Linux 2.6.31.6
[linux/fpc-iii.git] / arch / x86 / kernel / ds.c
blob48bfe1386038c91fc9ee5b99473e67df5a93a432
1 /*
2 * Debug Store support
4 * This provides a low-level interface to the hardware's Debug Store
5 * feature that is used for branch trace store (BTS) and
6 * precise-event based sampling (PEBS).
8 * It manages:
9 * - DS and BTS hardware configuration
10 * - buffer overflow handling (to be done)
11 * - buffer access
13 * It does not do:
14 * - security checking (is the caller allowed to trace the task)
15 * - buffer allocation (memory accounting)
18 * Copyright (C) 2007-2009 Intel Corporation.
19 * Markus Metzger <markus.t.metzger@intel.com>, 2007-2009
22 #include <linux/kernel.h>
23 #include <linux/string.h>
24 #include <linux/errno.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/trace_clock.h>
30 #include <asm/ds.h>
32 #include "ds_selftest.h"
35 * The configuration for a particular DS hardware implementation:
37 struct ds_configuration {
38 /* The name of the configuration: */
39 const char *name;
41 /* The size of pointer-typed fields in DS, BTS, and PEBS: */
42 unsigned char sizeof_ptr_field;
44 /* The size of a BTS/PEBS record in bytes: */
45 unsigned char sizeof_rec[2];
47 /* The number of pebs counter reset values in the DS structure. */
48 unsigned char nr_counter_reset;
50 /* Control bit-masks indexed by enum ds_feature: */
51 unsigned long ctl[dsf_ctl_max];
53 static struct ds_configuration ds_cfg __read_mostly;
56 /* Maximal size of a DS configuration: */
57 #define MAX_SIZEOF_DS 0x80
59 /* Maximal size of a BTS record: */
60 #define MAX_SIZEOF_BTS (3 * 8)
62 /* BTS and PEBS buffer alignment: */
63 #define DS_ALIGNMENT (1 << 3)
65 /* Number of buffer pointers in DS: */
66 #define NUM_DS_PTR_FIELDS 8
68 /* Size of a pebs reset value in DS: */
69 #define PEBS_RESET_FIELD_SIZE 8
71 /* Mask of control bits in the DS MSR register: */
72 #define BTS_CONTROL \
73 ( ds_cfg.ctl[dsf_bts] | \
74 ds_cfg.ctl[dsf_bts_kernel] | \
75 ds_cfg.ctl[dsf_bts_user] | \
76 ds_cfg.ctl[dsf_bts_overflow] )
79 * A BTS or PEBS tracer.
81 * This holds the configuration of the tracer and serves as a handle
82 * to identify tracers.
84 struct ds_tracer {
85 /* The DS context (partially) owned by this tracer. */
86 struct ds_context *context;
87 /* The buffer provided on ds_request() and its size in bytes. */
88 void *buffer;
89 size_t size;
92 struct bts_tracer {
93 /* The common DS part: */
94 struct ds_tracer ds;
96 /* The trace including the DS configuration: */
97 struct bts_trace trace;
99 /* Buffer overflow notification function: */
100 bts_ovfl_callback_t ovfl;
102 /* Active flags affecting trace collection. */
103 unsigned int flags;
106 struct pebs_tracer {
107 /* The common DS part: */
108 struct ds_tracer ds;
110 /* The trace including the DS configuration: */
111 struct pebs_trace trace;
113 /* Buffer overflow notification function: */
114 pebs_ovfl_callback_t ovfl;
118 * Debug Store (DS) save area configuration (see Intel64 and IA32
119 * Architectures Software Developer's Manual, section 18.5)
121 * The DS configuration consists of the following fields; different
122 * architetures vary in the size of those fields.
124 * - double-word aligned base linear address of the BTS buffer
125 * - write pointer into the BTS buffer
126 * - end linear address of the BTS buffer (one byte beyond the end of
127 * the buffer)
128 * - interrupt pointer into BTS buffer
129 * (interrupt occurs when write pointer passes interrupt pointer)
130 * - double-word aligned base linear address of the PEBS buffer
131 * - write pointer into the PEBS buffer
132 * - end linear address of the PEBS buffer (one byte beyond the end of
133 * the buffer)
134 * - interrupt pointer into PEBS buffer
135 * (interrupt occurs when write pointer passes interrupt pointer)
136 * - value to which counter is reset following counter overflow
138 * Later architectures use 64bit pointers throughout, whereas earlier
139 * architectures use 32bit pointers in 32bit mode.
142 * We compute the base address for the first 8 fields based on:
143 * - the field size stored in the DS configuration
144 * - the relative field position
145 * - an offset giving the start of the respective region
147 * This offset is further used to index various arrays holding
148 * information for BTS and PEBS at the respective index.
150 * On later 32bit processors, we only access the lower 32bit of the
151 * 64bit pointer fields. The upper halves will be zeroed out.
154 enum ds_field {
155 ds_buffer_base = 0,
156 ds_index,
157 ds_absolute_maximum,
158 ds_interrupt_threshold,
161 enum ds_qualifier {
162 ds_bts = 0,
163 ds_pebs
166 static inline unsigned long
167 ds_get(const unsigned char *base, enum ds_qualifier qual, enum ds_field field)
169 base += (ds_cfg.sizeof_ptr_field * (field + (4 * qual)));
170 return *(unsigned long *)base;
173 static inline void
174 ds_set(unsigned char *base, enum ds_qualifier qual, enum ds_field field,
175 unsigned long value)
177 base += (ds_cfg.sizeof_ptr_field * (field + (4 * qual)));
178 (*(unsigned long *)base) = value;
183 * Locking is done only for allocating BTS or PEBS resources.
