Linux 2.6.31.6
[linux/fpc-iii.git] / arch / mips / oprofile / op_model_rm9000.c
blob3aa81384966de8e726a5ab6ea1222d1ba6e8c09e
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2004 by Ralf Baechle
7 */
8 #include <linux/init.h>
9 #include <linux/oprofile.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp.h>
13 #include "op_impl.h"
15 #define RM9K_COUNTER1_EVENT(event) ((event) << 0)
16 #define RM9K_COUNTER1_SUPERVISOR (1ULL << 7)
17 #define RM9K_COUNTER1_KERNEL (1ULL << 8)
18 #define RM9K_COUNTER1_USER (1ULL << 9)
19 #define RM9K_COUNTER1_ENABLE (1ULL << 10)
20 #define RM9K_COUNTER1_OVERFLOW (1ULL << 15)
22 #define RM9K_COUNTER2_EVENT(event) ((event) << 16)
23 #define RM9K_COUNTER2_SUPERVISOR (1ULL << 23)
24 #define RM9K_COUNTER2_KERNEL (1ULL << 24)
25 #define RM9K_COUNTER2_USER (1ULL << 25)
26 #define RM9K_COUNTER2_ENABLE (1ULL << 26)
27 #define RM9K_COUNTER2_OVERFLOW (1ULL << 31)
29 extern unsigned int rm9000_perfcount_irq;
31 static struct rm9k_register_config {
32 unsigned int control;
33 unsigned int reset_counter1;
34 unsigned int reset_counter2;
35 } reg;
37 /* Compute all of the registers in preparation for enabling profiling. */
39 static void rm9000_reg_setup(struct op_counter_config *ctr)
41 unsigned int control = 0;
43 /* Compute the performance counter control word. */
44 /* For now count kernel and user mode */
45 if (ctr[0].enabled)
46 control |= RM9K_COUNTER1_EVENT(ctr[0].event) |
47 RM9K_COUNTER1_KERNEL |
48 RM9K_COUNTER1_USER |
49 RM9K_COUNTER1_ENABLE;
50 if (ctr[1].enabled)
51 control |= RM9K_COUNTER2_EVENT(ctr[1].event) |
52 RM9K_COUNTER2_KERNEL |
53 RM9K_COUNTER2_USER |
54 RM9K_COUNTER2_ENABLE;
55 reg.control = control;
57 reg.reset_counter1 = 0x80000000 - ctr[0].count;
58 reg.reset_counter2 = 0x80000000 - ctr[1].count;
61 /* Program all of the registers in preparation for enabling profiling. */
63 static void rm9000_cpu_setup(void *args)
65 uint64_t perfcount;
67 perfcount = ((uint64_t) reg.reset_counter2 << 32) | reg.reset_counter1;
68 write_c0_perfcount(perfcount);
71 static void rm9000_cpu_start(void *args)
73 /* Start all counters on current CPU */
74 write_c0_perfcontrol(reg.control);
77 static void rm9000_cpu_stop(void *args)
79 /* Stop all counters on current CPU */
80 write_c0_perfcontrol(0);
83 static irqreturn_t rm9000_perfcount_handler(int irq, void *dev_id)
85 unsigned int control = read_c0_perfcontrol();
86 struct pt_regs *regs = get_irq_regs();
87 uint32_t counter1, counter2;
88 uint64_t counters;
91 * RM9000 combines two 32-bit performance counters into a single
92 * 64-bit coprocessor zero register. To avoid a race updating the
93 * registers we need to stop the counters while we're messing with
94 * them ...
96 write_c0_perfcontrol(0);
98 counters = read_c0_perfcount();
99 counter1 = counters;
100 counter2 = counters >> 32;
102 if (control & RM9K_COUNTER1_OVERFLOW) {
103 oprofile_add_sample(regs, 0);
104 counter1 = reg.reset_counter1;
106 if (control & RM9K_COUNTER2_OVERFLOW) {
107 oprofile_add_sample(regs, 1);
108 counter2 = reg.reset_counter2;
111 counters = ((uint64_t)counter2 << 32) | counter1;
112 write_c0_perfcount(counters);
113 write_c0_perfcontrol(reg.control);
115 return IRQ_HANDLED;
118 static int __init rm9000_init(void)
120 return request_irq(rm9000_perfcount_irq, rm9000_perfcount_handler,
121 0, "Perfcounter", NULL);
124 static void rm9000_exit(void)
126 free_irq(rm9000_perfcount_irq, NULL);
129 struct op_mips_model op_model_rm9000_ops = {
130 .reg_setup = rm9000_reg_setup,
131 .cpu_setup = rm9000_cpu_setup,
132 .init = rm9000_init,
133 .exit = rm9000_exit,
134 .cpu_start = rm9000_cpu_start,
135 .cpu_stop = rm9000_cpu_stop,
136 .cpu_type = "mips/rm9000",
137 .num_counters = 2