Linux 2.6.31.6
[linux/fpc-iii.git] / arch / powerpc / sysdev / qe_lib / qe_ic.c
blob074905c3ee5a94d80fb3e0daa86e88b8f77f9650
1 /*
2 * arch/powerpc/sysdev/qe_lib/qe_ic.c
4 * Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved.
6 * Author: Li Yang <leoli@freescale.com>
7 * Based on code from Shlomi Gridish <gridish@freescale.com>
9 * QUICC ENGINE Interrupt Controller
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/reboot.h>
21 #include <linux/slab.h>
22 #include <linux/stddef.h>
23 #include <linux/sched.h>
24 #include <linux/signal.h>
25 #include <linux/sysdev.h>
26 #include <linux/device.h>
27 #include <linux/bootmem.h>
28 #include <linux/spinlock.h>
29 #include <asm/irq.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/qe_ic.h>
34 #include "qe_ic.h"
36 static DEFINE_SPINLOCK(qe_ic_lock);
38 static struct qe_ic_info qe_ic_info[] = {
39 [1] = {
40 .mask = 0x00008000,
41 .mask_reg = QEIC_CIMR,
42 .pri_code = 0,
43 .pri_reg = QEIC_CIPWCC,
45 [2] = {
46 .mask = 0x00004000,
47 .mask_reg = QEIC_CIMR,
48 .pri_code = 1,
49 .pri_reg = QEIC_CIPWCC,
51 [3] = {
52 .mask = 0x00002000,
53 .mask_reg = QEIC_CIMR,
54 .pri_code = 2,
55 .pri_reg = QEIC_CIPWCC,
57 [10] = {
58 .mask = 0x00000040,
59 .mask_reg = QEIC_CIMR,
60 .pri_code = 1,
61 .pri_reg = QEIC_CIPZCC,
63 [11] = {
64 .mask = 0x00000020,
65 .mask_reg = QEIC_CIMR,
66 .pri_code = 2,
67 .pri_reg = QEIC_CIPZCC,
69 [12] = {
70 .mask = 0x00000010,
71 .mask_reg = QEIC_CIMR,
72 .pri_code = 3,
73 .pri_reg = QEIC_CIPZCC,
75 [13] = {
76 .mask = 0x00000008,
77 .mask_reg = QEIC_CIMR,
78 .pri_code = 4,
79 .pri_reg = QEIC_CIPZCC,
81 [14] = {
82 .mask = 0x00000004,
83 .mask_reg = QEIC_CIMR,
84 .pri_code = 5,
85 .pri_reg = QEIC_CIPZCC,
87 [15] = {
88 .mask = 0x00000002,
89 .mask_reg = QEIC_CIMR,
90 .pri_code = 6,
91 .pri_reg = QEIC_CIPZCC,
93 [20] = {
94 .mask = 0x10000000,
95 .mask_reg = QEIC_CRIMR,
96 .pri_code = 3,
97 .pri_reg = QEIC_CIPRTA,
99 [25] = {
100 .mask = 0x00800000,
101 .mask_reg = QEIC_CRIMR,
102 .pri_code = 0,
103 .pri_reg = QEIC_CIPRTB,
105 [26] = {
106 .mask = 0x00400000,
107 .mask_reg = QEIC_CRIMR,
108 .pri_code = 1,
109 .pri_reg = QEIC_CIPRTB,
111 [27] = {
112 .mask = 0x00200000,
113 .mask_reg = QEIC_CRIMR,
114 .pri_code = 2,
115 .pri_reg = QEIC_CIPRTB,
117 [28] = {
118 .mask = 0x00100000,
119 .mask_reg = QEIC_CRIMR,
120 .pri_code = 3,
121 .pri_reg = QEIC_CIPRTB,
123 [32] = {
124 .mask = 0x80000000,
125 .mask_reg = QEIC_CIMR,
126 .pri_code = 0,
127 .pri_reg = QEIC_CIPXCC,
129 [33] = {
130 .mask = 0x40000000,
131 .mask_reg = QEIC_CIMR,