185 static DEFINE_SPINLOCK(ds_lock);
188 * We either support (system-wide) per-cpu or per-thread allocation.
189 * We distinguish the two based on the task_struct pointer, where a
190 * NULL pointer indicates per-cpu allocation for the current cpu.
192 * Allocations are use-counted. As soon as resources are allocated,
193 * further allocations must be of the same type (per-cpu or
194 * per-thread). We model this by counting allocations (i.e. the number
195 * of tracers of a certain type) for one type negatively:
196 * =0 no tracers
197 * >0 number of per-thread tracers
198 * <0 number of per-cpu tracers
200 * Tracers essentially gives the number of ds contexts for a certain
201 * type of allocation.
203 static atomic_t tracers = ATOMIC_INIT(0);
205 static inline int get_tracer(struct task_struct *task)
207 int error;
209 spin_lock_irq(&ds_lock);
211 if (task) {
212 error = -EPERM;
213 if (atomic_read(&tracers) < 0)
214 goto out;
215 atomic_inc(&tracers);
216 } else {
217 error = -EPERM;
218 if (atomic_read(&tracers) > 0)
219 goto out;
220 atomic_dec(&tracers);
223 error = 0;
224 out:
225 spin_unlock_irq(&ds_lock);
226 return error;
229 static inline void put_tracer(struct task_struct *task)
231 if (task)
232 atomic_dec(&tracers);
233 else
234 atomic_inc(&tracers);
238 * The DS context is either attached to a thread or to a cpu:
239 * - in the former case, the thread_struct contains a pointer to the
240 * attached context.
241 * - in the latter case, we use a static array of per-cpu context
242 * pointers.
244 * Contexts are use-counted. They are allocated on first access and
245 * deallocated when the last user puts the context.
247 struct ds_context {
248 /* The DS configuration; goes into MSR_IA32_DS_AREA: */
249 unsigned char ds[MAX_SIZEOF_DS];
251 /* The owner of the BTS and PEBS configuration, respectively: */
252 struct bts_tracer *bts_master;
253 struct pebs_tracer *pebs_master;
255 /* Use count: */
256 unsigned long count;
258 /* Pointer to the context pointer field: */
259 struct ds_context **this;
261 /* The traced task; NULL for cpu tracing: */
262 struct task_struct *task;
264 /* The traced cpu; only valid if task is NULL: */
265 int cpu;
268 static DEFINE_PER_CPU(struct ds_context *, cpu_context);
271 static struct ds_context *ds_get_context(struct task_struct *task, int cpu)
273 struct ds_context **p_context =
274 (task ? &task->thread.ds_ctx : &per_cpu(cpu_context, cpu));
275 struct ds_context *context = NULL;
276 struct ds_context *new_context = NULL;
278 /* Chances are small that we already have a context. */
279 new_context = kzalloc(sizeof(*new_context), GFP_KERNEL);
280 if (!new_context)
281 return NULL;
283 spin_lock_irq(&ds_lock);
285 context = *p_context;
286 if (likely(!context)) {
287 context = new_context;
289 context->this = p_context;
290 context->task = task;
291 context->cpu = cpu;
292 context->count = 0;
294 *p_context = context;
297 context->count++;
299 spin_unlock_irq(&ds_lock);
301 if (context != new_context)
302 kfree(new_context);
304 return context;
307 static void ds_put_context(struct ds_context *context)
309 struct task_struct *task;
310 unsigned long irq;
312 if (!context)
313 return;
315 spin_lock_irqsave(&ds_lock, irq);
317 if (--context->count) {
318 spin_unlock_irqrestore(&ds_lock, irq);
319 return;
322 *(context->this) = NULL;
324 task = context->task;
326 if (task)
327 clear_tsk_thread_flag(task, TIF_DS_AREA_MSR);
330 * We leave the (now dangling) pointer to the DS configuration in
331 * the DS_AREA msr. This is as good or as bad as replacing it with
332 * NULL - the hardware would crash if we enabled tracing.
334 * This saves us some problems with having to write an msr on a
335 * different cpu while preventing others from doing the same for the
336 * next context for that same cpu.
339 spin_unlock_irqrestore(&ds_lock, irq);
341 /* The context might still be in use for context switching. */
342 if (task && (task != current))
343 wait_task_context_switch(task);
345 kfree(context);
348 static void ds_install_ds_area(struct ds_context *context)
350 unsigned long ds;
352 ds = (unsigned long)context->ds;
355 * There is a race between the bts master and the pebs master.
357 * The thread/cpu access is synchronized via get/put_cpu() for
358 * task tracing and via wrmsr_on_cpu for cpu tracing.
360 * If bts and pebs are collected for the same task or same cpu,
361 * the same confiuration is written twice.
363 if (context->task) {
364 get_cpu();
365 if (context->task == current)
366 wrmsrl(MSR_IA32_DS_AREA, ds);
367 set_tsk_thread_flag(context->task, TIF_DS_AREA_MSR);
368 put_cpu();
369 } else
370 wrmsr_on_cpu(context->cpu, MSR_IA32_DS_AREA,
371 (u32)((u64)ds), (u32)((u64)ds >> 32));
375 * Call the tracer's callback on a buffer overflow.
