Linux 2.6.31.6
[linux/fpc-iii.git] / fs / ext4 / extents.c
blob73ebfb44ad750f0405976f7ff6c792936edb0765
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
49 * ext_pblock:
50 * combine low and high parts of physical block number into ext4_fsblk_t
52 ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
54 ext4_fsblk_t block;
56 block = le32_to_cpu(ex->ee_start_lo);
57 block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58 return block;
62 * idx_pblock:
63 * combine low and high parts of a leaf physical block number into ext4_fsblk_t
65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
67 ext4_fsblk_t block;
69 block = le32_to_cpu(ix->ei_leaf_lo);
70 block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71 return block;
75 * ext4_ext_store_pblock:
76 * stores a large physical block number into an extent struct,
77 * breaking it into parts
79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
81 ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82 ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
86 * ext4_idx_store_pblock:
87 * stores a large physical block number into an index struct,
88 * breaking it into parts
90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
92 ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93 ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
96 static int ext4_ext_journal_restart(handle_t *handle, int needed)
98 int err;
100 if (!ext4_handle_valid(handle))
101 return 0;
102 if (handle->h_buffer_credits > needed)
103 return 0;
104 err = ext4_journal_extend(handle, needed);
105 if (err <= 0)
106 return err;
107 return ext4_journal_restart(handle, needed);
111 * could return:
112 * - EROFS
113 * - ENOMEM
115 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
116 struct ext4_ext_path *path)
118 if (path->p_bh) {
119 /* path points to block */
120 return ext4_journal_get_write_access(handle, path->p_bh);
122 /* path points to leaf/index in inode body */
123 /* we use in-core data, no need to protect them */
124 return 0;
128 * could return:
129 * - EROFS
130 * - ENOMEM
131 * - EIO
133 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
134 struct ext4_ext_path *path)
136 int err;
137 if (path->p_bh) {
138 /* path points to block */
139 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
140 } else {
141 /* path points to leaf/index in inode body */
142 err = ext4_mark_inode_dirty(handle, inode);
144 return err;
147 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
148 struct ext4_ext_path *path,
149 ext4_lblk_t block)
151 struct ext4_inode_info *ei = EXT4_I(inode);
152 ext4_fsblk_t bg_start;
153 ext4_fsblk_t last_block;
154 ext4_grpblk_t colour;
155 ext4_group_t block_group;
156 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
157 int depth;
159 if (path) {
160 struct ext4_extent *ex;
161 depth = path->p_depth;
163 /* try to predict block placement */
164 ex = path[depth].p_ext;
165 if (ex)
166 return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
168 /* it looks like index is empty;
169 * try to find starting block from index itself */
170 if (path[depth].p_bh)
171 return path[depth].p_bh->b_blocknr;
174 /* OK. use inode's group */
175 block_group = ei->i_block_group;
176 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
178 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
179 * block groups per flexgroup, reserve the first block
180 * group for directories and special files. Regular
181 * files will start at the second block group. This
182 * tends to speed up directory access and improves
183 * fsck times.
185 block_group &= ~(flex_size-1);
186 if (S_ISREG(inode->i_mode))
187 block_group++;
189 bg_start = (block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
190 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
191 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
194 * If we are doing delayed allocation, we don't need take
195 * colour into account.
197 if (test_opt(inode->i_sb, DELALLOC))
198 return bg_start;
200 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
201 colour = (current->pid % 16) *
202 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
203 else
204 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
205 return bg_start + colour + block;
209 * Allocation for a meta data block
211 static ext4_fsblk_t
212 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
213 struct ext4_ext_path *path,
214 struct ext4_extent *ex, int *err)
216 ext4_fsblk_t goal, newblock;
218 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
219 newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
220 return newblock;
223 static int ext4_ext_space_block(struct inode *inode)
225 int size;
227 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
228 / sizeof(struct ext4_extent);
229 #ifdef AGGRESSIVE_TEST
230 if (size > 6)
231 size = 6;
232 #endif
233 return size;
236 static int ext4_ext_space_block_idx(struct inode *inode)
238 int size;
240 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
241 / sizeof(struct ext4_extent_idx);
242 #ifdef AGGRESSIVE_TEST
243 if (size > 5)
244 size = 5;
245 #endif
246 return size;
249 static int ext4_ext_space_root(struct inode *inode)
251 int size;
253 size = sizeof(EXT4_I(inode)->i_data);
254 size -= sizeof(struct ext4_extent_header);
255 size /= sizeof(struct ext4_extent);
256 #ifdef AGGRESSIVE_TEST
257 if (size > 3)
258 size = 3;
259 #endif
260 return size;
263 static int ext4_ext_space_root_idx(struct inode *inode)
265 int size;
267 size = sizeof(EXT4_I(inode)->i_data);
268 size -= sizeof(struct ext4_extent_header);
269 size /= sizeof(struct ext4_extent_idx);
270 #ifdef AGGRESSIVE_TEST
271 if (size > 4)
272 size = 4;
273 #endif
274 return size;
278 * Calculate the number of metadata blocks needed
279 * to allocate @blocks
280 * Worse case is one block per extent
282 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks)
284 int lcap, icap, rcap, leafs, idxs, num;
285 int newextents = blocks;
287 rcap = ext4_ext_space_root_idx(inode);
288 lcap = ext4_ext_space_block(inode);
289 icap = ext4_ext_space_block_idx(inode);
291 /* number of new leaf blocks needed */
292 num = leafs = (newextents + lcap - 1) / lcap;
295 * Worse case, we need separate index block(s)
296 * to link all new leaf blocks
298 idxs = (leafs + icap - 1) / icap;
299 do {
300 num += idxs;
301 idxs = (idxs + icap - 1) / icap;
302 } while (idxs > rcap);
304 return num;
307 static int
308 ext4_ext_max_entries(struct inode *inode, int depth)
310 int max;
312 if (depth == ext_depth(inode)) {
313 if (depth == 0)