132 .pri_code = 1,
133 .pri_reg = QEIC_CIPXCC,
135 [34] = {
136 .mask = 0x20000000,
137 .mask_reg = QEIC_CIMR,
138 .pri_code = 2,
139 .pri_reg = QEIC_CIPXCC,
141 [35] = {
142 .mask = 0x10000000,
143 .mask_reg = QEIC_CIMR,
144 .pri_code = 3,
145 .pri_reg = QEIC_CIPXCC,
147 [36] = {
148 .mask = 0x08000000,
149 .mask_reg = QEIC_CIMR,
150 .pri_code = 4,
151 .pri_reg = QEIC_CIPXCC,
153 [40] = {
154 .mask = 0x00800000,
155 .mask_reg = QEIC_CIMR,
156 .pri_code = 0,
157 .pri_reg = QEIC_CIPYCC,
159 [41] = {
160 .mask = 0x00400000,
161 .mask_reg = QEIC_CIMR,
162 .pri_code = 1,
163 .pri_reg = QEIC_CIPYCC,
165 [42] = {
166 .mask = 0x00200000,
167 .mask_reg = QEIC_CIMR,
168 .pri_code = 2,
169 .pri_reg = QEIC_CIPYCC,
171 [43] = {
172 .mask = 0x00100000,
173 .mask_reg = QEIC_CIMR,
174 .pri_code = 3,
175 .pri_reg = QEIC_CIPYCC,
179 static inline u32 qe_ic_read(volatile __be32 __iomem * base, unsigned int reg)
181 return in_be32(base + (reg >> 2));
184 static inline void qe_ic_write(volatile __be32 __iomem * base, unsigned int reg,
185 u32 value)
187 out_be32(base + (reg >> 2), value);
190 static inline struct qe_ic *qe_ic_from_irq(unsigned int virq)
192 return irq_desc[virq].chip_data;
195 #define virq_to_hw(virq) ((unsigned int)irq_map[virq].hwirq)
197 static void qe_ic_unmask_irq(unsigned int virq)
199 struct qe_ic *qe_ic = qe_ic_from_irq(virq);
200 unsigned int src = virq_to_hw(virq);
201 unsigned long flags;
202 u32 temp;
204 spin_lock_irqsave(&qe_ic_lock, flags);
206 temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].mask_reg);
207 qe_ic_write(qe_ic->regs, qe_ic_info[src].mask_reg,
208 temp | qe_ic_info[src].mask);
210 spin_unlock_irqrestore(&qe_ic_lock, flags);
213 static void qe_ic_mask_irq(unsigned int virq)
215 struct qe_ic *qe_ic = qe_ic_from_irq(virq);
216 unsigned int src = virq_to_hw(virq);
217 unsigned long flags;
218 u32 temp;
220 spin_lock_irqsave(&qe_ic_lock, flags);
222 temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].mask_reg);
223 qe_ic_write(qe_ic->regs, qe_ic_info[src].mask_reg,
224 temp & ~qe_ic_info[src].mask);
226 /* Flush the above write before enabling interrupts; otherwise,
227 * spurious interrupts will sometimes happen. To be 100% sure
228 * that the write has reached the device before interrupts are
229 * enabled, the mask register would have to be read back; however,
230 * this is not required for correctness, only to avoid wasting
231 * time on a large number of spurious interrupts. In testing,
232 * a sync reduced the observed spurious interrupts to zero.
