2 * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
6 * http://www.algor.co.uk
8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9 * Copyright (C) 2000 MIPS Technologies, Inc.
11 * This program is free software; you can distribute it and/or modify it
12 * under the terms of the GNU General Public License (Version 2) as
13 * published by the Free Software Foundation.
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, write to the Free Software Foundation, Inc.,
22 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
24 * A complete emulator for MIPS coprocessor 1 instructions. This is
25 * required for #float(switch) or #float(trap), where it catches all
26 * COP1 instructions via the "CoProcessor Unusable" exception.
28 * More surprisingly it is also required for #float(ieee), to help out
29 * the hardware fpu at the boundaries of the IEEE-754 representation
30 * (denormalised values, infinities, underflow, etc). It is made
31 * quite nasty because emulation of some non-COP1 instructions is
32 * required, e.g. in branch delay slots.
34 * Note if you know that you won't have an fpu, then you'll get much
35 * better performance by compiling with -msoft-float!
37 #include <linux/sched.h>
38 #include <linux/debugfs.h>
41 #include <asm/bootinfo.h>
42 #include <asm/processor.h>
43 #include <asm/ptrace.h>
44 #include <asm/signal.h>
45 #include <asm/mipsregs.h>
46 #include <asm/fpu_emulator.h>
47 #include <asm/uaccess.h>
48 #include <asm/branch.h>
52 /* Strap kernel emulator for full MIPS IV emulation */
59 /* Function which emulates a floating point instruction. */
61 static int fpu_emu(struct pt_regs
*, struct mips_fpu_struct
*,
64 #if __mips >= 4 && __mips != 32
65 static int fpux_emu(struct pt_regs
*,
66 struct mips_fpu_struct
*, mips_instruction
);
69 /* Further private data for which no space exists in mips_fpu_struct */
71 struct mips_fpu_emulator_stats fpuemustats
;
73 /* Control registers */
75 #define FPCREG_RID 0 /* $0 = revision id */
76 #define FPCREG_CSR 31 /* $31 = csr */
78 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
79 static const unsigned char ieee_rm
[4] = {
80 [FPU_CSR_RN
] = IEEE754_RN
,
81 [FPU_CSR_RZ
] = IEEE754_RZ
,
82 [FPU_CSR_RU
] = IEEE754_RU
,
83 [FPU_CSR_RD
] = IEEE754_RD
,
85 /* Convert IEEE library modes to Mips rounding mode (0..3). */
86 static const unsigned char mips_rm
[4] = {
87 [IEEE754_RN
] = FPU_CSR_RN
,
88 [IEEE754_RZ
] = FPU_CSR_RZ
,
89 [IEEE754_RD
] = FPU_CSR_RD
,
90 [IEEE754_RU
] = FPU_CSR_RU
,
94 /* convert condition code register number to csr bit */
95 static const unsigned int fpucondbit
[8] = {
109 * Redundant with logic already in kernel/branch.c,
110 * embedded in compute_return_epc. At some point,
111 * a single subroutine should be used across both
114 static int isBranchInstr(mips_instruction
* i
)
116 switch (MIPSInst_OPCODE(*i
)) {
118 switch (MIPSInst_FUNC(*i
)) {
126 switch (MIPSInst_RT(*i
)) {
156 if (MIPSInst_RS(*i
) == bc_op
)
165 * In the Linux kernel, we support selection of FPR format on the
166 * basis of the Status.FR bit. This does imply that, if a full 32
167 * FPRs are desired, there needs to be a flip-flop that can be written
168 * to one at that bit position. In any case, O32 MIPS ABI uses
169 * only the even FPRs (Status.FR = 0).
