Linux 2.6.31.6
[linux/fpc-iii.git] / arch / x86 / mm / srat_32.c
blob29a0e37114f8089497cd95659bc8b1e6f1af8573
1 /*
2 * Some of the code in this file has been gleaned from the 64 bit
3 * discontigmem support code base.
5 * Copyright (C) 2002, IBM Corp.
7 * All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17 * NON INFRINGEMENT. See the GNU General Public License for more
18 * details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * Send feedback to Pat Gaughen <gone@us.ibm.com>
26 #include <linux/mm.h>
27 #include <linux/bootmem.h>
28 #include <linux/mmzone.h>
29 #include <linux/acpi.h>
30 #include <linux/nodemask.h>
31 #include <asm/srat.h>
32 #include <asm/topology.h>
33 #include <asm/smp.h>
34 #include <asm/e820.h>
37 * proximity macros and definitions
39 #define NODE_ARRAY_INDEX(x) ((x) / 8) /* 8 bits/char */
40 #define NODE_ARRAY_OFFSET(x) ((x) % 8) /* 8 bits/char */
41 #define BMAP_SET(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit))
42 #define BMAP_TEST(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit)))
43 /* bitmap length; _PXM is at most 255 */
44 #define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8)
45 static u8 __initdata pxm_bitmap[PXM_BITMAP_LEN]; /* bitmap of proximity domains */
47 #define MAX_CHUNKS_PER_NODE 3
48 #define MAXCHUNKS (MAX_CHUNKS_PER_NODE * MAX_NUMNODES)
49 struct node_memory_chunk_s {
50 unsigned long start_pfn;
51 unsigned long end_pfn;
52 u8 pxm; // proximity domain of node
53 u8 nid; // which cnode contains this chunk?
54 u8 bank; // which mem bank on this node
56 static struct node_memory_chunk_s __initdata node_memory_chunk[MAXCHUNKS];
58 static int __initdata num_memory_chunks; /* total number of memory chunks */
59 static u8 __initdata apicid_to_pxm[MAX_APICID];
61 int numa_off __initdata;
62 int acpi_numa __initdata;
64 static __init void bad_srat(void)
66 printk(KERN_ERR "SRAT: SRAT not used.\n");
67 acpi_numa = -1;
68 num_memory_chunks = 0;
71 static __init inline int srat_disabled(void)
73 return numa_off || acpi_numa < 0;
76 /* Identify CPU proximity domains */
77 void __init
78 acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *cpu_affinity)
80 if (srat_disabled())
81 return;
82 if (cpu_affinity->header.length !=
83 sizeof(struct acpi_srat_cpu_affinity)) {
84 bad_srat();
85 return;
88 if ((cpu_affinity->flags & ACPI_SRAT_CPU_ENABLED) == 0)
89 return; /* empty entry */
91 /* mark this node as "seen" in node bitmap */
92 BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain_lo);
94 apicid_to_pxm[cpu_affinity->apic_id] = cpu_affinity->proximity_domain_lo;
96 printk(KERN_DEBUG "CPU %02x in proximity domain %02x\n",
97 cpu_affinity->apic_id, cpu_affinity->proximity_domain_lo);
101 * Identify memory proximity domains and hot-remove capabilities.
102 * Fill node memory chunk list structure.
104 void __init
105 acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *memory_affinity)
107 unsigned long long paddr, size;
108 unsigned long start_pfn, end_pfn;
109 u8 pxm;
110 struct node_memory_chunk_s *p, *q, *pend;
112 if (srat_disabled())
113 return;
114 if (memory_affinity->header.length !=
115 sizeof(struct acpi_srat_mem_affinity)) {
116 bad_srat();
117 return;
120 if ((memory_affinity->flags & ACPI_SRAT_MEM_ENABLED) == 0)
121 return; /* empty entry */
123 pxm = memory_affinity->proximity_domain & 0xff;
125 /* mark this node as "seen" in node bitmap */
126 BMAP_SET(pxm_bitmap, pxm);
128 /* calculate info for memory chunk structure */
129 paddr = memory_affinity->base_address;
130 size = memory_affinity->length;
132 start_pfn = paddr >> PAGE_SHIFT;
133 end_pfn = (paddr + size) >> PAGE_SHIFT;
136 if (num_memory_chunks >= MAXCHUNKS) {
137 printk(KERN_WARNING "Too many mem chunks in SRAT."