314 max = ext4_ext_space_root(inode);
315 else
316 max = ext4_ext_space_root_idx(inode);
317 } else {
318 if (depth == 0)
319 max = ext4_ext_space_block(inode);
320 else
321 max = ext4_ext_space_block_idx(inode);
324 return max;
327 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
329 ext4_fsblk_t block = ext_pblock(ext);
330 int len = ext4_ext_get_actual_len(ext);
332 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
335 static int ext4_valid_extent_idx(struct inode *inode,
336 struct ext4_extent_idx *ext_idx)
338 ext4_fsblk_t block = idx_pblock(ext_idx);
340 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
343 static int ext4_valid_extent_entries(struct inode *inode,
344 struct ext4_extent_header *eh,
345 int depth)
347 struct ext4_extent *ext;
348 struct ext4_extent_idx *ext_idx;
349 unsigned short entries;
350 if (eh->eh_entries == 0)
351 return 1;
353 entries = le16_to_cpu(eh->eh_entries);
355 if (depth == 0) {
356 /* leaf entries */
357 ext = EXT_FIRST_EXTENT(eh);
358 while (entries) {
359 if (!ext4_valid_extent(inode, ext))
360 return 0;
361 ext++;
362 entries--;
364 } else {
365 ext_idx = EXT_FIRST_INDEX(eh);
366 while (entries) {
367 if (!ext4_valid_extent_idx(inode, ext_idx))
368 return 0;
369 ext_idx++;
370 entries--;
373 return 1;
376 static int __ext4_ext_check(const char *function, struct inode *inode,
377 struct ext4_extent_header *eh,
378 int depth)
380 const char *error_msg;
381 int max = 0;
383 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
384 error_msg = "invalid magic";
385 goto corrupted;
387 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
388 error_msg = "unexpected eh_depth";
389 goto corrupted;
391 if (unlikely(eh->eh_max == 0)) {
392 error_msg = "invalid eh_max";
393 goto corrupted;
395 max = ext4_ext_max_entries(inode, depth);
396 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
397 error_msg = "too large eh_max";
398 goto corrupted;
400 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
401 error_msg = "invalid eh_entries";
402 goto corrupted;
404 if (!ext4_valid_extent_entries(inode, eh, depth)) {
405 error_msg = "invalid extent entries";
406 goto corrupted;
408 return 0;
410 corrupted:
411 ext4_error(inode->i_sb, function,
412 "bad header/extent in inode #%lu: %s - magic %x, "
413 "entries %u, max %u(%u), depth %u(%u)",
414 inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
415 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
416 max, le16_to_cpu(eh->eh_depth), depth);
418 return -EIO;
421 #define ext4_ext_check(inode, eh, depth) \
422 __ext4_ext_check(__func__, inode, eh, depth)
424 int ext4_ext_check_inode(struct inode *inode)
426 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
429 #ifdef EXT_DEBUG
430 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
432 int k, l = path->p_depth;
434 ext_debug("path:");
435 for (k = 0; k <= l; k++, path++) {
436 if (path->p_idx) {
437 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
438 idx_pblock(path->p_idx));
439 } else if (path->p_ext) {
440 ext_debug(" %d:%d:%llu ",
441 le32_to_cpu(path->p_ext->ee_block),
442 ext4_ext_get_actual_len(path->p_ext),
443 ext_pblock(path->p_ext));
444 } else
445 ext_debug(" []");
447 ext_debug("\n");
450 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
452 int depth = ext_depth(inode);
453 struct ext4_extent_header *eh;
454 struct ext4_extent *ex;
455 int i;
457 if (!path)
458 return;
460 eh = path[depth].p_hdr;
461 ex = EXT_FIRST_EXTENT(eh);
463 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
464 ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
465 ext4_ext_get_actual_len(ex), ext_pblock(ex));
467 ext_debug("\n");
469 #else
470 #define ext4_ext_show_path(inode, path)
471 #define ext4_ext_show_leaf(inode, path)
472 #endif
474 void ext4_ext_drop_refs(struct ext4_ext_path *path)
476 int depth = path->p_depth;
477 int i;
479 for (i = 0; i <= depth; i++, path++)
480 if (path->p_bh) {
481 brelse(path->p_bh);
482 path->p_bh = NULL;
487 * ext4_ext_binsearch_idx:
488 * binary search for the closest index of the given block
489 * the header must be checked before calling this
491 static void
492 ext4_ext_binsearch_idx(struct inode *inode,
493 struct ext4_ext_path *path, ext4_lblk_t block)
495 struct ext4_extent_header *eh = path->p_hdr;
496 struct ext4_extent_idx *r, *l, *m;
499 ext_debug("binsearch for %u(idx): ", block);
501 l = EXT_FIRST_INDEX(eh) + 1;
502 r = EXT_LAST_INDEX(eh);
503 while (l <= r) {
504 m = l + (r - l) / 2;
505 if (block < le32_to_cpu(m->ei_block))
506 r = m - 1;
507 else
508 l = m + 1;
509 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
510 m, le32_to_cpu(m->ei_block),
511 r, le32_to_cpu(r->ei_block));
514 path->p_idx = l - 1;
515 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
516 idx_pblock(path->p_idx));
518 #ifdef CHECK_BINSEARCH
520 struct ext4_extent_idx *chix, *ix;
521 int k;
523 chix = ix = EXT_FIRST_INDEX(eh);
524 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
525 if (k != 0 &&
526 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
527 printk(KERN_DEBUG "k=%d, ix=0x%p, "
528 "first=0x%p\n", k,
529 ix, EXT_FIRST_INDEX(eh));
530 printk(KERN_DEBUG "%u <= %u\n",
531 le32_to_cpu(ix->ei_block),
532 le32_to_cpu(ix[-1].ei_block));
534 BUG_ON(k && le32_to_cpu(ix->ei_block)
535 <= le32_to_cpu(ix[-1].ei_block));
536 if (block < le32_to_cpu(ix->ei_block))
537 break;
538 chix = ix;
540 BUG_ON(chix != path->p_idx);
542 #endif
547 * ext4_ext_binsearch:
548 * binary search for closest extent of the given block
549 * the header must be checked before calling this
551 static void
552 ext4_ext_binsearch(struct inode *inode,
553 struct ext4_ext_path *path, ext4_lblk_t block)
555 struct ext4_extent_header *eh = path->p_hdr;
556 struct ext4_extent *r, *l, *m;
558 if (eh->eh_entries == 0) {
560 * this leaf is empty:
561 * we get such a leaf in split/add case
563 return;
566 ext_debug("binsearch for %u: ", block);
568 l = EXT_FIRST_EXTENT(eh) + 1;
569 r = EXT_LAST_EXTENT(eh);
571 while (l <= r) {
572 m = l + (r - l) / 2;
573 if (block < le32_to_cpu(m->ee_block))
574 r = m - 1;
575 else
576 l = m + 1;
577 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
578 m, le32_to_cpu(m->ee_block),
579 r, le32_to_cpu(r->ee_block));
582 path->p_ext = l - 1;
583 ext_debug(" -> %d:%llu:%d ",
584 le32_to_cpu(path->p_ext->ee_block),
585 ext_pblock(path->p_ext),
586 ext4_ext_get_actual_len(path->p_ext));
588 #ifdef CHECK_BINSEARCH
590 struct ext4_extent *chex, *ex;
591 int k;
593 chex = ex = EXT_FIRST_EXTENT(eh);
594 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
