Linux 2.6.31.6
[linux/fpc-iii.git] / arch / ia64 / ia32 / sys_ia32.c
blob16ef61a91d95810de82668fa23eefbd2d993a25c
1 /*
2 * sys_ia32.c: Conversion between 32bit and 64bit native syscalls. Derived from sys_sparc32.c.
4 * Copyright (C) 2000 VA Linux Co
5 * Copyright (C) 2000 Don Dugger <n0ano@valinux.com>
6 * Copyright (C) 1999 Arun Sharma <arun.sharma@intel.com>
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 * Copyright (C) 2000-2003, 2005 Hewlett-Packard Co
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * Copyright (C) 2004 Gordon Jin <gordon.jin@intel.com>
13 * These routines maintain argument size conversion between 32bit and 64bit
14 * environment.
17 #include <linux/kernel.h>
18 #include <linux/syscalls.h>
19 #include <linux/sysctl.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/file.h>
23 #include <linux/signal.h>
24 #include <linux/resource.h>
25 #include <linux/times.h>
26 #include <linux/utsname.h>
27 #include <linux/smp.h>
28 #include <linux/smp_lock.h>
29 #include <linux/sem.h>
30 #include <linux/msg.h>
31 #include <linux/mm.h>
32 #include <linux/shm.h>
33 #include <linux/slab.h>
34 #include <linux/uio.h>
35 #include <linux/socket.h>
36 #include <linux/quota.h>
37 #include <linux/poll.h>
38 #include <linux/eventpoll.h>
39 #include <linux/personality.h>
40 #include <linux/ptrace.h>
41 #include <linux/regset.h>
42 #include <linux/stat.h>
43 #include <linux/ipc.h>
44 #include <linux/capability.h>
45 #include <linux/compat.h>
46 #include <linux/vfs.h>
47 #include <linux/mman.h>
48 #include <linux/mutex.h>
50 #include <asm/intrinsics.h>
51 #include <asm/types.h>
52 #include <asm/uaccess.h>
53 #include <asm/unistd.h>
55 #include "ia32priv.h"
57 #include <net/scm.h>
58 #include <net/sock.h>
60 #define DEBUG 0
62 #if DEBUG
63 # define DBG(fmt...) printk(KERN_DEBUG fmt)
64 #else
65 # define DBG(fmt...)
66 #endif
68 #define ROUND_UP(x,a) ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1)))
70 #define OFFSET4K(a) ((a) & 0xfff)
71 #define PAGE_START(addr) ((addr) & PAGE_MASK)
72 #define MINSIGSTKSZ_IA32 2048
74 #define high2lowuid(uid) ((uid) > 65535 ? 65534 : (uid))
75 #define high2lowgid(gid) ((gid) > 65535 ? 65534 : (gid))
78 * Anything that modifies or inspects ia32 user virtual memory must hold this semaphore
79 * while doing so.
81 /* XXX make per-mm: */
82 static DEFINE_MUTEX(ia32_mmap_mutex);
84 asmlinkage long
85 sys32_execve (char __user *name, compat_uptr_t __user *argv, compat_uptr_t __user *envp,
86 struct pt_regs *regs)
88 long error;
89 char *filename;
90 unsigned long old_map_base, old_task_size, tssd;
92 filename = getname(name);
93 error = PTR_ERR(filename);
94 if (IS_ERR(filename))
95 return error;
97 old_map_base = current->thread.map_base;
98 old_task_size = current->thread.task_size;
99 tssd = ia64_get_kr(IA64_KR_TSSD);
101 /* we may be exec'ing a 64-bit process: reset map base, task-size, and io-base: */
102 current->thread.map_base = DEFAULT_MAP_BASE;
103 current->thread.task_size = DEFAULT_TASK_SIZE;
104 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
105 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
107 error = compat_do_execve(filename, argv, envp, regs);
108 putname(filename);
110 if (error < 0) {
111 /* oops, execve failed, switch back to old values... */
112 ia64_set_kr(IA64_KR_IO_BASE, IA32_IOBASE);
113 ia64_set_kr(IA64_KR_TSSD, tssd);
114 current->thread.map_base = old_map_base;
115 current->thread.task_size = old_task_size;
118 return error;
122 #if PAGE_SHIFT > IA32_PAGE_SHIFT
125 static int
126 get_page_prot (struct vm_area_struct *vma, unsigned long addr)
128 int prot = 0;
130 if (!vma || vma->vm_start > addr)
131 return 0;
133 if (vma->vm_flags & VM_READ)
134 prot |= PROT_READ;
135 if (vma->vm_flags & VM_WRITE)
136 prot |= PROT_WRITE;
137 if (vma->vm_flags & VM_EXEC)
138 prot |= PROT_EXEC;
139 return prot;
143 * Map a subpage by creating an anonymous page that contains the union of the old page and
144 * the subpage.
146 static unsigned long
147 mmap_subpage (struct file *file, unsigned long start, unsigned long end, int prot, int flags,
148 loff_t off)
150 void *page = NULL;
151 struct inode *inode;
152 unsigned long ret = 0;
153 struct vm_area_struct *vma = find_vma(current->mm, start);
154 int old_prot = get_page_prot(vma, start);
156 DBG("mmap_subpage(file=%p,start=0x%lx,end=0x%lx,prot=%x,flags=%x,off=0x%llx)\n",
157 file, start, end, prot, flags, off);
160 /* Optimize the case where the old mmap and the new mmap are both anonymous */
161 if ((old_prot & PROT_WRITE) && (flags & MAP_ANONYMOUS) && !vma->vm_file) {
162 if (clear_user((void __user *) start, end - start)) {
163 ret = -EFAULT;
164 goto out;
166 goto skip_mmap;
169 page = (void *) get_zeroed_page(GFP_KERNEL);
170 if (!page)
171 return -ENOMEM;
173 if (old_prot)
174 copy_from_user(page, (void __user *) PAGE_START(start), PAGE_SIZE);
176 down_write(&current->mm->mmap_sem);
178 ret = do_mmap(NULL, PAGE_START(start), PAGE_SIZE, prot | PROT_WRITE,
179 flags | MAP_FIXED | MAP_ANONYMOUS, 0);
181 up_write(&current->mm->mmap_sem);
183 if (IS_ERR((void *) ret))
184 goto out;
186 if (old_prot) {
187 /* copy back the old page contents. */
188 if (offset_in_page(start))
189 copy_to_user((void __user *) PAGE_START(start), page,
190 offset_in_page(start));
191 if (offset_in_page(end))
192 copy_to_user((void __user *) end, page + offset_in_page(end),
193 PAGE_SIZE - offset_in_page(end));
196 if (!(flags & MAP_ANONYMOUS)) {
197 /* read the file contents */
198 inode = file->f_path.dentry->d_inode;
199 if (!inode->i_fop || !file->f_op->read
200 || ((*file->f_op->read)(file, (char __user *) start, end - start, &off) < 0))
202 ret = -EINVAL;
203 goto out;
207 skip_mmap:
208 if (!(prot & PROT_WRITE))
209 ret = sys_mprotect(PAGE_START(start), PAGE_SIZE, prot | old_prot);
210 out:
211 if (page)
212 free_page((unsigned long) page);
213 return ret;
216 /* SLAB cache for ia64_partial_page structures */
217 struct kmem_cache *ia64_partial_page_cachep;
220 * init ia64_partial_page_list.
221 * return 0 means kmalloc fail.
223 struct ia64_partial_page_list*
224 ia32_init_pp_list(void)
226 struct ia64_partial_page_list *p;
228 if ((p = kmalloc(sizeof(*p), GFP_KERNEL)) == NULL)
229 return p;
230 p->pp_head = NULL;
231 p->ppl_rb = RB_ROOT;
232 p->pp_hint = NULL;
233 atomic_set(&p->pp_count, 1);
234 return p;
238 * Search for the partial page with @start in partial page list @ppl.
239 * If finds the partial page, return the found partial page.
240 * Else, return 0 and provide @pprev, @rb_link, @rb_parent to
241 * be used by later __ia32_insert_pp().
243 static struct ia64_partial_page *
244 __ia32_find_pp(struct ia64_partial_page_list *ppl, unsigned int start,
245 struct ia64_partial_page **pprev, struct rb_node ***rb_link,
246 struct rb_node **rb_parent)
248 struct ia64_partial_page *pp;
249 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
251 pp = ppl->pp_hint;
252 if (pp && pp->base == start)
253 return pp;
255 __rb_link = &ppl->ppl_rb.rb_node;
256 rb_prev = __rb_parent = NULL;
258 while (*__rb_link) {
259 __rb_parent = *__rb_link;
260 pp = rb_entry(__rb_parent, struct ia64_partial_page, pp_rb);
262 if (pp->base == start) {
263 ppl->pp_hint = pp;
264 return pp;
265 } else if (pp->base < start) {
266 rb_prev = __rb_parent;
267 __rb_link = &__rb_parent->rb_right;
268 } else {
269 __rb_link = &__rb_parent->rb_left;
273 *rb_link = __rb_link;
274 *rb_parent = __rb_parent;
275 *pprev = NULL;
276 if (rb_prev)
277 *pprev = rb_entry(rb_prev, struct ia64_partial_page, pp_rb);
278 return NULL;
282 * insert @pp into @ppl.
284 static void
285 __ia32_insert_pp(struct ia64_partial_page_list *ppl,
286 struct ia64_partial_page *pp, struct ia64_partial_page *prev,
287 struct rb_node **rb_link, struct rb_node *rb_parent)
289 /* link list */
290 if (prev) {
291 pp->next = prev->next;
292 prev->next = pp;
293 } else {
294 ppl->pp_head = pp;
295 if (rb_parent)
296 pp->next = rb_entry(rb_parent,
297 struct ia64_partial_page, pp_rb);
298 else
299 pp->next = NULL;
302 /* link rb */
303 rb_link_node(&pp->pp_rb, rb_parent, rb_link);
304 rb_insert_color(&pp->pp_rb, &ppl->ppl_rb);
306 ppl->pp_hint = pp;
310 * delete @pp from partial page list @ppl.
312 static void
313 __ia32_delete_pp(struct ia64_partial_page_list *ppl,
314 struct ia64_partial_page *pp, struct ia64_partial_page *prev)
316 if (prev) {
317 prev->next = pp->next;
318 if (ppl->pp_hint == pp)
319 ppl->pp_hint = prev;
320 } else {
321 ppl->pp_head = pp->next;
322 if (ppl->pp_hint == pp)
323 ppl->pp_hint = pp->next;
325 rb_erase(&pp->pp_rb, &ppl->ppl_rb);
326 kmem_cache_free(ia64_partial_page_cachep, pp);
329 static struct ia64_partial_page *
330 __pp_prev(struct ia64_partial_page *pp)
332 struct rb_node *prev = rb_prev(&pp->pp_rb);
333 if (prev)
334 return rb_entry(prev, struct ia64_partial_page, pp_rb);
335 else
336 return NULL;
340 * Delete partial pages with address between @start and @end.
341 * @start and @end are page aligned.
343 static void
344 __ia32_delete_pp_range(unsigned int start, unsigned int end)
346 struct ia64_partial_page *pp, *prev;
347 struct rb_node **rb_link, *rb_parent;
349 if (start >= end)
350 return;
352 pp = __ia32_find_pp(current->thread.ppl, start, &prev,
353 &rb_link, &rb_parent);
354 if (pp)
355 prev = __pp_prev(pp);
356 else {
357 if (prev)
358 pp = prev->next;
359 else
360 pp = current->thread.ppl->pp_head;
363 while (pp && pp->base < end) {
364 struct ia64_partial_page *tmp = pp->next;
365 __ia32_delete_pp(current->thread.ppl, pp, prev);
366 pp = tmp;
371 * Set the range between @start and @end in bitmap.
