Linux 2.6.31.6
[linux/fpc-iii.git] / arch / x86 / kernel / tsc.c
blob71f4368b357edf2a47fd035349bfbcd8c595e882
1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
8 #include <linux/dmi.h>
9 #include <linux/delay.h>
10 #include <linux/clocksource.h>
11 #include <linux/percpu.h>
12 #include <linux/timex.h>
14 #include <asm/hpet.h>
15 #include <asm/timer.h>
16 #include <asm/vgtod.h>
17 #include <asm/time.h>
18 #include <asm/delay.h>
19 #include <asm/hypervisor.h>
21 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
22 EXPORT_SYMBOL(cpu_khz);
24 unsigned int __read_mostly tsc_khz;
25 EXPORT_SYMBOL(tsc_khz);
28 * TSC can be unstable due to cpufreq or due to unsynced TSCs
30 static int __read_mostly tsc_unstable;
32 /* native_sched_clock() is called before tsc_init(), so
33 we must start with the TSC soft disabled to prevent
34 erroneous rdtsc usage on !cpu_has_tsc processors */
35 static int __read_mostly tsc_disabled = -1;
37 static int tsc_clocksource_reliable;
39 * Scheduler clock - returns current time in nanosec units.
41 u64 native_sched_clock(void)
43 u64 this_offset;
46 * Fall back to jiffies if there's no TSC available:
47 * ( But note that we still use it if the TSC is marked
48 * unstable. We do this because unlike Time Of Day,
49 * the scheduler clock tolerates small errors and it's
50 * very important for it to be as fast as the platform
51 * can achive it. )
53 if (unlikely(tsc_disabled)) {
54 /* No locking but a rare wrong value is not a big deal: */
55 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
58 /* read the Time Stamp Counter: */
59 rdtscll(this_offset);
61 /* return the value in ns */
62 return __cycles_2_ns(this_offset);
65 /* We need to define a real function for sched_clock, to override the
66 weak default version */
67 #ifdef CONFIG_PARAVIRT
68 unsigned long long sched_clock(void)
70 return paravirt_sched_clock();
72 #else
73 unsigned long long
74 sched_clock(void) __attribute__((alias("native_sched_clock")));
75 #endif
77 int check_tsc_unstable(void)
79 return tsc_unstable;
81 EXPORT_SYMBOL_GPL(check_tsc_unstable);
83 #ifdef CONFIG_X86_TSC
84 int __init notsc_setup(char *str)
86 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
87 "cannot disable TSC completely.\n");
88 tsc_disabled = 1;
89 return 1;
91 #else
93 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
94 * in cpu/common.c
96 int __init notsc_setup(char *str)
98 setup_clear_cpu_cap(X86_FEATURE_TSC);
99 return 1;
101 #endif
103 __setup("notsc", notsc_setup);
105 static int __init tsc_setup(char *str)
107 if (!strcmp(str, "reliable"))
108 tsc_clocksource_reliable = 1;
109 return 1;
112 __setup("tsc=", tsc_setup);
114 #define MAX_RETRIES 5
115 #define SMI_TRESHOLD 50000
118 * Read TSC and the reference counters. Take care of SMI disturbance
120 static u64 tsc_read_refs(u64 *p, int hpet)
122 u64 t1, t2;
123 int i;
125 for (i = 0; i < MAX_RETRIES; i++) {
126 t1 = get_cycles();
127 if (hpet)
128 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
129 else
130 *p = acpi_pm_read_early();
131 t2 = get_cycles();
132 if ((t2 - t1) < SMI_TRESHOLD)
133 return t2;
135 return ULLONG_MAX;
139 * Calculate the TSC frequency from HPET reference
141 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
143 u64 tmp;
145 if (hpet2 < hpet1)
146 hpet2 += 0x100000000ULL;
147 hpet2 -= hpet1;
148 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
149 do_div(tmp, 1000000);
150 do_div(deltatsc, tmp);
152 return (unsigned long) deltatsc;
156 * Calculate the TSC frequency from PMTimer reference
158 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
160 u64 tmp;
162 if (!pm1 && !pm2)
163 return ULONG_MAX;
165 if (pm2 < pm1)
166 pm2 += (u64)ACPI_PM_OVRRUN;
167 pm2 -= pm1;
168 tmp = pm2 * 1000000000LL;
169 do_div(tmp, PMTMR_TICKS_PER_SEC);
170 do_div(deltatsc, tmp);
172 return (unsigned long) deltatsc;
175 #define CAL_MS 10
176 #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
177 #define CAL_PIT_LOOPS 1000
179 #define CAL2_MS 50
180 #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
181 #define CAL2_PIT_LOOPS 5000
185 * Try to calibrate the TSC against the Programmable
186 * Interrupt Timer and return the frequency of the TSC
187 * in kHz.
