Linux 2.6.31.6
[linux/fpc-iii.git] / arch / blackfin / kernel / setup.c
blob6225edae488edeb713db588487fe709d839572eb
1 /*
2 * arch/blackfin/kernel/setup.c
4 * Copyright 2004-2006 Analog Devices Inc.
6 * Enter bugs at http://blackfin.uclinux.org/
8 * Licensed under the GPL-2 or later.
9 */
11 #include <linux/delay.h>
12 #include <linux/console.h>
13 #include <linux/bootmem.h>
14 #include <linux/seq_file.h>
15 #include <linux/cpu.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/tty.h>
19 #include <linux/pfn.h>
21 #ifdef CONFIG_MTD_UCLINUX
22 #include <linux/mtd/map.h>
23 #include <linux/ext2_fs.h>
24 #include <linux/cramfs_fs.h>
25 #include <linux/romfs_fs.h>
26 #endif
28 #include <asm/cplb.h>
29 #include <asm/cacheflush.h>
30 #include <asm/blackfin.h>
31 #include <asm/cplbinit.h>
32 #include <asm/div64.h>
33 #include <asm/cpu.h>
34 #include <asm/fixed_code.h>
35 #include <asm/early_printk.h>
37 u16 _bfin_swrst;
38 EXPORT_SYMBOL(_bfin_swrst);
40 unsigned long memory_start, memory_end, physical_mem_end;
41 unsigned long _rambase, _ramstart, _ramend;
42 unsigned long reserved_mem_dcache_on;
43 unsigned long reserved_mem_icache_on;
44 EXPORT_SYMBOL(memory_start);
45 EXPORT_SYMBOL(memory_end);
46 EXPORT_SYMBOL(physical_mem_end);
47 EXPORT_SYMBOL(_ramend);
48 EXPORT_SYMBOL(reserved_mem_dcache_on);
50 #ifdef CONFIG_MTD_UCLINUX
51 extern struct map_info uclinux_ram_map;
52 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
53 unsigned long _ebss;
54 EXPORT_SYMBOL(memory_mtd_end);
55 EXPORT_SYMBOL(memory_mtd_start);
56 EXPORT_SYMBOL(mtd_size);
57 #endif
59 char __initdata command_line[COMMAND_LINE_SIZE];
60 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
61 *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
63 /* boot memmap, for parsing "memmap=" */
64 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
65 #define BFIN_MEMMAP_RAM 1
66 #define BFIN_MEMMAP_RESERVED 2
67 static struct bfin_memmap {
68 int nr_map;
69 struct bfin_memmap_entry {
70 unsigned long long addr; /* start of memory segment */
71 unsigned long long size;
72 unsigned long type;
73 } map[BFIN_MEMMAP_MAX];
74 } bfin_memmap __initdata;
76 /* for memmap sanitization */
77 struct change_member {
78 struct bfin_memmap_entry *pentry; /* pointer to original entry */
79 unsigned long long addr; /* address for this change point */
81 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
82 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
83 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
84 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
86 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
88 static int early_init_clkin_hz(char *buf);
90 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
91 void __init generate_cplb_tables(void)
93 unsigned int cpu;
95 generate_cplb_tables_all();
96 /* Generate per-CPU I&D CPLB tables */
97 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
98 generate_cplb_tables_cpu(cpu);
100 #endif
102 void __cpuinit bfin_setup_caches(unsigned int cpu)
104 #ifdef CONFIG_BFIN_ICACHE
105 bfin_icache_init(icplb_tbl[cpu]);
106 #endif
108 #ifdef CONFIG_BFIN_DCACHE
109 bfin_dcache_init(dcplb_tbl[cpu]);
110 #endif
113 * In cache coherence emulation mode, we need to have the
114 * D-cache enabled before running any atomic operation which
115 * might invove cache invalidation (i.e. spinlock, rwlock).
116 * So printk's are deferred until then.
118 #ifdef CONFIG_BFIN_ICACHE
119 printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
120 printk(KERN_INFO " External memory:"
121 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
122 " cacheable"
123 # else
124 " uncacheable"
125 # endif
126 " in instruction cache\n");
127 if (L2_LENGTH)
128 printk(KERN_INFO " L2 SRAM :"
129 # ifdef CONFIG_BFIN_L2_ICACHEABLE
130 " cacheable"
131 # else
132 " uncacheable"
133 # endif
134 " in instruction cache\n");
136 #else
137 printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
138 #endif
140 #ifdef CONFIG_BFIN_DCACHE
141 printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
142 printk(KERN_INFO " External memory:"
143 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
144 " cacheable (write-back)"
145 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
146 " cacheable (write-through)"
147 # else
148 " uncacheable"
149 # endif
150 " in data cache\n");
151 if (L2_LENGTH)
152 printk(KERN_INFO " L2 SRAM :"
153 # if defined CONFIG_BFIN_L2_WRITEBACK
154 " cacheable (write-back)"
155 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
156 " cacheable (write-through)"
157 # else
158 " uncacheable"
159 # endif
160 " in data cache\n");
161 #else
162 printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
163 #endif
166 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
168 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
170 cpudata->idle = current;
171 cpudata->imemctl = bfin_read_IMEM_CONTROL();
172 cpudata->dmemctl = bfin_read_DMEM_CONTROL();
175 void __init bfin_cache_init(void)
177 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
178 generate_cplb_tables();
179 #endif
180 bfin_setup_caches(0);
183 void __init bfin_relocate_l1_mem(void)
185 unsigned long l1_code_length;
186 unsigned long l1_data_a_length;
187 unsigned long l1_data_b_length;
188 unsigned long l2_length;
191 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
192 * we know that everything about l1 text/data is nice and aligned,
193 * so copy by 4 byte chunks, and don't worry about overlapping
194 * src/dest.