372 * @start and @end should be IA32 page aligned and in the same IA64 page.
374 static int
375 __ia32_set_pp(unsigned int start, unsigned int end, int flags)
377 struct ia64_partial_page *pp, *prev;
378 struct rb_node ** rb_link, *rb_parent;
379 unsigned int pstart, start_bit, end_bit, i;
381 pstart = PAGE_START(start);
382 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
383 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
384 if (end_bit == 0)
385 end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
386 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
387 &rb_link, &rb_parent);
388 if (pp) {
389 for (i = start_bit; i < end_bit; i++)
390 set_bit(i, &pp->bitmap);
392 * Check: if this partial page has been set to a full page,
393 * then delete it.
395 if (find_first_zero_bit(&pp->bitmap, sizeof(pp->bitmap)*8) >=
396 PAGE_SIZE/IA32_PAGE_SIZE) {
397 __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
399 return 0;
403 * MAP_FIXED may lead to overlapping mmap.
404 * In this case, the requested mmap area may already mmaped as a full
405 * page. So check vma before adding a new partial page.
407 if (flags & MAP_FIXED) {
408 struct vm_area_struct *vma = find_vma(current->mm, pstart);
409 if (vma && vma->vm_start <= pstart)
410 return 0;
413 /* new a ia64_partial_page */
414 pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
415 if (!pp)
416 return -ENOMEM;
417 pp->base = pstart;
418 pp->bitmap = 0;
419 for (i=start_bit; i<end_bit; i++)
420 set_bit(i, &(pp->bitmap));
421 pp->next = NULL;
422 __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
423 return 0;
427 * @start and @end should be IA32 page aligned, but don't need to be in the
428 * same IA64 page. Split @start and @end to make sure they're in the same IA64
429 * page, then call __ia32_set_pp().
431 static void
432 ia32_set_pp(unsigned int start, unsigned int end, int flags)
434 down_write(&current->mm->mmap_sem);
435 if (flags & MAP_FIXED) {
437 * MAP_FIXED may lead to overlapping mmap. When this happens,
438 * a series of complete IA64 pages results in deletion of
439 * old partial pages in that range.
441 __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
444 if (end < PAGE_ALIGN(start)) {
445 __ia32_set_pp(start, end, flags);
446 } else {
447 if (offset_in_page(start))
448 __ia32_set_pp(start, PAGE_ALIGN(start), flags);
449 if (offset_in_page(end))
450 __ia32_set_pp(PAGE_START(end), end, flags);
452 up_write(&current->mm->mmap_sem);
456 * Unset the range between @start and @end in bitmap.
457 * @start and @end should be IA32 page aligned and in the same IA64 page.
458 * After doing that, if the bitmap is 0, then free the page and return 1,
459 * else return 0;
460 * If not find the partial page in the list, then
461 * If the vma exists, then the full page is set to a partial page;
462 * Else return -ENOMEM.
464 static int
465 __ia32_unset_pp(unsigned int start, unsigned int end)
467 struct ia64_partial_page *pp, *prev;
468 struct rb_node ** rb_link, *rb_parent;
469 unsigned int pstart, start_bit, end_bit, i;
470 struct vm_area_struct *vma;
472 pstart = PAGE_START(start);
473 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
474 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
475 if (end_bit == 0)
476 end_bit = PAGE_SIZE / IA32_PAGE_SIZE;
478 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
479 &rb_link, &rb_parent);
480 if (pp) {
481 for (i = start_bit; i < end_bit; i++)
482 clear_bit(i, &pp->bitmap);
483 if (pp->bitmap == 0) {
484 __ia32_delete_pp(current->thread.ppl, pp, __pp_prev(pp));
485 return 1;
487 return 0;
490 vma = find_vma(current->mm, pstart);
491 if (!vma || vma->vm_start > pstart) {
492 return -ENOMEM;
495 /* new a ia64_partial_page */
496 pp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
497 if (!pp)
498 return -ENOMEM;
499 pp->base = pstart;
500 pp->bitmap = 0;
501 for (i = 0; i < start_bit; i++)
502 set_bit(i, &(pp->bitmap));
503 for (i = end_bit; i < PAGE_SIZE / IA32_PAGE_SIZE; i++)
504 set_bit(i, &(pp->bitmap));
505 pp->next = NULL;
506 __ia32_insert_pp(current->thread.ppl, pp, prev, rb_link, rb_parent);
507 return 0;
511 * Delete pp between PAGE_ALIGN(start) and PAGE_START(end) by calling
512 * __ia32_delete_pp_range(). Unset possible partial pages by calling
513 * __ia32_unset_pp().
514 * The returned value see __ia32_unset_pp().
516 static int
517 ia32_unset_pp(unsigned int *startp, unsigned int *endp)
519 unsigned int start = *startp, end = *endp;
520 int ret = 0;
522 down_write(&current->mm->mmap_sem);
524 __ia32_delete_pp_range(PAGE_ALIGN(start), PAGE_START(end));
526 if (end < PAGE_ALIGN(start)) {
527 ret = __ia32_unset_pp(start, end);
528 if (ret == 1) {
529 *startp = PAGE_START(start);
530 *endp = PAGE_ALIGN(end);
532 if (ret == 0) {
533 /* to shortcut sys_munmap() in sys32_munmap() */
534 *startp = PAGE_START(start);
535 *endp = PAGE_START(end);
537 } else {
538 if (offset_in_page(start)) {
539 ret = __ia32_unset_pp(start, PAGE_ALIGN(start));
540 if (ret == 1)
541 *startp = PAGE_START(start);
542 if (ret == 0)
543 *startp = PAGE_ALIGN(start);
544 if (ret < 0)
545 goto out;
547 if (offset_in_page(end)) {
548 ret = __ia32_unset_pp(PAGE_START(end), end);
549 if (ret == 1)
550 *endp = PAGE_ALIGN(end);
551 if (ret == 0)
552 *endp = PAGE_START(end);
556 out:
557 up_write(&current->mm->mmap_sem);
558 return ret;
562 * Compare the range between @start and @end with bitmap in partial page.
563 * @start and @end should be IA32 page aligned and in the same IA64 page.
565 static int
566 __ia32_compare_pp(unsigned int start, unsigned int end)
568 struct ia64_partial_page *pp, *prev;
569 struct rb_node ** rb_link, *rb_parent;
570 unsigned int pstart, start_bit, end_bit, size;
571 unsigned int first_bit, next_zero_bit; /* the first range in bitmap */
573 pstart = PAGE_START(start);
575 pp = __ia32_find_pp(current->thread.ppl, pstart, &prev,
576 &rb_link, &rb_parent);
577 if (!pp)
578 return 1;
580 start_bit = (start % PAGE_SIZE) / IA32_PAGE_SIZE;
581 end_bit = (end % PAGE_SIZE) / IA32_PAGE_SIZE;
582 size = sizeof(pp->bitmap) * 8;
583 first_bit = find_first_bit(&pp->bitmap, size);
584 next_zero_bit = find_next_zero_bit(&pp->bitmap, size, first_bit);
585 if ((start_bit < first_bit) || (end_bit > next_zero_bit)) {
586 /* exceeds the first range in bitmap */
587 return -ENOMEM;
588 } else if ((start_bit == first_bit) && (end_bit == next_zero_bit)) {
589 first_bit = find_next_bit(&pp->bitmap, size, next_zero_bit);
590 if ((next_zero_bit < first_bit) && (first_bit < size))
591 return 1; /* has next range */
592 else
593 return 0; /* no next range */
594 } else
595 return 1;
599 * @start and @end should be IA32 page aligned, but don't need to be in the
600 * same IA64 page. Split @start and @end to make sure they're in the same IA64
601 * page, then call __ia32_compare_pp().
603 * Take this as example: the range is the 1st and 2nd 4K page.
604 * Return 0 if they fit bitmap exactly, i.e. bitmap = 00000011;
605 * Return 1 if the range doesn't cover whole bitmap, e.g. bitmap = 00001111;
606 * Return -ENOMEM if the range exceeds the bitmap, e.g. bitmap = 00000001 or
607 * bitmap = 00000101.
609 static int
610 ia32_compare_pp(unsigned int *startp, unsigned int *endp)
612 unsigned int start = *startp, end = *endp;
613 int retval = 0;
615 down_write(&current->mm->mmap_sem);
617 if (end < PAGE_ALIGN(start)) {
618 retval = __ia32_compare_pp(start, end);
619 if (retval == 0) {
620 *startp = PAGE_START(start);
621 *endp = PAGE_ALIGN(end);
623 } else {
624 if (offset_in_page(start)) {
625 retval = __ia32_compare_pp(start,
626 PAGE_ALIGN(start));
627 if (retval == 0)
628 *startp = PAGE_START(start);
629 if (retval < 0)
630 goto out;
632 if (offset_in_page(end)) {
633 retval = __ia32_compare_pp(PAGE_START(end), end);
634 if (retval == 0)
635 *endp = PAGE_ALIGN(end);
639 out:
640 up_write(&current->mm->mmap_sem);
641 return retval;
644 static void
645 __ia32_drop_pp_list(struct ia64_partial_page_list *ppl)
647 struct ia64_partial_page *pp = ppl->pp_head;
649 while (pp) {
650 struct ia64_partial_page *next = pp->next;
651 kmem_cache_free(ia64_partial_page_cachep, pp);
652 pp = next;
655 kfree(ppl);
658 void
659 ia32_drop_ia64_partial_page_list(struct task_struct *task)
661 struct ia64_partial_page_list* ppl = task->thread.ppl;
663 if (ppl && atomic_dec_and_test(&ppl->pp_count))
664 __ia32_drop_pp_list(ppl);
668 * Copy current->thread.ppl to ppl (already initialized).
670 static int
671 __ia32_copy_pp_list(struct ia64_partial_page_list *ppl)
673 struct ia64_partial_page *pp, *tmp, *prev;
674 struct rb_node **rb_link, *rb_parent;
676 ppl->pp_head = NULL;
677 ppl->pp_hint = NULL;
678 ppl->ppl_rb = RB_ROOT;
679 rb_link = &ppl->ppl_rb.rb_node;
680 rb_parent = NULL;
681 prev = NULL;
683 for (pp = current->thread.ppl->pp_head; pp; pp = pp->next) {
684 tmp = kmem_cache_alloc(ia64_partial_page_cachep, GFP_KERNEL);
685 if (!tmp)
686 return -ENOMEM;
687 *tmp = *pp;
688 __ia32_insert_pp(ppl, tmp, prev, rb_link, rb_parent);
689 prev = tmp;
690 rb_link = &tmp->pp_rb.rb_right;
691 rb_parent = &tmp->pp_rb;
693 return 0;
697 ia32_copy_ia64_partial_page_list(struct task_struct *p,
698 unsigned long clone_flags)
700 int retval = 0;
702 if (clone_flags & CLONE_VM) {
703 atomic_inc(&current->thread.ppl->pp_count);
704 p->thread.ppl = current->thread.ppl;
705 } else {
706 p->thread.ppl = ia32_init_pp_list();
707 if (!p->thread.ppl)
708 return -ENOMEM;
709 down_write(&current->mm->mmap_sem);
711 retval = __ia32_copy_pp_list(p->thread.ppl);
713 up_write(&current->mm->mmap_sem);
716 return retval;
719 static unsigned long
720 emulate_mmap (struct file *file, unsigned long start, unsigned long len, int prot, int flags,
721 loff_t off)
723 unsigned long tmp, end, pend, pstart, ret, is_congruent, fudge = 0;
724 struct inode *inode;
725 loff_t poff;
727 end = start + len;
728 pstart = PAGE_START(start);
729 pend = PAGE_ALIGN(end);
731 if (flags & MAP_FIXED) {
732 ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
733 if (start > pstart) {
734 if (flags & MAP_SHARED)
735 printk(KERN_INFO
736 "%s(%d): emulate_mmap() can't share head (addr=0x%lx)\n",
737 current->comm, task_pid_nr(current), start);
738 ret = mmap_subpage(file, start, min(PAGE_ALIGN(start), end), prot, flags,
739 off);
740 if (IS_ERR((void *) ret))
741 return ret;
742 pstart += PAGE_SIZE;
743 if (pstart >= pend)
744 goto out; /* done */
746 if (end < pend) {
747 if (flags & MAP_SHARED)
748 printk(KERN_INFO
749 "%s(%d): emulate_mmap() can't share tail (end=0x%lx)\n",
750 current->comm, task_pid_nr(current), end);
751 ret = mmap_subpage(file, max(start, PAGE_START(end)), end, prot, flags,
752 (off + len) - offset_in_page(end));
753 if (IS_ERR((void *) ret))
754 return ret;
755 pend -= PAGE_SIZE;
756 if (pstart >= pend)
757 goto out; /* done */
759 } else {
761 * If a start address was specified, use it if the entire rounded out area
762 * is available.