189 * Return ULONG_MAX on failure to calibrate.
191 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
193 u64 tsc, t1, t2, delta;
194 unsigned long tscmin, tscmax;
195 int pitcnt;
197 /* Set the Gate high, disable speaker */
198 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
201 * Setup CTC channel 2* for mode 0, (interrupt on terminal
202 * count mode), binary count. Set the latch register to 50ms
203 * (LSB then MSB) to begin countdown.
205 outb(0xb0, 0x43);
206 outb(latch & 0xff, 0x42);
207 outb(latch >> 8, 0x42);
209 tsc = t1 = t2 = get_cycles();
211 pitcnt = 0;
212 tscmax = 0;
213 tscmin = ULONG_MAX;
214 while ((inb(0x61) & 0x20) == 0) {
215 t2 = get_cycles();
216 delta = t2 - tsc;
217 tsc = t2;
218 if ((unsigned long) delta < tscmin)
219 tscmin = (unsigned int) delta;
220 if ((unsigned long) delta > tscmax)
221 tscmax = (unsigned int) delta;
222 pitcnt++;
226 * Sanity checks:
228 * If we were not able to read the PIT more than loopmin
229 * times, then we have been hit by a massive SMI
231 * If the maximum is 10 times larger than the minimum,
232 * then we got hit by an SMI as well.
234 if (pitcnt < loopmin || tscmax > 10 * tscmin)
235 return ULONG_MAX;
237 /* Calculate the PIT value */
238 delta = t2 - t1;
239 do_div(delta, ms);
240 return delta;
244 * This reads the current MSB of the PIT counter, and
245 * checks if we are running on sufficiently fast and
246 * non-virtualized hardware.
248 * Our expectations are:
250 * - the PIT is running at roughly 1.19MHz
252 * - each IO is going to take about 1us on real hardware,
253 * but we allow it to be much faster (by a factor of 10) or
254 * _slightly_ slower (ie we allow up to a 2us read+counter
255 * update - anything else implies a unacceptably slow CPU
256 * or PIT for the fast calibration to work.
258 * - with 256 PIT ticks to read the value, we have 214us to
259 * see the same MSB (and overhead like doing a single TSC
260 * read per MSB value etc).
262 * - We're doing 2 reads per loop (LSB, MSB), and we expect
263 * them each to take about a microsecond on real hardware.
264 * So we expect a count value of around 100. But we'll be
265 * generous, and accept anything over 50.
267 * - if the PIT is stuck, and we see *many* more reads, we
268 * return early (and the next caller of pit_expect_msb()
269 * then consider it a failure when they don't see the
270 * next expected value).
272 * These expectations mean that we know that we have seen the
273 * transition from one expected value to another with a fairly
274 * high accuracy, and we didn't miss any events. We can thus
275 * use the TSC value at the transitions to calculate a pretty
276 * good value for the TSC frequencty.
278 static inline int pit_verify_msb(unsigned char val)
280 /* Ignore LSB */
281 inb(0x42);
282 return inb(0x42) == val;
285 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
287 int count;
288 u64 tsc = 0;
290 for (count = 0; count < 50000; count++) {
291 if (!pit_verify_msb(val))
292 break;
293 tsc = get_cycles();
295 *deltap = get_cycles() - tsc;
296 *tscp = tsc;
299 * We require _some_ success, but the quality control
300 * will be based on the error terms on the TSC values.
302 return count > 5;
306 * How many MSB values do we want to see? We aim for
307 * a maximum error rate of 500ppm (in practice the
308 * real error is much smaller), but refuse to spend
309 * more than 25ms on it.