595 BUG_ON(k && le32_to_cpu(ex->ee_block)
596 <= le32_to_cpu(ex[-1].ee_block));
597 if (block < le32_to_cpu(ex->ee_block))
598 break;
599 chex = ex;
601 BUG_ON(chex != path->p_ext);
603 #endif
607 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
609 struct ext4_extent_header *eh;
611 eh = ext_inode_hdr(inode);
612 eh->eh_depth = 0;
613 eh->eh_entries = 0;
614 eh->eh_magic = EXT4_EXT_MAGIC;
615 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
616 ext4_mark_inode_dirty(handle, inode);
617 ext4_ext_invalidate_cache(inode);
618 return 0;
621 struct ext4_ext_path *
622 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
623 struct ext4_ext_path *path)
625 struct ext4_extent_header *eh;
626 struct buffer_head *bh;
627 short int depth, i, ppos = 0, alloc = 0;
629 eh = ext_inode_hdr(inode);
630 depth = ext_depth(inode);
632 /* account possible depth increase */
633 if (!path) {
634 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
635 GFP_NOFS);
636 if (!path)
637 return ERR_PTR(-ENOMEM);
638 alloc = 1;
640 path[0].p_hdr = eh;
641 path[0].p_bh = NULL;
643 i = depth;
644 /* walk through the tree */
645 while (i) {
646 int need_to_validate = 0;
648 ext_debug("depth %d: num %d, max %d\n",
649 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
651 ext4_ext_binsearch_idx(inode, path + ppos, block);
652 path[ppos].p_block = idx_pblock(path[ppos].p_idx);
653 path[ppos].p_depth = i;
654 path[ppos].p_ext = NULL;
656 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
657 if (unlikely(!bh))
658 goto err;
659 if (!bh_uptodate_or_lock(bh)) {
660 if (bh_submit_read(bh) < 0) {
661 put_bh(bh);
662 goto err;
664 /* validate the extent entries */
665 need_to_validate = 1;
667 eh = ext_block_hdr(bh);
668 ppos++;
669 BUG_ON(ppos > depth);
670 path[ppos].p_bh = bh;
671 path[ppos].p_hdr = eh;
672 i--;
674 if (need_to_validate && ext4_ext_check(inode, eh, i))
675 goto err;
678 path[ppos].p_depth = i;
679 path[ppos].p_ext = NULL;
680 path[ppos].p_idx = NULL;
682 /* find extent */
683 ext4_ext_binsearch(inode, path + ppos, block);
684 /* if not an empty leaf */
685 if (path[ppos].p_ext)
686 path[ppos].p_block = ext_pblock(path[ppos].p_ext);
688 ext4_ext_show_path(inode, path);
690 return path;
692 err:
693 ext4_ext_drop_refs(path);
694 if (alloc)
695 kfree(path);
696 return ERR_PTR(-EIO);
700 * ext4_ext_insert_index:
701 * insert new index [@logical;@ptr] into the block at @curp;
702 * check where to insert: before @curp or after @curp
704 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
705 struct ext4_ext_path *curp,
706 int logical, ext4_fsblk_t ptr)
708 struct ext4_extent_idx *ix;
709 int len, err;
711 err = ext4_ext_get_access(handle, inode, curp);
712 if (err)
713 return err;
715 BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
716 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
717 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
718 /* insert after */
719 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
720 len = (len - 1) * sizeof(struct ext4_extent_idx);
721 len = len < 0 ? 0 : len;
722 ext_debug("insert new index %d after: %llu. "
723 "move %d from 0x%p to 0x%p\n",
724 logical, ptr, len,
725 (curp->p_idx + 1), (curp->p_idx + 2));
726 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
728 ix = curp->p_idx + 1;
729 } else {
730 /* insert before */
731 len = len * sizeof(struct ext4_extent_idx);
732 len = len < 0 ? 0 : len;
733 ext_debug("insert new index %d before: %llu. "
734 "move %d from 0x%p to 0x%p\n",
735 logical, ptr, len,
736 curp->p_idx, (curp->p_idx + 1));
737 memmove(curp->p_idx + 1, curp->p_idx, len);
738 ix = curp->p_idx;
741 ix->ei_block = cpu_to_le32(logical);
742 ext4_idx_store_pblock(ix, ptr);
743 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
745 BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
746 > le16_to_cpu(curp->p_hdr->eh_max));
747 BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
749 err = ext4_ext_dirty(handle, inode, curp);
750 ext4_std_error(inode->i_sb, err);
752 return err;
756 * ext4_ext_split:
757 * inserts new subtree into the path, using free index entry
758 * at depth @at:
759 * - allocates all needed blocks (new leaf and all intermediate index blocks)
760 * - makes decision where to split
761 * - moves remaining extents and index entries (right to the split point)
762 * into the newly allocated blocks
763 * - initializes subtree
765 static int ext4_ext_split(handle_t *handle, struct inode *inode,
766 struct ext4_ext_path *path,
767 struct ext4_extent *newext, int at)
769 struct buffer_head *bh = NULL;
770 int depth = ext_depth(inode);
771 struct ext4_extent_header *neh;
772 struct ext4_extent_idx *fidx;
773 struct ext4_extent *ex;
774 int i = at, k, m, a;
775 ext4_fsblk_t newblock, oldblock;
776 __le32 border;
777 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
778 int err = 0;
780 /* make decision: where to split? */
781 /* FIXME: now decision is simplest: at current extent */
783 /* if current leaf will be split, then we should use
784 * border from split point */
785 BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
786 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
787 border = path[depth].p_ext[1].ee_block;
788 ext_debug("leaf will be split."
789 " next leaf starts at %d\n",
790 le32_to_cpu(border));
791 } else {
792 border = newext->ee_block;
793 ext_debug("leaf will be added."
794 " next leaf starts at %d\n",
795 le32_to_cpu(border));
799 * If error occurs, then we break processing
800 * and mark filesystem read-only. index won't
801 * be inserted and tree will be in consistent
802 * state. Next mount will repair buffers too.
806 * Get array to track all allocated blocks.
807 * We need this to handle errors and free blocks
808 * upon them.
810 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
811 if (!ablocks)
812 return -ENOMEM;
814 /* allocate all needed blocks */
815 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
816 for (a = 0; a < depth - at; a++) {
817 newblock = ext4_ext_new_meta_block(handle, inode, path,
818 newext, &err);
819 if (newblock == 0)
820 goto cleanup;
821 ablocks[a] = newblock;
824 /* initialize new leaf */
825 newblock = ablocks[--a];
826 BUG_ON(newblock == 0);
827 bh = sb_getblk(inode->i_sb, newblock);
828 if (!bh) {
829 err = -EIO;
830 goto cleanup;
832 lock_buffer(bh);
834 err = ext4_journal_get_create_access(handle, bh);
835 if (err)
836 goto cleanup;
838 neh = ext_block_hdr(bh);
839 neh->eh_entries = 0;
840 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
841 neh->eh_magic = EXT4_EXT_MAGIC;