234 mb();
236 spin_unlock_irqrestore(&qe_ic_lock, flags);
239 static struct irq_chip qe_ic_irq_chip = {
240 .typename = " QEIC ",
241 .unmask = qe_ic_unmask_irq,
242 .mask = qe_ic_mask_irq,
243 .mask_ack = qe_ic_mask_irq,
246 static int qe_ic_host_match(struct irq_host *h, struct device_node *node)
248 /* Exact match, unless qe_ic node is NULL */
249 return h->of_node == NULL || h->of_node == node;
252 static int qe_ic_host_map(struct irq_host *h, unsigned int virq,
253 irq_hw_number_t hw)
255 struct qe_ic *qe_ic = h->host_data;
256 struct irq_chip *chip;
258 if (qe_ic_info[hw].mask == 0) {
259 printk(KERN_ERR "Can't map reserved IRQ \n");
260 return -EINVAL;
262 /* Default chip */
263 chip = &qe_ic->hc_irq;
265 set_irq_chip_data(virq, qe_ic);
266 get_irq_desc(virq)->status |= IRQ_LEVEL;
268 set_irq_chip_and_handler(virq, chip, handle_level_irq);
270 return 0;
273 static int qe_ic_host_xlate(struct irq_host *h, struct device_node *ct,
274 u32 * intspec, unsigned int intsize,
275 irq_hw_number_t * out_hwirq,
276 unsigned int *out_flags)
278 *out_hwirq = intspec[0];
279 if (intsize > 1)
280 *out_flags = intspec[1];
281 else
282 *out_flags = IRQ_TYPE_NONE;
283 return 0;
286 static struct irq_host_ops qe_ic_host_ops = {
287 .match = qe_ic_host_match,
288 .map = qe_ic_host_map,
289 .xlate = qe_ic_host_xlate,
292 /* Return an interrupt vector or NO_IRQ if no interrupt is pending. */
293 unsigned int qe_ic_get_low_irq(struct qe_ic *qe_ic)
295 int irq;
297 BUG_ON(qe_ic == NULL);
299 /* get the interrupt source vector. */
300 irq = qe_ic_read(qe_ic->regs, QEIC_CIVEC) >> 26;
302 if (irq == 0)
303 return NO_IRQ;
305 return irq_linear_revmap(qe_ic->irqhost, irq);
308 /* Return an interrupt vector or NO_IRQ if no interrupt is pending. */
309 unsigned int qe_ic_get_high_irq(struct qe_ic *qe_ic)
311 int irq;
313 BUG_ON(qe_ic == NULL);
315 /* get the interrupt source vector. */
316 irq = qe_ic_read(qe_ic->regs, QEIC_CHIVEC) >> 26;
318 if (irq == 0)
319 return NO_IRQ;
321 return irq_linear_revmap(qe_ic->irqhost, irq);
324 void __init qe_ic_init(struct device_node *node, unsigned int flags,
325 void (*low_handler)(unsigned int irq, struct irq_desc *desc),
326 void (*high_handler)(unsigned int irq, struct irq_desc *desc))
328 struct qe_ic *qe_ic;
329 struct resource res;
330 u32 temp = 0, ret, high_active = 0;
332 ret = of_address_to_resource(node, 0, &res);
333 if (ret)
334 return;
336 qe_ic = kzalloc(sizeof(*qe_ic), GFP_KERNEL);
337 if (qe_ic == NULL)
338 return;
340 qe_ic->irqhost = irq_alloc_host(node, IRQ_HOST_MAP_LINEAR,
341 NR_QE_IC_INTS, &qe_ic_host_ops, 0);
342 if (qe_ic->irqhost == NULL)
343 return;
345 qe_ic->regs = ioremap(res.start, res.end - res.start + 1);
347 qe_ic->irqhost->host_data = qe_ic;
348 qe_ic->hc_irq = qe_ic_irq_chip;
350 qe_ic->virq_high = irq_of_parse_and_map(node, 0);
351 qe_ic->virq_low = irq_of_parse_and_map(node, 1);
353 if (qe_ic->virq_low == NO_IRQ) {
354 printk(KERN_ERR "Failed to map QE_IC low IRQ\n");
355 return;
358 /* default priority scheme is grouped. If spread mode is */
359 /* required, configure cicr accordingly. */
360 if (flags & QE_IC_SPREADMODE_GRP_W)
361 temp |= CICR_GWCC;
362 if (flags & QE_IC_SPREADMODE_GRP_X)
363 temp |= CICR_GXCC;
364 if (flags & QE_IC_SPREADMODE_GRP_Y)
365 temp |= CICR_GYCC;
366 if (flags & QE_IC_SPREADMODE_GRP_Z)
367 temp |= CICR_GZCC;
368 if (flags & QE_IC_SPREADMODE_GRP_RISCA)
369 temp |= CICR_GRTA;
370 if (flags & QE_IC_SPREADMODE_GRP_RISCB)