172 #define CP0_STATUS_FR_SUPPORT
174 #ifdef CP0_STATUS_FR_SUPPORT
175 #define FR_BIT ST0_FR
180 #define SIFROMREG(si, x) ((si) = \
181 (xcp->cp0_status & FR_BIT) || !(x & 1) ? \
183 (int)(ctx->fpr[x & ~1] >> 32 ))
184 #define SITOREG(si, x) (ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] = \
185 (xcp->cp0_status & FR_BIT) || !(x & 1) ? \
186 ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
187 ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
189 #define DIFROMREG(di, x) ((di) = \
190 ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)])
191 #define DITOREG(di, x) (ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] \
194 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
195 #define SPTOREG(sp, x) SITOREG((sp).bits, x)
196 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x)
197 #define DPTOREG(dp, x) DITOREG((dp).bits, x)
200 * Emulate the single floating point instruction pointed at by EPC.
201 * Two instructions if the instruction is in a branch delay slot.
204 static int cop1Emulate(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
)
207 unsigned long emulpc
, contpc
;
210 if (get_user(ir
, (mips_instruction __user
*) xcp
->cp0_epc
)) {
211 fpuemustats
.errors
++;
215 /* XXX NEC Vr54xx bug workaround */
216 if ((xcp
->cp0_cause
& CAUSEF_BD
) && !isBranchInstr(&ir
))
217 xcp
->cp0_cause
&= ~CAUSEF_BD
;
219 if (xcp
->cp0_cause
& CAUSEF_BD
) {
221 * The instruction to be emulated is in a branch delay slot
222 * which means that we have to emulate the branch instruction
223 * BEFORE we do the cop1 instruction.
225 * This branch could be a COP1 branch, but in that case we
226 * would have had a trap for that instruction, and would not
227 * come through this route.
229 * Linux MIPS branch emulator operates on context, updating the
232 emulpc
= xcp
->cp0_epc
+ 4; /* Snapshot emulation target */
234 if (__compute_return_epc(xcp
)) {
236 printk("failed to emulate branch at %p\n",
237 (void *) (xcp
->cp0_epc
));
241 if (get_user(ir
, (mips_instruction __user
*) emulpc
)) {
242 fpuemustats
.errors
++;
245 /* __compute_return_epc() will have updated cp0_epc */
246 contpc
= xcp
->cp0_epc
;
247 /* In order not to confuse ptrace() et al, tweak context */
248 xcp
->cp0_epc
= emulpc
- 4;
250 emulpc
= xcp
->cp0_epc
;
251 contpc
= xcp
->cp0_epc
+ 4;
255 fpuemustats
.emulated
++;
256 switch (MIPSInst_OPCODE(ir
)) {
258 u64 __user
*va
= (u64 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
263 if (get_user(val
, va
)) {
264 fpuemustats
.errors
++;
267 DITOREG(val
, MIPSInst_RT(ir
));
272 u64 __user
*va
