2 * 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 * Sheng Yang <sheng.yang@intel.com>
29 * Based on QEMU and Xen.
32 #include <linux/kvm_host.h>
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
40 #define mod_64(x, y) ((x) % (y))
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64
muldiv64(u64 a
, u32 b
, u32 c
)
60 rl
= (u64
)u
.l
.low
* (u64
)b
;
61 rh
= (u64
)u
.l
.high
* (u64
)b
;
63 res
.l
.high
= div64_u64(rh
, c
);
64 res
.l
.low
= div64_u64(((mod_64(rh
, c
) << 32) + (rl
& 0xffffffff)), c
);
68 static void pit_set_gate(struct kvm
*kvm
, int channel
, u32 val
)
70 struct kvm_kpit_channel_state
*c
=
71 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
73 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
79 /* XXX: just disable/enable counting */
85 /* Restart counting on rising edge. */
87 c
->count_load_time
= ktime_get();
94 static int pit_get_gate(struct kvm
*kvm
, int channel
)
96 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
98 return kvm
->arch
.vpit
->pit_state
.channels
[channel
].gate
;
101 static s64
__kpit_elapsed(struct kvm
*kvm
)
105 struct kvm_kpit_state
*ps
= &kvm
->arch
.vpit
->pit_state
;
107 if (!ps
->pit_timer
.period
)
111 * The Counter does not stop when it reaches zero. In
112 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
113 * the highest count, either FFFF hex for binary counting
114 * or 9999 for BCD counting, and continues counting.
115 * Modes 2 and 3 are periodic; the Counter reloads
116 * itself with the initial count and continues counting
119 remaining
= hrtimer_get_remaining(&ps
->pit_timer
.timer
);
120 elapsed
= ps
->pit_timer
.period
- ktime_to_ns(remaining
);
121 elapsed
= mod_64(elapsed
, ps
->pit_timer
.period
);
126 static s64
kpit_elapsed(struct kvm
*kvm
, struct kvm_kpit_channel_state
*c
,
130 return __kpit_elapsed(kvm
);
132 return ktime_to_ns(ktime_sub(ktime_get(), c
->count_load_time
));
135 static int pit_get_count(struct kvm
*kvm
, int channel
)
137 struct kvm_kpit_channel_state
*c
=
138 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
142 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
144 t
= kpit_elapsed(kvm
, c
, channel
);
145 d
= muldiv64(t
, KVM_PIT_FREQ
, NSEC_PER_SEC
);
152 counter
= (c
->count
- d
) & 0xffff;
155 /* XXX: may be incorrect for odd counts */
156 counter
= c
->count
- (mod_64((2 * d
), c
->count
));
159 counter
= c
->count
- mod_64(d
, c
->count
);
165 static int pit_get_out(struct kvm
*kvm
, int channel
)
167 struct kvm_kpit_channel_state
*c
=
168 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
172 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
174 t
= kpit_elapsed(kvm
, c
, channel
);
175 d
= muldiv64(t
, KVM_PIT_FREQ
, NSEC_PER_SEC
);
180 out
= (d
>= c
->count
);
183 out
= (d
< c
->count
);
186 out
= ((mod_64(d
, c
->count
) == 0) && (d
!= 0));
189 out
= (mod_64(d
, c
->count
) < ((c
->count
+ 1) >> 1));
193 out
= (d
== c
->count
);
200 static void pit_latch_count(struct kvm
*kvm
, int channel
)
202 struct kvm_kpit_channel_state
*c
=
203 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
205 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
207 if (!c
->count_latched
) {
208 c
->latched_count
= pit_get_count(kvm
, channel
);
209 c
->count_latched
= c
->rw_mode
;
213 static void pit_latch_status(struct kvm
*kvm
, int channel
)
215 struct kvm_kpit_channel_state
*c
=
216 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
218 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
220 if (!c
->status_latched
) {
221 /* TODO: Return NULL COUNT (bit 6). */
222 c
->status
= ((pit_get_out(kvm