196 * We can't use the dma_memcpy functions, since they can call
197 * scheduler functions which might be in L1 :( and core writes
198 * into L1 instruction cause bad access errors, so we are stuck,
199 * we are required to use DMA, but can't use the common dma
200 * functions. We can't use memcpy either - since that might be
201 * going to be in the relocated L1
204 blackfin_dma_early_init();
206 /* if necessary, copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
207 l1_code_length = _etext_l1 - _stext_l1;
208 if (l1_code_length)
209 early_dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
211 /* if necessary, copy _sdata_l1 to _sbss_l1 to L1 data bank A SRAM */
212 l1_data_a_length = _sbss_l1 - _sdata_l1;
213 if (l1_data_a_length)
214 early_dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
216 /* if necessary, copy _sdata_b_l1 to _sbss_b_l1 to L1 data bank B SRAM */
217 l1_data_b_length = _sbss_b_l1 - _sdata_b_l1;
218 if (l1_data_b_length)
219 early_dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
220 l1_data_a_length, l1_data_b_length);
222 early_dma_memcpy_done();
224 /* if necessary, copy _stext_l2 to _edata_l2 to L2 SRAM */
225 if (L2_LENGTH != 0) {
226 l2_length = _sbss_l2 - _stext_l2;
227 if (l2_length)
228 memcpy(_stext_l2, _l2_lma_start, l2_length);
232 /* add_memory_region to memmap */
233 static void __init add_memory_region(unsigned long long start,
234 unsigned long long size, int type)
236 int i;
238 i = bfin_memmap.nr_map;
240 if (i == BFIN_MEMMAP_MAX) {
241 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
242 return;
245 bfin_memmap.map[i].addr = start;
246 bfin_memmap.map[i].size = size;
247 bfin_memmap.map[i].type = type;
248 bfin_memmap.nr_map++;
252 * Sanitize the boot memmap, removing overlaps.
254 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
256 struct change_member *change_tmp;
257 unsigned long current_type, last_type;
258 unsigned long long last_addr;
259 int chgidx, still_changing;
260 int overlap_entries;
261 int new_entry;
262 int old_nr, new_nr, chg_nr;
263 int i;
266 Visually we're performing the following (1,2,3,4 = memory types)
268 Sample memory map (w/overlaps):
269 ____22__________________
270 ______________________4_
271 ____1111________________
272 _44_____________________
273 11111111________________
274 ____________________33__
275 ___________44___________
276 __________33333_________
277 ______________22________
278 ___________________2222_
279 _________111111111______
280 _____________________11_
281 _________________4______
283 Sanitized equivalent (no overlap):
284 1_______________________
285 _44_____________________
286 ___1____________________
287 ____22__________________
288 ______11________________
289 _________1______________
290 __________3_____________
291 ___________44___________
292 _____________33_________
293 _______________2________
294 ________________1_______
295 _________________4______
296 ___________________2____
297 ____________________33__
298 ______________________4_
300 /* if there's only one memory region, don't bother */
301 if (*pnr_map < 2)
302 return -1;
304 old_nr = *pnr_map;
306 /* bail out if we find any unreasonable addresses in memmap */
307 for (i = 0; i < old_nr; i++)
308 if (map[i].addr + map[i].size < map[i].addr)
309 return -1;
311 /* create pointers for initial change-point information (for sorting) */
312 for (i = 0; i < 2*old_nr; i++)
313 change_point[i] = &change_point_list[i];
315 /* record all known change-points (starting and ending addresses),
316 omitting those that are for empty memory regions */
317 chgidx = 0;
318 for (i = 0; i < old_nr; i++) {
319 if (map[i].size != 0) {
320 change_point[chgidx]->addr = map[i].addr;
321 change_point[chgidx++]->pentry = &map[i];
322 change_point[chgidx]->addr = map[i].addr + map[i].size;
323 change_point[chgidx++]->pentry = &map[i];
326 chg_nr = chgidx; /* true number of change-points */
328 /* sort change-point list by memory addresses (low -> high) */
329 still_changing = 1;
330 while (still_changing) {
331 still_changing = 0;
332 for (i = 1; i < chg_nr; i++) {
333 /* if <current_addr> > <last_addr>, swap */
334 /* or, if current=<start_addr> & last=<end_addr>, swap */
335 if ((change_point[i]->addr < change_point[i-1]->addr) ||
336 ((change_point[i]->addr == change_point[i-1]->addr) &&
337 (change_point[i]->addr == change_point[i]->pentry->addr) &&
338 (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
340 change_tmp = change_point[i];
