Linux 2.6.31.6
[linux/fpc-iii.git] / arch / ia64 / kernel / smpboot.c
blobde100aa7ff03dcc07127facacd59f05010d6d0b7
1 /*
2 * SMP boot-related support
4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2001, 2004-2005 Intel Corp
7 * Rohit Seth <rohit.seth@intel.com>
8 * Suresh Siddha <suresh.b.siddha@intel.com>
9 * Gordon Jin <gordon.jin@intel.com>
10 * Ashok Raj <ashok.raj@intel.com>
12 * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
13 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
14 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
15 * smp_boot_cpus()/smp_commence() is replaced by
16 * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
17 * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
20 * Add multi-threading and multi-core detection
21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
22 * Setup cpu_sibling_map and cpu_core_map
25 #include <linux/module.h>
26 #include <linux/acpi.h>
27 #include <linux/bootmem.h>
28 #include <linux/cpu.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/irq.h>
33 #include <linux/kernel.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/mm.h>
36 #include <linux/notifier.h>
37 #include <linux/smp.h>
38 #include <linux/spinlock.h>
39 #include <linux/efi.h>
40 #include <linux/percpu.h>
41 #include <linux/bitops.h>
43 #include <asm/atomic.h>
44 #include <asm/cache.h>
45 #include <asm/current.h>
46 #include <asm/delay.h>
47 #include <asm/ia32.h>
48 #include <asm/io.h>
49 #include <asm/irq.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/page.h>
53 #include <asm/paravirt.h>
54 #include <asm/pgalloc.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/ptrace.h>
58 #include <asm/sal.h>
59 #include <asm/system.h>
60 #include <asm/tlbflush.h>
61 #include <asm/unistd.h>
62 #include <asm/sn/arch.h>
64 #define SMP_DEBUG 0
66 #if SMP_DEBUG
67 #define Dprintk(x...) printk(x)
68 #else
69 #define Dprintk(x...)
70 #endif
72 #ifdef CONFIG_HOTPLUG_CPU
73 #ifdef CONFIG_PERMIT_BSP_REMOVE
74 #define bsp_remove_ok 1
75 #else
76 #define bsp_remove_ok 0
77 #endif
80 * Store all idle threads, this can be reused instead of creating
81 * a new thread. Also avoids complicated thread destroy functionality
82 * for idle threads.
84 struct task_struct *idle_thread_array[NR_CPUS];
87 * Global array allocated for NR_CPUS at boot time
89 struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
92 * start_ap in head.S uses this to store current booting cpu
93 * info.
95 struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
97 #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
99 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
100 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
102 #else
104 #define get_idle_for_cpu(x) (NULL)
105 #define set_idle_for_cpu(x,p)
106 #define set_brendez_area(x)
107 #endif
111 * ITC synchronization related stuff:
113 #define MASTER (0)
114 #define SLAVE (SMP_CACHE_BYTES/8)
116 #define NUM_ROUNDS 64 /* magic value */
117 #define NUM_ITERS 5 /* likewise */
119 static DEFINE_SPINLOCK(itc_sync_lock);
120 static volatile unsigned long go[SLAVE + 1];
122 #define DEBUG_ITC_SYNC 0
124 extern void start_ap (void);
125 extern unsigned long ia64_iobase;
127 struct task_struct *task_for_booting_cpu;
130 * State for each CPU
132 DEFINE_PER_CPU(int, cpu_state);
134 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
135 EXPORT_SYMBOL(cpu_core_map);
136 DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
137 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
139 int smp_num_siblings = 1;
141 /* which logical CPU number maps to which CPU (physical APIC ID) */
142 volatile int ia64_cpu_to_sapicid[NR_CPUS];
143 EXPORT_SYMBOL(ia64_cpu_to_sapicid);
145 static volatile cpumask_t cpu_callin_map;
147 struct smp_boot_data smp_boot_data __initdata;
149 unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
151 char __initdata no_int_routing;
153 unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