, channel
) << 7) |
226 c
->status_latched
= 1;
230 int pit_has_pending_timer(struct kvm_vcpu
*vcpu
)
232 struct kvm_pit
*pit
= vcpu
->kvm
->arch
.vpit
;
234 if (pit
&& vcpu
->vcpu_id
== 0 && pit
->pit_state
.irq_ack
)
235 return atomic_read(&pit
->pit_state
.pit_timer
.pending
);
239 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier
*kian
)
241 struct kvm_kpit_state
*ps
= container_of(kian
, struct kvm_kpit_state
,
243 spin_lock(&ps
->inject_lock
);
244 if (atomic_dec_return(&ps
->pit_timer
.pending
) < 0)
245 atomic_inc(&ps
->pit_timer
.pending
);
247 spin_unlock(&ps
->inject_lock
);
250 void __kvm_migrate_pit_timer(struct kvm_vcpu
*vcpu
)
252 struct kvm_pit
*pit
= vcpu
->kvm
->arch
.vpit
;
253 struct hrtimer
*timer
;
255 if (vcpu
->vcpu_id
!= 0 || !pit
)
258 timer
= &pit
->pit_state
.pit_timer
.timer
;
259 if (hrtimer_cancel(timer
))
260 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS
);
263 static void destroy_pit_timer(struct kvm_timer
*pt
)
265 pr_debug("pit: execute del timer!\n");
266 hrtimer_cancel(&pt
->timer
);
269 static bool kpit_is_periodic(struct kvm_timer
*ktimer
)
271 struct kvm_kpit_state
*ps
= container_of(ktimer
, struct kvm_kpit_state
,
273 return ps
->is_periodic
;
276 static struct kvm_timer_ops kpit_ops
= {
277 .is_periodic
= kpit_is_periodic
,
280 static void create_pit_timer(struct kvm_kpit_state
*ps
, u32 val
, int is_period
)
282 struct kvm_timer
*pt
= &ps
->pit_timer
;
285 interval
= muldiv64(val
, NSEC_PER_SEC
, KVM_PIT_FREQ
);
287 pr_debug("pit: create pit timer, interval is %llu nsec\n", interval
);
289 /* TODO The new value only affected after the retriggered */
290 hrtimer_cancel(&pt
->timer
);
291 pt
->period
= interval
;
292 ps
->is_periodic
= is_period
;
294 pt
->timer
.function
= kvm_timer_fn
;
295 pt
->t_ops
= &kpit_ops
;
296 pt
->kvm
= ps
->pit
->kvm
;
299 atomic_set(&pt
->pending
, 0);
302 hrtimer_start(&pt
->timer
, ktime_add_ns(ktime_get(), interval
),
306 static void pit_load_count(struct kvm
*kvm
, int channel
, u32 val
)
308 struct kvm_kpit_state
*ps
= &kvm
->arch
.vpit
->pit_state
;
310 WARN_ON(!mutex_is_locked(&ps
->lock
));
312 pr_debug("pit: load_count val is %d, channel is %d\n", val
, channel
);
315 * The largest possible initial count is 0; this is equivalent
316 * to 216 for binary counting and 104 for BCD counting.
321 ps
->channels
[channel
].count
= val
;
324 ps
->channels
[channel
].count_load_time
= ktime_get();
328 /* Two types of timer
329 * mode 1 is one shot, mode 2 is period, otherwise del timer */
330 switch (ps
->channels
[0].mode
) {
333 /* FIXME: enhance mode 4 precision */
335 create_pit_timer(ps
, val
, 0);
339 create_pit_timer(ps
, val
, 1);
342 destroy_pit_timer(&ps
->pit_timer
);
346 void kvm_pit_load_count(struct kvm
*kvm
, int channel
, u32 val
)
348 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
349 pit_load_count(kvm
, channel
, val
);
350 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
353 static void pit_ioport_write(struct kvm_io_device
*this,
354 gpa_t addr
, int len
, const void *data
)
356 struct kvm_pit
*pit
= (struct kvm_pit
*)this->private;
357 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
358 struct kvm
*kvm
= pit
->kvm
;
360 struct kvm_kpit_channel_state
*s
;
361 u32 val
= *(u32
*) data
;
364 addr
&= KVM_PIT_CHANNEL_MASK
;
366 mutex_lock(&pit_state
->lock
);
369 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
370 (unsigned int)addr
, len
, val
);
375 /* Read-Back Command. */
376 for (channel
= 0; channel
< 3; channel
++) {
377 s
= &pit_state
->channels
[channel
];
378 if (val
& (2 << channel
)) {