341 change_point[i] = change_point[i-1];
342 change_point[i-1] = change_tmp;
343 still_changing = 1;
348 /* create a new memmap, removing overlaps */
349 overlap_entries = 0; /* number of entries in the overlap table */
350 new_entry = 0; /* index for creating new memmap entries */
351 last_type = 0; /* start with undefined memory type */
352 last_addr = 0; /* start with 0 as last starting address */
353 /* loop through change-points, determining affect on the new memmap */
354 for (chgidx = 0; chgidx < chg_nr; chgidx++) {
355 /* keep track of all overlapping memmap entries */
356 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
357 /* add map entry to overlap list (> 1 entry implies an overlap) */
358 overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
359 } else {
360 /* remove entry from list (order independent, so swap with last) */
361 for (i = 0; i < overlap_entries; i++) {
362 if (overlap_list[i] == change_point[chgidx]->pentry)
363 overlap_list[i] = overlap_list[overlap_entries-1];
365 overlap_entries--;
367 /* if there are overlapping entries, decide which "type" to use */
368 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
369 current_type = 0;
370 for (i = 0; i < overlap_entries; i++)
371 if (overlap_list[i]->type > current_type)
372 current_type = overlap_list[i]->type;
373 /* continue building up new memmap based on this information */
374 if (current_type != last_type) {
375 if (last_type != 0) {
376 new_map[new_entry].size =
377 change_point[chgidx]->addr - last_addr;
378 /* move forward only if the new size was non-zero */
379 if (new_map[new_entry].size != 0)
380 if (++new_entry >= BFIN_MEMMAP_MAX)
381 break; /* no more space left for new entries */
383 if (current_type != 0) {
384 new_map[new_entry].addr = change_point[chgidx]->addr;
385 new_map[new_entry].type = current_type;
386 last_addr = change_point[chgidx]->addr;
388 last_type = current_type;
391 new_nr = new_entry; /* retain count for new entries */
393 /* copy new mapping into original location */
394 memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
395 *pnr_map = new_nr;
397 return 0;
400 static void __init print_memory_map(char *who)
402 int i;
404 for (i = 0; i < bfin_memmap.nr_map; i++) {
405 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
406 bfin_memmap.map[i].addr,
407 bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
408 switch (bfin_memmap.map[i].type) {
409 case BFIN_MEMMAP_RAM:
410 printk(KERN_CONT "(usable)\n");
411 break;
412 case BFIN_MEMMAP_RESERVED:
413 printk(KERN_CONT "(reserved)\n");
414 break;
415 default:
416 printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
417 break;
422 static __init int parse_memmap(char *arg)
424 unsigned long long start_at, mem_size;
426 if (!arg)
427 return -EINVAL;
429 mem_size = memparse(arg, &arg);
430 if (*arg == '@') {
431 start_at = memparse(arg+1, &arg);
432 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
433 } else if (*arg == '$') {
434 start_at = memparse(arg+1, &arg);
435 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
438 return 0;
442 * Initial parsing of the command line. Currently, we support:
443 * - Controlling the linux memory size: mem=xxx[KMG]
444 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
445 * $ -> reserved memory is dcacheable
446 * # -> reserved memory is icacheable
447 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
448 * @ from <start> to <start>+<mem>, type RAM
449 * $ from <start> to <start>+<mem>, type RESERVED
451 static __init void parse_cmdline_early(char *cmdline_p)
453 char c = ' ', *to = cmdline_p;
454 unsigned int memsize;
455 for (;;) {
456 if (c == ' ') {
457 if (!memcmp(to, "mem=", 4)) {
458 to += 4;
459 memsize = memparse(to, &to);
460 if (memsize)
461 _ramend = memsize;
463 } else if (!memcmp(to, "max_mem=", 8)) {
464 to += 8;
465 memsize = memparse(to, &to);
466 if (memsize) {
467 physical_mem_end = memsize;
468 if (*to != ' ') {
469 if (*to == '$'
470 || *(to + 1) == '$')
471 reserved_mem_dcache_on = 1;
472 if (*to == '#'
473 || *(to + 1) == '#')
474 reserved_mem_icache_on = 1;
477 } else if (!memcmp(to, "clkin_hz=", 9)) {
478 to += 9;
479 early_init_clkin_hz(to);
480 #ifdef CONFIG_EARLY_PRINTK
481 } else if (!memcmp(to, "earlyprintk=", 12)) {
482 to += 12;
483 setup_early_printk(to);
484 #endif
485 } else if (!memcmp(to, "memmap=", 7)) {
486 to += 7;
487 parse_memmap(to);
490 c = *(to++);
491 if (!c)
492 break;
497 * Setup memory defaults from user config.