377 * context: the ds context
378 * qual: the buffer type
380 static void ds_overflow(struct ds_context *context, enum ds_qualifier qual)
382 switch (qual) {
383 case ds_bts:
384 if (context->bts_master &&
385 context->bts_master->ovfl)
386 context->bts_master->ovfl(context->bts_master);
387 break;
388 case ds_pebs:
389 if (context->pebs_master &&
390 context->pebs_master->ovfl)
391 context->pebs_master->ovfl(context->pebs_master);
392 break;
398 * Write raw data into the BTS or PEBS buffer.
400 * The remainder of any partially written record is zeroed out.
402 * context: the DS context
403 * qual: the buffer type
404 * record: the data to write
405 * size: the size of the data
407 static int ds_write(struct ds_context *context, enum ds_qualifier qual,
408 const void *record, size_t size)
410 int bytes_written = 0;
412 if (!record)
413 return -EINVAL;
415 while (size) {
416 unsigned long base, index, end, write_end, int_th;
417 unsigned long write_size, adj_write_size;
420 * Write as much as possible without producing an
421 * overflow interrupt.
423 * Interrupt_threshold must either be
424 * - bigger than absolute_maximum or
425 * - point to a record between buffer_base and absolute_maximum
427 * Index points to a valid record.
429 base = ds_get(context->ds, qual, ds_buffer_base);
430 index = ds_get(context->ds, qual, ds_index);
431 end = ds_get(context->ds, qual, ds_absolute_maximum);
432 int_th = ds_get(context->ds, qual, ds_interrupt_threshold);
434 write_end = min(end, int_th);
437 * If we are already beyond the interrupt threshold,
438 * we fill the entire buffer.
440 if (write_end <= index)
441 write_end = end;
443 if (write_end <= index)
444 break;
446 write_size = min((unsigned long) size, write_end - index);
447 memcpy((void *)index, record, write_size);
449 record = (const char *)record + write_size;
450 size -= write_size;
451 bytes_written += write_size;
453 adj_write_size = write_size / ds_cfg.sizeof_rec[qual];
454 adj_write_size *= ds_cfg.sizeof_rec[qual];
456 /* Zero out trailing bytes. */
457 memset((char *)index + write_size, 0,
458 adj_write_size - write_size);
459 index += adj_write_size;
461 if (index >= end)
462 index = base;
463 ds_set(context->ds, qual, ds_index, index);
465 if (index >= int_th)
466 ds_overflow(context, qual);
469 return bytes_written;
474 * Branch Trace Store (BTS) uses the following format. Different
475 * architectures vary in the size of those fields.
476 * - source linear address
477 * - destination linear address
478 * - flags
480 * Later architectures use 64bit pointers throughout, whereas earlier
481 * architectures use 32bit pointers in 32bit mode.
483 * We compute the base address for the fields based on:
484 * - the field size stored in the DS configuration
485 * - the relative field position
487 * In order to store additional information in the BTS buffer, we use
488 * a special source address to indicate that the record requires
489 * special interpretation.
491 * Netburst indicated via a bit in the flags field whether the branch
492 * was predicted; this is ignored.
494 * We use two levels of abstraction:
495 * - the raw data level defined here
496 * - an arch-independent level defined in ds.h
499 enum bts_field {
500 bts_from,
501 bts_to,
502 bts_flags,
504 bts_qual = bts_from,
505 bts_clock = bts_to,
506 bts_pid = bts_flags,
508 bts_qual_mask = (bts_qual_max - 1),
509 bts_escape = ((unsigned long)-1 & ~bts_qual_mask)
512 static inline unsigned long bts_get(const char *base, enum bts_field field)
514 base += (ds_cfg.sizeof_ptr_field * field);
515 return *(unsigned long *)base;
518 static inline void bts_set(char *base, enum bts_field field, unsigned long val)
520 base += (ds_cfg.sizeof_ptr_field * field);;
521 (*(unsigned long *)base) = val;
526 * The raw BTS data is architecture dependent.
528 * For higher-level users, we give an arch-independent view.
529 * - ds.h defines struct bts_struct
530 * - bts_read translates one raw bts record into a bts_struct
531 * - bts_write translates one bts_struct into the raw format and
532 * writes it into the top of the parameter tracer's buffer.