764 if (start && !pstart)
765 fudge = 1; /* handle case of mapping to range (0,PAGE_SIZE) */
766 tmp = arch_get_unmapped_area(file, pstart - fudge, pend - pstart, 0, flags);
767 if (tmp != pstart) {
768 pstart = tmp;
769 start = pstart + offset_in_page(off); /* make start congruent with off */
770 end = start + len;
771 pend = PAGE_ALIGN(end);
775 poff = off + (pstart - start); /* note: (pstart - start) may be negative */
776 is_congruent = (flags & MAP_ANONYMOUS) || (offset_in_page(poff) == 0);
778 if ((flags & MAP_SHARED) && !is_congruent)
779 printk(KERN_INFO "%s(%d): emulate_mmap() can't share contents of incongruent mmap "
780 "(addr=0x%lx,off=0x%llx)\n", current->comm, task_pid_nr(current), start, off);
782 DBG("mmap_body: mapping [0x%lx-0x%lx) %s with poff 0x%llx\n", pstart, pend,
783 is_congruent ? "congruent" : "not congruent", poff);
785 down_write(&current->mm->mmap_sem);
787 if (!(flags & MAP_ANONYMOUS) && is_congruent)
788 ret = do_mmap(file, pstart, pend - pstart, prot, flags | MAP_FIXED, poff);
789 else
790 ret = do_mmap(NULL, pstart, pend - pstart,
791 prot | ((flags & MAP_ANONYMOUS) ? 0 : PROT_WRITE),
792 flags | MAP_FIXED | MAP_ANONYMOUS, 0);
794 up_write(&current->mm->mmap_sem);
796 if (IS_ERR((void *) ret))
797 return ret;
799 if (!is_congruent) {
800 /* read the file contents */
801 inode = file->f_path.dentry->d_inode;
802 if (!inode->i_fop || !file->f_op->read
803 || ((*file->f_op->read)(file, (char __user *) pstart, pend - pstart, &poff)
804 < 0))
806 sys_munmap(pstart, pend - pstart);
807 return -EINVAL;
809 if (!(prot & PROT_WRITE) && sys_mprotect(pstart, pend - pstart, prot) < 0)
810 return -EINVAL;
813 if (!(flags & MAP_FIXED))
814 ia32_set_pp((unsigned int)start, (unsigned int)end, flags);
815 out:
816 return start;
819 #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
821 static inline unsigned int
822 get_prot32 (unsigned int prot)
824 if (prot & PROT_WRITE)
825 /* on x86, PROT_WRITE implies PROT_READ which implies PROT_EEC */
826 prot |= PROT_READ | PROT_WRITE | PROT_EXEC;
827 else if (prot & (PROT_READ | PROT_EXEC))
828 /* on x86, there is no distinction between PROT_READ and PROT_EXEC */
829 prot |= (PROT_READ | PROT_EXEC);
831 return prot;
834 unsigned long
835 ia32_do_mmap (struct file *file, unsigned long addr, unsigned long len, int prot, int flags,
836 loff_t offset)
838 DBG("ia32_do_mmap(file=%p,addr=0x%lx,len=0x%lx,prot=%x,flags=%x,offset=0x%llx)\n",
839 file, addr, len, prot, flags, offset);
841 if (file && (!file->f_op || !file->f_op->mmap))
842 return -ENODEV;
844 len = IA32_PAGE_ALIGN(len);
845 if (len == 0)
846 return addr;
848 if (len > IA32_PAGE_OFFSET || addr > IA32_PAGE_OFFSET - len)
850 if (flags & MAP_FIXED)
851 return -ENOMEM;
852 else
853 return -EINVAL;
856 if (OFFSET4K(offset))
857 return -EINVAL;
859 prot = get_prot32(prot);
861 #if PAGE_SHIFT > IA32_PAGE_SHIFT
862 mutex_lock(&ia32_mmap_mutex);
864 addr = emulate_mmap(file, addr, len, prot, flags, offset);
866 mutex_unlock(&ia32_mmap_mutex);
867 #else
868 down_write(&current->mm->mmap_sem);
870 addr = do_mmap(file, addr, len, prot, flags, offset);
872 up_write(&current->mm->mmap_sem);
873 #endif
874 DBG("ia32_do_mmap: returning 0x%lx\n", addr);
875 return addr;
879 * Linux/i386 didn't use to be able to handle more than 4 system call parameters, so these
880 * system calls used a memory block for parameter passing..
883 struct mmap_arg_struct {
884 unsigned int addr;
885 unsigned int len;
886 unsigned int prot;
887 unsigned int flags;
888 unsigned int fd;
889 unsigned int offset;
892 asmlinkage long
893 sys32_mmap (struct mmap_arg_struct __user *arg)
895 struct mmap_arg_struct a;
896 struct file *file = NULL;
897 unsigned long addr;
898 int flags;
900 if (copy_from_user(&a, arg, sizeof(a)))
901 return -EFAULT;
903 if (OFFSET4K(a.offset))
904 return -EINVAL;
906 flags = a.flags;
908 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
909 if (!(flags & MAP_ANONYMOUS)) {
910 file = fget(a.fd);
911 if (!file)
912 return -EBADF;
915 addr = ia32_do_mmap(file, a.addr, a.len, a.prot, flags, a.offset);
917 if (file)
918 fput(file);
919 return addr;
922 asmlinkage long
923 sys32_mmap2 (unsigned int addr, unsigned int len, unsigned int prot, unsigned int flags,
924 unsigned int fd, unsigned int pgoff)
926 struct file *file = NULL;
927 unsigned long retval;
929 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
930 if (!(flags & MAP_ANONYMOUS)) {
931 file = fget(fd);
932 if (!file)
933 return -EBADF;
936 retval = ia32_do_mmap(file, addr, len, prot, flags,
937 (unsigned long) pgoff << IA32_PAGE_SHIFT);
939 if (file)
940 fput(file);
941 return retval;
944 asmlinkage long
945 sys32_munmap (unsigned int start, unsigned int len)
947 unsigned int end = start + len;
948 long ret;
950 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
951 ret = sys_munmap(start, end - start);
952 #else
953 if (OFFSET4K(start))
954 return -EINVAL;
956 end = IA32_PAGE_ALIGN(end);
957 if (start >= end)
958 return -EINVAL;
960 ret = ia32_unset_pp(&start, &end);
961 if (ret < 0)
962 return ret;
964 if (start >= end)
965 return 0;
967 mutex_lock(&ia32_mmap_mutex);
968 ret = sys_munmap(start, end - start);
969 mutex_unlock(&ia32_mmap_mutex);
970 #endif
971 return ret;
974 #if PAGE_SHIFT > IA32_PAGE_SHIFT
977 * When mprotect()ing a partial page, we set the permission to the union of the old
978 * settings and the new settings. In other words, it's only possible to make access to a
979 * partial page less restrictive.
981 static long
982 mprotect_subpage (unsigned long address, int new_prot)
984 int old_prot;
985 struct vm_area_struct *vma;
987 if (new_prot == PROT_NONE)
988 return 0; /* optimize case where nothing changes... */
989 vma = find_vma(current->mm, address);
990 old_prot = get_page_prot(vma, address);
991 return sys_mprotect(address, PAGE_SIZE, new_prot | old_prot);
994 #endif /* PAGE_SHIFT > IA32_PAGE_SHIFT */
996 asmlinkage long
997 sys32_mprotect (unsigned int start, unsigned int len, int prot)
999 unsigned int end = start + len;
1000 #if PAGE_SHIFT > IA32_PAGE_SHIFT
1001 long retval = 0;
1002 #endif
1004 prot = get_prot32(prot);
1006 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
1007 return sys_mprotect(start, end - start, prot);
1008 #else
1009 if (OFFSET4K(start))
1010 return -EINVAL;
1012 end = IA32_PAGE_ALIGN(end);
1013 if (end < start)
1014 return -EINVAL;
1016 retval = ia32_compare_pp(&start, &end);
1018 if (retval < 0)
1019 return retval;
1021 mutex_lock(&ia32_mmap_mutex);
1023 if (offset_in_page(start)) {
1024 /* start address is 4KB aligned but not page aligned. */
1025 retval = mprotect_subpage(PAGE_START(start), prot);
1026 if (retval < 0)
1027 goto out;
1029 start = PAGE_ALIGN(start);
1030 if (start >= end)
1031 goto out; /* retval is already zero... */
1034 if (offset_in_page(end)) {
1035 /* end address is 4KB aligned but not page aligned. */
1036 retval = mprotect_subpage(PAGE_START(end), prot);
1037 if (retval < 0)
1038 goto out;
1040 end = PAGE_START(end);
1042 retval = sys_mprotect(start, end - start, prot);
1044 out:
1045 mutex_unlock(&ia32_mmap_mutex);
1046 return retval;
1047 #endif
1050 asmlinkage long
1051 sys32_mremap (unsigned int addr, unsigned int old_len, unsigned int new_len,
1052 unsigned int flags, unsigned int new_addr)
1054 long ret;
1056 #if PAGE_SHIFT <= IA32_PAGE_SHIFT
1057 ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
1058 #else
1059 unsigned int old_end, new_end;
1061 if (OFFSET4K(addr))
1062 return -EINVAL;
1064 old_len = IA32_PAGE_ALIGN(old_len);
1065 new_len = IA32_PAGE_ALIGN(new_len);
1066 old_end = addr + old_len;
1067 new_end = addr + new_len;
1069 if (!new_len)
1070 return -EINVAL;
1072 if ((flags & MREMAP_FIXED) && (OFFSET4K(new_addr)))
1073 return -EINVAL;
1075 if (old_len >= new_len) {
1076 ret = sys32_munmap(addr + new_len, old_len - new_len);
1077 if (ret && old_len != new_len)
1078 return ret;
1079 ret = addr;
1080 if (!(flags & MREMAP_FIXED) || (new_addr == addr))
1081 return ret;
1082 old_len = new_len;
1085 addr = PAGE_START(addr);
1086 old_len = PAGE_ALIGN(old_end) - addr;
1087 new_len = PAGE_ALIGN(new_end) - addr;
1089 mutex_lock(&ia32_mmap_mutex);
1090 ret = sys_mremap(addr, old_len, new_len, flags, new_addr);