380 pit_latch_count(kvm
, channel
);
382 pit_latch_status(kvm
, channel
);
386 /* Select Counter <channel>. */
387 s
= &pit_state
->channels
[channel
];
388 access
= (val
>> 4) & KVM_PIT_CHANNEL_MASK
;
390 pit_latch_count(kvm
, channel
);
393 s
->read_state
= access
;
394 s
->write_state
= access
;
395 s
->mode
= (val
>> 1) & 7;
403 s
= &pit_state
->channels
[addr
];
404 switch (s
->write_state
) {
407 pit_load_count(kvm
, addr
, val
);
410 pit_load_count(kvm
, addr
, val
<< 8);
413 s
->write_latch
= val
;
414 s
->write_state
= RW_STATE_WORD1
;
417 pit_load_count(kvm
, addr
, s
->write_latch
| (val
<< 8));
418 s
->write_state
= RW_STATE_WORD0
;
423 mutex_unlock(&pit_state
->lock
);
426 static void pit_ioport_read(struct kvm_io_device
*this,
427 gpa_t addr
, int len
, void *data
)
429 struct kvm_pit
*pit
= (struct kvm_pit
*)this->private;
430 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
431 struct kvm
*kvm
= pit
->kvm
;
433 struct kvm_kpit_channel_state
*s
;
435 addr
&= KVM_PIT_CHANNEL_MASK
;
436 s
= &pit_state
->channels
[addr
];
438 mutex_lock(&pit_state
->lock
);
440 if (s
->status_latched
) {
441 s
->status_latched
= 0;
443 } else if (s
->count_latched
) {
444 switch (s
->count_latched
) {
447 ret
= s
->latched_count
& 0xff;
448 s
->count_latched
= 0;
451 ret
= s
->latched_count
>> 8;
452 s
->count_latched
= 0;
455 ret
= s
->latched_count
& 0xff;
456 s
->count_latched
= RW_STATE_MSB
;
460 switch (s
->read_state
) {
463 count
= pit_get_count(kvm
, addr
);
467 count
= pit_get_count(kvm
, addr
);
468 ret
= (count
>> 8) & 0xff;
471 count
= pit_get_count(kvm
, addr
);
473 s
->read_state
= RW_STATE_WORD1
;
476 count
= pit_get_count(kvm
, addr
);
477 ret
= (count
>> 8) & 0xff;
478 s
->read_state
= RW_STATE_WORD0
;
483 if (len
> sizeof(ret
))
485 memcpy(data
, (char *)&ret
, len
);
487 mutex_unlock(&pit_state
->lock
);
490 static int pit_in_range(struct kvm_io_device
*this, gpa_t addr
,
491 int len
, int is_write
)
493 return ((addr
>= KVM_PIT_BASE_ADDRESS
) &&
494 (addr
< KVM_PIT_BASE_ADDRESS
+ KVM_PIT_MEM_LENGTH
));
497 static void speaker_ioport_write(struct kvm_io_device
*this,
498 gpa_t addr
, int len
, const void *data
)
500 struct kvm_pit
*pit
= (struct kvm_pit
*)this->private;
501 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
502 struct kvm
*kvm
= pit
->kvm
;
503 u32 val
= *(u32
*) data
;
505 mutex_lock(&pit_state
->lock
);
506 pit_state
->speaker_data_on
= (val
>> 1) & 1;
507 pit_set_gate(kvm
, 2, val
& 1);
508 mutex_unlock(&pit_state
->lock
);
511 static void speaker_ioport_read(struct kvm_io_device
*this,
512 gpa_t addr
, int len
, void *data
)
514 struct kvm_pit
*pit
= (struct kvm_pit
*)this->private;
515 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
516 struct kvm
*kvm
= pit
->kvm
;
517 unsigned int refresh_clock
;
520 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
521 refresh_clock
= ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
523 mutex_lock(&pit_state
->lock
);
524 ret
= ((pit_state
->speaker_data_on
<< 1) | pit_get_gate(kvm
, 2) |
525 (pit_get_out(kvm
, 2) << 5) | (refresh_clock
<< 4));
526 if (len
> sizeof(ret
))
528 memcpy(data
, (char *)&ret
, len
);
529 mutex_unlock(&pit_state
->lock
);
532 static int speaker_in_range(struct kvm_io_device
*this, gpa_t addr
,
533 int len
, int is_write
)
535 return (addr
== KVM_SPEAKER_BASE_ADDRESS
);
538 void kvm_pit_reset(struct kvm_pit
*pit
)
541 struct kvm_kpit_channel_state
*c
;
543 mutex_lock(&pit
->pit_state
.lock
);
544 for (i
= 0; i
< 3; i
++) {
545 c
= &pit
->pit_state
.channels
[i
];
548 pit_load_count(pit
->kvm
, i
, 0);