534 * return: bytes read/written on success; -Eerrno, otherwise
536 static int
537 bts_read(struct bts_tracer *tracer, const void *at, struct bts_struct *out)
539 if (!tracer)
540 return -EINVAL;
542 if (at < tracer->trace.ds.begin)
543 return -EINVAL;
545 if (tracer->trace.ds.end < (at + tracer->trace.ds.size))
546 return -EINVAL;
548 memset(out, 0, sizeof(*out));
549 if ((bts_get(at, bts_qual) & ~bts_qual_mask) == bts_escape) {
550 out->qualifier = (bts_get(at, bts_qual) & bts_qual_mask);
551 out->variant.event.clock = bts_get(at, bts_clock);
552 out->variant.event.pid = bts_get(at, bts_pid);
553 } else {
554 out->qualifier = bts_branch;
555 out->variant.lbr.from = bts_get(at, bts_from);
556 out->variant.lbr.to = bts_get(at, bts_to);
558 if (!out->variant.lbr.from && !out->variant.lbr.to)
559 out->qualifier = bts_invalid;
562 return ds_cfg.sizeof_rec[ds_bts];
565 static int bts_write(struct bts_tracer *tracer, const struct bts_struct *in)
567 unsigned char raw[MAX_SIZEOF_BTS];
569 if (!tracer)
570 return -EINVAL;
572 if (MAX_SIZEOF_BTS < ds_cfg.sizeof_rec[ds_bts])
573 return -EOVERFLOW;
575 switch (in->qualifier) {
576 case bts_invalid:
577 bts_set(raw, bts_from, 0);
578 bts_set(raw, bts_to, 0);
579 bts_set(raw, bts_flags, 0);
580 break;
581 case bts_branch:
582 bts_set(raw, bts_from, in->variant.lbr.from);
583 bts_set(raw, bts_to, in->variant.lbr.to);
584 bts_set(raw, bts_flags, 0);
585 break;
586 case bts_task_arrives:
587 case bts_task_departs:
588 bts_set(raw, bts_qual, (bts_escape | in->qualifier));
589 bts_set(raw, bts_clock, in->variant.event.clock);
590 bts_set(raw, bts_pid, in->variant.event.pid);
591 break;
592 default:
593 return -EINVAL;
596 return ds_write(tracer->ds.context, ds_bts, raw,
597 ds_cfg.sizeof_rec[ds_bts]);
601 static void ds_write_config(struct ds_context *context,
602 struct ds_trace *cfg, enum ds_qualifier qual)
604 unsigned char *ds = context->ds;
606 ds_set(ds, qual, ds_buffer_base, (unsigned long)cfg->begin);
607 ds_set(ds, qual, ds_index, (unsigned long)cfg->top);
608 ds_set(ds, qual, ds_absolute_maximum, (unsigned long)cfg->end);
609 ds_set(ds, qual, ds_interrupt_threshold, (unsigned long)cfg->ith);
612 static void ds_read_config(struct ds_context *context,
613 struct ds_trace *cfg, enum ds_qualifier qual)
615 unsigned char *ds = context->ds;
617 cfg->begin = (void *)ds_get(ds, qual, ds_buffer_base);
618 cfg->top = (void *)ds_get(ds, qual, ds_index);
619 cfg->end = (void *)ds_get(ds, qual, ds_absolute_maximum);
620 cfg->ith = (void *)ds_get(ds, qual, ds_interrupt_threshold);
623 static void ds_init_ds_trace(struct ds_trace *trace, enum ds_qualifier qual,
624 void *base, size_t size, size_t ith,
625 unsigned int flags) {
626 unsigned long buffer, adj;
629 * Adjust the buffer address and size to meet alignment
630 * constraints:
631 * - buffer is double-word aligned
632 * - size is multiple of record size
634 * We checked the size at the very beginning; we have enough
635 * space to do the adjustment.
637 buffer = (unsigned long)base;
639 adj = ALIGN(buffer, DS_ALIGNMENT) - buffer;
640 buffer += adj;
641 size -= adj;
643 trace->n = size / ds_cfg.sizeof_rec[qual];
644 trace->size = ds_cfg.sizeof_rec[qual];
646 size = (trace->n * trace->size);
648 trace->begin = (void *)buffer;
649 trace->top = trace->begin;
650 trace->end = (void *)(buffer + size);
652 * The value for 'no threshold' is -1, which will set the
653 * threshold outside of the buffer, just like we want it.
655 ith *= ds_cfg.sizeof_rec[qual];
656 trace->ith = (void *)(buffer + size - ith);
658 trace->flags = flags;
662 static int ds_request(struct ds_tracer *tracer, struct ds_trace *trace,
663 enum ds_qualifier qual, struct task_struct *task,
664 int cpu, void *base, size_t size, size_t th)
666 struct ds_context *context;
667 int error;
668 size_t req_size;
670 error = -EOPNOTSUPP;
671 if (!ds_cfg.sizeof_rec[qual])
672 goto out;
674 error = -EINVAL;
675 if (!base)
676 goto out;
678 req_size = ds_cfg.sizeof_rec[qual];
679 /* We might need space for alignment adjustments. */
680 if (!IS_ALIGNED((unsigned long)base, DS_ALIGNMENT))
681 req_size += DS_ALIGNMENT;
683 error = -EINVAL;
684 if (size < req_size)
685 goto out;
687 if (th != (size_t)-1) {
688 th *= ds_cfg.sizeof_rec[qual];
690 error = -EINVAL;
691 if (size <= th)
692 goto out;
695 tracer->buffer = base;
696 tracer->size = size;
698 error = -ENOMEM;
699 context = ds_get_context(task, cpu);
700 if (!context)
701 goto out;
702 tracer->context = context;
705 * Defer any tracer-specific initialization work for the context until
706 * context ownership has been clarified.