= (u64 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
276 fpuemustats
.stores
++;
277 DIFROMREG(val
, MIPSInst_RT(ir
));
278 if (put_user(val
, va
)) {
279 fpuemustats
.errors
++;
286 u32 __user
*va
= (u32 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
291 if (get_user(val
, va
)) {
292 fpuemustats
.errors
++;
295 SITOREG(val
, MIPSInst_RT(ir
));
300 u32 __user
*va
= (u32 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
304 fpuemustats
.stores
++;
305 SIFROMREG(val
, MIPSInst_RT(ir
));
306 if (put_user(val
, va
)) {
307 fpuemustats
.errors
++;
314 switch (MIPSInst_RS(ir
)) {
316 #if defined(__mips64)
318 /* copregister fs -> gpr[rt] */
319 if (MIPSInst_RT(ir
) != 0) {
320 DIFROMREG(xcp
->regs
[MIPSInst_RT(ir
)],
326 /* copregister fs <- rt */
327 DITOREG(xcp
->regs
[MIPSInst_RT(ir
)], MIPSInst_RD(ir
));
332 /* copregister rd -> gpr[rt] */
333 if (MIPSInst_RT(ir
) != 0) {
334 SIFROMREG(xcp
->regs
[MIPSInst_RT(ir
)],
340 /* copregister rd <- rt */
341 SITOREG(xcp
->regs
[MIPSInst_RT(ir
)], MIPSInst_RD(ir
));
345 /* cop control register rd -> gpr[rt] */
348 if (MIPSInst_RD(ir
) == FPCREG_CSR
) {
350 value
= (value
& ~0x3) | mips_rm
[value
& 0x3];
352 printk("%p gpr[%d]<-csr=%08x\n",
353 (void *) (xcp
->cp0_epc
),
354 MIPSInst_RT(ir
), value
);
357 else if (MIPSInst_RD(ir
) == FPCREG_RID
)
362 xcp
->regs
[MIPSInst_RT(ir
)] = value
;
367 /* copregister rd <- rt */
370 if (MIPSInst_RT(ir
) == 0)
373 value
= xcp
->regs
[MIPSInst_RT(ir
)];
375 /* we only have one writable control reg
377 if (MIPSInst_RD(ir
) == FPCREG_CSR
) {
379 printk("%p gpr[%d]->csr=%08x\n",
380 (void *) (xcp
->cp0_epc
),
381 MIPSInst_RT(ir
), value
);
383 value
&= (FPU_CSR_FLUSH
| FPU_CSR_ALL_E
| FPU_CSR_ALL_S
| 0x03);
384 ctx
->fcr31
&= ~(FPU_CSR_FLUSH
| FPU_CSR_ALL_E
| FPU_CSR_ALL_S
| 0x03);
385 /* convert to ieee library modes */
386 ctx
->fcr31
|= (value
& ~0x3) | ieee_rm
[value
& 0x3];
388 if ((ctx
->fcr31
>> 5) & ctx
->fcr31
& FPU_CSR_ALL_E
) {
397 if (xcp
->cp0_cause
& CAUSEF_BD
)
401 cond
= ctx
->fcr31
& fpucondbit
[MIPSInst_RT(ir
) >> 2];
403 cond
= ctx
->fcr31
& FPU_CSR_COND
;
405 switch (MIPSInst_RT(ir
) & 3) {
416 /* thats an illegal instruction */
420 xcp
->cp0_cause
|= CAUSEF_BD
;
422 /* branch taken: emulate dslot
426 contpc
= (xcp
->cp0_epc
+
427 (MIPSInst_SIMM(ir
) << 2));
430 (mips_instruction __user
*) xcp
->cp0_epc
)) {
431 fpuemustats
.errors
++;
435 switch (MIPSInst_OPCODE(ir
)) {
438 #if (__mips >= 2 || defined(__mips64))
443 #if __mips >= 4 && __mips != 32
446 /* its one of ours */
450 if (MIPSInst_FUNC(ir
) == movc_op
)
457 * Single step the non-cp1