842 neh->eh_depth = 0;
843 ex = EXT_FIRST_EXTENT(neh);
845 /* move remainder of path[depth] to the new leaf */
846 BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
847 /* start copy from next extent */
848 /* TODO: we could do it by single memmove */
849 m = 0;
850 path[depth].p_ext++;
851 while (path[depth].p_ext <=
852 EXT_MAX_EXTENT(path[depth].p_hdr)) {
853 ext_debug("move %d:%llu:%d in new leaf %llu\n",
854 le32_to_cpu(path[depth].p_ext->ee_block),
855 ext_pblock(path[depth].p_ext),
856 ext4_ext_get_actual_len(path[depth].p_ext),
857 newblock);
858 /*memmove(ex++, path[depth].p_ext++,
859 sizeof(struct ext4_extent));
860 neh->eh_entries++;*/
861 path[depth].p_ext++;
862 m++;
864 if (m) {
865 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
866 le16_add_cpu(&neh->eh_entries, m);
869 set_buffer_uptodate(bh);
870 unlock_buffer(bh);
872 err = ext4_handle_dirty_metadata(handle, inode, bh);
873 if (err)
874 goto cleanup;
875 brelse(bh);
876 bh = NULL;
878 /* correct old leaf */
879 if (m) {
880 err = ext4_ext_get_access(handle, inode, path + depth);
881 if (err)
882 goto cleanup;
883 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
884 err = ext4_ext_dirty(handle, inode, path + depth);
885 if (err)
886 goto cleanup;
890 /* create intermediate indexes */
891 k = depth - at - 1;
892 BUG_ON(k < 0);
893 if (k)
894 ext_debug("create %d intermediate indices\n", k);
895 /* insert new index into current index block */
896 /* current depth stored in i var */
897 i = depth - 1;
898 while (k--) {
899 oldblock = newblock;
900 newblock = ablocks[--a];
901 bh = sb_getblk(inode->i_sb, newblock);
902 if (!bh) {
903 err = -EIO;
904 goto cleanup;
906 lock_buffer(bh);
908 err = ext4_journal_get_create_access(handle, bh);
909 if (err)
910 goto cleanup;
912 neh = ext_block_hdr(bh);
913 neh->eh_entries = cpu_to_le16(1);
914 neh->eh_magic = EXT4_EXT_MAGIC;
915 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
916 neh->eh_depth = cpu_to_le16(depth - i);
917 fidx = EXT_FIRST_INDEX(neh);
918 fidx->ei_block = border;
919 ext4_idx_store_pblock(fidx, oldblock);
921 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
922 i, newblock, le32_to_cpu(border), oldblock);
923 /* copy indexes */
924 m = 0;
925 path[i].p_idx++;
927 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
928 EXT_MAX_INDEX(path[i].p_hdr));
929 BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
930 EXT_LAST_INDEX(path[i].p_hdr));
931 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
932 ext_debug("%d: move %d:%llu in new index %llu\n", i,
933 le32_to_cpu(path[i].p_idx->ei_block),
934 idx_pblock(path[i].p_idx),
935 newblock);
936 /*memmove(++fidx, path[i].p_idx++,
937 sizeof(struct ext4_extent_idx));
938 neh->eh_entries++;
939 BUG_ON(neh->eh_entries > neh->eh_max);*/
940 path[i].p_idx++;
941 m++;
943 if (m) {
944 memmove(++fidx, path[i].p_idx - m,
945 sizeof(struct ext4_extent_idx) * m);
946 le16_add_cpu(&neh->eh_entries, m);
948 set_buffer_uptodate(bh);
949 unlock_buffer(bh);
951 err = ext4_handle_dirty_metadata(handle, inode, bh);
952 if (err)
953 goto cleanup;
954 brelse(bh);
955 bh = NULL;
957 /* correct old index */
958 if (m) {
959 err = ext4_ext_get_access(handle, inode, path + i);
960 if (err)
961 goto cleanup;
962 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
963 err = ext4_ext_dirty(handle, inode, path + i);
964 if (err)
965 goto cleanup;
968 i--;
971 /* insert new index */
972 err = ext4_ext_insert_index(handle, inode, path + at,
973 le32_to_cpu(border), newblock);
975 cleanup:
976 if (bh) {
977 if (buffer_locked(bh))
978 unlock_buffer(bh);
979 brelse(bh);
982 if (err) {
983 /* free all allocated blocks in error case */
984 for (i = 0; i < depth; i++) {
985 if (!ablocks[i])
986 continue;
987 ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
990 kfree(ablocks);
992 return err;
996 * ext4_ext_grow_indepth:
997 * implements tree growing procedure:
998 * - allocates new block
999 * - moves top-level data (index block or leaf) into the new block
1000 * - initializes new top-level, creating index that points to the
1001 * just created block
1003 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1004 struct ext4_ext_path *path,
1005 struct ext4_extent *newext)
1007 struct ext4_ext_path *curp = path;
1008 struct ext4_extent_header *neh;
1009 struct ext4_extent_idx *fidx;
1010 struct buffer_head *bh;
1011 ext4_fsblk_t newblock;
1012 int err = 0;
1014 newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1015 if (newblock == 0)
1016 return err;
1018 bh = sb_getblk(inode->i_sb, newblock);
1019 if (!bh) {
1020 err = -EIO;
1021 ext4_std_error(inode->i_sb, err);
1022 return err;
1024 lock_buffer(bh);
1026 err = ext4_journal_get_create_access(handle, bh);
1027 if (err) {
1028 unlock_buffer(bh);
1029 goto out;
1032 /* move top-level index/leaf into new block */
1033 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1035 /* set size of new block */
1036 neh = ext_block_hdr(bh);
1037 /* old root could have indexes or leaves
1038 * so calculate e_max right way */
1039 if (ext_depth(inode))
1040 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
1041 else
1042 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
1043 neh->eh_magic = EXT4_EXT_MAGIC;
1044 set_buffer_uptodate(bh);
1045 unlock_buffer(bh);
1047 err = ext4_handle_dirty_metadata(handle, inode, bh);
1048 if (err)
1049 goto out;
1051 /* create index in new top-level index: num,max,pointer */
1052 err = ext4_ext_get_access(handle, inode, curp);
1053 if (err)
1054 goto out;
1056 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1057 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
1058 curp->p_hdr->eh_entries = cpu_to_le16(1);
1059 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1061 if (path[0].p_hdr->eh_depth)
1062 curp->p_idx->ei_block =
1063 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1064 else
1065 curp->p_idx->ei_block =
1066 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1067 ext4_idx_store_pblock(curp->p_idx, newblock);
1069 neh = ext_inode_hdr(inode);
1070 fidx = EXT_FIRST_INDEX(neh);
1071 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1072 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1073 le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
1075 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1076 err = ext4_ext_dirty(handle, inode, curp);
1077 out:
1078 brelse(bh);
1080 return err;
1084 * ext4_ext_create_new_leaf:
1085 * finds empty index and adds new leaf.
1086 * if no free index is found, then it requests in-depth growing.