311 #define MAX_QUICK_PIT_MS 25
312 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
314 static unsigned long quick_pit_calibrate(void)
316 int i;
317 u64 tsc, delta;
318 unsigned long d1, d2;
320 /* Set the Gate high, disable speaker */
321 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
324 * Counter 2, mode 0 (one-shot), binary count
326 * NOTE! Mode 2 decrements by two (and then the
327 * output is flipped each time, giving the same
328 * final output frequency as a decrement-by-one),
329 * so mode 0 is much better when looking at the
330 * individual counts.
332 outb(0xb0, 0x43);
334 /* Start at 0xffff */
335 outb(0xff, 0x42);
336 outb(0xff, 0x42);
339 * The PIT starts counting at the next edge, so we
340 * need to delay for a microsecond. The easiest way
341 * to do that is to just read back the 16-bit counter
342 * once from the PIT.
344 pit_verify_msb(0);
346 if (pit_expect_msb(0xff, &tsc, &d1)) {
347 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
348 if (!pit_expect_msb(0xff-i, &delta, &d2))
349 break;
352 * Iterate until the error is less than 500 ppm
354 delta -= tsc;
355 if (d1+d2 >= delta >> 11)
356 continue;
359 * Check the PIT one more time to verify that
360 * all TSC reads were stable wrt the PIT.
362 * This also guarantees serialization of the
363 * last cycle read ('d2') in pit_expect_msb.
365 if (!pit_verify_msb(0xfe - i))
366 break;
367 goto success;
370 printk("Fast TSC calibration failed\n");
371 return 0;
373 success:
375 * Ok, if we get here, then we've seen the
376 * MSB of the PIT decrement 'i' times, and the
377 * error has shrunk to less than 500 ppm.
379 * As a result, we can depend on there not being
380 * any odd delays anywhere, and the TSC reads are
381 * reliable (within the error). We also adjust the
382 * delta to the middle of the error bars, just
383 * because it looks nicer.
385 * kHz = ticks / time-in-seconds / 1000;
386 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
387 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
389 delta += (long)(d2 - d1)/2;
390 delta *= PIT_TICK_RATE;
391 do_div(delta, i*256*1000);
392 printk("Fast TSC calibration using PIT\n");
393 return delta;
397 * native_calibrate_tsc - calibrate the tsc on boot
399 unsigned long native_calibrate_tsc(void)
401 u64 tsc1, tsc2, delta, ref1, ref2;
402 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
403 unsigned long flags, latch, ms, fast_calibrate, hv_tsc_khz;
404 int hpet = is_hpet_enabled(), i, loopmin;
406 hv_tsc_khz = get_hypervisor_tsc_freq();
407 if (hv_tsc_khz) {
408 printk(KERN_INFO "TSC: Frequency read from the hypervisor\n");
409 return hv_tsc_khz;
412 local_irq_save(flags);
413 fast_calibrate = quick_pit_calibrate();
414 local_irq_restore(flags);
415 if (fast_calibrate)
416 return fast_calibrate;
419 * Run 5 calibration loops to get the lowest frequency value
420 * (the best estimate). We use two different calibration modes
421 * here:
423 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
424 * load a timeout of 50ms. We read the time right after we
425 * started the timer and wait until the PIT count down reaches
426 * zero. In each wait loop iteration we read the TSC and check
427 * the delta to the previous read. We keep track of the min
428 * and max values of that delta. The delta is mostly defined
429 * by the IO time of the PIT access, so we can detect when a
430 * SMI/SMM disturbance happend between the two reads. If the
431 * maximum time is significantly larger than the minimum time,
432 * then we discard the result and have another try.
434 * 2) Reference counter. If available we use the HPET or the
435 * PMTIMER as a reference to check the sanity of that value.
436 * We use separate TSC readouts and check inside of the
437 * reference read for a SMI/SMM disturbance. We dicard
438 * disturbed values here as well. We do that around the PIT
439 * calibration delay loop as we have to wait for a certain
440 * amount of time anyway.