709 error = 0;
710 out:
711 return error;
714 static struct bts_tracer *ds_request_bts(struct task_struct *task, int cpu,
715 void *base, size_t size,
716 bts_ovfl_callback_t ovfl, size_t th,
717 unsigned int flags)
719 struct bts_tracer *tracer;
720 int error;
722 /* Buffer overflow notification is not yet implemented. */
723 error = -EOPNOTSUPP;
724 if (ovfl)
725 goto out;
727 error = get_tracer(task);
728 if (error < 0)
729 goto out;
731 error = -ENOMEM;
732 tracer = kzalloc(sizeof(*tracer), GFP_KERNEL);
733 if (!tracer)
734 goto out_put_tracer;
735 tracer->ovfl = ovfl;
737 /* Do some more error checking and acquire a tracing context. */
738 error = ds_request(&tracer->ds, &tracer->trace.ds,
739 ds_bts, task, cpu, base, size, th);
740 if (error < 0)
741 goto out_tracer;
743 /* Claim the bts part of the tracing context we acquired above. */
744 spin_lock_irq(&ds_lock);
746 error = -EPERM;
747 if (tracer->ds.context->bts_master)
748 goto out_unlock;
749 tracer->ds.context->bts_master = tracer;
751 spin_unlock_irq(&ds_lock);
754 * Now that we own the bts part of the context, let's complete the
755 * initialization for that part.
757 ds_init_ds_trace(&tracer->trace.ds, ds_bts, base, size, th, flags);
758 ds_write_config(tracer->ds.context, &tracer->trace.ds, ds_bts);
759 ds_install_ds_area(tracer->ds.context);
761 tracer->trace.read = bts_read;
762 tracer->trace.write = bts_write;
764 /* Start tracing. */
765 ds_resume_bts(tracer);
767 return tracer;
769 out_unlock:
770 spin_unlock_irq(&ds_lock);
771 ds_put_context(tracer->ds.context);
772 out_tracer:
773 kfree(tracer);
774 out_put_tracer:
775 put_tracer(task);
776 out:
777 return ERR_PTR(error);
780 struct bts_tracer *ds_request_bts_task(struct task_struct *task,
781 void *base, size_t size,
782 bts_ovfl_callback_t ovfl,
783 size_t th, unsigned int flags)
785 return ds_request_bts(task, 0, base, size, ovfl, th, flags);
788 struct bts_tracer *ds_request_bts_cpu(int cpu, void *base, size_t size,
789 bts_ovfl_callback_t ovfl,
790 size_t th, unsigned int flags)
792 return ds_request_bts(NULL, cpu, base, size, ovfl, th, flags);
795 static struct pebs_tracer *ds_request_pebs(struct task_struct *task, int cpu,
796 void *base, size_t size,
797 pebs_ovfl_callback_t ovfl, size_t th,
798 unsigned int flags)
800 struct pebs_tracer *tracer;
801 int error;
803 /* Buffer overflow notification is not yet implemented. */
804 error = -EOPNOTSUPP;
805 if (ovfl)
806 goto out;
808 error = get_tracer(task);
809 if (error < 0)
810 goto out;
812 error = -ENOMEM;
813 tracer = kzalloc(sizeof(*tracer), GFP_KERNEL);
814 if (!tracer)
815 goto out_put_tracer;
816 tracer->ovfl = ovfl;
818 /* Do some more error checking and acquire a tracing context. */
819 error = ds_request(&tracer->ds, &tracer->trace.ds,
820 ds_pebs, task, cpu, base, size, th);
821 if (error < 0)
822 goto out_tracer;
824 /* Claim the pebs part of the tracing context we acquired above. */
825 spin_lock_irq(&ds_lock);
827 error = -EPERM;
828 if (tracer->ds.context->pebs_master)
829 goto out_unlock;
830 tracer->ds.context->pebs_master = tracer;
832 spin_unlock_irq(&ds_lock);
835 * Now that we own the pebs part of the context, let's complete the
836 * initialization for that part.
838 ds_init_ds_trace(&tracer->trace.ds, ds_pebs, base, size, th, flags);
839 ds_write_config(tracer->ds.context, &tracer->trace.ds, ds_pebs);
840 ds_install_ds_area(tracer->ds.context);
842 /* Start tracing. */
843 ds_resume_pebs(tracer);
845 return tracer;
847 out_unlock:
848 spin_unlock_irq(&ds_lock);
849 ds_put_context(tracer->ds.context);
850 out_tracer:
851 kfree(tracer);
852 out_put_tracer:
853 put_tracer(task);
854 out:
855 return ERR_PTR(error);
858 struct pebs_tracer *ds_request_pebs_task(struct task_struct *task,
859 void *base, size_t size,
860 pebs_ovfl_callback_t ovfl,
861 size_t th, unsigned int flags)
863 return ds_request_pebs(task, 0, base, size, ovfl, th, flags);
866 struct pebs_tracer *ds_request_pebs_cpu(int cpu, void *base, size_t size,
867 pebs_ovfl_callback_t ovfl,
868 size_t th, unsigned int flags)
870 return ds_request_pebs(NULL, cpu, base, size, ovfl, th, flags);
873 static void ds_free_bts(struct bts_tracer *tracer)
875 struct task_struct *task;
877 task = tracer->ds.context->task;
879 WARN_ON_ONCE(tracer->ds.context->bts_master != tracer);
880 tracer->ds.context->bts_master = NULL;
882 /* Make sure tracing stopped and the tracer is not in use. */
883 if (task && (task != current))
884 wait_task_context_switch(task);
886 ds_put_context(tracer->ds.context);
887 put_tracer(task);
889 kfree(tracer);
892 void ds_release_bts(struct bts_tracer *tracer)
894 might_sleep();
896 if (!tracer)
897 return;
899 ds_suspend_bts(tracer);
900 ds_free_bts(tracer);
903 int ds_release_bts_noirq(struct bts_tracer *tracer)
905 struct task_struct *task;
906 unsigned long irq;
907 int error;
909 if (!tracer)
910 return 0;
912 task = tracer->ds.context->task;
914 local_irq_save(irq);
916 error = -EPERM;
917 if (!task &&
918 (tracer->ds.context->cpu != smp_processor_id()))
919 goto out;
921 error = -EPERM;
922 if (task && (task != current))
923 goto out;
925 ds_suspend_bts_noirq(tracer);
926 ds_free_bts(tracer);
928 error = 0;
929 out:
930 local_irq_restore(irq);
931 return error;
934 static void update_task_debugctlmsr(struct task_struct *task,
935 unsigned long debugctlmsr)
937 task->thread.debugctlmsr = debugctlmsr;
939 get_cpu();
940 if (task == current)
941 update_debugctlmsr(debugctlmsr);
942 put_cpu();
945 void ds_suspend_bts(struct bts_tracer *tracer)
947 struct task_struct *task;
948 unsigned long debugctlmsr;
949 int cpu;
951 if (!tracer)
952 return;
954 tracer->flags = 0;
956 task = tracer->ds.context->task;
957 cpu = tracer->ds.context->cpu;
959 WARN_ON(!task && irqs_disabled());
961 debugctlmsr = (task ?
