;
266 stack_page = (unsigned long)p;
267 fp = p->thread.usp;
268 do {
269 if (fp < stack_page + sizeof(struct thread_info) ||
270 fp >= 8184 + stack_page)
271 return 0;
272 pc = ((unsigned long *)fp)[1];
273 if (!in_sched_functions(pc))
274 return pc;
275 fp = *(unsigned long *)fp;
277 while (count++ < 16);
278 return 0;
281 void finish_atomic_sections (struct pt_regs *regs)
283 int __user *up0 = (int __user *)regs->p0;
285 if (regs->pc < ATOMIC_SEQS_START || regs->pc >= ATOMIC_SEQS_END)
286 return;
288 switch (regs->pc) {
289 case ATOMIC_XCHG32 + 2:
290 put_user(regs->r1, up0);
291 regs->pc += 2;
292 break;
294 case ATOMIC_CAS32 + 2:
295 case ATOMIC_CAS32 + 4:
296 if (regs->r0 == regs->r1)
297 put_user(regs->r2, up0);
298 regs->pc = ATOMIC_CAS32 + 8;
299 break;
300 case ATOMIC_CAS32 + 6:
301 put_user(regs->r2, up0);
302 regs->pc += 2;
303 break;
305 case ATOMIC_ADD32 + 2:
306 regs->r0 = regs->r1 + regs->r0;
307 /* fall through */
308 case ATOMIC_ADD32 + 4:
309 put_user(regs->r0, up0);
310 regs->pc = ATOMIC_ADD32 + 6;
311 break;
313 case ATOMIC_SUB32 + 2:
314 regs->r0 = regs->r1 - regs->r0;
315 /* fall through */
316 case ATOMIC_SUB32 + 4:
317 put_user(regs->r0, up0);
318 regs->pc = ATOMIC_SUB32 + 6;
319 break;
321 case ATOMIC_IOR32 + 2:
322 regs->r0 = regs->r1 | regs->r0;
323 /* fall through */
324 case ATOMIC_IOR32 + 4:
325 put_user(regs->r0, up0);
326 regs->pc = ATOMIC_IOR32 + 6;
327 break;
329 case ATOMIC_AND32 + 2:
330 regs->r0 = regs->r1 & regs->r0;
331 /* fall through */
332 case ATOMIC_AND32 + 4:
333 put_user(regs->r0, up0);
334 regs->pc = ATOMIC_AND32 + 6;
335 break;
337 case ATOMIC_XOR32 + 2:
338 regs->r0 = regs->r1 ^ regs->r0;
339 /* fall through */
340 case ATOMIC_XOR32 + 4:
341 put_user(regs->r0, up0);
342 regs->pc = ATOMIC_XOR32 + 6;
343 break;
347 static inline
348 int in_mem(unsigned long addr, unsigned long size,
349 unsigned long start, unsigned long end)
351 return addr >= start && addr + size <= end;
353 static inline
354 int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
355 unsigned long const_addr, unsigned long const_size)
357 return const_size &&
358 in_mem(addr, size, const_addr + off, const_addr + const_size);
360 static inline
361 int in_mem_const(unsigned long addr, unsigned long size,
362 unsigned long const_addr, unsigned long const_size)
364 return in_mem_const_off(addr, size, 0, const_addr, const_size);
366 #define IN_ASYNC(bnum, bctlnum) \
367 ({ \
368 (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? -EFAULT : \
369 bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? -EFAULT : \
370 BFIN_MEM_ACCESS_CORE; \
373 int bfin_mem_access_type(unsigned long addr, unsigned long size)
375 int cpu = raw_smp_processor_id();
377 /* Check that things do not wrap around */
378 if (addr > ULONG_MAX - size)
379 return -EFAULT;
381 if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
382 return BFIN_MEM_ACCESS_CORE;
384 if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
385 return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
386 if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
387 return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
388 if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
389 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
390 if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
391 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
392 #ifdef COREB_L1_CODE_START
393 if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
394 return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
395 if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
396 return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
397 if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
398 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
399 if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
400 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
401 #endif
402 if (in_mem_const(addr, size, L2_START, L2_LENGTH))
403 return BFIN_MEM_ACCESS_CORE;
405 if (addr >= SYSMMR_BASE)
406 return BFIN_MEM_ACCESS_CORE_ONLY;
408 /* We can't read EBIU banks that aren't enabled or we end up hanging
409 * on the access to the async space.
411 if (in_mem_const(addr, size, ASYNC_BANK0_BASE, ASYNC_BANK0_SIZE))
412 return IN_ASYNC(0, 0);
413 if (in_mem_const(addr, size, ASYNC_BANK1_BASE, ASYNC_BANK1_SIZE))
414 return IN_ASYNC(1, 0);
415 if (in_mem_const(addr, size, ASYNC_BANK2_BASE, ASYNC_BANK2_SIZE))
416 return IN_ASYNC(2, 1);
417 if (in_mem_const(addr, size, ASYNC_BANK3_BASE, ASYNC_BANK3_SIZE))
418 return IN_ASYNC(3, 1);
420 if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
421 return BFIN_MEM_ACCESS_CORE;
422 if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
423 return BFIN_MEM_ACCESS_DMA;
425 return -EFAULT;
428 #if defined(CONFIG_ACCESS_CHECK)
429 #ifdef CONFIG_ACCESS_OK_L1
430 __attribute__((l1_text))
431 #endif
432 /* Return 1 if access to memory range is OK, 0 otherwise */
433 int _access_ok(unsigned long addr, unsigned long size)
435 if (size == 0)
436 return 1;
437 /* Check that things do not wrap around */
438 if (addr > ULONG_MAX - size)
439 return 0;
440 if (segment_eq(get_fs(), KERNEL_DS))
441 return 1;
442 #ifdef CONFIG_MTD_UCLINUX
443 if (1)
444 #else
445 if (0)
446 #endif
448 if (in_mem(addr, size, memory_start, memory_end))
449 return 1;
450 if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
451 return 1;
452 # ifndef CONFIG_ROMFS_ON_MTD
453 if (0)
454 # endif
455 /* For XIP, allow user space to use pointers within the ROMFS. */
456 if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
457 return 1;
458 } else {
459 if (in_mem(addr, size, memory_start, physical_mem_end))
460 return 1;
463 if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
464 return 1;
466 if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
467 return 1;
468 if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
469 return 1;
470 if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
471 return 1;
472 if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
473 return 1;
474 #ifdef COREB_L1_CODE_START
475 if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
476 return 1;
477 if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
478 return 1;
479 if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
480 return 1;
481 if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
482 return 1;
483 #endif
484 if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
485 return 1;
487 if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
488 return 1;
489 if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
490 return 1;
492 return 0;
494 EXPORT_SYMBOL(_access_ok);
495 #endif /* CONFIG_ACCESS_CHECK */