443 /* Preset PIT loop values */
444 latch = CAL_LATCH;
445 ms = CAL_MS;
446 loopmin = CAL_PIT_LOOPS;
448 for (i = 0; i < 3; i++) {
449 unsigned long tsc_pit_khz;
452 * Read the start value and the reference count of
453 * hpet/pmtimer when available. Then do the PIT
454 * calibration, which will take at least 50ms, and
455 * read the end value.
457 local_irq_save(flags);
458 tsc1 = tsc_read_refs(&ref1, hpet);
459 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
460 tsc2 = tsc_read_refs(&ref2, hpet);
461 local_irq_restore(flags);
463 /* Pick the lowest PIT TSC calibration so far */
464 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
466 /* hpet or pmtimer available ? */
467 if (!hpet && !ref1 && !ref2)
468 continue;
470 /* Check, whether the sampling was disturbed by an SMI */
471 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
472 continue;
474 tsc2 = (tsc2 - tsc1) * 1000000LL;
475 if (hpet)
476 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
477 else
478 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
480 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
482 /* Check the reference deviation */
483 delta = ((u64) tsc_pit_min) * 100;
484 do_div(delta, tsc_ref_min);
487 * If both calibration results are inside a 10% window
488 * then we can be sure, that the calibration
489 * succeeded. We break out of the loop right away. We
490 * use the reference value, as it is more precise.
492 if (delta >= 90 && delta <= 110) {
493 printk(KERN_INFO
494 "TSC: PIT calibration matches %s. %d loops\n",
495 hpet ? "HPET" : "PMTIMER", i + 1);
496 return tsc_ref_min;
500 * Check whether PIT failed more than once. This
501 * happens in virtualized environments. We need to
502 * give the virtual PC a slightly longer timeframe for
503 * the HPET/PMTIMER to make the result precise.
505 if (i == 1 && tsc_pit_min == ULONG_MAX) {
506 latch = CAL2_LATCH;
507 ms = CAL2_MS;
508 loopmin = CAL2_PIT_LOOPS;
513 * Now check the results.
515 if (tsc_pit_min == ULONG_MAX) {
516 /* PIT gave no useful value */
517 printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
519 /* We don't have an alternative source, disable TSC */
520 if (!hpet && !ref1 && !ref2) {
521 printk("TSC: No reference (HPET/PMTIMER) available\n");
522 return 0;
525 /* The alternative source failed as well, disable TSC */
526 if (tsc_ref_min == ULONG_MAX) {
527 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
528 "failed.\n");
529 return 0;
532 /* Use the alternative source */
533 printk(KERN_INFO "TSC: using %s reference calibration\n",
534 hpet ? "HPET" : "PMTIMER");
536 return tsc_ref_min;
539 /* We don't have an alternative source, use the PIT calibration value */
540 if (!hpet && !ref1 && !ref2) {
541 printk(KERN_INFO "TSC: Using PIT calibration value\n");
542 return tsc_pit_min;
545 /* The alternative source failed, use the PIT calibration value */
546 if (tsc_ref_min == ULONG_MAX) {
547 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
548 "Using PIT calibration\n");
549 return tsc_pit_min;
553 * The calibration values differ too much. In doubt, we use
554 * the PIT value as we know that there are PMTIMERs around
555 * running at double speed. At least we let the user know:
557 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
558 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
559 printk(KERN_INFO "TSC: Using PIT calibration value\n");
560 return tsc_pit_min;
563 int recalibrate_cpu_khz(void)
565 #ifndef CONFIG_SMP
566 unsigned long cpu_khz_old = cpu_khz;
568 if (cpu_has_tsc) {
569 tsc_khz = calibrate_tsc();
570 cpu_khz = tsc_khz;
571 cpu_data(0).loops_per_jiffy =
572 cpufreq_scale(cpu_data(0).loops_per_jiffy,
573 cpu_khz_old, cpu_khz);
574 return 0;
575 } else
576 return -ENODEV;
577 #else
578 return -ENODEV;
579 #endif
582 EXPORT_SYMBOL(recalibrate_cpu_khz);
585 /* Accelerators for sched_clock()
586 * convert from cycles(64bits) => nanoseconds (64bits)
587 * basic equation:
588 * ns = cycles / (freq / ns_per_sec)
589 * ns = cycles * (ns_per_sec / freq)
590 * ns = cycles * (10^9 / (cpu_khz * 10^3))
591 * ns = cycles * (10^6 / cpu_khz)
593 * Then we use scaling math (suggested by george@mvista.com) to get:
594 * ns = cycles * (10^6 * SC / cpu_khz) / SC
595 * ns = cycles * cyc2ns_scale / SC
597 * And since SC is a constant power of two, we can convert the div
598 * into a shift.