1088 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1089 struct ext4_ext_path *path,
1090 struct ext4_extent *newext)
1092 struct ext4_ext_path *curp;
1093 int depth, i, err = 0;
1095 repeat:
1096 i = depth = ext_depth(inode);
1098 /* walk up to the tree and look for free index entry */
1099 curp = path + depth;
1100 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1101 i--;
1102 curp--;
1105 /* we use already allocated block for index block,
1106 * so subsequent data blocks should be contiguous */
1107 if (EXT_HAS_FREE_INDEX(curp)) {
1108 /* if we found index with free entry, then use that
1109 * entry: create all needed subtree and add new leaf */
1110 err = ext4_ext_split(handle, inode, path, newext, i);
1111 if (err)
1112 goto out;
1114 /* refill path */
1115 ext4_ext_drop_refs(path);
1116 path = ext4_ext_find_extent(inode,
1117 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1118 path);
1119 if (IS_ERR(path))
1120 err = PTR_ERR(path);
1121 } else {
1122 /* tree is full, time to grow in depth */
1123 err = ext4_ext_grow_indepth(handle, inode, path, newext);
1124 if (err)
1125 goto out;
1127 /* refill path */
1128 ext4_ext_drop_refs(path);
1129 path = ext4_ext_find_extent(inode,
1130 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1131 path);
1132 if (IS_ERR(path)) {
1133 err = PTR_ERR(path);
1134 goto out;
1138 * only first (depth 0 -> 1) produces free space;
1139 * in all other cases we have to split the grown tree
1141 depth = ext_depth(inode);
1142 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1143 /* now we need to split */
1144 goto repeat;
1148 out:
1149 return err;
1153 * search the closest allocated block to the left for *logical
1154 * and returns it at @logical + it's physical address at @phys
1155 * if *logical is the smallest allocated block, the function
1156 * returns 0 at @phys
1157 * return value contains 0 (success) or error code
1160 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1161 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1163 struct ext4_extent_idx *ix;
1164 struct ext4_extent *ex;
1165 int depth, ee_len;
1167 BUG_ON(path == NULL);
1168 depth = path->p_depth;
1169 *phys = 0;
1171 if (depth == 0 && path->p_ext == NULL)
1172 return 0;
1174 /* usually extent in the path covers blocks smaller
1175 * then *logical, but it can be that extent is the
1176 * first one in the file */
1178 ex = path[depth].p_ext;
1179 ee_len = ext4_ext_get_actual_len(ex);
1180 if (*logical < le32_to_cpu(ex->ee_block)) {
1181 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1182 while (--depth >= 0) {
1183 ix = path[depth].p_idx;
1184 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1186 return 0;
1189 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1191 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1192 *phys = ext_pblock(ex) + ee_len - 1;
1193 return 0;
1197 * search the closest allocated block to the right for *logical
1198 * and returns it at @logical + it's physical address at @phys
1199 * if *logical is the smallest allocated block, the function
1200 * returns 0 at @phys
1201 * return value contains 0 (success) or error code
1204 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1205 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1207 struct buffer_head *bh = NULL;
1208 struct ext4_extent_header *eh;
1209 struct ext4_extent_idx *ix;
1210 struct ext4_extent *ex;
1211 ext4_fsblk_t block;
1212 int depth; /* Note, NOT eh_depth; depth from top of tree */
1213 int ee_len;
1215 BUG_ON(path == NULL);
1216 depth = path->p_depth;
1217 *phys = 0;
1219 if (depth == 0 && path->p_ext == NULL)
1220 return 0;
1222 /* usually extent in the path covers blocks smaller
1223 * then *logical, but it can be that extent is the
1224 * first one in the file */
1226 ex = path[depth].p_ext;
1227 ee_len = ext4_ext_get_actual_len(ex);
1228 if (*logical < le32_to_cpu(ex->ee_block)) {
1229 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1230 while (--depth >= 0) {
1231 ix = path[depth].p_idx;
1232 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1234 *logical = le32_to_cpu(ex->ee_block);
1235 *phys = ext_pblock(ex);
1236 return 0;
1239 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1241 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1242 /* next allocated block in this leaf */
1243 ex++;
1244 *logical = le32_to_cpu(ex->ee_block);
1245 *phys = ext_pblock(ex);
1246 return 0;
1249 /* go up and search for index to the right */
1250 while (--depth >= 0) {
1251 ix = path[depth].p_idx;
1252 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1253 goto got_index;
1256 /* we've gone up to the root and found no index to the right */
1257 return 0;
1259 got_index:
1260 /* we've found index to the right, let's
1261 * follow it and find the closest allocated
1262 * block to the right */
1263 ix++;
1264 block = idx_pblock(ix);
1265 while (++depth < path->p_depth) {
1266 bh = sb_bread(inode->i_sb, block);
1267 if (bh == NULL)
1268 return -EIO;
1269 eh = ext_block_hdr(bh);
1270 /* subtract from p_depth to get proper eh_depth */
1271 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1272 put_bh(bh);
1273 return -EIO;
1275 ix = EXT_FIRST_INDEX(eh);
1276 block = idx_pblock(ix);
1277 put_bh(bh);
1280 bh = sb_bread(inode->i_sb, block);
1281 if (bh == NULL)
1282 return -EIO;
1283 eh = ext_block_hdr(bh);
1284 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1285 put_bh(bh);
1286 return -EIO;
1288 ex = EXT_FIRST_EXTENT(eh);
1289 *logical = le32_to_cpu(ex->ee_block);
1290 *phys = ext_pblock(ex);
1291 put_bh(bh);
1292 return 0;
1296 * ext4_ext_next_allocated_block:
1297 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1298 * NOTE: it considers block number from index entry as
1299 * allocated block. Thus, index entries have to be consistent
1300 * with leaves.
1302 static ext4_lblk_t
1303 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1305 int depth;
1307 BUG_ON(path == NULL);
1308 depth = path->p_depth;
1310 if (depth == 0 && path->p_ext == NULL)
1311 return EXT_MAX_BLOCK;
1313 while (depth >= 0) {
1314 if (depth == path->p_depth) {
1315 /* leaf */
1316 if (path[depth].p_ext !=
1317 EXT_LAST_EXTENT(path[depth].p_hdr))
1318 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1319 } else {
1320 /* index */
1321 if (path[depth].p_idx !=
1322 EXT_LAST_INDEX(path[depth].p_hdr))
1323 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1325 depth--;
1328 return EXT_MAX_BLOCK;
1332 * ext4_ext_next_leaf_block:
1333 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1335 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1336 struct ext4_ext_path *path)
1338 int depth;
1340 BUG_ON(path == NULL);
1341 depth = path->p_depth;
1343 /* zero-tree has no leaf blocks at all */
1344 if (depth == 0)
1345 return EXT_MAX_BLOCK;
1347 /* go to index block */
1348 depth--;
1350 while (depth >= 0) {
1351 if (path[depth].p_idx !=
1352 EXT_LAST_INDEX(path[depth].p_hdr))
1353 return (ext4_lblk_t)
1354 le32_to_cpu(path[depth].p_idx[1].ei_block);
1355 depth--;
1358 return EXT_MAX_BLOCK;
1362 * ext4_ext_correct_indexes:
1363 * if leaf gets modified and modified extent is first in the leaf,
1364 * then we have to correct all indexes above.
1365 * TODO: do we need to correct tree in all cases?
1367 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1368 struct ext4_ext_path *path)
1370 struct ext4_extent_header *eh;
1371 int depth = ext_depth(inode);
1372 struct ext4_extent *ex;
1373 __le32 border;
1374 int k, err = 0;
1376 eh = path[depth].p_hdr;
1377 ex = path[depth].p_ext;
1378 BUG_ON(ex == NULL);
1379 BUG_ON(eh == NULL);
1381 if (depth == 0) {
1382 /* there is no tree at all */
1383 return 0;
1386 if (ex != EXT_FIRST_EXTENT(eh)) {
1387 /* we correct tree if first leaf got modified only */
1388 return 0;
1392 * TODO: we need correction if border is smaller than current one
1394 k = depth - 1;
1395 border = path[depth].p_ext->ee_block;
1396 err = ext4_ext_get_access(handle, inode, path + k);
1397 if (err)
1398 return err;
1399 path[k].p_idx->ei_block = border;
1400 err = ext4_ext_dirty(handle, inode, path + k);
1401 if (err)
1402 return err;
1404 while (k--) {
1405 /* change all left-side indexes */
1406 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1407 break;
1408 err = ext4_ext_get_access(handle, inode, path + k);
1409 if (err)
1410 break;
1411 path[k].p_idx->ei_block = border;
1412 err = ext4_ext_dirty(handle, inode, path + k);
1413 if (err)
1414 break;
1417 return err;
1421 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1422 struct ext4_extent *ex2)
1424 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1427 * Make sure that either both extents are uninitialized, or
1428 * both are _not_.
1430 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1431 return 0;
1433 if (ext4_ext_is_uninitialized(ex1))
1434 max_len = EXT_UNINIT_MAX_LEN;
1435 else
1436 max_len = EXT_INIT_MAX_LEN;
1438 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1439 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1441 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1442 le32_to_cpu(ex2->ee_block))
1443 return 0;
1446 * To allow future support for preallocated extents to be added
1447 * as an RO_COMPAT feature, refuse to merge to extents if
1448 * this can result in the top bit of ee_len being set.