155 #ifdef CONFIG_FORCE_CPEI_RETARGET
156 #define CPEI_OVERRIDE_DEFAULT (1)
157 #else
158 #define CPEI_OVERRIDE_DEFAULT (0)
159 #endif
161 unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
163 static int __init
164 cmdl_force_cpei(char *str)
166 int value=0;
168 get_option (&str, &value);
169 force_cpei_retarget = value;
171 return 1;
174 __setup("force_cpei=", cmdl_force_cpei);
176 static int __init
177 nointroute (char *str)
179 no_int_routing = 1;
180 printk ("no_int_routing on\n");
181 return 1;
184 __setup("nointroute", nointroute);
186 static void fix_b0_for_bsp(void)
188 #ifdef CONFIG_HOTPLUG_CPU
189 int cpuid;
190 static int fix_bsp_b0 = 1;
192 cpuid = smp_processor_id();
195 * Cache the b0 value on the first AP that comes up
197 if (!(fix_bsp_b0 && cpuid))
198 return;
200 sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
201 printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
203 fix_bsp_b0 = 0;
204 #endif
207 void
208 sync_master (void *arg)
210 unsigned long flags, i;
212 go[MASTER] = 0;
214 local_irq_save(flags);
216 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
217 while (!go[MASTER])
218 cpu_relax();
219 go[MASTER] = 0;
220 go[SLAVE] = ia64_get_itc();
223 local_irq_restore(flags);
227 * Return the number of cycles by which our itc differs from the itc on the master
228 * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
229 * negative that it is behind.
231 static inline long
232 get_delta (long *rt, long *master)
234 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
235 unsigned long tcenter, t0, t1, tm;
236 long i;
238 for (i = 0; i < NUM_ITERS; ++i) {
239 t0 = ia64_get_itc();
240 go[MASTER] = 1;
241 while (!(tm = go[SLAVE]))
242 cpu_relax();
243 go[SLAVE] = 0;
244 t1 = ia64_get_itc();
246 if (t1 - t0 < best_t1 - best_t0)
247 best_t0 = t0, best_t1 = t1, best_tm = tm;
250 *rt = best_t1 - best_t0;
251 *master = best_tm - best_t0;
253 /* average best_t0 and best_t1 without overflow: */
254 tcenter = (best_t0/2 + best_t1/2);
255 if (best_t0 % 2 + best_t1 % 2 == 2)
256 ++tcenter;
257 return tcenter - best_tm;
261 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
262 * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
263 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
264 * step). The basic idea is for the slave to ask the master what itc value it has and to
265 * read its own itc before and after the master responds. Each iteration gives us three
266 * timestamps:
268 * slave master
270 * t0 ---\
271 * ---\
272 * --->
273 * tm
274 * /---
275 * /---
276 * t1 <---
279 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
280 * and t1. If we achieve this, the clocks are synchronized provided the interconnect
281 * between the slave and the master is symmetric. Even if the interconnect were
282 * asymmetric, we would still know that the synchronization error is smaller than the
283 * roundtrip latency (t0 - t1).
285 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
286 * within one or two cycles. However, we can only *guarantee* that the synchronization is
287 * accurate to within a round-trip time, which is typically in the range of several
288 * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
289 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
290 * than half a micro second or so.
292 void
293 ia64_sync_itc (unsigned int master)
295 long i, delta, adj, adjust_latency = 0, done = 0;
296 unsigned long flags, rt, master_time_stamp, bound;
297 #if DEBUG_ITC_SYNC
298 struct {
299 long rt; /* roundtrip time */
300 long master; /* master's timestamp */
301 long diff; /* difference between midpoint and master's timestamp */
302 long lat; /* estimate of itc adjustment latency */
303 } t[NUM_ROUNDS];
304 #endif
307 * Make sure local timer ticks are disabled while we sync. If
308 * they were enabled, we'd have to worry about nasty issues
309 * like setting the ITC ahead of (or a long time before) the
310 * next scheduled tick.