458 * instruction in the dslot
460 return mips_dsemul(xcp
, ir
, contpc
);
463 /* branch not taken */
466 * branch likely nullifies
472 * else continue & execute
473 * dslot as normal insn
481 if (!(MIPSInst_RS(ir
) & 0x10))
486 /* a real fpu computation instruction */
487 if ((sig
= fpu_emu(xcp
, ctx
, ir
)))
493 #if __mips >= 4 && __mips != 32
497 if ((sig
= fpux_emu(xcp
, ctx
, ir
)))
505 if (MIPSInst_FUNC(ir
) != movc_op
)
507 cond
= fpucondbit
[MIPSInst_RT(ir
) >> 2];
508 if (((ctx
->fcr31
& cond
) != 0) == ((MIPSInst_RT(ir
) & 1) != 0))
509 xcp
->regs
[MIPSInst_RD(ir
)] =
510 xcp
->regs
[MIPSInst_RS(ir
)];
519 xcp
->cp0_epc
= contpc
;
520 xcp
->cp0_cause
&= ~CAUSEF_BD
;
526 * Conversion table from MIPS compare ops 48-63
527 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
529 static const unsigned char cmptab
[8] = {
530 0, /* cmp_0 (sig) cmp_sf */
531 IEEE754_CUN
, /* cmp_un (sig) cmp_ngle */
532 IEEE754_CEQ
, /* cmp_eq (sig) cmp_seq */
533 IEEE754_CEQ
| IEEE754_CUN
, /* cmp_ueq (sig) cmp_ngl */
534 IEEE754_CLT
, /* cmp_olt (sig) cmp_lt */
535 IEEE754_CLT
| IEEE754_CUN
, /* cmp_ult (sig) cmp_nge */
536 IEEE754_CLT
| IEEE754_CEQ
, /* cmp_ole (sig) cmp_le */
537 IEEE754_CLT
| IEEE754_CEQ
| IEEE754_CUN
, /* cmp_ule (sig) cmp_ngt */
541 #if __mips >= 4 && __mips != 32
544 * Additional MIPS4 instructions
547 #define DEF3OP(name, p, f1, f2, f3) \
548 static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
551 struct _ieee754_csr ieee754_csr_save; \
553 ieee754_csr_save = ieee754_csr; \
555 ieee754_csr_save.cx |= ieee754_csr.cx; \
556 ieee754_csr_save.sx |= ieee754_csr.sx; \
558 ieee754_csr.cx |= ieee754_csr_save.cx; \
559 ieee754_csr.sx |= ieee754_csr_save.sx; \
563 static ieee754dp
fpemu_dp_recip(ieee754dp d
)
565 return ieee754dp_div(ieee754dp_one(0), d
);
568 static ieee754dp
fpemu_dp_rsqrt(ieee754dp d
)
570 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d
));
573 static ieee754sp
fpemu_sp_recip(ieee754sp s
)
575 return ieee754sp_div(ieee754sp_one(0), s
);
578 static ieee754sp
fpemu_sp_rsqrt(ieee754sp s
)
580 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s
));
583 DEF3OP(madd
, sp
, ieee754sp_mul
, ieee754sp_add
, );
584 DEF3OP(msub
, sp
, ieee754sp_mul
, ieee754sp_sub
, );
585 DEF3OP(nmadd
, sp
, ieee754sp_mul
, ieee754sp_add
, ieee754sp_neg
);
586 DEF3OP(nmsub
, sp
, ieee754sp_mul
, ieee754sp_sub
, ieee754sp_neg
);
587 DEF3OP(madd
, dp
, ieee754dp_mul
, ieee754dp_add
, );
588 DEF3OP(msub
, dp
, ieee754dp_mul
, ieee754dp_sub
, );
589 DEF3OP(nmadd
, dp
, ieee754dp_mul
, ieee754dp_add
, ieee754dp_neg
);
590 DEF3OP(nmsub
, dp
, ieee754dp_mul