962 task->thread.debugctlmsr :
963 get_debugctlmsr_on_cpu(cpu));
964 debugctlmsr &= ~BTS_CONTROL;
966 if (task)
967 update_task_debugctlmsr(task, debugctlmsr);
968 else
969 update_debugctlmsr_on_cpu(cpu, debugctlmsr);
972 int ds_suspend_bts_noirq(struct bts_tracer *tracer)
974 struct task_struct *task;
975 unsigned long debugctlmsr, irq;
976 int cpu, error = 0;
978 if (!tracer)
979 return 0;
981 tracer->flags = 0;
983 task = tracer->ds.context->task;
984 cpu = tracer->ds.context->cpu;
986 local_irq_save(irq);
988 error = -EPERM;
989 if (!task && (cpu != smp_processor_id()))
990 goto out;
992 debugctlmsr = (task ?
993 task->thread.debugctlmsr :
994 get_debugctlmsr());
995 debugctlmsr &= ~BTS_CONTROL;
997 if (task)
998 update_task_debugctlmsr(task, debugctlmsr);
999 else
1000 update_debugctlmsr(debugctlmsr);
1002 error = 0;
1003 out:
1004 local_irq_restore(irq);
1005 return error;
1008 static unsigned long ds_bts_control(struct bts_tracer *tracer)
1010 unsigned long control;
1012 control = ds_cfg.ctl[dsf_bts];
1013 if (!(tracer->trace.ds.flags & BTS_KERNEL))
1014 control |= ds_cfg.ctl[dsf_bts_kernel];
1015 if (!(tracer->trace.ds.flags & BTS_USER))
1016 control |= ds_cfg.ctl[dsf_bts_user];
1018 return control;
1021 void ds_resume_bts(struct bts_tracer *tracer)
1023 struct task_struct *task;
1024 unsigned long debugctlmsr;
1025 int cpu;
1027 if (!tracer)
1028 return;
1030 tracer->flags = tracer->trace.ds.flags;
1032 task = tracer->ds.context->task;
1033 cpu = tracer->ds.context->cpu;
1035 WARN_ON(!task && irqs_disabled());
1037 debugctlmsr = (task ?
1038 task->thread.debugctlmsr :
1039 get_debugctlmsr_on_cpu(cpu));
1040 debugctlmsr |= ds_bts_control(tracer);
1042 if (task)
1043 update_task_debugctlmsr(task, debugctlmsr);
1044 else
1045 update_debugctlmsr_on_cpu(cpu, debugctlmsr);
1048 int ds_resume_bts_noirq(struct bts_tracer *tracer)
1050 struct task_struct *task;
1051 unsigned long debugctlmsr, irq;
1052 int cpu, error = 0;
1054 if (!tracer)
1055 return 0;
1057 tracer->flags = tracer->trace.ds.flags;
1059 task = tracer->ds.context->task;
1060 cpu = tracer->ds.context->cpu;
1062 local_irq_save(irq);
1064 error = -EPERM;
1065 if (!task && (cpu != smp_processor_id()))
1066 goto out;
1068 debugctlmsr = (task ?