312 BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
314 go[MASTER] = 1;
316 if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
317 printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
318 return;
321 while (go[MASTER])
322 cpu_relax(); /* wait for master to be ready */
324 spin_lock_irqsave(&itc_sync_lock, flags);
326 for (i = 0; i < NUM_ROUNDS; ++i) {
327 delta = get_delta(&rt, &master_time_stamp);
328 if (delta == 0) {
329 done = 1; /* let's lock on to this... */
330 bound = rt;
333 if (!done) {
334 if (i > 0) {
335 adjust_latency += -delta;
336 adj = -delta + adjust_latency/4;
337 } else
338 adj = -delta;
340 ia64_set_itc(ia64_get_itc() + adj);
342 #if DEBUG_ITC_SYNC
343 t[i].rt = rt;
344 t[i].master = master_time_stamp;
345 t[i].diff = delta;
346 t[i].lat = adjust_latency/4;
347 #endif
350 spin_unlock_irqrestore(&itc_sync_lock, flags);
352 #if DEBUG_ITC_SYNC
353 for (i = 0; i < NUM_ROUNDS; ++i)
354 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
355 t[i].rt, t[i].master, t[i].diff, t[i].lat);
356 #endif
358 printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
359 "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
363 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
365 static inline void __devinit
366 smp_setup_percpu_timer (void)
370 static void __cpuinit
371 smp_callin (void)
373 int cpuid, phys_id, itc_master;
374 struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
375 extern void ia64_init_itm(void);
376 extern volatile int time_keeper_id;
378 #ifdef CONFIG_PERFMON
379 extern void pfm_init_percpu(void);
380 #endif
382 cpuid = smp_processor_id();
383 phys_id = hard_smp_processor_id();
384 itc_master = time_keeper_id;
386 if (cpu_online(cpuid)) {
387 printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
388 phys_id, cpuid);
389 BUG();
392 fix_b0_for_bsp();
394 ipi_call_lock_irq();
395 spin_lock(&vector_lock);
396 /* Setup the per cpu irq handling data structures */
397 __setup_vector_irq(cpuid);
398 notify_cpu_starting(cpuid);
399 cpu_set(cpuid, cpu_online_map);
400 per_cpu(cpu_state, cpuid) = CPU_ONLINE;
401 spin_unlock(&vector_lock);
402 ipi_call_unlock_irq();
404 smp_setup_percpu_timer();
406 ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
408 #ifdef CONFIG_PERFMON
409 pfm_init_percpu();
410 #endif
412 local_irq_enable();
414 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
416 * Synchronize the ITC with the BP. Need to do this after irqs are
417 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
418 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
419 * local_bh_enable(), which bugs out if irqs are not enabled...
421 Dprintk("Going to syncup ITC with ITC Master.\n");
422 ia64_sync_itc(itc_master);
426 * Get our bogomips.
428 ia64_init_itm();
431 * Delay calibration can be skipped if new processor is identical to the
432 * previous processor.
434 last_cpuinfo = cpu_data(cpuid - 1);
435 this_cpuinfo = local_cpu_data;
436 if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
437 last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
438 last_cpuinfo->features != this_cpuinfo->features ||
439 last_cpuinfo->revision != this_cpuinfo->revision ||
440 last_cpuinfo->family != this_cpuinfo->family ||
441 last_cpuinfo->archrev != this_cpuinfo->archrev ||
442 last_cpuinfo->model != this_cpuinfo->model)
443 calibrate_delay();
444 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
446 #ifdef CONFIG_IA32_SUPPORT
447 ia32_gdt_init();
448 #endif
451 * Allow the master to continue.
453 cpu_set(cpuid, cpu_callin_map);
454 Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
459 * Activate a secondary processor. head.S calls this.