498 * The physical memory layout looks like:
500 * [_rambase, _ramstart]: kernel image
501 * [memory_start, memory_end]: dynamic memory managed by kernel
502 * [memory_end, _ramend]: reserved memory
503 * [memory_mtd_start(memory_end),
504 * memory_mtd_start + mtd_size]: rootfs (if any)
505 * [_ramend - DMA_UNCACHED_REGION,
506 * _ramend]: uncached DMA region
507 * [_ramend, physical_mem_end]: memory not managed by kernel
509 static __init void memory_setup(void)
511 #ifdef CONFIG_MTD_UCLINUX
512 unsigned long mtd_phys = 0;
513 #endif
515 _rambase = (unsigned long)_stext;
516 _ramstart = (unsigned long)_end;
518 if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
519 console_init();
520 panic("DMA region exceeds memory limit: %lu.",
521 _ramend - _ramstart);
523 memory_end = _ramend - DMA_UNCACHED_REGION;
525 #ifdef CONFIG_MPU
526 /* Round up to multiple of 4MB */
527 memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
528 #else
529 memory_start = PAGE_ALIGN(_ramstart);
530 #endif
532 #if defined(CONFIG_MTD_UCLINUX)
533 /* generic memory mapped MTD driver */
534 memory_mtd_end = memory_end;
536 mtd_phys = _ramstart;
537 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
539 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
540 if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
541 mtd_size =
542 PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
543 # endif
545 # if defined(CONFIG_CRAMFS)
546 if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
547 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
548 # endif
550 # if defined(CONFIG_ROMFS_FS)
551 if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
552 && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1)
553 mtd_size =
554 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
555 # if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
556 /* Due to a Hardware Anomaly we need to limit the size of usable
557 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
558 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
560 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
561 if (memory_end >= 56 * 1024 * 1024)
562 memory_end = 56 * 1024 * 1024;
563 # else
564 if (memory_end >= 60 * 1024 * 1024)
565 memory_end = 60 * 1024 * 1024;
566 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
567 # endif /* ANOMALY_05000263 */
568 # endif /* CONFIG_ROMFS_FS */
570 /* Since the default MTD_UCLINUX has no magic number, we just blindly
571 * read 8 past the end of the kernel's image, and look at it.
572 * When no image is attached, mtd_size is set to a random number
573 * Do some basic sanity checks before operating on things
575 if (mtd_size == 0 || memory_end <= mtd_size) {
576 pr_emerg("Could not find valid ram mtd attached.\n");
577 } else {
578 memory_end -= mtd_size;
580 /* Relocate MTD image to the top of memory after the uncached memory area */
581 uclinux_ram_map.phys = memory_mtd_start = memory_end;
582 uclinux_ram_map.size = mtd_size;
583 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
584 _end, mtd_size, (void *)memory_mtd_start);
585 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
587 #endif /* CONFIG_MTD_UCLINUX */
589 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
590 /* Due to a Hardware Anomaly we need to limit the size of usable
591 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
592 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
594 #if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
595 if (memory_end >= 56 * 1024 * 1024)
596 memory_end = 56 * 1024 * 1024;
597 #else
598 if (memory_end >= 60 * 1024 * 1024)
599 memory_end = 60 * 1024 * 1024;
600 #endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
601 printk(KERN_NOTICE "Warning: limiting memory to %liMB due to hardware anomaly 05000263\n", memory_end >> 20);
602 #endif /* ANOMALY_05000263 */
604 #ifdef CONFIG_MPU
605 page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
606 page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
607 #endif
609 #if !defined(CONFIG_MTD_UCLINUX)
610 /*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
611 memory_end -= SIZE_4K;
612 #endif
614 init_mm.start_code = (unsigned long)_stext;
615 init_mm.end_code = (unsigned long)_etext;
616 init_mm.end_data = (unsigned long)_edata;
617 init_mm.brk = (unsigned long)0;
619 printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
620 printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
622 printk(KERN_INFO "Memory map:\n"
623 " fixedcode = 0x%p-0x%p\n"
624 " text = 0x%p-0x%p\n"
625 " rodata = 0x%p-0x%p\n"
626 " bss = 0x%p-0x%p\n"
627 " data = 0x%p-0x%p\n"
628 " stack = 0x%p-0x%p\n"
629 " init = 0x%p-0x%p\n"
630 " available = 0x%p-0x%p\n"
631 #ifdef CONFIG_MTD_UCLINUX
632 " rootfs = 0x%p-0x%p\n"
633 #endif
634 #if DMA_UNCACHED_REGION > 0
635 " DMA Zone = 0x%p-0x%p\n"
636 #endif
637 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
638 _stext, _etext,
639 __start_rodata, __end_rodata,
640 __bss_start, __bss_stop,
641 _sdata, _edata,
642 (void *)&init_thread_union,
643 (void *)((int)(&init_thread_union) + 0x2000),
644 __init_begin, __init_end,
645 (void *)_ramstart, (void *)memory_end
646 #ifdef CONFIG_MTD_UCLINUX
647 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
648 #endif
649 #if DMA_UNCACHED_REGION > 0
650 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
651 #endif
656 * Find the lowest, highest page frame number we have available
658 void __init find_min_max_pfn(void)
660 int i;
662 max_pfn = 0;
663 min_low_pfn = memory_end;
665 for (i = 0; i < bfin_memmap.nr_map; i++) {
666 unsigned long start, end;
667 /* RAM? */
668 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
669 continue;
670 start = PFN_UP(bfin_memmap.map[i].addr);
671 end = PFN_DOWN(bfin_memmap.map[i].addr +
672 bfin_memmap.map[i].size);
673 if (start >= end)
674 continue;
675 if (end > max_pfn)
676 max_pfn = end;
677 if (start < min_low_pfn)
678 min_low_pfn = start;
682 static __init void setup_bootmem_allocator(void)
684 int bootmap_size;
685 int i;
686 unsigned long start_pfn, end_pfn;
687 unsigned long curr_pfn, last_pfn, size;
689 /* mark memory between memory_start and memory_end usable */
690 add_memory_region(memory_start,
691 memory_end - memory_start, BFIN_MEMMAP_RAM);
692 /* sanity check for overlap */
693 sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
694 print_memory_map("boot memmap");
696 /* intialize globals in linux/bootmem.h */
697 find_min_max_pfn();
698 /* pfn of the last usable page frame */
699 if (max_pfn > memory_end >> PAGE_SHIFT)
700 max_pfn = memory_end >> PAGE_SHIFT;
701 /* pfn of last page frame directly mapped by kernel */
702 max_low_pfn = max_pfn;
703 /* pfn of the first usable page frame after kernel image*/
704 if (min_low_pfn < memory_start >> PAGE_SHIFT)
705 min_low_pfn = memory_start >> PAGE_SHIFT;
707 start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
708 end_pfn = memory_end >> PAGE_SHIFT;
711 * give all the memory to the bootmap allocator, tell it to put the
712 * boot mem_map at the start of memory.