1091 mutex_unlock(&ia32_mmap_mutex);
1093 if ((ret >= 0) && (old_len < new_len)) {
1094 /* mremap expanded successfully */
1095 ia32_set_pp(old_end, new_end, flags);
1097 #endif
1098 return ret;
1101 asmlinkage unsigned long
1102 sys32_alarm (unsigned int seconds)
1104 return alarm_setitimer(seconds);
1107 struct sel_arg_struct {
1108 unsigned int n;
1109 unsigned int inp;
1110 unsigned int outp;
1111 unsigned int exp;
1112 unsigned int tvp;
1115 asmlinkage long
1116 sys32_old_select (struct sel_arg_struct __user *arg)
1118 struct sel_arg_struct a;
1120 if (copy_from_user(&a, arg, sizeof(a)))
1121 return -EFAULT;
1122 return compat_sys_select(a.n, compat_ptr(a.inp), compat_ptr(a.outp),
1123 compat_ptr(a.exp), compat_ptr(a.tvp));
1126 #define SEMOP 1
1127 #define SEMGET 2
1128 #define SEMCTL 3
1129 #define SEMTIMEDOP 4
1130 #define MSGSND 11
1131 #define MSGRCV 12
1132 #define MSGGET 13
1133 #define MSGCTL 14
1134 #define SHMAT 21
1135 #define SHMDT 22
1136 #define SHMGET 23
1137 #define SHMCTL 24
1139 asmlinkage long
1140 sys32_ipc(u32 call, int first, int second, int third, u32 ptr, u32 fifth)
1142 int version;
1144 version = call >> 16; /* hack for backward compatibility */
1145 call &= 0xffff;
1147 switch (call) {
1148 case SEMTIMEDOP:
1149 if (fifth)
1150 return compat_sys_semtimedop(first, compat_ptr(ptr),
1151 second, compat_ptr(fifth));
1152 /* else fall through for normal semop() */
1153 case SEMOP:
1154 /* struct sembuf is the same on 32 and 64bit :)) */
1155 return sys_semtimedop(first, compat_ptr(ptr), second,
1156 NULL);
1157 case SEMGET:
1158 return sys_semget(first, second, third);
1159 case SEMCTL:
1160 return compat_sys_semctl(first, second, third, compat_ptr(ptr));
1162 case MSGSND:
1163 return compat_sys_msgsnd(first, second, third, compat_ptr(ptr));
1164 case MSGRCV:
1165 return compat_sys_msgrcv(first, second, fifth, third, version, compat_ptr(ptr));
1166 case MSGGET:
1167 return sys_msgget((key_t) first, second);
1168 case MSGCTL:
1169 return compat_sys_msgctl(first, second, compat_ptr(ptr));
1171 case SHMAT:
1172 return compat_sys_shmat(first, second, third, version, compat_ptr(ptr));
1173 break;
1174 case SHMDT:
1175 return sys_shmdt(compat_ptr(ptr));
1176 case SHMGET:
1177 return sys_shmget(first, (unsigned)second, third);
1178 case SHMCTL:
1179 return compat_sys_shmctl(first, second, compat_ptr(ptr));
1181 default:
1182 return -ENOSYS;
1184 return -EINVAL;
1187 asmlinkage long
1188 compat_sys_wait4 (compat_pid_t pid, compat_uint_t * stat_addr, int options,
1189 struct compat_rusage *ru);
1191 asmlinkage long
1192 sys32_waitpid (int pid, unsigned int *stat_addr, int options)
1194 return compat_sys_wait4(pid, stat_addr, options, NULL);
1198 * The order in which registers are stored in the ptrace regs structure
1200 #define PT_EBX 0
1201 #define PT_ECX 1
1202 #define PT_EDX 2
1203 #define PT_ESI 3
1204 #define PT_EDI 4
1205 #define PT_EBP 5
1206 #define PT_EAX 6
1207 #define PT_DS 7
1208 #define PT_ES 8
1209 #define PT_FS 9
1210 #define PT_GS 10
1211 #define PT_ORIG_EAX 11
1212 #define PT_EIP 12
1213 #define PT_CS 13
1214 #define PT_EFL 14
1215 #define PT_UESP 15
1216 #define PT_SS 16
1218 static unsigned int
1219 getreg (struct task_struct *child, int regno)
1221 struct pt_regs *child_regs;
1223 child_regs = task_pt_regs(child);
1224 switch (regno / sizeof(int)) {
1225 case PT_EBX: return child_regs->r11;
1226 case PT_ECX: return child_regs->r9;
1227 case PT_EDX: return child_regs->r10;
1228 case PT_ESI: return child_regs->r14;
1229 case PT_EDI: return child_regs->r15;
1230 case PT_EBP: return child_regs->r13;
1231 case PT_EAX: return child_regs->r8;
1232 case PT_ORIG_EAX: return child_regs->r1; /* see dispatch_to_ia32_handler() */
1233 case PT_EIP: return child_regs->cr_iip;
1234 case PT_UESP: return child_regs->r12;
1235 case PT_EFL: return child->thread.eflag;
1236 case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
1237 return __USER_DS;
1238 case PT_CS: return __USER_CS;
1239 default:
1240 printk(KERN_ERR "ia32.getreg(): unknown register %d\n", regno);
1241 break;
1243 return 0;
1246 static void
1247 putreg (struct task_struct *child, int regno, unsigned int value)
1249 struct pt_regs *child_regs;
1251 child_regs = task_pt_regs(child);
1252 switch (regno / sizeof(int)) {
1253 case PT_EBX: child_regs->r11 = value; break;
1254 case PT_ECX: child_regs->r9 = value; break;
1255 case PT_EDX: child_regs->r10 = value; break;
1256 case PT_ESI: child_regs->r14 = value; break;
1257 case PT_EDI: child_regs->r15 = value; break;
1258 case PT_EBP: child_regs->r13 = value; break;
1259 case PT_EAX: child_regs->r8 = value; break;
1260 case PT_ORIG_EAX: child_regs->r1 = value; break;
1261 case PT_EIP: child_regs->cr_iip = value; break;
1262 case PT_UESP: child_regs->r12 = value; break;
1263 case PT_EFL: child->thread.eflag = value; break;
1264 case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS:
1265 if (value != __USER_DS)
1266 printk(KERN_ERR
1267 "ia32.putreg: attempt to set invalid segment register %d = %x\n",
1268 regno, value);
1269 break;
1270 case PT_CS:
1271 if (value != __USER_CS)
1272 printk(KERN_ERR
1273 "ia32.putreg: attempt to to set invalid segment register %d = %x\n",
1274 regno, value);
1275 break;
1276 default:
1277 printk(KERN_ERR "ia32.putreg: unknown register %d\n", regno);
1278 break;
1282 static void
1283 put_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
1284 struct switch_stack *swp, int tos)
1286 struct _fpreg_ia32 *f;
1287 char buf[32];
1289 f = (struct _fpreg_ia32 *)(((unsigned long)buf + 15) & ~15);
1290 if ((regno += tos) >= 8)
1291 regno -= 8;
1292 switch (regno) {
1293 case 0:
1294 ia64f2ia32f(f, &ptp->f8);
1295 break;
1296 case 1:
1297 ia64f2ia32f(f, &ptp->f9);
1298 break;
1299 case 2:
1300 ia64f2ia32f(f, &ptp->f10);
1301 break;
1302 case 3:
1303 ia64f2ia32f(f, &ptp->f11);
1304 break;
1305 case 4:
1306 case 5:
1307 case 6:
1308 case 7:
1309 ia64f2ia32f(f, &swp->f12 + (regno - 4));
1310 break;
1312 copy_to_user(reg, f, sizeof(*reg));
1315 static void
1316 get_fpreg (int regno, struct _fpreg_ia32 __user *reg, struct pt_regs *ptp,
1317 struct switch_stack *swp, int tos)
1320 if ((regno += tos) >= 8)
1321 regno -= 8;
1322 switch (regno) {
1323 case 0:
1324 copy_from_user(&ptp->f8, reg, sizeof(*reg));
1325 break;
1326 case 1:
1327 copy_from_user(&ptp->f9, reg, sizeof(*reg));
1328 break;
1329 case 2:
1330 copy_from_user(&ptp->f10, reg, sizeof(*reg));
1331 break;
1332 case 3:
1333 copy_from_user(&ptp->f11, reg, sizeof(*reg));
1334 break;
1335 case 4:
1336 case 5:
1337 case 6:
1338 case 7:
1339 copy_from_user(&swp->f12 + (regno - 4), reg, sizeof(*reg));
1340 break;
1342 return;
1346 save_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
1348 struct switch_stack *swp;
1349 struct pt_regs *ptp;
1350 int i, tos;
1352 if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
1353 return -EFAULT;
1355 __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
1356 __put_user(tsk->thread.fsr & 0xffff, &save->swd);
1357 __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
1358 __put_user(tsk->thread.fir, &save->fip);
1359 __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
1360 __put_user(tsk->thread.fdr, &save->foo);
1361 __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
1364 * Stack frames start with 16-bytes of temp space
1366 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1367 ptp = task_pt_regs(tsk);
1368 tos = (tsk->thread.fsr >> 11) & 7;
1369 for (i = 0; i < 8; i++)
1370 put_fpreg(i, &save->st_space[i], ptp, swp, tos);
1371 return 0;
1374 static int
1375 restore_ia32_fpstate (struct task_struct *tsk, struct ia32_user_i387_struct __user *save)
1377 struct switch_stack *swp;
1378 struct pt_regs *ptp;
1379 int i, tos;
1380 unsigned int fsrlo, fsrhi, num32;
1382 if (!access_ok(VERIFY_READ, save, sizeof(*save)))
1383 return(-EFAULT);
1385 __get_user(num32, (unsigned int __user *)&save->cwd);
1386 tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
1387 __get_user(fsrlo, (unsigned int __user *)&save->swd);
1388 __get_user(fsrhi, (unsigned int __user *)&save->twd);
1389 num32 = (fsrhi << 16) | fsrlo;
1390 tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