461 int __cpuinit
462 start_secondary (void *unused)
464 /* Early console may use I/O ports */
465 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
466 #ifndef CONFIG_PRINTK_TIME
467 Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
468 #endif
469 efi_map_pal_code();
470 cpu_init();
471 preempt_disable();
472 smp_callin();
474 cpu_idle();
475 return 0;
478 struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
480 return NULL;
483 struct create_idle {
484 struct work_struct work;
485 struct task_struct *idle;
486 struct completion done;
487 int cpu;
490 void __cpuinit
491 do_fork_idle(struct work_struct *work)
493 struct create_idle *c_idle =
494 container_of(work, struct create_idle, work);
496 c_idle->idle = fork_idle(c_idle->cpu);
497 complete(&c_idle->done);
500 static int __cpuinit
501 do_boot_cpu (int sapicid, int cpu)
503 int timeout;
504 struct create_idle c_idle = {
505 .work = __WORK_INITIALIZER(c_idle.work, do_fork_idle),
506 .cpu = cpu,
507 .done = COMPLETION_INITIALIZER(c_idle.done),
510 c_idle.idle = get_idle_for_cpu(cpu);
511 if (c_idle.idle) {
512 init_idle(c_idle.idle, cpu);
513 goto do_rest;
517 * We can't use kernel_thread since we must avoid to reschedule the child.
519 if (!keventd_up() || current_is_keventd())
520 c_idle.work.func(&c_idle.work);
521 else {
522 schedule_work(&c_idle.work);
523 wait_for_completion(&c_idle.done);
526 if (IS_ERR(c_idle.idle))
527 panic("failed fork for CPU %d", cpu);
529 set_idle_for_cpu(cpu, c_idle.idle);
531 do_rest:
532 task_for_booting_cpu = c_idle.idle;
534 Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
536 set_brendez_area(cpu);
537 platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
540 * Wait 10s total for the AP to start
542 Dprintk("Waiting on callin_map ...");
543 for (timeout = 0; timeout < 100000; timeout++) {
544 if (cpu_isset(cpu, cpu_callin_map))
545 break; /* It has booted */
546 udelay(100);
548 Dprintk("\n");
550 if (!cpu_isset(cpu, cpu_callin_map)) {
551 printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
552 ia64_cpu_to_sapicid[cpu] = -1;
553 cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */
554 return -EINVAL;
556 return 0;
559 static int __init
560 decay (char *str)
562 int ticks;
563 get_option (&str, &ticks);
564 return 1;
567 __setup("decay=", decay);
570 * Initialize the logical CPU number to SAPICID mapping
572 void __init
573 smp_build_cpu_map (void)
575 int sapicid, cpu, i;
576 int boot_cpu_id = hard_smp_processor_id();
578 for (cpu = 0; cpu < NR_CPUS; cpu++) {
579 ia64_cpu_to_sapicid[cpu] = -1;
582 ia64_cpu_to_sapicid[0] = boot_cpu_id;
583 cpus_clear(cpu_present_map);
584 set_cpu_present(0, true);
585 set_cpu_possible(0, true);
586 for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
587 sapicid = smp_boot_data.cpu_phys_id[i];
588 if (sapicid == boot_cpu_id)
589 continue;
590 set_cpu_present(cpu, true);
591 set_cpu_possible(cpu, true);
592 ia64_cpu_to_sapicid[cpu] = sapicid;
593 cpu++;
598 * Cycle through the APs sending Wakeup IPIs to boot each.
600 void __init
601 smp_prepare_cpus (unsigned int max_cpus)
603 int boot_cpu_id = hard_smp_processor_id();
606 * Initialize the per-CPU profiling counter/multiplier
609 smp_setup_percpu_timer();
612 * We have the boot CPU online for sure.
614 cpu_set(0, cpu_online_map);
615 cpu_set(0, cpu_callin_map);
617 local_cpu_data->loops_per_jiffy = loops_per_jiffy;
618 ia64_cpu_to_sapicid[0] = boot_cpu_id;
620 printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
622 current_thread_info()->cpu = 0;
625 * If SMP should be disabled, then really disable it!