714 bootmap_size = init_bootmem_node(NODE_DATA(0),
715 memory_start >> PAGE_SHIFT, /* map goes here */
716 start_pfn, end_pfn);
718 /* register the memmap regions with the bootmem allocator */
719 for (i = 0; i < bfin_memmap.nr_map; i++) {
721 * Reserve usable memory
723 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
724 continue;
726 * We are rounding up the start address of usable memory:
728 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
729 if (curr_pfn >= end_pfn)
730 continue;
732 * ... and at the end of the usable range downwards:
734 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
735 bfin_memmap.map[i].size);
737 if (last_pfn > end_pfn)
738 last_pfn = end_pfn;
741 * .. finally, did all the rounding and playing
742 * around just make the area go away?
744 if (last_pfn <= curr_pfn)
745 continue;
747 size = last_pfn - curr_pfn;
748 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
751 /* reserve memory before memory_start, including bootmap */
752 reserve_bootmem(PAGE_OFFSET,
753 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
754 BOOTMEM_DEFAULT);
757 #define EBSZ_TO_MEG(ebsz) \
758 ({ \
759 int meg = 0; \
760 switch (ebsz & 0xf) { \
761 case 0x1: meg = 16; break; \
762 case 0x3: meg = 32; break; \
763 case 0x5: meg = 64; break; \
764 case 0x7: meg = 128; break; \
765 case 0x9: meg = 256; break; \
766 case 0xb: meg = 512; break; \
768 meg; \
770 static inline int __init get_mem_size(void)
772 #if defined(EBIU_SDBCTL)
773 # if defined(BF561_FAMILY)
774 int ret = 0;
775 u32 sdbctl = bfin_read_EBIU_SDBCTL();
776 ret += EBSZ_TO_MEG(sdbctl >> 0);
777 ret += EBSZ_TO_MEG(sdbctl >> 8);
778 ret += EBSZ_TO_MEG(sdbctl >> 16);
779 ret += EBSZ_TO_MEG(sdbctl >> 24);
780 return ret;
781 # else
782 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
783 # endif
784 #elif defined(EBIU_DDRCTL1)
785 u32 ddrctl = bfin_read_EBIU_DDRCTL1();
786 int ret = 0;
787 switch (ddrctl & 0xc0000) {
788 case DEVSZ_64: ret = 64 / 8;
789 case DEVSZ_128: ret = 128 / 8;
790 case DEVSZ_256: ret = 256 / 8;
791 case DEVSZ_512: ret = 512 / 8;
793 switch (ddrctl & 0x30000) {
794 case DEVWD_4: ret *= 2;
795 case DEVWD_8: ret *= 2;
796 case DEVWD_16: break;
798 if ((ddrctl & 0xc000) == 0x4000)
799 ret *= 2;
800 return ret;
801 #endif
802 BUG();
805 void __init setup_arch(char **cmdline_p)
807 unsigned long sclk, cclk;
809 /* Check to make sure we are running on the right processor */
810 if (unlikely(CPUID != bfin_cpuid()))
811 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
812 CPU, bfin_cpuid(), bfin_revid());
814 #ifdef CONFIG_DUMMY_CONSOLE
815 conswitchp = &dummy_con;
816 #endif
818 #if defined(CONFIG_CMDLINE_BOOL)
819 strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
820 command_line[sizeof(command_line) - 1] = 0;
821 #endif
823 /* Keep a copy of command line */
824 *cmdline_p = &command_line[0];
825 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
826 boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
828 memset(&bfin_memmap, 0, sizeof(bfin_memmap));
830 /* If the user does not specify things on the command line, use
831 * what the bootloader set things up as
833 physical_mem_end = 0;
834 parse_cmdline_early(&command_line[0]);
836 if (_ramend == 0)
837 _ramend = get_mem_size() * 1024 * 1024;
839 if (physical_mem_end == 0)
840 physical_mem_end = _ramend;
842 memory_setup();
844 /* Initialize Async memory banks */
845 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
846 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
847 bfin_write_EBIU_AMGCTL(AMGCTLVAL);
848 #ifdef CONFIG_EBIU_MBSCTLVAL
849 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
850 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
851 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
852 #endif
854 cclk = get_cclk();
855 sclk = get_sclk();
857 if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
858 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
860 #ifdef BF561_FAMILY
861 if (ANOMALY_05000266) {
862 bfin_read_IMDMA_D0_IRQ_STATUS();
863 bfin_read_IMDMA_D1_IRQ_STATUS();
865 #endif
866 printk(KERN_INFO "Hardware Trace ");
867 if (bfin_read_TBUFCTL() & 0x1)
868 printk(KERN_CONT "Active ");
869 else
870 printk(KERN_CONT "Off ");
871 if (bfin_read_TBUFCTL() & 0x2)
872 printk(KERN_CONT "and Enabled\n");
873 else
874 printk(KERN_CONT "and Disabled\n");
876 printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
878 /* Newer parts mirror SWRST bits in SYSCR */
879 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
880 defined(CONFIG_BF538) || defined(CONFIG_BF539)
881 _bfin_swrst = bfin_read_SWRST();
882 #else
883 /* Clear boot mode field */