1391 __get_user(num32, (unsigned int __user *)&save->fip);
1392 tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
1393 __get_user(num32, (unsigned int __user *)&save->foo);
1394 tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
1397 * Stack frames start with 16-bytes of temp space
1399 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1400 ptp = task_pt_regs(tsk);
1401 tos = (tsk->thread.fsr >> 11) & 7;
1402 for (i = 0; i < 8; i++)
1403 get_fpreg(i, &save->st_space[i], ptp, swp, tos);
1404 return 0;
1408 save_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
1410 struct switch_stack *swp;
1411 struct pt_regs *ptp;
1412 int i, tos;
1413 unsigned long mxcsr=0;
1414 unsigned long num128[2];
1416 if (!access_ok(VERIFY_WRITE, save, sizeof(*save)))
1417 return -EFAULT;
1419 __put_user(tsk->thread.fcr & 0xffff, &save->cwd);
1420 __put_user(tsk->thread.fsr & 0xffff, &save->swd);
1421 __put_user((tsk->thread.fsr>>16) & 0xffff, &save->twd);
1422 __put_user(tsk->thread.fir, &save->fip);
1423 __put_user((tsk->thread.fir>>32) & 0xffff, &save->fcs);
1424 __put_user(tsk->thread.fdr, &save->foo);
1425 __put_user((tsk->thread.fdr>>32) & 0xffff, &save->fos);
1428 * Stack frames start with 16-bytes of temp space
1430 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1431 ptp = task_pt_regs(tsk);
1432 tos = (tsk->thread.fsr >> 11) & 7;
1433 for (i = 0; i < 8; i++)
1434 put_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
1436 mxcsr = ((tsk->thread.fcr>>32) & 0xff80) | ((tsk->thread.fsr>>32) & 0x3f);
1437 __put_user(mxcsr & 0xffff, &save->mxcsr);
1438 for (i = 0; i < 8; i++) {
1439 memcpy(&(num128[0]), &(swp->f16) + i*2, sizeof(unsigned long));
1440 memcpy(&(num128[1]), &(swp->f17) + i*2, sizeof(unsigned long));
1441 copy_to_user(&save->xmm_space[0] + 4*i, num128, sizeof(struct _xmmreg_ia32));
1443 return 0;
1446 static int
1447 restore_ia32_fpxstate (struct task_struct *tsk, struct ia32_user_fxsr_struct __user *save)
1449 struct switch_stack *swp;
1450 struct pt_regs *ptp;
1451 int i, tos;
1452 unsigned int fsrlo, fsrhi, num32;
1453 int mxcsr;
1454 unsigned long num64;
1455 unsigned long num128[2];
1457 if (!access_ok(VERIFY_READ, save, sizeof(*save)))
1458 return(-EFAULT);
1460 __get_user(num32, (unsigned int __user *)&save->cwd);
1461 tsk->thread.fcr = (tsk->thread.fcr & (~0x1f3f)) | (num32 & 0x1f3f);
1462 __get_user(fsrlo, (unsigned int __user *)&save->swd);
1463 __get_user(fsrhi, (unsigned int __user *)&save->twd);
1464 num32 = (fsrhi << 16) | fsrlo;
1465 tsk->thread.fsr = (tsk->thread.fsr & (~0xffffffff)) | num32;
1466 __get_user(num32, (unsigned int __user *)&save->fip);
1467 tsk->thread.fir = (tsk->thread.fir & (~0xffffffff)) | num32;
1468 __get_user(num32, (unsigned int __user *)&save->foo);
1469 tsk->thread.fdr = (tsk->thread.fdr & (~0xffffffff)) | num32;
1472 * Stack frames start with 16-bytes of temp space
1474 swp = (struct switch_stack *)(tsk->thread.ksp + 16);
1475 ptp = task_pt_regs(tsk);
1476 tos = (tsk->thread.fsr >> 11) & 7;
1477 for (i = 0; i < 8; i++)
1478 get_fpreg(i, (struct _fpreg_ia32 __user *)&save->st_space[4*i], ptp, swp, tos);
1480 __get_user(mxcsr, (unsigned int __user *)&save->mxcsr);
1481 num64 = mxcsr & 0xff10;
1482 tsk->thread.fcr = (tsk->thread.fcr & (~0xff1000000000UL)) | (num64<<32);
1483 num64 = mxcsr & 0x3f;
1484 tsk->thread.fsr = (tsk->thread.fsr & (~0x3f00000000UL)) | (num64<<32);
1486 for (i = 0; i < 8; i++) {
1487 copy_from_user(num128, &save->xmm_space[0] + 4*i, sizeof(struct _xmmreg_ia32));
1488 memcpy(&(swp->f16) + i*2, &(num128[0]), sizeof(unsigned long));
1489 memcpy(&(swp->f17) + i*2, &(num128[1]), sizeof(unsigned long));
1491 return 0;
1494 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1495 compat_ulong_t caddr, compat_ulong_t cdata)
1497 unsigned long addr = caddr;
1498 unsigned long data = cdata;
1499 unsigned int tmp;
1500 long i, ret;
1502 switch (request) {
1503 case PTRACE_PEEKUSR: /* read word at addr in USER area */
1504 ret = -EIO;
1505 if ((addr & 3) || addr > 17*sizeof(int))
1506 break;
1508 tmp = getreg(child, addr);
1509 if (!put_user(tmp, (unsigned int __user *) compat_ptr(data)))
1510 ret = 0;
1511 break;
1513 case PTRACE_POKEUSR: /* write word at addr in USER area */
1514 ret = -EIO;
1515 if ((addr & 3) || addr > 17*sizeof(int))
1516 break;
1518 putreg(child, addr, data);
1519 ret = 0;
1520 break;
1522 case IA32_PTRACE_GETREGS:
1523 if (!access_ok(VERIFY_WRITE, compat_ptr(data), 17*sizeof(int))) {
1524 ret = -EIO;
1525 break;
1527 for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
1528 put_user(getreg(child, i), (unsigned int __user *) compat_ptr(data));
1529 data += sizeof(int);
1531 ret = 0;
1532 break;
1534 case IA32_PTRACE_SETREGS:
1535 if (!access_ok(VERIFY_READ, compat_ptr(data), 17*sizeof(int))) {
1536 ret = -EIO;
1537 break;
1539 for (i = 0; i < (int) (17*sizeof(int)); i += sizeof(int) ) {
1540 get_user(tmp, (unsigned int __user *) compat_ptr(data));
1541 putreg(child, i, tmp);
1542 data += sizeof(int);
1544 ret = 0;
1545 break;
1547 case IA32_PTRACE_GETFPREGS:
1548 ret = save_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
1549 compat_ptr(data));
1550 break;
1552 case IA32_PTRACE_GETFPXREGS:
1553 ret = save_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
1554 compat_ptr(data));
1555 break;
1557 case IA32_PTRACE_SETFPREGS:
1558 ret = restore_ia32_fpstate(child, (struct ia32_user_i387_struct __user *)
1559 compat_ptr(data));
1560 break;
1562 case IA32_PTRACE_SETFPXREGS:
1563 ret = restore_ia32_fpxstate(child, (struct ia32_user_fxsr_struct __user *)
1564 compat_ptr(data));
1565 break;
1567 default:
1568 return compat_ptrace_request(child, request, caddr, cdata);
1570 return ret;
1573 typedef struct {
1574 unsigned int ss_sp;
1575 unsigned int ss_flags;
1576 unsigned int ss_size;
1577 } ia32_stack_t;
1579 asmlinkage long
1580 sys32_sigaltstack (ia32_stack_t __user *uss32, ia32_stack_t __user *uoss32,
1581 long arg2, long arg3, long arg4, long arg5, long arg6,
1582 long arg7, struct pt_regs pt)
1584 stack_t uss, uoss;
1585 ia32_stack_t buf32;
1586 int ret;
1587 mm_segment_t old_fs = get_fs();
1589 if (uss32) {
1590 if (copy_from_user(&buf32, uss32, sizeof(ia32_stack_t)))
1591 return -EFAULT;
1592 uss.ss_sp = (void __user *) (long) buf32.ss_sp;
1593 uss.ss_flags = buf32.ss_flags;
1594 /* MINSIGSTKSZ is different for ia32 vs ia64. We lie here to pass the
1595 check and set it to the user requested value later */
1596 if ((buf32.ss_flags != SS_DISABLE) && (buf32.ss_size < MINSIGSTKSZ_IA32)) {
1597 ret = -ENOMEM;
1598 goto out;
1600 uss.ss_size = MINSIGSTKSZ;
1602 set_fs(KERNEL_DS);
1603 ret = do_sigaltstack(uss32 ? (stack_t __user *) &uss : NULL,
1604 (stack_t __user *) &uoss, pt.r12);
1605 current->sas_ss_size = buf32.ss_size;
1606 set_fs(old_fs);
1607 out:
1608 if (ret < 0)
1609 return(ret);
1610 if (uoss32) {
1611 buf32.ss_sp = (long __user) uoss.ss_sp;
1612 buf32.ss_flags = uoss.ss_flags;
1613 buf32.ss_size = uoss.ss_size;
1614 if (copy_to_user(uoss32, &buf32, sizeof(ia32_stack_t)))
1615 return -EFAULT;
1617 return ret;
1620 asmlinkage int
1621 sys32_msync (unsigned int start, unsigned int len, int flags)
1623 unsigned int addr;
1625 if (OFFSET4K(start))
1626 return -EINVAL;
1627 addr = PAGE_START(start);
1628 return sys_msync(addr, len + (start - addr), flags);
1631 struct sysctl32 {
1632 unsigned int name;
1633 int nlen;
1634 unsigned int oldval;
1635 unsigned int oldlenp;
1636 unsigned int newval;
1637 unsigned int newlen;
1638 unsigned int __unused[4];
1641 #ifdef CONFIG_SYSCTL_SYSCALL
1642 asmlinkage long
1643 sys32_sysctl (struct sysctl32 __user *args)
1645 struct sysctl32 a32;
1646 mm_segment_t old_fs = get_fs ();
1647 void __user *oldvalp, *newvalp;
1648 size_t oldlen;
1649 int __user *namep;
1650 long ret;
1652 if (copy_from_user(&a32, args, sizeof(a32)))
1653 return -EFAULT;
1656 * We need to pre-validate these because we have to disable address checking
1657 * before calling do_sysctl() because of OLDLEN but we can't run the risk of the
1658 * user specifying bad addresses here. Well, since we're dealing with 32 bit
1659 * addresses, we KNOW that access_ok() will always succeed, so this is an
1660 * expensive NOP, but so what...