600 * We can use khz divisor instead of mhz to keep a better precision, since
601 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
602 * (mathieu.desnoyers@polymtl.ca)
604 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
607 DEFINE_PER_CPU(unsigned long, cyc2ns);
608 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
610 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
612 unsigned long long tsc_now, ns_now, *offset;
613 unsigned long flags, *scale;
615 local_irq_save(flags);
616 sched_clock_idle_sleep_event();
618 scale = &per_cpu(cyc2ns, cpu);
619 offset = &per_cpu(cyc2ns_offset, cpu);
621 rdtscll(tsc_now);
622 ns_now = __cycles_2_ns(tsc_now);
624 if (cpu_khz) {
625 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
626 *offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
629 sched_clock_idle_wakeup_event(0);
630 local_irq_restore(flags);
633 #ifdef CONFIG_CPU_FREQ
635 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
636 * changes.
638 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
639 * not that important because current Opteron setups do not support
640 * scaling on SMP anyroads.
642 * Should fix up last_tsc too. Currently gettimeofday in the
643 * first tick after the change will be slightly wrong.
646 static unsigned int ref_freq;
647 static unsigned long loops_per_jiffy_ref;
648 static unsigned long tsc_khz_ref;
650 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
651 void *data)
653 struct cpufreq_freqs *freq = data;
654 unsigned long *lpj;
656 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
657 return 0;
659 lpj = &boot_cpu_data.loops_per_jiffy;
660 #ifdef CONFIG_SMP
661 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
662 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
663 #endif
665 if (!ref_freq) {
666 ref_freq = freq->old;
667 loops_per_jiffy_ref = *lpj;
668 tsc_khz_ref = tsc_khz;
670 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
671 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
672 (val == CPUFREQ_RESUMECHANGE)) {
673 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
675 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
676 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
677 mark_tsc_unstable("cpufreq changes");
680 set_cyc2ns_scale(tsc_khz, freq->cpu);
682 return 0;
685 static struct notifier_block time_cpufreq_notifier_block = {
686 .notifier_call = time_cpufreq_notifier
689 static int __init cpufreq_tsc(void)
691 if (!cpu_has_tsc)
692 return 0;
693 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
694 return 0;
695 cpufreq_register_notifier(&time_cpufreq_notifier_block,
696 CPUFREQ_TRANSITION_NOTIFIER);
697 return 0;
700 core_initcall(cpufreq_tsc);
702 #endif /* CONFIG_CPU_FREQ */
704 /* clocksource code */
706 static struct clocksource clocksource_tsc;
709 * We compare the TSC to the cycle_last value in the clocksource
710 * structure to avoid a nasty time-warp. This can be observed in a
711 * very small window right after one CPU updated cycle_last under
712 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
713 * is smaller than the cycle_last reference value due to a TSC which
714 * is slighty behind. This delta is nowhere else observable, but in
715 * that case it results in a forward time jump in the range of hours
716 * due to the unsigned delta calculation of the time keeping core
717 * code, which is necessary to support wrapping clocksources like pm
718 * timer.
720 static cycle_t read_tsc(struct clocksource *cs)
722 cycle_t ret = (cycle_t)get_cycles();
724 return ret >= clocksource_tsc.cycle_last ?
725 ret : clocksource_tsc.cycle_last;
728 #ifdef CONFIG_X86_64
729 static cycle_t __vsyscall_fn vread_tsc(void)
731 cycle_t ret;
734 * Surround the RDTSC by barriers, to make sure it's not
735 * speculated to outside the seqlock critical section and
736 * does not cause time warps:
738 rdtsc_barrier();
739 ret = (cycle_t)vget_cycles();
740 rdtsc_barrier();
742 return ret >= __vsyscall_gtod_data.clock.cycle_last ?