884 _bfin_swrst = bfin_read_SYSCR() & ~0xf;
885 #endif
887 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
888 bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
889 #endif
890 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
891 bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
892 #endif
894 #ifdef CONFIG_SMP
895 if (_bfin_swrst & SWRST_DBL_FAULT_A) {
896 #else
897 if (_bfin_swrst & RESET_DOUBLE) {
898 #endif
899 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
900 #ifdef CONFIG_DEBUG_DOUBLEFAULT
901 /* We assume the crashing kernel, and the current symbol table match */
902 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
903 (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
904 printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
905 printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
906 #endif
907 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
908 init_retx);
909 } else if (_bfin_swrst & RESET_WDOG)
910 printk(KERN_INFO "Recovering from Watchdog event\n");
911 else if (_bfin_swrst & RESET_SOFTWARE)
912 printk(KERN_NOTICE "Reset caused by Software reset\n");
914 printk(KERN_INFO "Blackfin support (C) 2004-2009 Analog Devices, Inc.\n");
915 if (bfin_compiled_revid() == 0xffff)
916 printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
917 else if (bfin_compiled_revid() == -1)
918 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
919 else
920 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
922 if (likely(CPUID == bfin_cpuid())) {
923 if (bfin_revid() != bfin_compiled_revid()) {
924 if (bfin_compiled_revid() == -1)
925 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
926 bfin_revid());
927 else if (bfin_compiled_revid() != 0xffff) {
928 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
929 bfin_compiled_revid(), bfin_revid());
930 if (bfin_compiled_revid() > bfin_revid())
931 panic("Error: you are missing anomaly workarounds for this rev");
934 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
935 printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
936 CPU, bfin_revid());
939 printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
941 printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
942 cclk / 1000000, sclk / 1000000);
944 setup_bootmem_allocator();
946 paging_init();
948 /* Copy atomic sequences to their fixed location, and sanity check that
949 these locations are the ones that we advertise to userspace. */
950 memcpy((void *)FIXED_CODE_START, &fixed_code_start,
951 FIXED_CODE_END - FIXED_CODE_START);
952 BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
953 != SIGRETURN_STUB - FIXED_CODE_START);
954 BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
955 != ATOMIC_XCHG32 - FIXED_CODE_START);
956 BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
957 != ATOMIC_CAS32 - FIXED_CODE_START);
958 BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
959 != ATOMIC_ADD32 - FIXED_CODE_START);
960 BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
961 != ATOMIC_SUB32 - FIXED_CODE_START);
962 BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
963 != ATOMIC_IOR32 - FIXED_CODE_START);
964 BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
965 != ATOMIC_AND32 - FIXED_CODE_START);
966 BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
967 != ATOMIC_XOR32 - FIXED_CODE_START);
968 BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
969 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
971 #ifdef CONFIG_SMP
972 platform_init_cpus();
973 #endif
974 init_exception_vectors();
975 bfin_cache_init(); /* Initialize caches for the boot CPU */
978 static int __init topology_init(void)
980 unsigned int cpu;
981 /* Record CPU-private information for the boot processor. */
982 bfin_setup_cpudata(0);
984 for_each_possible_cpu(cpu) {
985 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
988 return 0;
991 subsys_initcall(topology_init);
993 /* Get the input clock frequency */
994 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
995 static u_long get_clkin_hz(void)
997 return cached_clkin_hz;
999 static int __init early_init_clkin_hz(char *buf)
1001 cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1002 #ifdef BFIN_KERNEL_CLOCK
1003 if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1004 panic("cannot change clkin_hz when reprogramming clocks");
1005 #endif
1006 return 1;
1008 early_param("clkin_hz=", early_init_clkin_hz);
1010 /* Get the voltage input multiplier */
1011 static u_long get_vco(void)
1013 static u_long cached_vco;
1014 u_long msel, pll_ctl;
1016 /* The assumption here is that VCO never changes at runtime.