1662 namep = (int __user *) compat_ptr(a32.name);
1663 oldvalp = compat_ptr(a32.oldval);
1664 newvalp = compat_ptr(a32.newval);
1666 if ((oldvalp && get_user(oldlen, (int __user *) compat_ptr(a32.oldlenp)))
1667 || !access_ok(VERIFY_WRITE, namep, 0)
1668 || !access_ok(VERIFY_WRITE, oldvalp, 0)
1669 || !access_ok(VERIFY_WRITE, newvalp, 0))
1670 return -EFAULT;
1672 set_fs(KERNEL_DS);
1673 lock_kernel();
1674 ret = do_sysctl(namep, a32.nlen, oldvalp, (size_t __user *) &oldlen,
1675 newvalp, (size_t) a32.newlen);
1676 unlock_kernel();
1677 set_fs(old_fs);
1679 if (oldvalp && put_user (oldlen, (int __user *) compat_ptr(a32.oldlenp)))
1680 return -EFAULT;
1682 return ret;
1684 #endif
1686 asmlinkage long
1687 sys32_newuname (struct new_utsname __user *name)
1689 int ret = sys_newuname(name);
1691 if (!ret)
1692 if (copy_to_user(name->machine, "i686\0\0\0", 8))
1693 ret = -EFAULT;
1694 return ret;
1697 asmlinkage long
1698 sys32_getresuid16 (u16 __user *ruid, u16 __user *euid, u16 __user *suid)
1700 uid_t a, b, c;
1701 int ret;
1702 mm_segment_t old_fs = get_fs();
1704 set_fs(KERNEL_DS);
1705 ret = sys_getresuid((uid_t __user *) &a, (uid_t __user *) &b, (uid_t __user *) &c);
1706 set_fs(old_fs);
1708 if (put_user(a, ruid) || put_user(b, euid) || put_user(c, suid))
1709 return -EFAULT;
1710 return ret;
1713 asmlinkage long
1714 sys32_getresgid16 (u16 __user *rgid, u16 __user *egid, u16 __user *sgid)
1716 gid_t a, b, c;
1717 int ret;
1718 mm_segment_t old_fs = get_fs();
1720 set_fs(KERNEL_DS);
1721 ret = sys_getresgid((gid_t __user *) &a, (gid_t __user *) &b, (gid_t __user *) &c);
1722 set_fs(old_fs);
1724 if (ret)
1725 return ret;
1727 return put_user(a, rgid) | put_user(b, egid) | put_user(c, sgid);
1730 asmlinkage long
1731 sys32_lseek (unsigned int fd, int offset, unsigned int whence)
1733 /* Sign-extension of "offset" is important here... */
1734 return sys_lseek(fd, offset, whence);
1737 static int
1738 groups16_to_user(short __user *grouplist, struct group_info *group_info)
1740 int i;
1741 short group;
1743 for (i = 0; i < group_info->ngroups; i++) {
1744 group = (short)GROUP_AT(group_info, i);
1745 if (put_user(group, grouplist+i))
1746 return -EFAULT;
1749 return 0;
1752 static int
1753 groups16_from_user(struct group_info *group_info, short __user *grouplist)
1755 int i;
1756 short group;
1758 for (i = 0; i < group_info->ngroups; i++) {
1759 if (get_user(group, grouplist+i))
1760 return -EFAULT;
1761 GROUP_AT(group_info, i) = (gid_t)group;
1764 return 0;
1767 asmlinkage long
1768 sys32_getgroups16 (int gidsetsize, short __user *grouplist)
1770 const struct cred *cred = current_cred();
1771 int i;
1773 if (gidsetsize < 0)
1774 return -EINVAL;
1776 i = cred->group_info->ngroups;
1777 if (gidsetsize) {
1778 if (i > gidsetsize) {
1779 i = -EINVAL;
1780 goto out;
1782 if (groups16_to_user(grouplist, cred->group_info)) {
1783 i = -EFAULT;
1784 goto out;
1787 out:
1788 return i;
1791 asmlinkage long
1792 sys32_setgroups16 (int gidsetsize, short __user *grouplist)
1794 struct group_info *group_info;
1795 int retval;
1797 if (!capable(CAP_SETGID))
1798 return -EPERM;
1799 if ((unsigned)gidsetsize > NGROUPS_MAX)
1800 return -EINVAL;
1802 group_info = groups_alloc(gidsetsize);
1803 if (!group_info)
1804 return -ENOMEM;
1805 retval = groups16_from_user(group_info, grouplist);
1806 if (retval) {
1807 put_group_info(group_info);
1808 return retval;
1811 retval = set_current_groups(group_info);
1812 put_group_info(group_info);
1814 return retval;
1817 asmlinkage long
1818 sys32_truncate64 (unsigned int path, unsigned int len_lo, unsigned int len_hi)
1820 return sys_truncate(compat_ptr(path), ((unsigned long) len_hi << 32) | len_lo);
1823 asmlinkage long
1824 sys32_ftruncate64 (int fd, unsigned int len_lo, unsigned int len_hi)
1826 return sys_ftruncate(fd, ((unsigned long) len_hi << 32) | len_lo);
1829 static int
1830 putstat64 (struct stat64 __user *ubuf, struct kstat *kbuf)
1832 int err;
1833 u64 hdev;
1835 if (clear_user(ubuf, sizeof(*ubuf)))
1836 return -EFAULT;
1838 hdev = huge_encode_dev(kbuf->dev);
1839 err = __put_user(hdev, (u32 __user*)&ubuf->st_dev);
1840 err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_dev) + 1);
1841 err |= __put_user(kbuf->ino, &ubuf->__st_ino);
1842 err |= __put_user(kbuf->ino, &ubuf->st_ino_lo);
1843 err |= __put_user(kbuf->ino >> 32, &ubuf->st_ino_hi);
1844 err |= __put_user(kbuf->mode, &ubuf->st_mode);
1845 err |= __put_user(kbuf->nlink, &ubuf->st_nlink);
1846 err |= __put_user(kbuf->uid, &ubuf->st_uid);
1847 err |= __put_user(kbuf->gid, &ubuf->st_gid);
1848 hdev = huge_encode_dev(kbuf->rdev);
1849 err = __put_user(hdev, (u32 __user*)&ubuf->st_rdev);
1850 err |= __put_user(hdev >> 32, ((u32 __user*)&ubuf->st_rdev) + 1);
1851 err |= __put_user(kbuf->size, &ubuf->st_size_lo);
1852 err |= __put_user((kbuf->size >> 32), &ubuf->st_size_hi);
1853 err |= __put_user(kbuf->atime.tv_sec, &ubuf->st_atime);
1854 err |= __put_user(kbuf->atime.tv_nsec, &ubuf->st_atime_nsec);
1855 err |= __put_user(kbuf->mtime.tv_sec, &ubuf->st_mtime);
1856 err |= __put_user(kbuf->mtime.tv_nsec, &ubuf->st_mtime_nsec);
1857 err |= __put_user(kbuf->ctime.tv_sec, &ubuf->st_ctime);
1858 err |= __put_user(kbuf->ctime.tv_nsec, &ubuf->st_ctime_nsec);
1859 err |= __put_user(kbuf->blksize, &ubuf->st_blksize);
1860 err |= __put_user(kbuf->blocks, &ubuf->st_blocks);
1861 return err;
1864 asmlinkage long
1865 sys32_stat64 (char __user *filename, struct stat64 __user *statbuf)
1867 struct kstat s;
1868 long ret = vfs_stat(filename, &s);
1869 if (!ret)
1870 ret = putstat64(statbuf, &s);
1871 return ret;
1874 asmlinkage long
1875 sys32_lstat64 (char __user *filename, struct stat64 __user *statbuf)
1877 struct kstat s;
1878 long ret = vfs_lstat(filename, &s);
1879 if (!ret)
1880 ret = putstat64(statbuf, &s);
1881 return ret;
1884 asmlinkage long
1885 sys32_fstat64 (unsigned int fd, struct stat64 __user *statbuf)
1887 struct kstat s;
1888 long ret = vfs_fstat(fd, &s);
1889 if (!ret)
1890 ret = putstat64(statbuf, &s);
1891 return ret;
1894 asmlinkage long
1895 sys32_sched_rr_get_interval (pid_t pid, struct compat_timespec __user *interval)
1897 mm_segment_t old_fs = get_fs();
1898 struct timespec t;
1899 long ret;
1901 set_fs(KERNEL_DS);
1902 ret = sys_sched_rr_get_interval(pid, (struct timespec __user *) &t);
1903 set_fs(old_fs);
1904 if (put_compat_timespec(&t, interval))
1905 return -EFAULT;
1906 return ret;
1909 asmlinkage long
1910 sys32_pread (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
1912 return sys_pread64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
1915 asmlinkage long
1916 sys32_pwrite (unsigned int fd, void __user *buf, unsigned int count, u32 pos_lo, u32 pos_hi)
1918 return sys_pwrite64(fd, buf, count, ((unsigned long) pos_hi << 32) | pos_lo);
1921 asmlinkage long
1922 sys32_sendfile (int out_fd, int in_fd, int __user *offset, unsigned int count)
1924 mm_segment_t old_fs = get_fs();
1925 long ret;
1926 off_t of;
1928 if (offset && get_user(of, offset))
1929 return -EFAULT;
1931 set_fs(KERNEL_DS);
1932 ret = sys_sendfile(out_fd, in_fd, offset ? (off_t __user *) &of : NULL, count);
1933 set_fs(old_fs);
1935 if (offset && put_user(of, offset))
1936 return -EFAULT;
1938 return ret;
1941 asmlinkage long
1942 sys32_personality (unsigned int personality)
1944 long ret;
1946 if (current->personality == PER_LINUX32 && personality == PER_LINUX)
1947 personality = PER_LINUX32;
1948 ret = sys_personality(personality);
1949 if (ret == PER_LINUX32)
1950 ret = PER_LINUX;
1951 return ret;
1954 asmlinkage unsigned long
1955 sys32_brk (unsigned int brk)
1957 unsigned long ret, obrk;
1958 struct mm_struct *mm = current->mm;
1960 obrk = mm->brk;
1961 ret = sys_brk(brk);
1962 if (ret < obrk)
1963 clear_user(compat_ptr(ret), PAGE_ALIGN(ret) - ret);
1964 return ret;
1967 /* Structure for ia32 emulation on ia64 */
1968 struct epoll_event32
1970 u32 events;
1971 u32 data[2];
1974 asmlinkage long
1975 sys32_epoll_ctl(int epfd, int op, int fd, struct epoll_event32 __user *event)
1977 mm_segment_t old_fs = get_fs();
1978 struct epoll_event event64;
1979 int error;
1980 u32 data_halfword;
1982 if (!access_ok(VERIFY_READ, event, sizeof(struct epoll_event32)))
1983 return -EFAULT;
1985 __get_user(event64.events, &event->events);
1986 __get_user(data_halfword, &event->data[0]);
1987 event64.data = data_halfword;
1988 __get_user(data_halfword, &event->data[1]);
1989 event64.data |= (u64)data_halfword << 32;
1991 set_fs(KERNEL_DS);
1992 error = sys_epoll_ctl(epfd, op, fd, (struct epoll_event __user *) &event64);
1993 set_fs(old_fs);
1995 return error;
1998 asmlinkage long
1999 sys32_epoll_wait(int epfd, struct epoll_event32 __user * events, int maxevents,
2000 int timeout)
2002 struct epoll_event *events64 = NULL;
2003 mm_segment_t old_fs = get_fs();
2004 int numevents, size;
2005 int evt_idx;
2006 int do_free_pages = 0;
2008 if (maxevents <= 0) {
2009 return -EINVAL;
2012 /* Verify that the area passed by the user is writeable */
2013 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event32)))
2014 return -EFAULT;
2017 * Allocate space for the intermediate copy. If the space needed
2018 * is large enough to cause kmalloc to fail, then try again with
2019 * __get_free_pages.
2021 size = maxevents * sizeof(struct epoll_event);
2022 events64 = kmalloc(size, GFP_KERNEL);
2023 if (events64 == NULL) {
2024 events64 = (struct epoll_event *)
2025 __get_free_pages(GFP_KERNEL, get_order(size));
2026 if (events64 == NULL)
2027 return -ENOMEM;
2028 do_free_pages = 1;
2031 /* Do the system call */
2032 set_fs(KERNEL_DS); /* copy_to/from_user should work on kernel mem*/
2033 numevents = sys_epoll_wait(epfd, (struct epoll_event __user *) events64,
2034 maxevents, timeout);
2035 set_fs(old_fs);
2037 /* Don't modify userspace memory if we're returning an error */
2038 if (numevents > 0) {
2039 /* Translate the 64-bit structures back into the 32-bit
2040 structures */
2041 for (evt_idx = 0; evt_idx < numevents; evt_idx++) {
2042 __put_user(events64[evt_idx].events,
2043 &events[evt_idx].events);
2044 __put_user((u32)events64[evt_idx].data,
2045 &events[evt_idx].data[0]);
2046 __put_user((u32)(events64[evt_idx].data >> 32),
2047 &events[evt_idx].data[1]);
2051 if (do_free_pages)
2052 free_pages((unsigned long) events64, get_order(size));
2053 else
2054 kfree(events64);
2055 return numevents;
2059 * Get a yet unused TLS descriptor index.
2061 static int
2062 get_free_idx (void)
2064 struct thread_struct *t = &current->thread;
2065 int idx;
2067 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
2068 if (desc_empty(t->tls_array + idx))
2069 return idx + GDT_ENTRY_TLS_MIN;
2070 return -ESRCH;
2073 static void set_tls_desc(struct task_struct *p, int idx,
2074 const struct ia32_user_desc *info, int n)
2076 struct thread_struct *t = &p->thread;
2077 struct desc_struct *desc = &t->tls_array[idx - GDT_ENTRY_TLS_MIN];
2078 int cpu;
2081 * We must not get preempted while modifying the TLS.