627 if (!max_cpus) {
628 printk(KERN_INFO "SMP mode deactivated.\n");
629 init_cpu_online(cpumask_of(0));
630 init_cpu_present(cpumask_of(0));
631 init_cpu_possible(cpumask_of(0));
632 return;
636 void __devinit smp_prepare_boot_cpu(void)
638 cpu_set(smp_processor_id(), cpu_online_map);
639 cpu_set(smp_processor_id(), cpu_callin_map);
640 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
641 paravirt_post_smp_prepare_boot_cpu();
644 #ifdef CONFIG_HOTPLUG_CPU
645 static inline void
646 clear_cpu_sibling_map(int cpu)
648 int i;
650 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
651 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
652 for_each_cpu_mask(i, cpu_core_map[cpu])
653 cpu_clear(cpu, cpu_core_map[i]);
655 per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
658 static void
659 remove_siblinginfo(int cpu)
661 int last = 0;
663 if (cpu_data(cpu)->threads_per_core == 1 &&
664 cpu_data(cpu)->cores_per_socket == 1) {
665 cpu_clear(cpu, cpu_core_map[cpu]);
666 cpu_clear(cpu, per_cpu(cpu_sibling_map, cpu));
667 return;
670 last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
672 /* remove it from all sibling map's */
673 clear_cpu_sibling_map(cpu);
676 extern void fixup_irqs(void);
678 int migrate_platform_irqs(unsigned int cpu)
680 int new_cpei_cpu;
681 struct irq_desc *desc = NULL;
682 const struct cpumask *mask;
683 int retval = 0;
686 * dont permit CPEI target to removed.
688 if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
689 printk ("CPU (%d) is CPEI Target\n", cpu);
690 if (can_cpei_retarget()) {
692 * Now re-target the CPEI to a different processor
694 new_cpei_cpu = any_online_cpu(cpu_online_map);
695 mask = cpumask_of(new_cpei_cpu);
696 set_cpei_target_cpu(new_cpei_cpu);
697 desc = irq_desc + ia64_cpe_irq;
699 * Switch for now, immediately, we need to do fake intr
700 * as other interrupts, but need to study CPEI behaviour with
701 * polling before making changes.
703 if (desc) {
704 desc->chip->disable(ia64_cpe_irq);
705 desc->chip->set_affinity(ia64_cpe_irq, mask);
706 desc->chip->enable(ia64_cpe_irq);
707 printk ("Re-targetting CPEI to cpu %d\n", new_cpei_cpu);
710 if (!desc) {
711 printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
712 retval = -EBUSY;
715 return retval;
718 /* must be called with cpucontrol mutex held */
719 int __cpu_disable(void)
721 int cpu = smp_processor_id();
724 * dont permit boot processor for now
726 if (cpu == 0 && !bsp_remove_ok) {
727 printk ("Your platform does not support removal of BSP\n");
728 return (-EBUSY);
731 if (ia64_platform_is("sn2")) {
732 if (!sn_cpu_disable_allowed(cpu))
733 return -EBUSY;
736 cpu_clear(cpu, cpu_online_map);
738 if (migrate_platform_irqs(cpu)) {
739 cpu_set(cpu, cpu_online_map);
740 return -EBUSY;
743 remove_siblinginfo(cpu);
744 fixup_irqs();
745 local_flush_tlb_all();
746 cpu_clear(cpu, cpu_callin_map);
747 return 0;
750 void __cpu_die(unsigned int cpu)
752 unsigned int i;
754 for (i = 0; i < 100; i++) {
755 /* They ack this in play_dead by setting CPU_DEAD */
756 if (per_cpu(cpu_state, cpu) == CPU_DEAD)
758 printk ("CPU %d is now offline\n", cpu);
759 return;
761 msleep(100);
763 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
765 #endif /* CONFIG_HOTPLUG_CPU */
767 void
768 smp_cpus_done (unsigned int dummy)
770 int cpu;
771 unsigned long bogosum = 0;
774 * Allow the user to impress friends.