, ieee754dp_sub
, ieee754dp_neg
);
592 static int fpux_emu(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
595 unsigned rcsr
= 0; /* resulting csr */
597 fpuemustats
.cp1xops
++;
599 switch (MIPSInst_FMA_FFMT(ir
)) {
602 ieee754sp(*handler
) (ieee754sp
, ieee754sp
, ieee754sp
);
603 ieee754sp fd
, fr
, fs
, ft
;
607 switch (MIPSInst_FUNC(ir
)) {
609 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
610 xcp
->regs
[MIPSInst_FT(ir
)]);
613 if (get_user(val
, va
)) {
614 fpuemustats
.errors
++;
617 SITOREG(val
, MIPSInst_FD(ir
));
621 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
622 xcp
->regs
[MIPSInst_FT(ir
)]);
624 fpuemustats
.stores
++;
626 SIFROMREG(val
, MIPSInst_FS(ir
));
627 if (put_user(val
, va
)) {
628 fpuemustats
.errors
++;
634 handler
= fpemu_sp_madd
;
637 handler
= fpemu_sp_msub
;
640 handler
= fpemu_sp_nmadd
;
643 handler
= fpemu_sp_nmsub
;
647 SPFROMREG(fr
, MIPSInst_FR(ir
));
648 SPFROMREG(fs
, MIPSInst_FS(ir
));
649 SPFROMREG(ft
, MIPSInst_FT(ir
));
650 fd
= (*handler
) (fr
, fs
, ft
);
651 SPTOREG(fd
, MIPSInst_FD(ir
));
654 if (ieee754_cxtest(IEEE754_INEXACT
))
655 rcsr
|= FPU_CSR_INE_X
| FPU_CSR_INE_S
;
656 if (ieee754_cxtest(IEEE754_UNDERFLOW
))
657 rcsr
|= FPU_CSR_UDF_X
| FPU_CSR_UDF_S
;
658 if (ieee754_cxtest(IEEE754_OVERFLOW
))
659 rcsr
|= FPU_CSR_OVF_X
| FPU_CSR_OVF_S
;
660 if (ieee754_cxtest(IEEE754_INVALID_OPERATION
))
661 rcsr
|= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
663 ctx
->fcr31
= (ctx
->fcr31
& ~FPU_CSR_ALL_X
) | rcsr
;
664 if ((ctx
->fcr31
>> 5) & ctx
->fcr31
& FPU_CSR_ALL_E
) {
665 /*printk ("SIGFPE: fpu csr = %08x\n",
679 ieee754dp(*handler
) (ieee754dp
, ieee754dp
, ieee754dp
);
680 ieee754dp fd
, fr
, fs
, ft
;
684 switch (MIPSInst_FUNC(ir
)) {
686 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
687 xcp
->regs
[MIPSInst_FT(ir
)]);
690 if (get_user(val
, va
)) {
691 fpuemustats
.errors
++;
694 DITOREG(val
, MIPSInst_FD(ir
));
698 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
699 xcp
->regs
[MIPSInst_FT(ir
)]);
701 fpuemustats
.stores
++;
702 DIFROMREG(val
, MIPSInst_FS(ir
));
703 if (put_user(val
, va
)) {
704 fpuemustats
.errors
++;
710 handler
= fpemu_dp_madd
;
713 handler
= fpemu_dp_msub
;
716 handler
= fpemu_dp_nmadd
;
719 handler
= fpemu_dp_nmsub
;
723 DPFROMREG(fr
, MIPSInst_FR(ir
));
724 DPFROMREG(fs
, MIPSInst_FS(ir
));
725 DPFROMREG(ft
, MIPSInst_FT(ir
));
726 fd
= (*handler
) (fr
, fs
, ft
);
727 DPTOREG(fd
, MIPSInst_FD(ir
));
737 if (MIPSInst_FUNC(ir
) != pfetch_op
) {
740 /* ignore prefx operation */
754 * Emulate a single COP1 arithmetic instruction.