2083 cpu = get_cpu();
2085 while (n-- > 0) {
2086 if (LDT_empty(info)) {
2087 desc->a = 0;
2088 desc->b = 0;
2089 } else {
2090 desc->a = LDT_entry_a(info);
2091 desc->b = LDT_entry_b(info);
2094 ++info;
2095 ++desc;
2098 if (t == &current->thread)
2099 load_TLS(t, cpu);
2101 put_cpu();
2105 * Set a given TLS descriptor:
2107 asmlinkage int
2108 sys32_set_thread_area (struct ia32_user_desc __user *u_info)
2110 struct ia32_user_desc info;
2111 int idx;
2113 if (copy_from_user(&info, u_info, sizeof(info)))
2114 return -EFAULT;
2115 idx = info.entry_number;
2118 * index -1 means the kernel should try to find and allocate an empty descriptor:
2120 if (idx == -1) {
2121 idx = get_free_idx();
2122 if (idx < 0)
2123 return idx;
2124 if (put_user(idx, &u_info->entry_number))
2125 return -EFAULT;
2128 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
2129 return -EINVAL;
2131 set_tls_desc(current, idx, &info, 1);
2132 return 0;
2136 * Get the current Thread-Local Storage area:
2139 #define GET_BASE(desc) ( \
2140 (((desc)->a >> 16) & 0x0000ffff) | \
2141 (((desc)->b << 16) & 0x00ff0000) | \
2142 ( (desc)->b & 0xff000000) )
2144 #define GET_LIMIT(desc) ( \
2145 ((desc)->a & 0x0ffff) | \
2146 ((desc)->b & 0xf0000) )
2148 #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
2149 #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
2150 #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
2151 #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
2152 #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
2153 #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
2155 static void fill_user_desc(struct ia32_user_desc *info, int idx,
2156 const struct desc_struct *desc)
2158 info->entry_number = idx;
2159 info->base_addr = GET_BASE(desc);
2160 info->limit = GET_LIMIT(desc);
2161 info->seg_32bit = GET_32BIT(desc);
2162 info->contents = GET_CONTENTS(desc);
2163 info->read_exec_only = !GET_WRITABLE(desc);
2164 info->limit_in_pages = GET_LIMIT_PAGES(desc);
2165 info->seg_not_present = !GET_PRESENT(desc);
2166 info->useable = GET_USEABLE(desc);
2169 asmlinkage int
2170 sys32_get_thread_area (struct ia32_user_desc __user *u_info)
2172 struct ia32_user_desc info;
2173 struct desc_struct *desc;
2174 int idx;
2176 if (get_user(idx, &u_info->entry_number))
2177 return -EFAULT;
2178 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
2179 return -EINVAL;
2181 desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
2182 fill_user_desc(&info, idx, desc);
2184 if (copy_to_user(u_info, &info, sizeof(info)))
2185 return -EFAULT;
2186 return 0;
2189 struct regset_get {
2190 void *kbuf;
2191 void __user *ubuf;
2194 struct regset_set {
2195 const void *kbuf;
2196 const void __user *ubuf;
2199 struct regset_getset {
2200 struct task_struct *target;
2201 const struct user_regset *regset;
2202 union {
2203 struct regset_get get;
2204 struct regset_set set;
2205 } u;
2206 unsigned int pos;
2207 unsigned int count;
2208 int ret;
2211 static void getfpreg(struct task_struct *task, int regno, int *val)
2213 switch (regno / sizeof(int)) {
2214 case 0:
2215 *val = task->thread.fcr & 0xffff;
2216 break;
2217 case 1:
2218 *val = task->thread.fsr & 0xffff;
2219 break;
2220 case 2:
2221 *val = (task->thread.fsr>>16) & 0xffff;
2222 break;
2223 case 3:
2224 *val = task->thread.fir;
2225 break;
2226 case 4:
2227 *val = (task->thread.fir>>32) & 0xffff;
2228 break;
2229 case 5:
2230 *val = task->thread.fdr;
2231 break;
2232 case 6:
2233 *val = (task->thread.fdr >> 32) & 0xffff;
2234 break;
2238 static void setfpreg(struct task_struct *task, int regno, int val)
2240 switch (regno / sizeof(int)) {
2241 case 0:
2242 task->thread.fcr = (task->thread.fcr & (~0x1f3f))
2243 | (val & 0x1f3f);
2244 break;
2245 case 1:
2246 task->thread.fsr = (task->thread.fsr & (~0xffff)) | val;
2247 break;
2248 case 2:
2249 task->thread.fsr = (task->thread.fsr & (~0xffff0000))
2250 | (val << 16);
2251 break;
2252 case 3:
2253 task->thread.fir = (task->thread.fir & (~0xffffffff)) | val;
2254 break;
2255 case 5:
2256 task->thread.fdr = (task->thread.fdr & (~0xffffffff)) | val;
2257 break;
2261 static void access_fpreg_ia32(int regno, void *reg,
2262 struct pt_regs *pt, struct switch_stack *sw,
2263 int tos, int write)
2265 void *f;
2267 if ((regno += tos) >= 8)
2268 regno -= 8;
2269 if (regno < 4)
2270 f = &pt->f8 + regno;
2271 else if (regno <= 7)
2272 f = &sw->f12 + (regno - 4);
2273 else {
2274 printk(KERN_ERR "regno must be less than 7 \n");
2275 return;
2278 if (write)
2279 memcpy(f, reg, sizeof(struct _fpreg_ia32));
2280 else
2281 memcpy(reg, f, sizeof(struct _fpreg_ia32));
2284 static void do_fpregs_get(struct unw_frame_info *info, void *arg)
2286 struct regset_getset *dst = arg;
2287 struct task_struct *task = dst->target;
2288 struct pt_regs *pt;
2289 int start, end, tos;
2290 char buf[80];
2292 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2293 return;
2294 if (dst->pos < 7 * sizeof(int)) {
2295 end = min((dst->pos + dst->count),
2296 (unsigned int)(7 * sizeof(int)));
2297 for (start = dst->pos; start < end; start += sizeof(int))
2298 getfpreg(task, start, (int *)(buf + start));
2299 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2300 &dst->u.get.kbuf, &dst->u.get.ubuf, buf,
2301 0, 7 * sizeof(int));
2302 if (dst->ret || dst->count == 0)
2303 return;
2305 if (dst->pos < sizeof(struct ia32_user_i387_struct)) {
2306 pt = task_pt_regs(task);
2307 tos = (task->thread.fsr >> 11) & 7;
2308 end = min(dst->pos + dst->count,
2309 (unsigned int)(sizeof(struct ia32_user_i387_struct)));
2310 start = (dst->pos - 7 * sizeof(int)) /
2311 sizeof(struct _fpreg_ia32);
2312 end = (end - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32);
2313 for (; start < end; start++)
2314 access_fpreg_ia32(start,
2315 (struct _fpreg_ia32 *)buf + start,
2316 pt, info->sw, tos, 0);
2317 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2318 &dst->u.get.kbuf, &dst->u.get.ubuf,
2319 buf, 7 * sizeof(int),
2320 sizeof(struct ia32_user_i387_struct));
2321 if (dst->ret || dst->count == 0)
2322 return;
2326 static void do_fpregs_set(struct unw_frame_info *info, void *arg)
2328 struct regset_getset *dst = arg;
2329 struct task_struct *task = dst->target;
2330 struct pt_regs *pt;
2331 char buf[80];
2332 int end, start, tos;
2334 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2335 return;
2337 if (dst->pos < 7 * sizeof(int)) {
2338 start = dst->pos;
2339 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2340 &dst->u.set.kbuf, &dst->u.set.ubuf, buf,
2341 0, 7 * sizeof(int));
2342 if (dst->ret)
2343 return;
2344 for (; start < dst->pos; start += sizeof(int))
2345 setfpreg(task, start, *((int *)(buf + start)));
2346 if (dst->count == 0)
2347 return;
2349 if (dst->pos < sizeof(struct ia32_user_i387_struct)) {
2350 start = (dst->pos - 7 * sizeof(int)) /
2351 sizeof(struct _fpreg_ia32);
2352 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2353 &dst->u.set.kbuf, &dst->u.set.ubuf,
2354 buf, 7 * sizeof(int),
2355 sizeof(struct ia32_user_i387_struct));
2356 if (dst->ret)
2357 return;
2358 pt = task_pt_regs(task);
2359 tos = (task->thread.fsr >> 11) & 7;
2360 end = (dst->pos - 7 * sizeof(int)) / sizeof(struct _fpreg_ia32);
2361 for (; start < end; start++)
2362 access_fpreg_ia32(start,
2363 (struct _fpreg_ia32 *)buf + start,
2364 pt, info->sw, tos, 1);
2365 if (dst->count == 0)
2366 return;
2370 #define OFFSET(member) ((int)(offsetof(struct ia32_user_fxsr_struct, member)))
2371 static void getfpxreg(struct task_struct *task, int start, int end, char *buf)
2373 int min_val;
2375 min_val = min(end, OFFSET(fop));
2376 while (start < min_val) {
2377 if (start == OFFSET(cwd))
2378 *((short *)buf) = task->thread.fcr & 0xffff;
2379 else if (start == OFFSET(swd))
2380 *((short *)buf) = task->thread.fsr & 0xffff;
2381 else if (start == OFFSET(twd))
2382 *((short *)buf) = (task->thread.fsr>>16) & 0xffff;
2383 buf += 2;
2384 start += 2;
2386 /* skip fop element */
2387 if (start == OFFSET(fop)) {
2388 start += 2;
2389 buf += 2;
2391 while (start < end) {
2392 if (start == OFFSET(fip))
2393 *((int *)buf) = task->thread.fir;
2394 else if (start == OFFSET(fcs))
2395 *((int *)buf) = (task->thread.fir>>32) & 0xffff;
2396 else if (start == OFFSET(foo))
2397 *((int *)buf) = task->thread.fdr;
2398 else if (start == OFFSET(fos))
2399 *((int *)buf) = (task->thread.fdr>>32) & 0xffff;
2400 else if (start == OFFSET(mxcsr))
2401 *((int *)buf) = ((task->thread.fcr>>32) & 0xff80)
2402 | ((task->thread.fsr>>32) & 0x3f);
2403 buf += 4;
2404 start += 4;
2408 static void setfpxreg(struct task_struct *task, int start, int end, char *buf)
2410 int min_val, num32;
2411 short num;
2412 unsigned long num64;
2414 min_val = min(end, OFFSET(fop));
2415 while (start < min_val) {
2416 num = *((short *)buf);
2417 if (start == OFFSET(cwd)) {
2418 task->thread.fcr = (task->thread.fcr & (~0x1f3f))
2419 | (num & 0x1f3f);
2420 } else if (start == OFFSET(swd)) {
2421 task->thread.fsr = (task->thread.fsr & (~0xffff)) | num;
2422 } else if (start == OFFSET(twd)) {
2423 task->thread.fsr = (task->thread.fsr & (~0xffff0000))
2424 | (((int)num) << 16);
2426 buf += 2;
2427 start += 2;
2429 /* skip fop element */
2430 if (start == OFFSET(fop)) {
2431 start += 2;
2432 buf += 2;
2434 while (start < end) {
2435 num32 = *((int *)buf);
2436 if (start == OFFSET(fip))
2437 task->thread.fir = (task->thread.fir & (~0xffffffff))
2438 | num32;
2439 else if (start == OFFSET(foo))
2440 task->thread.fdr = (task->thread.fdr & (~0xffffffff))
2441 | num32;
2442 else if (start == OFFSET(mxcsr)) {
2443 num64 = num32 & 0xff10;
2444 task->thread.fcr = (task->thread.fcr &
2445 (~0xff1000000000UL)) | (num64<<32);
2446 num64 = num32 & 0x3f;
2447 task->thread.fsr = (task->thread.fsr &
2448 (~0x3f00000000UL)) | (num64<<32);
2450 buf += 4;
2451 start += 4;
2455 static void do_fpxregs_get(struct unw_frame_info *info, void *arg)
2457 struct regset_getset *dst = arg;
2458 struct task_struct *task = dst->target;
2459 struct pt_regs *pt;
2460 char buf[128];
2461 int start, end, tos;
2463 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2464 return;