1017 * If, someday, we support that, then we'll have to change this.
1019 if (cached_vco)
1020 return cached_vco;
1022 pll_ctl = bfin_read_PLL_CTL();
1023 msel = (pll_ctl >> 9) & 0x3F;
1024 if (0 == msel)
1025 msel = 64;
1027 cached_vco = get_clkin_hz();
1028 cached_vco >>= (1 & pll_ctl); /* DF bit */
1029 cached_vco *= msel;
1030 return cached_vco;
1033 /* Get the Core clock */
1034 u_long get_cclk(void)
1036 static u_long cached_cclk_pll_div, cached_cclk;
1037 u_long csel, ssel;
1039 if (bfin_read_PLL_STAT() & 0x1)
1040 return get_clkin_hz();
1042 ssel = bfin_read_PLL_DIV();
1043 if (ssel == cached_cclk_pll_div)
1044 return cached_cclk;
1045 else
1046 cached_cclk_pll_div = ssel;
1048 csel = ((ssel >> 4) & 0x03);
1049 ssel &= 0xf;
1050 if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1051 cached_cclk = get_vco() / ssel;
1052 else
1053 cached_cclk = get_vco() >> csel;
1054 return cached_cclk;
1056 EXPORT_SYMBOL(get_cclk);
1058 /* Get the System clock */
1059 u_long get_sclk(void)
1061 static u_long cached_sclk;
1062 u_long ssel;
1064 /* The assumption here is that SCLK never changes at runtime.
1065 * If, someday, we support that, then we'll have to change this.
1067 if (cached_sclk)
1068 return cached_sclk;
1070 if (bfin_read_PLL_STAT() & 0x1)
1071 return get_clkin_hz();
1073 ssel = bfin_read_PLL_DIV() & 0xf;
1074 if (0 == ssel) {
1075 printk(KERN_WARNING "Invalid System Clock\n");
1076 ssel = 1;
1079 cached_sclk = get_vco() / ssel;
1080 return cached_sclk;
1082 EXPORT_SYMBOL(get_sclk);
1084 unsigned long sclk_to_usecs(unsigned long sclk)
1086 u64 tmp = USEC_PER_SEC * (u64)sclk;
1087 do_div(tmp, get_sclk());
1088 return tmp;
1090 EXPORT_SYMBOL(sclk_to_usecs);
1092 unsigned long usecs_to_sclk(unsigned long usecs)
1094 u64 tmp = get_sclk() * (u64)usecs;
1095 do_div(tmp, USEC_PER_SEC);
1096 return tmp;
1098 EXPORT_SYMBOL(usecs_to_sclk);
1101 * Get CPU information for use by the procfs.
1103 static int show_cpuinfo(struct seq_file *m, void *v)
1105 char *cpu, *mmu, *fpu, *vendor, *cache;
1106 uint32_t revid;
1107 int cpu_num = *(unsigned int *)v;
1108 u_long sclk, cclk;
1109 u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1110 struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1112 cpu = CPU;
1113 mmu = "none";
1114 fpu = "none";
1115 revid = bfin_revid();
1117 sclk = get_sclk();
1118 cclk = get_cclk();
1120 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1121 case 0xca:
1122 vendor = "Analog Devices";
1123 break;
1124 default:
1125 vendor = "unknown";
1126 break;
1129 seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1131 if (CPUID == bfin_cpuid())
1132 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1133 else
1134 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1135 CPUID, bfin_cpuid());
1137 seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1138 "stepping\t: %d ",
1139 cpu, cclk/1000000, sclk/1000000,
1140 #ifdef CONFIG_MPU
1141 "mpu on",
1142 #else
1143 "mpu off",
1144 #endif
1145 revid);
1147 if (bfin_revid() != bfin_compiled_revid()) {
1148 if (bfin_compiled_revid() == -1)
1149 seq_printf(m, "(Compiled for Rev none)");
1150 else if (bfin_compiled_revid() == 0xffff)
1151 seq_printf(m, "(Compiled for Rev any)");
1152 else
1153 seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1156 seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1157 cclk/1000000, cclk%1000000,
1158 sclk/1000000, sclk%1000000);
1159 seq_printf(m, "bogomips\t: %lu.%02lu\n"
1160 "Calibration\t: %lu loops\n",
1161 (loops_per_jiffy * HZ) / 500000,
1162 ((loops_per_jiffy * HZ) / 5000) % 100,
1163 (loops_per_jiffy * HZ));
1165 /* Check Cache configutation */
1166 switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1167 case ACACHE_BSRAM:
1168 cache = "dbank-A/B\t: cache/sram";
1169 dcache_size = 16;
1170 dsup_banks = 1;
1171 break;
1172 case ACACHE_BCACHE:
1173 cache = "dbank-A/B\t: cache/cache";
1174 dcache_size = 32;
1175 dsup_banks = 2;
1176 break;
1177 case ASRAM_BSRAM:
1178 cache = "dbank-A/B\t: sram/sram";
1179 dcache_size = 0;
1180 dsup_banks = 0;
1181 break;
1182 default:
1183 cache = "unknown";
1184 dcache_size = 0;
1185 dsup_banks = 0;
1186 break;
1189 /* Is it turned on? */
1190 if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1191 dcache_size = 0;