756 static int fpu_emu(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
759 int rfmt
; /* resulting format */
760 unsigned rcsr
= 0; /* resulting csr */
769 } rv
; /* resulting value */
771 fpuemustats
.cp1ops
++;
772 switch (rfmt
= (MIPSInst_FFMT(ir
) & 0xf)) {
775 ieee754sp(*b
) (ieee754sp
, ieee754sp
);
776 ieee754sp(*u
) (ieee754sp
);
779 switch (MIPSInst_FUNC(ir
)) {
782 handler
.b
= ieee754sp_add
;
785 handler
.b
= ieee754sp_sub
;
788 handler
.b
= ieee754sp_mul
;
791 handler
.b
= ieee754sp_div
;
795 #if __mips >= 2 || defined(__mips64)
797 handler
.u
= ieee754sp_sqrt
;
800 #if __mips >= 4 && __mips != 32
802 handler
.u
= fpemu_sp_rsqrt
;
805 handler
.u
= fpemu_sp_recip
;
810 cond
= fpucondbit
[MIPSInst_FT(ir
) >> 2];
811 if (((ctx
->fcr31
& cond
) != 0) !=
812 ((MIPSInst_FT(ir
) & 1) != 0))
814 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
817 if (xcp
->regs
[MIPSInst_FT(ir
)] != 0)
819 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
822 if (xcp
->regs
[MIPSInst_FT(ir
)] == 0)
824 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
828 handler
.u
= ieee754sp_abs
;
831 handler
.u
= ieee754sp_neg
;
835 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
838 /* binary op on handler */
843 SPFROMREG(fs
, MIPSInst_FS(ir
));
844 SPFROMREG(ft
, MIPSInst_FT(ir
));
846 rv
.s
= (*handler
.b
) (fs
, ft
);
853 SPFROMREG(fs
, MIPSInst_FS(ir
));
854 rv
.s
= (*handler
.u
) (fs
);
858 if (ieee754_cxtest(IEEE754_INEXACT
))
859 rcsr
|= FPU_CSR_INE_X
| FPU_CSR_INE_S
;
860 if (ieee754_cxtest(IEEE754_UNDERFLOW
))
861 rcsr
|= FPU_CSR_UDF_X
| FPU_CSR_UDF_S
;
862 if (ieee754_cxtest(IEEE754_OVERFLOW
))
863 rcsr
|= FPU_CSR_OVF_X
| FPU_CSR_OVF_S
;
864 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE
))
865 rcsr
|= FPU_CSR_DIV_X
| FPU_CSR_DIV_S
;
866 if (ieee754_cxtest(IEEE754_INVALID_OPERATION
))
867 rcsr
|= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
872 return SIGILL
; /* not defined */
876 SPFROMREG(fs
, MIPSInst_FS(ir
));
877 rv
.d
= ieee754dp_fsp(fs
);
884 SPFROMREG(fs
, MIPSInst_FS(ir
));
885 rv
.w
= ieee754sp_tint(fs
);
890 #if __mips >= 2 || defined(__mips64)
895 unsigned int oldrm
= ieee754_csr
.rm
;
898 SPFROMREG(fs
, MIPSInst_FS(ir
));
899 ieee754_csr
.rm
= ieee_rm
[MIPSInst_FUNC(ir
) & 0x3];
900 rv
.w
= ieee754sp_tint(fs
);
901 ieee754_csr
.rm
= oldrm
;
905 #endif /* __mips >= 2 */
907 #if defined(__mips64)
911 SPFROMREG(fs
, MIPSInst_FS(ir
));
912 rv
.l
= ieee754sp_tlong(fs
);
921 unsigned int oldrm
= ieee754_csr
.rm
;
924 SPFROMREG(fs
, MIPSInst_FS(ir
));
925 ieee754_csr
.rm
= ieee_rm
[MIPSInst_FUNC(ir
) & 0x3];
926 rv
.l
= ieee754sp_tlong(fs
);
927 ieee754_csr
.rm
= oldrm
;
931 #endif /* defined(__mips64) */
934 if (MIPSInst_FUNC(ir
) >= fcmp_op
) {
935 unsigned cmpop
= MIPSInst_FUNC(ir
) - fcmp_op
;
938 SPFROMREG(fs
, MIPSInst_FS(ir
));
939 SPFROMREG(ft
, MIPSInst_FT(ir
));
940 rv
.w
= ieee754sp_cmp(fs
, ft
,
941 cmptab
[cmpop
& 0x7], cmpop
& 0x8);
943 if ((cmpop
& 0x8) && ieee754_cxtest
944 (IEEE754_INVALID_OPERATION
))