1069 task->thread.debugctlmsr :
1070 get_debugctlmsr());
1071 debugctlmsr |= ds_bts_control(tracer);
1073 if (task)
1074 update_task_debugctlmsr(task, debugctlmsr);
1075 else
1076 update_debugctlmsr(debugctlmsr);
1078 error = 0;
1079 out:
1080 local_irq_restore(irq);
1081 return error;
1084 static void ds_free_pebs(struct pebs_tracer *tracer)
1086 struct task_struct *task;
1088 task = tracer->ds.context->task;
1090 WARN_ON_ONCE(tracer->ds.context->pebs_master != tracer);
1091 tracer->ds.context->pebs_master = NULL;
1093 ds_put_context(tracer->ds.context);
1094 put_tracer(task);
1096 kfree(tracer);
1099 void ds_release_pebs(struct pebs_tracer *tracer)
1101 might_sleep();
1103 if (!tracer)
1104 return;
1106 ds_suspend_pebs(tracer);
1107 ds_free_pebs(tracer);
1110 int ds_release_pebs_noirq(struct pebs_tracer *tracer)
1112 struct task_struct *task;
1113 unsigned long irq;
1114 int error;
1116 if (!tracer)
1117 return 0;
1119 task = tracer->ds.context->task;
1121 local_irq_save(irq);
1123 error = -EPERM;
1124 if (!task &&
1125 (tracer->ds.context->cpu != smp_processor_id()))
1126 goto out;
1128 error = -EPERM;
1129 if (task && (task != current))
1130 goto out;
1132 ds_suspend_pebs_noirq(tracer);
1133 ds_free_pebs(tracer);
1135 error = 0;
1136 out:
1137 local_irq_restore(irq);
1138 return error;
1141 void ds_suspend_pebs(struct pebs_tracer *tracer)
1146 int ds_suspend_pebs_noirq(struct pebs_tracer *tracer)
1148 return 0;
1151 void ds_resume_pebs(struct pebs_tracer *tracer)
1156 int ds_resume_pebs_noirq(struct pebs_tracer *tracer)
1158 return 0;
1161 const struct bts_trace *ds_read_bts(struct bts_tracer *tracer)
1163 if (!tracer)
1164 return NULL;
1166 ds_read_config(tracer->ds.context, &tracer->trace.ds, ds_bts);
1167 return &tracer->trace;
1170 const struct pebs_trace *ds_read_pebs(struct pebs_tracer *tracer)
1172 if (!tracer)
1173 return NULL;
1175 ds_read_config(tracer->ds.context, &tracer->trace.ds, ds_pebs);
1177 tracer->trace.counters = ds_cfg.nr_counter_reset;
1178 memcpy(tracer->trace.counter_reset,
1179 tracer->ds.context->ds +
1180 (NUM_DS_PTR_FIELDS * ds_cfg.sizeof_ptr_field),
1181 ds_cfg.nr_counter_reset * PEBS_RESET_FIELD_SIZE);
1183 return &tracer->trace;
1186 int ds_reset_bts(struct bts_tracer *tracer)
1188 if (!tracer)
1189 return -EINVAL;
1191 tracer->trace.ds.top = tracer->trace.ds.begin;
1193 ds_set(tracer->ds.context->ds, ds_bts, ds_index,
1194 (unsigned long)tracer->trace.ds.top);
1196 return 0;
1199 int ds_reset_pebs(struct pebs_tracer *tracer)
1201 if (!tracer)
1202 return -EINVAL;
1204 tracer->trace.ds.top = tracer->trace.ds.begin;
1206 ds_set(tracer->ds.context->ds, ds_pebs, ds_index,
1207 (unsigned long)tracer->trace.ds.top);
1209 return 0;
1212 int ds_set_pebs_reset(struct pebs_tracer *tracer,
1213 unsigned int counter, u64 value)
1215 if (!tracer)
1216 return -EINVAL;
1218 if (ds_cfg.nr_counter_reset < counter)
1219 return -EINVAL;
1221 *(u64 *)(tracer->ds.context->ds +
1222 (NUM_DS_PTR_FIELDS * ds_cfg.sizeof_ptr_field) +
1223 (counter * PEBS_RESET_FIELD_SIZE)) = value;
1225 return 0;
1228 static const struct ds_configuration ds_cfg_netburst = {
1229 .name = "Netburst",
1230 .ctl[dsf_bts] = (1 << 2) | (1 << 3),
1231 .ctl[dsf_bts_kernel] = (1 << 5),
1232 .ctl[dsf_bts_user] = (1 << 6),
1233 .nr_counter_reset = 1,
1235 static const struct ds_configuration ds_cfg_pentium_m = {
1236 .name = "Pentium M",
1237 .ctl[dsf_bts] = (1 << 6) | (1 << 7),
1238 .nr_counter_reset = 1,
1240 static const struct ds_configuration ds_cfg_core2_atom = {
1241 .name = "Core 2/Atom",
1242 .ctl[dsf_bts] = (1 << 6) | (1 << 7),
1243 .ctl[dsf_bts_kernel] = (1 << 9),
1244 .ctl[dsf_bts_user] = (1 << 10),
1245 .nr_counter_reset = 1,
1247 static const struct ds_configuration ds_cfg_core_i7 = {
1248 .name = "Core i7",
1249 .ctl[dsf_bts] = (1 << 6) | (1 << 7),
1250 .ctl[dsf_bts_kernel] = (1 << 9),
1251 .ctl[dsf_bts_user] = (1 << 10),
1252 .nr_counter_reset = 4,
1255 static void
1256 ds_configure(const struct ds_configuration *cfg,
1257 struct cpuinfo_x86 *cpu)
1259 unsigned long nr_pebs_fields = 0;
1261 printk(KERN_INFO "[ds] using %s configuration\n", cfg->name);
1263 #ifdef __i386__
1264 nr_pebs_fields = 10;
1265 #else
1266 nr_pebs_fields = 18;
1267 #endif
1270 * Starting with version 2, architectural performance
1271 * monitoring supports a format specifier.