1450 if (ext1_ee_len + ext2_ee_len > max_len)
1451 return 0;
1452 #ifdef AGGRESSIVE_TEST
1453 if (ext1_ee_len >= 4)
1454 return 0;
1455 #endif
1457 if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1458 return 1;
1459 return 0;
1463 * This function tries to merge the "ex" extent to the next extent in the tree.
1464 * It always tries to merge towards right. If you want to merge towards
1465 * left, pass "ex - 1" as argument instead of "ex".
1466 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1467 * 1 if they got merged.
1469 int ext4_ext_try_to_merge(struct inode *inode,
1470 struct ext4_ext_path *path,
1471 struct ext4_extent *ex)
1473 struct ext4_extent_header *eh;
1474 unsigned int depth, len;
1475 int merge_done = 0;
1476 int uninitialized = 0;
1478 depth = ext_depth(inode);
1479 BUG_ON(path[depth].p_hdr == NULL);
1480 eh = path[depth].p_hdr;
1482 while (ex < EXT_LAST_EXTENT(eh)) {
1483 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1484 break;
1485 /* merge with next extent! */
1486 if (ext4_ext_is_uninitialized(ex))
1487 uninitialized = 1;
1488 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1489 + ext4_ext_get_actual_len(ex + 1));
1490 if (uninitialized)
1491 ext4_ext_mark_uninitialized(ex);
1493 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1494 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1495 * sizeof(struct ext4_extent);
1496 memmove(ex + 1, ex + 2, len);
1498 le16_add_cpu(&eh->eh_entries, -1);
1499 merge_done = 1;
1500 WARN_ON(eh->eh_entries == 0);
1501 if (!eh->eh_entries)
1502 ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1503 "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1506 return merge_done;
1510 * check if a portion of the "newext" extent overlaps with an
1511 * existing extent.
1513 * If there is an overlap discovered, it updates the length of the newext
1514 * such that there will be no overlap, and then returns 1.
1515 * If there is no overlap found, it returns 0.
1517 unsigned int ext4_ext_check_overlap(struct inode *inode,
1518 struct ext4_extent *newext,
1519 struct ext4_ext_path *path)
1521 ext4_lblk_t b1, b2;
1522 unsigned int depth, len1;
1523 unsigned int ret = 0;
1525 b1 = le32_to_cpu(newext->ee_block);
1526 len1 = ext4_ext_get_actual_len(newext);
1527 depth = ext_depth(inode);
1528 if (!path[depth].p_ext)
1529 goto out;
1530 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1533 * get the next allocated block if the extent in the path
1534 * is before the requested block(s)
1536 if (b2 < b1) {
1537 b2 = ext4_ext_next_allocated_block(path);
1538 if (b2 == EXT_MAX_BLOCK)
1539 goto out;
1542 /* check for wrap through zero on extent logical start block*/
1543 if (b1 + len1 < b1) {
1544 len1 = EXT_MAX_BLOCK - b1;
1545 newext->ee_len = cpu_to_le16(len1);
1546 ret = 1;
1549 /* check for overlap */
1550 if (b1 + len1 > b2) {
1551 newext->ee_len = cpu_to_le16(b2 - b1);
1552 ret = 1;
1554 out:
1555 return ret;
1559 * ext4_ext_insert_extent:
1560 * tries to merge requsted extent into the existing extent or
1561 * inserts requested extent as new one into the tree,
1562 * creating new leaf in the no-space case.
1564 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1565 struct ext4_ext_path *path,
1566 struct ext4_extent *newext)
1568 struct ext4_extent_header *eh;
1569 struct ext4_extent *ex, *fex;
1570 struct ext4_extent *nearex; /* nearest extent */
1571 struct ext4_ext_path *npath = NULL;
1572 int depth, len, err;
1573 ext4_lblk_t next;
1574 unsigned uninitialized = 0;
1576 BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1577 depth = ext_depth(inode);
1578 ex = path[depth].p_ext;
1579 BUG_ON(path[depth].p_hdr == NULL);
1581 /* try to insert block into found extent and return */
1582 if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1583 ext_debug("append %d block to %d:%d (from %llu)\n",
1584 ext4_ext_get_actual_len(newext),
1585 le32_to_cpu(ex->ee_block),
1586 ext4_ext_get_actual_len(ex), ext_pblock(ex));
1587 err = ext4_ext_get_access(handle, inode, path + depth);
1588 if (err)
1589 return err;
1592 * ext4_can_extents_be_merged should have checked that either
1593 * both extents are uninitialized, or both aren't. Thus we
1594 * need to check only one of them here.
1596 if (ext4_ext_is_uninitialized(ex))
1597 uninitialized = 1;
1598 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1599 + ext4_ext_get_actual_len(newext));
1600 if (uninitialized)
1601 ext4_ext_mark_uninitialized(ex);
1602 eh = path[depth].p_hdr;
1603 nearex = ex;
1604 goto merge;
1607 repeat:
1608 depth = ext_depth(inode);
1609 eh = path[depth].p_hdr;
1610 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1611 goto has_space;
1613 /* probably next leaf has space for us? */
1614 fex = EXT_LAST_EXTENT(eh);
1615 next = ext4_ext_next_leaf_block(inode, path);
1616 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1617 && next != EXT_MAX_BLOCK) {
1618 ext_debug("next leaf block - %d\n", next);
1619 BUG_ON(npath != NULL);
1620 npath = ext4_ext_find_extent(inode, next, NULL);
1621 if (IS_ERR(npath))
1622 return PTR_ERR(npath);
1623 BUG_ON(npath->p_depth != path->p_depth);
1624 eh = npath[depth].p_hdr;
1625 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1626 ext_debug("next leaf isnt full(%d)\n",
1627 le16_to_cpu(eh->eh_entries));
1628 path = npath;
1629 goto repeat;
1631 ext_debug("next leaf has no free space(%d,%d)\n",
1632 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1636 * There is no free space in the found leaf.
1637 * We're gonna add a new leaf in the tree.