777 for_each_online_cpu(cpu) {
778 bogosum += cpu_data(cpu)->loops_per_jiffy;
781 printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
782 (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
785 static inline void __devinit
786 set_cpu_sibling_map(int cpu)
788 int i;
790 for_each_online_cpu(i) {
791 if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
792 cpu_set(i, cpu_core_map[cpu]);
793 cpu_set(cpu, cpu_core_map[i]);
794 if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
795 cpu_set(i, per_cpu(cpu_sibling_map, cpu));
796 cpu_set(cpu, per_cpu(cpu_sibling_map, i));
802 int __cpuinit
803 __cpu_up (unsigned int cpu)
805 int ret;
806 int sapicid;
808 sapicid = ia64_cpu_to_sapicid[cpu];
809 if (sapicid == -1)
810 return -EINVAL;
813 * Already booted cpu? not valid anymore since we dont
814 * do idle loop tightspin anymore.
816 if (cpu_isset(cpu, cpu_callin_map))
817 return -EINVAL;
819 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
820 /* Processor goes to start_secondary(), sets online flag */
821 ret = do_boot_cpu(sapicid, cpu);
822 if (ret < 0)
823 return ret;
825 if (cpu_data(cpu)->threads_per_core == 1 &&
826 cpu_data(cpu)->cores_per_socket == 1) {
827 cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
828 cpu_set(cpu, cpu_core_map[cpu]);
829 return 0;
832 set_cpu_sibling_map(cpu);
834 return 0;
838 * Assume that CPUs have been discovered by some platform-dependent interface. For
839 * SoftSDV/Lion, that would be ACPI.
841 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
843 void __init
844 init_smp_config(void)
846 struct fptr {
847 unsigned long fp;
848 unsigned long gp;
849 } *ap_startup;
850 long sal_ret;
852 /* Tell SAL where to drop the APs. */
853 ap_startup = (struct fptr *) start_ap;
854 sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
855 ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
856 if (sal_ret < 0)
857 printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
858 ia64_sal_strerror(sal_ret));
862 * identify_siblings(cpu) gets called from identify_cpu. This populates the
863 * information related to logical execution units in per_cpu_data structure.
865 void __devinit
866 identify_siblings(struct cpuinfo_ia64 *c)
868 long status;
869 u16 pltid;
870 pal_logical_to_physical_t info;
872 status = ia64_pal_logical_to_phys(-1, &info);
873 if (status != PAL_STATUS_SUCCESS) {
874 if (status != PAL_STATUS_UNIMPLEMENTED) {
875 printk(KERN_ERR
876 "ia64_pal_logical_to_phys failed with %ld\n",
877 status);
878 return;
881 info.overview_ppid = 0;
882 info.overview_cpp = 1;
883 info.overview_tpc = 1;
886 status = ia64_sal_physical_id_info(&pltid);
887 if (status != PAL_STATUS_SUCCESS) {
888 if (status != PAL_STATUS_UNIMPLEMENTED)
889 printk(KERN_ERR
890 "ia64_sal_pltid failed with %ld\n",
891 status);
892 return;
895 c->socket_id = (pltid << 8) | info.overview_ppid;
897 if (info.overview_cpp == 1 && info.overview_tpc == 1)
898 return;
900 c->cores_per_socket = info.overview_cpp;
901 c->threads_per_core = info.overview_tpc;
902 c->num_log = info.overview_num_log;
904 c->core_id = info.log1_cid;
905 c->thread_id = info.log1_tid;
909 * returns non zero, if multi-threading is enabled
910 * on at least one physical package. Due to hotplug cpu
911 * and (maxcpus=), all threads may not necessarily be enabled
912 * even though the processor supports multi-threading.
914 int is_multithreading_enabled(void)
916 int i, j;
918 for_each_present_cpu(i) {
919 for_each_present_cpu(j) {
920 if (j == i)
921 continue;
922 if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
923 if (cpu_data(j)->core_id == cpu_data(i)->core_id)
924 return 1;
928 return 0;
930 EXPORT_SYMBOL_GPL(is_multithreading_enabled);