1273 if ((cpuid_eax(0xa) & 0xff) > 1) {
1274 unsigned long perf_capabilities, format;
1276 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_capabilities);
1278 format = (perf_capabilities >> 8) & 0xf;
1280 switch (format) {
1281 case 0:
1282 nr_pebs_fields = 18;
1283 break;
1284 case 1:
1285 nr_pebs_fields = 22;
1286 break;
1287 default:
1288 printk(KERN_INFO
1289 "[ds] unknown PEBS format: %lu\n", format);
1290 nr_pebs_fields = 0;
1291 break;
1295 memset(&ds_cfg, 0, sizeof(ds_cfg));
1296 ds_cfg = *cfg;
1298 ds_cfg.sizeof_ptr_field =
1299 (cpu_has(cpu, X86_FEATURE_DTES64) ? 8 : 4);
1301 ds_cfg.sizeof_rec[ds_bts] = ds_cfg.sizeof_ptr_field * 3;
1302 ds_cfg.sizeof_rec[ds_pebs] = ds_cfg.sizeof_ptr_field * nr_pebs_fields;
1304 if (!cpu_has(cpu, X86_FEATURE_BTS)) {
1305 ds_cfg.sizeof_rec[ds_bts] = 0;
1306 printk(KERN_INFO "[ds] bts not available\n");
1308 if (!cpu_has(cpu, X86_FEATURE_PEBS)) {
1309 ds_cfg.sizeof_rec[ds_pebs] = 0;
1310 printk(KERN_INFO "[ds] pebs not available\n");
1313 printk(KERN_INFO "[ds] sizes: address: %u bit, ",
1314 8 * ds_cfg.sizeof_ptr_field);
1315 printk("bts/pebs record: %u/%u bytes\n",
1316 ds_cfg.sizeof_rec[ds_bts], ds_cfg.sizeof_rec[ds_pebs]);
1318 WARN_ON_ONCE(MAX_PEBS_COUNTERS < ds_cfg.nr_counter_reset);
1321 void __cpuinit ds_init_intel(struct cpuinfo_x86 *c)
1323 /* Only configure the first cpu. Others are identical. */
1324 if (ds_cfg.name)
1325 return;
1327 switch (c->x86) {
1328 case 0x6:
1329 switch (c->x86_model) {
1330 case 0x9:
1331 case 0xd: /* Pentium M */
1332 ds_configure(&ds_cfg_pentium_m, c);
1333 break;
1334 case 0xf:
1335 case 0x17: /* Core2 */
1336 case 0x1c: /* Atom */
1337 ds_configure(&ds_cfg_core2_atom, c);
1338 break;
1339 case 0x1a: /* Core i7 */
1340 ds_configure(&ds_cfg_core_i7, c);
1341 break;
1342 default:
1343 /* Sorry, don't know about them. */
1344 break;
1346 break;
1347 case 0xf:
1348 switch (c->x86_model) {
1349 case 0x0:
1350 case 0x1:
1351 case 0x2: /* Netburst */
1352 ds_configure(&ds_cfg_netburst, c);
1353 break;
1354 default:
1355 /* Sorry, don't know about them. */
1356 break;
1358 break;
1359 default:
1360 /* Sorry, don't know about them. */
1361 break;
1365 static inline void ds_take_timestamp(struct ds_context *context,
1366 enum bts_qualifier qualifier,
1367 struct task_struct *task)
1369 struct bts_tracer *tracer = context->bts_master;
1370 struct bts_struct ts;
1372 /* Prevent compilers from reading the tracer pointer twice. */
1373 barrier();
1375 if (!tracer || !(tracer->flags & BTS_TIMESTAMPS))
1376 return;
1378 memset(&ts, 0, sizeof(ts));
1379 ts.qualifier = qualifier;
1380 ts.variant.event.clock = trace_clock_global();
1381 ts.variant.event.pid = task->pid;
1383 bts_write(tracer, &ts);
1387 * Change the DS configuration from tracing prev to tracing next.
1389 void ds_switch_to(struct task_struct *prev, struct task_struct *next)
1391 struct ds_context *prev_ctx = prev->thread.ds_ctx;
1392 struct ds_context *next_ctx = next->thread.ds_ctx;
1393 unsigned long debugctlmsr = next->thread.debugctlmsr;
1395 /* Make sure all data is read before we start. */
1396 barrier();
1398 if (prev_ctx) {
1399 update_debugctlmsr(0);
1401 ds_take_timestamp(prev_ctx, bts_task_departs, prev);
1404 if (next_ctx) {
1405 ds_take_timestamp(next_ctx, bts_task_arrives, next);
1407 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)next_ctx->ds);
1410 update_debugctlmsr(debugctlmsr);
1413 static __init int ds_selftest(void)
1415 if (ds_cfg.sizeof_rec[ds_bts]) {
1416 int error;
1418 error = ds_selftest_bts();
1419 if (error) {
1420 WARN(1, "[ds] selftest failed. disabling bts.\n");
1421 ds_cfg.sizeof_rec[ds_bts] = 0;
1425 if (ds_cfg.sizeof_rec[ds_pebs]) {
1426 int error;
1428 error = ds_selftest_pebs();
1429 if (error) {
1430 WARN(1, "[ds] selftest failed. disabling pebs.\n");
1431 ds_cfg.sizeof_rec[ds_pebs] = 0;
1435 return 0;
1437 device_initcall(ds_selftest);