1193 if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1194 icache_size = 0;
1196 seq_printf(m, "cache size\t: %d KB(L1 icache) "
1197 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1198 icache_size, dcache_size, 0);
1199 seq_printf(m, "%s\n", cache);
1200 seq_printf(m, "external memory\t: "
1201 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1202 "cacheable"
1203 #else
1204 "uncacheable"
1205 #endif
1206 " in instruction cache\n");
1207 seq_printf(m, "external memory\t: "
1208 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1209 "cacheable (write-back)"
1210 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1211 "cacheable (write-through)"
1212 #else
1213 "uncacheable"
1214 #endif
1215 " in data cache\n");
1217 if (icache_size)
1218 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1219 BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1220 else
1221 seq_printf(m, "icache setup\t: off\n");
1223 seq_printf(m,
1224 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1225 dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1226 BFIN_DLINES);
1227 #ifdef __ARCH_SYNC_CORE_DCACHE
1228 seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
1229 #endif
1230 #ifdef __ARCH_SYNC_CORE_ICACHE
1231 seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", cpudata->icache_invld_count);
1232 #endif
1233 #ifdef CONFIG_BFIN_ICACHE_LOCK
1234 switch ((cpudata->imemctl >> 3) & WAYALL_L) {
1235 case WAY0_L:
1236 seq_printf(m, "Way0 Locked-Down\n");
1237 break;
1238 case WAY1_L:
1239 seq_printf(m, "Way1 Locked-Down\n");
1240 break;
1241 case WAY01_L:
1242 seq_printf(m, "Way0,Way1 Locked-Down\n");
1243 break;
1244 case WAY2_L:
1245 seq_printf(m, "Way2 Locked-Down\n");
1246 break;
1247 case WAY02_L:
1248 seq_printf(m, "Way0,Way2 Locked-Down\n");
1249 break;
1250 case WAY12_L:
1251 seq_printf(m, "Way1,Way2 Locked-Down\n");
1252 break;
1253 case WAY012_L:
1254 seq_printf(m, "Way0,Way1 & Way2 Locked-Down\n");
1255 break;
1256 case WAY3_L:
1257 seq_printf(m, "Way3 Locked-Down\n");
1258 break;
1259 case WAY03_L:
1260 seq_printf(m, "Way0,Way3 Locked-Down\n");
1261 break;
1262 case WAY13_L:
1263 seq_printf(m, "Way1,Way3 Locked-Down\n");
1264 break;
1265 case WAY013_L:
1266 seq_printf(m, "Way 0,Way1,Way3 Locked-Down\n");
1267 break;
1268 case WAY32_L:
1269 seq_printf(m, "Way3,Way2 Locked-Down\n");
1270 break;
1271 case WAY320_L:
1272 seq_printf(m, "Way3,Way2,Way0 Locked-Down\n");
1273 break;
1274 case WAY321_L:
1275 seq_printf(m, "Way3,Way2,Way1 Locked-Down\n");
1276 break;
1277 case WAYALL_L:
1278 seq_printf(m, "All Ways are locked\n");
1279 break;
1280 default:
1281 seq_printf(m, "No Ways are locked\n");
1283 #endif
1285 if (cpu_num != num_possible_cpus() - 1)
1286 return 0;
1288 if (L2_LENGTH) {
1289 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1290 seq_printf(m, "L2 SRAM\t\t: "
1291 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1292 "cacheable"
1293 #else
1294 "uncacheable"
1295 #endif
1296 " in instruction cache\n");
1297 seq_printf(m, "L2 SRAM\t\t: "
1298 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1299 "cacheable (write-back)"
1300 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1301 "cacheable (write-through)"
1302 #else
1303 "uncacheable"
1304 #endif
1305 " in data cache\n");
1307 seq_printf(m, "board name\t: %s\n", bfin_board_name);
1308 seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1309 physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1310 seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1311 ((int)memory_end - (int)_stext) >> 10,
1312 _stext,
1313 (void *)memory_end);
1314 seq_printf(m, "\n");
1316 return 0;
1319 static void *c_start(struct seq_file *m, loff_t *pos)
1321 if (*pos == 0)
1322 *pos = first_cpu(cpu_online_map);
1323 if (*pos >= num_online_cpus())
1324 return NULL;
1326 return pos;
1329 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1331 *pos = next_cpu(*pos, cpu_online_map);
1333 return c_start(m, pos);
1336 static void c_stop(struct seq_file *m, void *v)
1340 const struct seq_operations cpuinfo_op = {
1341 .start = c_start,
1342 .next = c_next,
1343 .stop = c_stop,
1344 .show = show_cpuinfo,
1347 void __init cmdline_init(const char *r0)
1349 if (r0)
1350 strncpy(command_line, r0, COMMAND_LINE_SIZE);