1639 err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1640 if (err)
1641 goto cleanup;
1642 depth = ext_depth(inode);
1643 eh = path[depth].p_hdr;
1645 has_space:
1646 nearex = path[depth].p_ext;
1648 err = ext4_ext_get_access(handle, inode, path + depth);
1649 if (err)
1650 goto cleanup;
1652 if (!nearex) {
1653 /* there is no extent in this leaf, create first one */
1654 ext_debug("first extent in the leaf: %d:%llu:%d\n",
1655 le32_to_cpu(newext->ee_block),
1656 ext_pblock(newext),
1657 ext4_ext_get_actual_len(newext));
1658 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1659 } else if (le32_to_cpu(newext->ee_block)
1660 > le32_to_cpu(nearex->ee_block)) {
1661 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1662 if (nearex != EXT_LAST_EXTENT(eh)) {
1663 len = EXT_MAX_EXTENT(eh) - nearex;
1664 len = (len - 1) * sizeof(struct ext4_extent);
1665 len = len < 0 ? 0 : len;
1666 ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1667 "move %d from 0x%p to 0x%p\n",
1668 le32_to_cpu(newext->ee_block),
1669 ext_pblock(newext),
1670 ext4_ext_get_actual_len(newext),
1671 nearex, len, nearex + 1, nearex + 2);
1672 memmove(nearex + 2, nearex + 1, len);
1674 path[depth].p_ext = nearex + 1;
1675 } else {
1676 BUG_ON(newext->ee_block == nearex->ee_block);
1677 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1678 len = len < 0 ? 0 : len;
1679 ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1680 "move %d from 0x%p to 0x%p\n",
1681 le32_to_cpu(newext->ee_block),
1682 ext_pblock(newext),
1683 ext4_ext_get_actual_len(newext),
1684 nearex, len, nearex + 1, nearex + 2);
1685 memmove(nearex + 1, nearex, len);
1686 path[depth].p_ext = nearex;
1689 le16_add_cpu(&eh->eh_entries, 1);
1690 nearex = path[depth].p_ext;
1691 nearex->ee_block = newext->ee_block;
1692 ext4_ext_store_pblock(nearex, ext_pblock(newext));
1693 nearex->ee_len = newext->ee_len;
1695 merge:
1696 /* try to merge extents to the right */
1697 ext4_ext_try_to_merge(inode, path, nearex);
1699 /* try to merge extents to the left */
1701 /* time to correct all indexes above */
1702 err = ext4_ext_correct_indexes(handle, inode, path);
1703 if (err)
1704 goto cleanup;
1706 err = ext4_ext_dirty(handle, inode, path + depth);
1708 cleanup:
1709 if (npath) {
1710 ext4_ext_drop_refs(npath);
1711 kfree(npath);
1713 ext4_ext_invalidate_cache(inode);
1714 return err;
1717 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1718 ext4_lblk_t num, ext_prepare_callback func,
1719 void *cbdata)
1721 struct ext4_ext_path *path = NULL;
1722 struct ext4_ext_cache cbex;
1723 struct ext4_extent *ex;
1724 ext4_lblk_t next, start = 0, end = 0;
1725 ext4_lblk_t last = block + num;
1726 int depth, exists, err = 0;
1728 BUG_ON(func == NULL);
1729 BUG_ON(inode == NULL);
1731 while (block < last && block != EXT_MAX_BLOCK) {
1732 num = last - block;
1733 /* find extent for this block */
1734 path = ext4_ext_find_extent(inode, block, path);
1735 if (IS_ERR(path)) {
1736 err = PTR_ERR(path);
1737 path = NULL;
1738 break;
1741 depth = ext_depth(inode);
1742 BUG_ON(path[depth].p_hdr == NULL);
1743 ex = path[depth].p_ext;
1744 next = ext4_ext_next_allocated_block(path);
1746 exists = 0;
1747 if (!ex) {
1748 /* there is no extent yet, so try to allocate
1749 * all requested space */
1750 start = block;
1751 end = block + num;
1752 } else if (le32_to_cpu(ex->ee_block) > block) {
1753 /* need to allocate space before found extent */
1754 start = block;
1755 end = le32_to_cpu(ex->ee_block);
1756 if (block + num < end)
1757 end = block + num;
1758 } else if (block >= le32_to_cpu(ex->ee_block)
1759 + ext4_ext_get_actual_len(ex)) {
1760 /* need to allocate space after found extent */
1761 start = block;
1762 end = block + num;
1763 if (end >= next)
1764 end = next;
1765 } else if (block >= le32_to_cpu(ex->ee_block)) {
1767 * some part of requested space is covered
1768 * by found extent
1770 start = block;
1771 end = le32_to_cpu(ex->ee_block)
1772 + ext4_ext_get_actual_len(ex);
1773 if (block + num < end)
1774 end = block + num;
1775 exists = 1;
1776 } else {
1777 BUG();
1779 BUG_ON(end <= start);
1781 if (!exists) {
1782 cbex.ec_block = start;
1783 cbex.ec_len = end - start;
1784 cbex.ec_start = 0;
1785 cbex.ec_type = EXT4_EXT_CACHE_GAP;
1786 } else {
1787 cbex.ec_block = le32_to_cpu(ex->ee_block);
1788 cbex.ec_len = ext4_ext_get_actual_len(ex);
1789 cbex.ec_start = ext_pblock(ex);
1790 cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1793 BUG_ON(cbex.ec_len == 0);
1794 err = func(inode, path, &cbex, ex, cbdata);
1795 ext4_ext_drop_refs(path);
1797 if (err < 0)
1798 break;
1800 if (err == EXT_REPEAT)
1801 continue;
1802 else if (err == EXT_BREAK) {
1803 err = 0;
1804 break;
1807 if (ext_depth(inode) != depth) {
1808 /* depth was changed. we have to realloc path */
1809 kfree(path);
1810 path = NULL;
1813 block = cbex.ec_block + cbex.ec_len;
1816 if (path) {
1817 ext4_ext_drop_refs(path);
1818 kfree(path);
1821 return err;
1824 static void
1825 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1826 __u32 len, ext4_fsblk_t start, int type)
1828 struct ext4_ext_cache *cex;
1829 BUG_ON(len == 0);
1830 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1831 cex = &EXT4_I(inode)->i_cached_extent;
1832 cex->ec_type = type;
1833 cex->ec_block = block;
1834 cex->ec_len = len;
1835 cex->ec_start = start;
1836 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1840 * ext4_ext_put_gap_in_cache:
1841 * calculate boundaries of the gap that the requested block fits into
1842 * and cache this gap
1844 static void
1845 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1846 ext4_lblk_t block)
1848 int depth = ext_depth(inode);
1849 unsigned long len;
1850 ext4_lblk_t lblock;
1851 struct ext4_extent *ex;
1853 ex = path[depth].p_ext;
1854 if (ex == NULL) {
1855 /* there is no extent yet, so gap is [0;-] */
1856 lblock = 0;
1857 len = EXT_MAX_BLOCK;
1858 ext_debug("cache gap(whole file):");
1859 } else if (block < le32_to_cpu(ex->ee_block)) {
1860 lblock = block;
1861 len = le32_to_cpu(ex->ee_block) - block;
1862 ext_debug("cache gap(before): %u [%u:%u]",
1863 block,
1864 le32_to_cpu(ex->ee_block),
1865 ext4_ext_get_actual_len(ex));
1866 } else if (block >= le32_to_cpu(ex->ee_block)
1867 + ext4_ext_get_actual_len(ex)) {
1868 ext4_lblk_t next;
1869 lblock = le32_to_cpu(ex->ee_block)
1870 + ext4_ext_get_actual_len(ex);
1872 next = ext4_ext_next_allocated_block(path);
1873 ext_debug("cache gap(after): [%u:%u] %u",
1874 le32_to_cpu(ex->ee_block),
1875 ext4_ext_get_actual_len(ex),
1876 block);
1877 BUG_ON(next == lblock);
1878 len = next - lblock;
1879 } else {
1880 lblock = len = 0;
1881 BUG();
1884 ext_debug(" -> %u:%lu\n", lblock, len);
1885 ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1888 static int
1889 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1890 struct ext4_extent *ex)
1892 struct ext4_ext_cache *cex;
1893 int ret = EXT4_EXT_CACHE_NO;
1896 * We borrow i_block_reservation_lock to protect i_cached_extent
1898 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1899 cex = &EXT4_I(inode)->i_cached_extent;
1901 /* has cache valid data? */
1902 if (cex->ec_type == EXT4_EXT_CACHE_NO)
1903 goto errout;
1905 BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1906 cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1907 if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1908 ex->ee_block = cpu_to_le32(cex->ec_block);
1909 ext4_ext_store_pblock(ex, cex->ec_start);
1910 ex->ee_len = cpu_to_le16(cex->ec_len);
1911 ext_debug("%u cached by %u:%u:%llu\n",
1912 block,
1913 cex->ec_block, cex->ec_len, cex->ec_start);
1914 ret = cex->ec_type;
1916 errout:
1917 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1918 return ret;
1922 * ext4_ext_rm_idx:
1923 * removes index from the index block.