743 ret : __vsyscall_gtod_data.clock.cycle_last;
745 #endif
747 static struct clocksource clocksource_tsc = {
748 .name = "tsc",
749 .rating = 300,
750 .read = read_tsc,
751 .mask = CLOCKSOURCE_MASK(64),
752 .shift = 22,
753 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
754 CLOCK_SOURCE_MUST_VERIFY,
755 #ifdef CONFIG_X86_64
756 .vread = vread_tsc,
757 #endif
760 void mark_tsc_unstable(char *reason)
762 if (!tsc_unstable) {
763 tsc_unstable = 1;
764 printk("Marking TSC unstable due to %s\n", reason);
765 /* Change only the rating, when not registered */
766 if (clocksource_tsc.mult)
767 clocksource_change_rating(&clocksource_tsc, 0);
768 else
769 clocksource_tsc.rating = 0;
773 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
775 static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
777 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
778 d->ident);
779 tsc_unstable = 1;
780 return 0;
783 /* List of systems that have known TSC problems */
784 static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
786 .callback = dmi_mark_tsc_unstable,
787 .ident = "IBM Thinkpad 380XD",
788 .matches = {
789 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
790 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
796 static void __init check_system_tsc_reliable(void)
798 #ifdef CONFIG_MGEODE_LX
799 /* RTSC counts during suspend */
800 #define RTSC_SUSP 0x100
801 unsigned long res_low, res_high;
803 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
804 /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
805 if (res_low & RTSC_SUSP)
806 tsc_clocksource_reliable = 1;
807 #endif
808 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
809 tsc_clocksource_reliable = 1;
813 * Make an educated guess if the TSC is trustworthy and synchronized
814 * over all CPUs.
816 __cpuinit int unsynchronized_tsc(void)
818 if (!cpu_has_tsc || tsc_unstable)
819 return 1;
821 #ifdef CONFIG_SMP
822 if (apic_is_clustered_box())
823 return 1;
824 #endif
826 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
827 return 0;
829 * Intel systems are normally all synchronized.
830 * Exceptions must mark TSC as unstable:
832 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
833 /* assume multi socket systems are not synchronized: */
834 if (num_possible_cpus() > 1)
835 tsc_unstable = 1;
838 return tsc_unstable;
841 static void __init init_tsc_clocksource(void)
843 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
844 clocksource_tsc.shift);
845 if (tsc_clocksource_reliable)
846 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
847 /* lower the rating if we already know its unstable: */
848 if (check_tsc_unstable()) {
849 clocksource_tsc.rating = 0;
850 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
852 clocksource_register(&clocksource_tsc);
855 void __init tsc_init(void)
857 u64 lpj;
858 int cpu;
860 if (!cpu_has_tsc)
861 return;
863 tsc_khz = calibrate_tsc();
864 cpu_khz = tsc_khz;
866 if (!tsc_khz) {
867 mark_tsc_unstable("could not calculate TSC khz");
868 return;
871 #ifdef CONFIG_X86_64
872 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
873 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
874 cpu_khz = calibrate_cpu();
875 #endif
877 printk("Detected %lu.%03lu MHz processor.\n",
878 (unsigned long)cpu_khz / 1000,
879 (unsigned long)cpu_khz % 1000);
882 * Secondary CPUs do not run through tsc_init(), so set up
883 * all the scale factors for all CPUs, assuming the same
884 * speed as the bootup CPU. (cpufreq notifiers will fix this
885 * up if their speed diverges)
887 for_each_possible_cpu(cpu)
888 set_cyc2ns_scale(cpu_khz, cpu);
890 if (tsc_disabled > 0)
891 return;
893 /* now allow native_sched_clock() to use rdtsc */
894 tsc_disabled = 0;
896 lpj = ((u64)tsc_khz * 1000);
897 do_div(lpj, HZ);
898 lpj_fine = lpj;
900 use_tsc_delay();
901 /* Check and install the TSC clocksource */
902 dmi_check_system(bad_tsc_dmi_table);
904 if (unsynchronized_tsc())
905 mark_tsc_unstable("TSCs unsynchronized");
907 check_system_tsc_reliable();
908 init_tsc_clocksource();