945 rcsr
= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
960 ieee754dp(*b
) (ieee754dp
, ieee754dp
);
961 ieee754dp(*u
) (ieee754dp
);
964 switch (MIPSInst_FUNC(ir
)) {
967 handler
.b
= ieee754dp_add
;
970 handler
.b
= ieee754dp_sub
;
973 handler
.b
= ieee754dp_mul
;
976 handler
.b
= ieee754dp_div
;
980 #if __mips >= 2 || defined(__mips64)
982 handler
.u
= ieee754dp_sqrt
;
985 #if __mips >= 4 && __mips != 32
987 handler
.u
= fpemu_dp_rsqrt
;
990 handler
.u
= fpemu_dp_recip
;
995 cond
= fpucondbit
[MIPSInst_FT(ir
) >> 2];
996 if (((ctx
->fcr31
& cond
) != 0) !=
997 ((MIPSInst_FT(ir
) & 1) != 0))
999 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
1002 if (xcp
->regs
[MIPSInst_FT(ir
)] != 0)
1004 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
1007 if (xcp
->regs
[MIPSInst_FT(ir
)] == 0)
1009 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
1013 handler
.u
= ieee754dp_abs
;
1017 handler
.u
= ieee754dp_neg
;
1022 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
1025 /* binary op on handler */
1029 DPFROMREG(fs
, MIPSInst_FS(ir
));
1030 DPFROMREG(ft
, MIPSInst_FT(ir
));
1032 rv
.d
= (*handler
.b
) (fs
, ft
);
1038 DPFROMREG(fs
, MIPSInst_FS(ir
));
1039 rv
.d
= (*handler
.u
) (fs
);
1043 /* unary conv ops */
1047 DPFROMREG(fs
, MIPSInst_FS(ir
));
1048 rv
.s
= ieee754sp_fdp(fs
);
1053 return SIGILL
; /* not defined */
1058 DPFROMREG(fs
, MIPSInst_FS(ir
));
1059 rv
.w
= ieee754dp_tint(fs
); /* wrong */
1064 #if __mips >= 2 || defined(__mips64)
1069 unsigned int oldrm
= ieee754_csr
.rm
;
1072 DPFROMREG(fs
, MIPSInst_FS(ir
));
1073 ieee754_csr
.rm
= ieee_rm
[MIPSInst_FUNC(ir
) & 0x3];
1074 rv
.w
= ieee754dp_tint(fs
);
1075 ieee754_csr
.rm
= oldrm
;
1081 #if defined(__mips64)
1085 DPFROMREG(fs
, MIPSInst_FS(ir
));
1086 rv
.l
= ieee754dp_tlong(fs
);
1095 unsigned int oldrm
= ieee754_csr
.rm
;
1098 DPFROMREG(fs
, MIPSInst_FS(ir
));
1099 ieee754_csr
.rm
= ieee_rm
[MIPSInst_FUNC(ir
) & 0x3];
1100 rv
.l
= ieee754dp_tlong(fs
);
1101 ieee754_csr
.rm
= oldrm
;
1105 #endif /* __mips >= 3 */
1108 if (MIPSInst_FUNC(ir
) >= fcmp_op
) {
1109 unsigned cmpop
= MIPSInst_FUNC(ir
) - fcmp_op
;
1112 DPFROMREG(fs
, MIPSInst_FS(ir
));
1113 DPFROMREG(ft
, MIPSInst_FT(ir
));
1114 rv
.w
= ieee754dp_cmp(fs
, ft
,
1115 cmptab
[cmpop
& 0x7], cmpop
& 0x8);
1120 (IEEE754_INVALID_OPERATION
))
1121 rcsr
= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
1137 switch (MIPSInst_FUNC(ir
)) {
1139 /* convert word to single precision real */
1140 SPFROMREG(fs
, MIPSInst_FS(ir
));
1141 rv
.s
= ieee754sp_fint(fs
.bits
);
1145 /* convert word to double precision real */
1146 SPFROMREG(fs
, MIPSInst_FS(ir
));
1147 rv
.d
= ieee754dp_fint(fs
.bits
);
1156 #if defined(__mips64)
1158 switch (MIPSInst_FUNC(ir
)) {
1160 /* convert long to single precision real */
1161 rv
.s
= ieee754sp_flong(ctx
->fpr
[MIPSInst_FS(ir
)]);
1165 /* convert long to double precision real */
1166 rv
.d
= ieee754dp_flong(ctx
->fpr
[MIPSInst_FS(ir
)]);
1181 * Update the fpu CSR register for this operation.