2465 if (dst->pos < OFFSET(st_space[0])) {
2466 end = min(dst->pos + dst->count, (unsigned int)32);
2467 getfpxreg(task, dst->pos, end, buf);
2468 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2469 &dst->u.get.kbuf, &dst->u.get.ubuf, buf,
2470 0, OFFSET(st_space[0]));
2471 if (dst->ret || dst->count == 0)
2472 return;
2474 if (dst->pos < OFFSET(xmm_space[0])) {
2475 pt = task_pt_regs(task);
2476 tos = (task->thread.fsr >> 11) & 7;
2477 end = min(dst->pos + dst->count,
2478 (unsigned int)OFFSET(xmm_space[0]));
2479 start = (dst->pos - OFFSET(st_space[0])) / 16;
2480 end = (end - OFFSET(st_space[0])) / 16;
2481 for (; start < end; start++)
2482 access_fpreg_ia32(start, buf + 16 * start, pt,
2483 info->sw, tos, 0);
2484 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2485 &dst->u.get.kbuf, &dst->u.get.ubuf,
2486 buf, OFFSET(st_space[0]), OFFSET(xmm_space[0]));
2487 if (dst->ret || dst->count == 0)
2488 return;
2490 if (dst->pos < OFFSET(padding[0]))
2491 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
2492 &dst->u.get.kbuf, &dst->u.get.ubuf,
2493 &info->sw->f16, OFFSET(xmm_space[0]),
2494 OFFSET(padding[0]));
2497 static void do_fpxregs_set(struct unw_frame_info *info, void *arg)
2499 struct regset_getset *dst = arg;
2500 struct task_struct *task = dst->target;
2501 char buf[128];
2502 int start, end;
2504 if (dst->count == 0 || unw_unwind_to_user(info) < 0)
2505 return;
2507 if (dst->pos < OFFSET(st_space[0])) {
2508 start = dst->pos;
2509 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2510 &dst->u.set.kbuf, &dst->u.set.ubuf,
2511 buf, 0, OFFSET(st_space[0]));
2512 if (dst->ret)
2513 return;
2514 setfpxreg(task, start, dst->pos, buf);
2515 if (dst->count == 0)
2516 return;
2518 if (dst->pos < OFFSET(xmm_space[0])) {
2519 struct pt_regs *pt;
2520 int tos;
2521 pt = task_pt_regs(task);
2522 tos = (task->thread.fsr >> 11) & 7;
2523 start = (dst->pos - OFFSET(st_space[0])) / 16;
2524 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2525 &dst->u.set.kbuf, &dst->u.set.ubuf,
2526 buf, OFFSET(st_space[0]), OFFSET(xmm_space[0]));
2527 if (dst->ret)
2528 return;
2529 end = (dst->pos - OFFSET(st_space[0])) / 16;
2530 for (; start < end; start++)
2531 access_fpreg_ia32(start, buf + 16 * start, pt, info->sw,
2532 tos, 1);
2533 if (dst->count == 0)
2534 return;
2536 if (dst->pos < OFFSET(padding[0]))
2537 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
2538 &dst->u.set.kbuf, &dst->u.set.ubuf,
2539 &info->sw->f16, OFFSET(xmm_space[0]),
2540 OFFSET(padding[0]));
2542 #undef OFFSET
2544 static int do_regset_call(void (*call)(struct unw_frame_info *, void *),
2545 struct task_struct *target,
2546 const struct user_regset *regset,
2547 unsigned int pos, unsigned int count,
2548 const void *kbuf, const void __user *ubuf)
2550 struct regset_getset info = { .target = target, .regset = regset,
2551 .pos = pos, .count = count,
2552 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
2553 .ret = 0 };
2555 if (target == current)
2556 unw_init_running(call, &info);
2557 else {
2558 struct unw_frame_info ufi;
2559 memset(&ufi, 0, sizeof(ufi));
2560 unw_init_from_blocked_task(&ufi, target);
2561 (*call)(&ufi, &info);
2564 return info.ret;
2567 static int ia32_fpregs_get(struct task_struct *target,
2568 const struct user_regset *regset,
2569 unsigned int pos, unsigned int count,
2570 void *kbuf, void __user *ubuf)
2572 return do_regset_call(do_fpregs_get, target, regset, pos, count,
2573 kbuf, ubuf);
2576 static int ia32_fpregs_set(struct task_struct *target,
2577 const struct user_regset *regset,
2578 unsigned int pos, unsigned int count,
2579 const void *kbuf, const void __user *ubuf)
2581 return do_regset_call(do_fpregs_set, target, regset, pos, count,
2582 kbuf, ubuf);
2585 static int ia32_fpxregs_get(struct task_struct *target,
2586 const struct user_regset *regset,
2587 unsigned int pos, unsigned int count,
2588 void *kbuf, void __user *ubuf)
2590 return do_regset_call(do_fpxregs_get, target, regset, pos, count,
2591 kbuf, ubuf);
2594 static int ia32_fpxregs_set(struct task_struct *target,
2595 const struct user_regset *regset,
2596 unsigned int pos, unsigned int count,
2597 const void *kbuf, const void __user *ubuf)
2599 return do_regset_call(do_fpxregs_set, target, regset, pos, count,
2600 kbuf, ubuf);
2603 static int ia32_genregs_get(struct task_struct *target,
2604 const struct user_regset *regset,
2605 unsigned int pos, unsigned int count,
2606 void *kbuf, void __user *ubuf)
2608 if (kbuf) {
2609 u32 *kp = kbuf;
2610 while (count > 0) {
2611 *kp++ = getreg(target, pos);
2612 pos += 4;
2613 count -= 4;
2615 } else {
2616 u32 __user *up = ubuf;
2617 while (count > 0) {
2618 if (__put_user(getreg(target, pos), up++))
2619 return -EFAULT;
2620 pos += 4;
2621 count -= 4;
2624 return 0;
2627 static int ia32_genregs_set(struct task_struct *target,
2628 const struct user_regset *regset,
2629 unsigned int pos, unsigned int count,
2630 const void *kbuf, const void __user *ubuf)
2632 int ret = 0;
2634 if (kbuf) {
2635 const u32 *kp = kbuf;
2636 while (!ret && count > 0) {
2637 putreg(target, pos, *kp++);
2638 pos += 4;
2639 count -= 4;
2641 } else {
2642 const u32 __user *up = ubuf;
2643 u32 val;
2644 while (!ret && count > 0) {
2645 ret = __get_user(val, up++);
2646 if (!ret)
2647 putreg(target, pos, val);
2648 pos += 4;
2649 count -= 4;
2652 return ret;
2655 static int ia32_tls_active(struct task_struct *target,
2656 const struct user_regset *regset)
2658 struct thread_struct *t = &target->thread;
2659 int n = GDT_ENTRY_TLS_ENTRIES;
2660 while (n > 0 && desc_empty(&t->tls_array[n -1]))
2661 --n;
2662 return n;
2665 static int ia32_tls_get(struct task_struct *target,
2666 const struct user_regset *regset, unsigned int pos,
2667 unsigned int count, void *kbuf, void __user *ubuf)
2669 const struct desc_struct *tls;
2671 if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) ||
2672 (pos % sizeof(struct ia32_user_desc)) != 0 ||
2673 (count % sizeof(struct ia32_user_desc)) != 0)
2674 return -EINVAL;
2676 pos /= sizeof(struct ia32_user_desc);
2677 count /= sizeof(struct ia32_user_desc);
2679 tls = &target->thread.tls_array[pos];
2681 if (kbuf) {
2682 struct ia32_user_desc *info = kbuf;
2683 while (count-- > 0)
2684 fill_user_desc(info++, GDT_ENTRY_TLS_MIN + pos++,
2685 tls++);
2686 } else {
2687 struct ia32_user_desc __user *u_info = ubuf;
2688 while (count-- > 0) {
2689 struct ia32_user_desc info;
2690 fill_user_desc(&info, GDT_ENTRY_TLS_MIN + pos++, tls++);
2691 if (__copy_to_user(u_info++, &info, sizeof(info)))
2692 return -EFAULT;
2696 return 0;
2699 static int ia32_tls_set(struct task_struct *target,
2700 const struct user_regset *regset, unsigned int pos,
2701 unsigned int count, const void *kbuf, const void __user *ubuf)
2703 struct ia32_user_desc infobuf[GDT_ENTRY_TLS_ENTRIES];
2704 const struct ia32_user_desc *info;
2706 if (pos > GDT_ENTRY_TLS_ENTRIES * sizeof(struct ia32_user_desc) ||
2707 (pos % sizeof(struct ia32_user_desc)) != 0 ||
2708 (count % sizeof(struct ia32_user_desc)) != 0)
2709 return -EINVAL;
2711 if (kbuf)
2712 info = kbuf;
2713 else if (__copy_from_user(infobuf, ubuf, count))
2714 return -EFAULT;
2715 else
2716 info = infobuf;
2718 set_tls_desc(target,
2719 GDT_ENTRY_TLS_MIN + (pos / sizeof(struct ia32_user_desc)),
2720 info, count / sizeof(struct ia32_user_desc));
2722 return 0;
2726 * This should match arch/i386/kernel/ptrace.c:native_regsets.
2727 * XXX ioperm? vm86?
2729 static const struct user_regset ia32_regsets[] = {
2731 .core_note_type = NT_PRSTATUS,
2732 .n = sizeof(struct user_regs_struct32)/4,
2733 .size = 4, .align = 4,
2734 .get = ia32_genregs_get, .set = ia32_genregs_set
2737 .core_note_type = NT_PRFPREG,
2738 .n = sizeof(struct ia32_user_i387_struct) / 4,
2739 .size = 4, .align = 4,
2740 .get = ia32_fpregs_get, .set = ia32_fpregs_set
2743 .core_note_type = NT_PRXFPREG,
2744 .n = sizeof(struct ia32_user_fxsr_struct) / 4,
2745 .size = 4, .align = 4,
2746 .get = ia32_fpxregs_get, .set = ia32_fpxregs_set
2749 .core_note_type = NT_386_TLS,
2750 .n = GDT_ENTRY_TLS_ENTRIES,
2751 .bias = GDT_ENTRY_TLS_MIN,
2752 .size = sizeof(struct ia32_user_desc),
2753 .align = sizeof(struct ia32_user_desc),
2754 .active = ia32_tls_active,
2755 .get = ia32_tls_get, .set = ia32_tls_set,
2759 const struct user_regset_view user_ia32_view = {
2760 .name = "i386", .e_machine = EM_386,
2761 .regsets = ia32_regsets, .n = ARRAY_SIZE(ia32_regsets)
2764 long sys32_fadvise64_64(int fd, __u32 offset_low, __u32 offset_high,
2765 __u32 len_low, __u32 len_high, int advice)
2767 return sys_fadvise64_64(fd,
2768 (((u64)offset_high)<<32) | offset_low,
2769 (((u64)len_high)<<32) | len_low,
2770 advice);
2773 #ifdef NOTYET /* UNTESTED FOR IA64 FROM HERE DOWN */
2775 asmlinkage long sys32_setreuid(compat_uid_t ruid, compat_uid_t euid)
2777 uid_t sruid, seuid;
2779 sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
2780 seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
2781 return sys_setreuid(sruid, seuid);
2784 asmlinkage long
2785 sys32_setresuid(compat_uid_t ruid, compat_uid_t euid,
2786 compat_uid_t suid)
2788 uid_t sruid, seuid, ssuid;
2790 sruid = (ruid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)ruid);
2791 seuid = (euid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)euid);
2792 ssuid = (suid == (compat_uid_t)-1) ? ((uid_t)-1) : ((uid_t)suid);
2793 return sys_setresuid(sruid, seuid, ssuid);
2796 asmlinkage long
2797 sys32_setregid(compat_gid_t rgid, compat_gid_t egid)
2799 gid_t srgid, segid;
2801 srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
2802 segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
2803 return sys_setregid(srgid, segid);
2806 asmlinkage long
2807 sys32_setresgid(compat_gid_t rgid, compat_gid_t egid,
2808 compat_gid_t sgid)
2810 gid_t srgid, segid, ssgid;
2812 srgid = (rgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)rgid);
2813 segid = (egid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)egid);
2814 ssgid = (sgid == (compat_gid_t)-1) ? ((gid_t)-1) : ((gid_t)sgid);
2815 return sys_setresgid(srgid, segid, ssgid);
2817 #endif /* NOTYET */