550 mutex_unlock(&pit
->pit_state
.lock
);
552 atomic_set(&pit
->pit_state
.pit_timer
.pending
, 0);
553 pit
->pit_state
.irq_ack
= 1;
556 static void pit_mask_notifer(struct kvm_irq_mask_notifier
*kimn
, bool mask
)
558 struct kvm_pit
*pit
= container_of(kimn
, struct kvm_pit
, mask_notifier
);
561 atomic_set(&pit
->pit_state
.pit_timer
.pending
, 0);
562 pit
->pit_state
.irq_ack
= 1;
566 struct kvm_pit
*kvm_create_pit(struct kvm
*kvm
)
569 struct kvm_kpit_state
*pit_state
;
571 pit
= kzalloc(sizeof(struct kvm_pit
), GFP_KERNEL
);
575 pit
->irq_source_id
= kvm_request_irq_source_id(kvm
);
576 if (pit
->irq_source_id
< 0) {
581 mutex_init(&pit
->pit_state
.lock
);
582 mutex_lock(&pit
->pit_state
.lock
);
583 spin_lock_init(&pit
->pit_state
.inject_lock
);
585 /* Initialize PIO device */
586 pit
->dev
.read
= pit_ioport_read
;
587 pit
->dev
.write
= pit_ioport_write
;
588 pit
->dev
.in_range
= pit_in_range
;
589 pit
->dev
.private = pit
;
590 kvm_io_bus_register_dev(&kvm
->pio_bus
, &pit
->dev
);
592 pit
->speaker_dev
.read
= speaker_ioport_read
;
593 pit
->speaker_dev
.write
= speaker_ioport_write
;
594 pit
->speaker_dev
.in_range
= speaker_in_range
;
595 pit
->speaker_dev
.private = pit
;
596 kvm_io_bus_register_dev(&kvm
->pio_bus
, &pit
->speaker_dev
);
598 kvm
->arch
.vpit
= pit
;
601 pit_state
= &pit
->pit_state
;
602 pit_state
->pit
= pit
;
603 hrtimer_init(&pit_state
->pit_timer
.timer
,
604 CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
605 pit_state
->irq_ack_notifier
.gsi
= 0;
606 pit_state
->irq_ack_notifier
.irq_acked
= kvm_pit_ack_irq
;
607 kvm_register_irq_ack_notifier(kvm
, &pit_state
->irq_ack_notifier
);
608 pit_state
->pit_timer
.reinject
= true;
609 mutex_unlock(&pit
->pit_state
.lock
);
613 pit
->mask_notifier
.func
= pit_mask_notifer
;
614 kvm_register_irq_mask_notifier(kvm
, 0, &pit
->mask_notifier
);
619 void kvm_free_pit(struct kvm
*kvm
)
621 struct hrtimer
*timer
;
623 if (kvm
->arch
.vpit
) {
624 kvm_unregister_irq_mask_notifier(kvm
, 0,
625 &kvm
->arch
.vpit
->mask_notifier
);
626 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
627 timer
= &kvm
->arch
.vpit
->pit_state
.pit_timer
.timer
;
628 hrtimer_cancel(timer
);
629 kvm_free_irq_source_id(kvm
, kvm
->arch
.vpit
->irq_source_id
);
630 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
631 kfree(kvm
->arch
.vpit
);
635 static void __inject_pit_timer_intr(struct kvm
*kvm
)
637 struct kvm_vcpu
*vcpu
;
640 mutex_lock(&kvm
->lock
);
641 kvm_set_irq(kvm
, kvm
->arch
.vpit
->irq_source_id
, 0, 1);
642 kvm_set_irq(kvm
, kvm
->arch
.vpit
->irq_source_id
, 0, 0);
643 mutex_unlock(&kvm
->lock
);
646 * Provides NMI watchdog support via Virtual Wire mode.
647 * The route is: PIT -> PIC -> LVT0 in NMI mode.
649 * Note: Our Virtual Wire implementation is simplified, only
650 * propagating PIT interrupts to all VCPUs when they have set
651 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
652 * VCPU0, and only if its LVT0 is in EXTINT mode.
654 if (kvm
->arch
.vapics_in_nmi_mode
> 0)
655 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
656 vcpu
= kvm
->vcpus
[i
];
658 kvm_apic_nmi_wd_deliver(vcpu
);
662 void kvm_inject_pit_timer_irqs(struct kvm_vcpu
*vcpu
)
664 struct kvm_pit
*pit
= vcpu
->kvm
->arch
.vpit
;
665 struct kvm
*kvm
= vcpu
->kvm
;
666 struct kvm_kpit_state
*ps
;
670 ps
= &pit
->pit_state
;
672 /* Try to inject pending interrupts when
673 * last one has been acked.
675 spin_lock(&ps
->inject_lock
);
676 if (atomic_read(&ps
->pit_timer
.pending
) && ps
->irq_ack
) {
680 spin_unlock(&ps
->inject_lock
);
682 __inject_pit_timer_intr(kvm
);