371 temp |= CICR_GRTB;
373 /* choose destination signal for highest priority interrupt */
374 if (flags & QE_IC_HIGH_SIGNAL) {
375 temp |= (SIGNAL_HIGH << CICR_HPIT_SHIFT);
376 high_active = 1;
379 qe_ic_write(qe_ic->regs, QEIC_CICR, temp);
381 set_irq_data(qe_ic->virq_low, qe_ic);
382 set_irq_chained_handler(qe_ic->virq_low, low_handler);
384 if (qe_ic->virq_high != NO_IRQ &&
385 qe_ic->virq_high != qe_ic->virq_low) {
386 set_irq_data(qe_ic->virq_high, qe_ic);
387 set_irq_chained_handler(qe_ic->virq_high, high_handler);
391 void qe_ic_set_highest_priority(unsigned int virq, int high)
393 struct qe_ic *qe_ic = qe_ic_from_irq(virq);
394 unsigned int src = virq_to_hw(virq);
395 u32 temp = 0;
397 temp = qe_ic_read(qe_ic->regs, QEIC_CICR);
399 temp &= ~CICR_HP_MASK;
400 temp |= src << CICR_HP_SHIFT;
402 temp &= ~CICR_HPIT_MASK;
403 temp |= (high ? SIGNAL_HIGH : SIGNAL_LOW) << CICR_HPIT_SHIFT;
405 qe_ic_write(qe_ic->regs, QEIC_CICR, temp);
408 /* Set Priority level within its group, from 1 to 8 */
409 int qe_ic_set_priority(unsigned int virq, unsigned int priority)
411 struct qe_ic *qe_ic = qe_ic_from_irq(virq);
412 unsigned int src = virq_to_hw(virq);
413 u32 temp;
415 if (priority > 8 || priority == 0)
416 return -EINVAL;
417 if (src > 127)
418 return -EINVAL;
419 if (qe_ic_info[src].pri_reg == 0)
420 return -EINVAL;
422 temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].pri_reg);
424 if (priority < 4) {
425 temp &= ~(0x7 << (32 - priority * 3));
426 temp |= qe_ic_info[src].pri_code << (32 - priority * 3);
427 } else {
428 temp &= ~(0x7 << (24 - priority * 3));
429 temp |= qe_ic_info[src].pri_code << (24 - priority * 3);
432 qe_ic_write(qe_ic->regs, qe_ic_info[src].pri_reg, temp);
434 return 0;
437 /* Set a QE priority to use high irq, only priority 1~2 can use high irq */
438 int qe_ic_set_high_priority(unsigned int virq, unsigned int priority, int high)
440 struct qe_ic *qe_ic = qe_ic_from_irq(virq);
441 unsigned int src = virq_to_hw(virq);
442 u32 temp, control_reg = QEIC_CICNR, shift = 0;
444 if (priority > 2 || priority == 0)
445 return -EINVAL;
447 switch (qe_ic_info[src].pri_reg) {
448 case QEIC_CIPZCC:
449 shift = CICNR_ZCC1T_SHIFT;
450 break;
451 case QEIC_CIPWCC:
452 shift = CICNR_WCC1T_SHIFT;
453 break;
454 case QEIC_CIPYCC:
455 shift = CICNR_YCC1T_SHIFT;
456 break;
457 case QEIC_CIPXCC:
458 shift = CICNR_XCC1T_SHIFT;
459 break;
460 case QEIC_CIPRTA:
461 shift = CRICR_RTA1T_SHIFT;
462 control_reg = QEIC_CRICR;
463 break;
464 case QEIC_CIPRTB:
465 shift = CRICR_RTB1T_SHIFT;
466 control_reg = QEIC_CRICR;
467 break;
468 default:
469 return -EINVAL;
472 shift += (2 - priority) * 2;
473 temp = qe_ic_read(qe_ic->regs, control_reg);
474 temp &= ~(SIGNAL_MASK << shift);
475 temp |= (high ? SIGNAL_HIGH : SIGNAL_LOW) << shift;
476 qe_ic_write(qe_ic->regs, control_reg, temp);
478 return 0;
481 static struct sysdev_class qe_ic_sysclass = {
482 .name = "qe_ic",
485 static struct sys_device device_qe_ic = {
486 .id = 0,
487 .cls = &qe_ic_sysclass,
490 static int __init init_qe_ic_sysfs(void)
492 int rc;
494 printk(KERN_DEBUG "Registering qe_ic with sysfs...\n");
496 rc = sysdev_class_register(&qe_ic_sysclass);
497 if (rc) {
498 printk(KERN_ERR "Failed registering qe_ic sys class\n");
499 return -ENODEV;
501 rc = sysdev_register(&device_qe_ic);
502 if (rc) {
503 printk(KERN_ERR "Failed registering qe_ic sys device\n");
504 return -ENODEV;
506 return 0;
509 subsys_initcall(init_qe_ic_sysfs);