138 " Ignoring %lld MBytes at %llx\n",
139 size/(1024*1024), paddr);
140 return;
143 /* Insertion sort based on base address */
144 pend = &node_memory_chunk[num_memory_chunks];
145 for (p = &node_memory_chunk[0]; p < pend; p++) {
146 if (start_pfn < p->start_pfn)
147 break;
149 if (p < pend) {
150 for (q = pend; q >= p; q--)
151 *(q + 1) = *q;
153 p->start_pfn = start_pfn;
154 p->end_pfn = end_pfn;
155 p->pxm = pxm;
157 num_memory_chunks++;
159 printk(KERN_DEBUG "Memory range %08lx to %08lx"
160 " in proximity domain %02x %s\n",
161 start_pfn, end_pfn,
162 pxm,
163 ((memory_affinity->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) ?
164 "enabled and removable" : "enabled" ) );
167 /* Callback for SLIT parsing */
168 void __init acpi_numa_slit_init(struct acpi_table_slit *slit)
172 void acpi_numa_arch_fixup(void)
176 * The SRAT table always lists ascending addresses, so can always
177 * assume that the first "start" address that you see is the real
178 * start of the node, and that the current "end" address is after
179 * the previous one.
181 static __init int node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk)
184 * Only add present memory as told by the e820.
185 * There is no guarantee from the SRAT that the memory it
186 * enumerates is present at boot time because it represents
187 * *possible* memory hotplug areas the same as normal RAM.
189 if (memory_chunk->start_pfn >= max_pfn) {
190 printk(KERN_INFO "Ignoring SRAT pfns: %08lx - %08lx\n",
191 memory_chunk->start_pfn, memory_chunk->end_pfn);
192 return -1;
194 if (memory_chunk->nid != nid)
195 return -1;
197 if (!node_has_online_mem(nid))
198 node_start_pfn[nid] = memory_chunk->start_pfn;
200 if (node_start_pfn[nid] > memory_chunk->start_pfn)
201 node_start_pfn[nid] = memory_chunk->start_pfn;
203 if (node_end_pfn[nid] < memory_chunk->end_pfn)
204 node_end_pfn[nid] = memory_chunk->end_pfn;
206 return 0;
209 int __init get_memcfg_from_srat(void)
211 int i, j, nid;
214 if (srat_disabled())
215 goto out_fail;
217 if (num_memory_chunks == 0) {
218 printk(KERN_WARNING
219 "could not find any ACPI SRAT memory areas.\n");
220 goto out_fail;
223 /* Calculate total number of nodes in system from PXM bitmap and create
224 * a set of sequential node IDs starting at zero. (ACPI doesn't seem
225 * to specify the range of _PXM values.)
228 * MCD - we no longer HAVE to number nodes sequentially. PXM domain
229 * numbers could go as high as 256, and MAX_NUMNODES for i386 is typically
230 * 32, so we will continue numbering them in this manner until MAX_NUMNODES
231 * approaches MAX_PXM_DOMAINS for i386.
233 nodes_clear(node_online_map);
234 for (i = 0; i < MAX_PXM_DOMAINS; i++) {
235 if (BMAP_TEST(pxm_bitmap, i)) {
236 int nid = acpi_map_pxm_to_node(i);
237 node_set_online(nid);
240 BUG_ON(num_online_nodes() == 0);
242 /* set cnode id in memory chunk structure */
243 for (i = 0; i < num_memory_chunks; i++)
244 node_memory_chunk[i].nid = pxm_to_node(node_memory_chunk[i].pxm);
246 printk(KERN_DEBUG "pxm bitmap: ");
247 for (i = 0; i < sizeof(pxm_bitmap); i++) {
248 printk(KERN_CONT "%02x ", pxm_bitmap[i]);
250 printk(KERN_CONT "\n");
251 printk(KERN_DEBUG "Number of logical nodes in system = %d\n",
252 num_online_nodes());
253 printk(KERN_DEBUG "Number of memory chunks in system = %d\n",
254 num_memory_chunks);
256 for (i = 0; i < MAX_APICID; i++)
257 apicid_2_node[i] = pxm_to_node(apicid_to_pxm[i]);
259 for (j = 0; j < num_memory_chunks; j++){
260 struct node_memory_chunk_s * chunk = &node_memory_chunk[j];
261 printk(KERN_DEBUG
262 "chunk %d nid %d start_pfn %08lx end_pfn %08lx\n",
263 j, chunk->nid, chunk->start_pfn, chunk->end_pfn);
264 if (node_read_chunk(chunk->nid, chunk))
265 continue;
267 e820_register_active_regions(chunk->nid, chunk->start_pfn,
268 min(chunk->end_pfn, max_pfn));
271 for_each_online_node(nid) {
272 unsigned long start = node_start_pfn[nid];
273 unsigned long end = min(node_end_pfn[nid], max_pfn);
275 memory_present(nid, start, end);
276 node_remap_size[nid] = node_memmap_size_bytes(nid, start, end);
278 return 1;
279 out_fail:
280 printk(KERN_ERR "failed to get NUMA memory information from SRAT"
281 " table\n");
282 return 0;