1182 * If an exception is required, generate a tidy SIGFPE exception,
1183 * without updating the result register.
1184 * Note: cause exception bits do not accumulate, they are rewritten
1185 * for each op; only the flag/sticky bits accumulate.
1187 ctx
->fcr31
= (ctx
->fcr31
& ~FPU_CSR_ALL_X
) | rcsr
;
1188 if ((ctx
->fcr31
>> 5) & ctx
->fcr31
& FPU_CSR_ALL_E
) {
1189 /*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1194 * Now we can safely write the result back to the register file.
1199 cond
= fpucondbit
[MIPSInst_FD(ir
) >> 2];
1201 cond
= FPU_CSR_COND
;
1206 ctx
->fcr31
&= ~cond
;
1210 DPTOREG(rv
.d
, MIPSInst_FD(ir
));
1213 SPTOREG(rv
.s
, MIPSInst_FD(ir
));
1216 SITOREG(rv
.w
, MIPSInst_FD(ir
));
1218 #if defined(__mips64)
1220 DITOREG(rv
.l
, MIPSInst_FD(ir
));
1230 int fpu_emulator_cop1Handler(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
1233 unsigned long oldepc
, prevepc
;
1234 mips_instruction insn
;
1237 oldepc
= xcp
->cp0_epc
;
1239 prevepc
= xcp
->cp0_epc
;
1241 if (get_user(insn
, (mips_instruction __user
*) xcp
->cp0_epc
)) {
1242 fpuemustats
.errors
++;
1246 xcp
->cp0_epc
+= 4; /* skip nops */
1249 * The 'ieee754_csr' is an alias of
1250 * ctx->fcr31. No need to copy ctx->fcr31 to
1251 * ieee754_csr. But ieee754_csr.rm is ieee
1252 * library modes. (not mips rounding mode)
1254 /* convert to ieee library modes */
1255 ieee754_csr
.rm
= ieee_rm
[ieee754_csr
.rm
];
1256 sig
= cop1Emulate(xcp
, ctx
);
1257 /* revert to mips rounding mode */
1258 ieee754_csr
.rm
= mips_rm
[ieee754_csr
.rm
];
1267 } while (xcp
->cp0_epc
> prevepc
);
1269 /* SIGILL indicates a non-fpu instruction */
1270 if (sig
== SIGILL
&& xcp
->cp0_epc
!= oldepc
)
1271 /* but if epc has advanced, then ignore it */
1277 #ifdef CONFIG_DEBUG_FS
1278 extern struct dentry
*mips_debugfs_dir
;
1279 static int __init
debugfs_fpuemu(void)
1281 struct dentry
*d
, *dir
;
1286 } vars
[] __initdata
= {
1287 { "emulated", &fpuemustats
.emulated
},
1288 { "loads", &fpuemustats
.loads
},
1289 { "stores", &fpuemustats
.stores
},
1290 { "cp1ops", &fpuemustats
.cp1ops
},
1291 { "cp1xops", &fpuemustats
.cp1xops
},
1292 { "errors", &fpuemustats
.errors
},
1295 if (!mips_debugfs_dir
)
1297 dir
= debugfs_create_dir("fpuemustats", mips_debugfs_dir
);
1300 for (i
= 0; i
< ARRAY_SIZE(vars
); i
++) {
1301 d
= debugfs_create_u32(vars
[i
].name
, S_IRUGO
, dir
, vars
[i
].v
);
1307 __initcall(debugfs_fpuemu
);