1924 * It's used in truncate case only, thus all requests are for
1925 * last index in the block only.
1927 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1928 struct ext4_ext_path *path)
1930 struct buffer_head *bh;
1931 int err;
1932 ext4_fsblk_t leaf;
1934 /* free index block */
1935 path--;
1936 leaf = idx_pblock(path->p_idx);
1937 BUG_ON(path->p_hdr->eh_entries == 0);
1938 err = ext4_ext_get_access(handle, inode, path);
1939 if (err)
1940 return err;
1941 le16_add_cpu(&path->p_hdr->eh_entries, -1);
1942 err = ext4_ext_dirty(handle, inode, path);
1943 if (err)
1944 return err;
1945 ext_debug("index is empty, remove it, free block %llu\n", leaf);
1946 bh = sb_find_get_block(inode->i_sb, leaf);
1947 ext4_forget(handle, 1, inode, bh, leaf);
1948 ext4_free_blocks(handle, inode, leaf, 1, 1);
1949 return err;
1953 * ext4_ext_calc_credits_for_single_extent:
1954 * This routine returns max. credits that needed to insert an extent
1955 * to the extent tree.
1956 * When pass the actual path, the caller should calculate credits
1957 * under i_data_sem.
1959 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
1960 struct ext4_ext_path *path)
1962 if (path) {
1963 int depth = ext_depth(inode);
1964 int ret = 0;
1966 /* probably there is space in leaf? */
1967 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1968 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
1971 * There are some space in the leaf tree, no
1972 * need to account for leaf block credit
1974 * bitmaps and block group descriptor blocks
1975 * and other metadat blocks still need to be
1976 * accounted.
1978 /* 1 bitmap, 1 block group descriptor */
1979 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
1980 return ret;
1984 return ext4_chunk_trans_blocks(inode, nrblocks);
1988 * How many index/leaf blocks need to change/allocate to modify nrblocks?
1990 * if nrblocks are fit in a single extent (chunk flag is 1), then
1991 * in the worse case, each tree level index/leaf need to be changed
1992 * if the tree split due to insert a new extent, then the old tree
1993 * index/leaf need to be updated too
1995 * If the nrblocks are discontiguous, they could cause
1996 * the whole tree split more than once, but this is really rare.
1998 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2000 int index;
2001 int depth = ext_depth(inode);
2003 if (chunk)
2004 index = depth * 2;
2005 else
2006 index = depth * 3;
2008 return index;
2011 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2012 struct ext4_extent *ex,
2013 ext4_lblk_t from, ext4_lblk_t to)
2015 struct buffer_head *bh;
2016 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2017 int i, metadata = 0;
2019 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2020 metadata = 1;
2021 #ifdef EXTENTS_STATS
2023 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2024 spin_lock(&sbi->s_ext_stats_lock);
2025 sbi->s_ext_blocks += ee_len;
2026 sbi->s_ext_extents++;
2027 if (ee_len < sbi->s_ext_min)
2028 sbi->s_ext_min = ee_len;
2029 if (ee_len > sbi->s_ext_max)
2030 sbi->s_ext_max = ee_len;
2031 if (ext_depth(inode) > sbi->s_depth_max)
2032 sbi->s_depth_max = ext_depth(inode);
2033 spin_unlock(&sbi->s_ext_stats_lock);
2035 #endif
2036 if (from >= le32_to_cpu(ex->ee_block)
2037 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2038 /* tail removal */
2039 ext4_lblk_t num;
2040 ext4_fsblk_t start;
2042 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2043 start = ext_pblock(ex) + ee_len - num;
2044 ext_debug("free last %u blocks starting %llu\n", num, start);
2045 for (i = 0; i < num; i++) {
2046 bh = sb_find_get_block(inode->i_sb, start + i);
2047 ext4_forget(handle, 0, inode, bh, start + i);
2049 ext4_free_blocks(handle, inode, start, num, metadata);
2050 } else if (from == le32_to_cpu(ex->ee_block)
2051 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2052 printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2053 from, to, le32_to_cpu(ex->ee_block), ee_len);
2054 } else {
2055 printk(KERN_INFO "strange request: removal(2) "
2056 "%u-%u from %u:%u\n",
2057 from, to, le32_to_cpu(ex->ee_block), ee_len);
2059 return 0;
2062 static int
2063 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2064 struct ext4_ext_path *path, ext4_lblk_t start)
2066 int err = 0, correct_index = 0;
2067 int depth = ext_depth(inode), credits;
2068 struct ext4_extent_header *eh;
2069 ext4_lblk_t a, b, block;
2070 unsigned num;
2071 ext4_lblk_t ex_ee_block;
2072 unsigned short ex_ee_len;
2073 unsigned uninitialized = 0;
2074 struct ext4_extent *ex;
2076 /* the header must be checked already in ext4_ext_remove_space() */
2077 ext_debug("truncate since %u in leaf\n", start);
2078 if (!path[depth].p_hdr)
2079 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2080 eh = path[depth].p_hdr;
2081 BUG_ON(eh == NULL);
2083 /* find where to start removing */
2084 ex = EXT_LAST_EXTENT(eh);
2086 ex_ee_block = le32_to_cpu(ex->ee_block);
2087 ex_ee_len = ext4_ext_get_actual_len(ex);
2089 while (ex >= EXT_FIRST_EXTENT(eh) &&
2090 ex_ee_block + ex_ee_len > start) {
2092 if (ext4_ext_is_uninitialized(ex))
2093 uninitialized = 1;
2094 else
2095 uninitialized = 0;
2097 ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
2098 path[depth].p_ext = ex;
2100 a = ex_ee_block > start ? ex_ee_block : start;
2101 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2102 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2104 ext_debug(" border %u:%u\n", a, b);
2106 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2107 block = 0;
2108 num = 0;
2109 BUG();
2110 } else if (a != ex_ee_block) {
2111 /* remove tail of the extent */
2112 block = ex_ee_block;
2113 num = a - block;
2114 } else if (b != ex_ee_block + ex_ee_len - 1) {
2115 /* remove head of the extent */
2116 block = a;
2117 num = b - a;
2118 /* there is no "make a hole" API yet */
2119 BUG();
2120 } else {
2121 /* remove whole extent: excellent! */
2122 block = ex_ee_block;
2123 num = 0;
2124 BUG_ON(a != ex_ee_block);
2125 BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2129 * 3 for leaf, sb, and inode plus 2 (bmap and group
2130 * descriptor) for each block group; assume two block
2131 * groups plus ex_ee_len/blocks_per_block_group for
2132 * the worst case
2134 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2135 if (ex == EXT_FIRST_EXTENT(eh)) {
2136 correct_index = 1;
2137 credits += (ext_depth(inode)) + 1;
2139 credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2141 err = ext4_ext_journal_restart(handle, credits);
2142 if (err)
2143 goto out;
2145 err = ext4_ext_get_access(handle, inode, path + depth);
2146 if (err)
2147 goto out;
2149 err = ext4_remove_blocks(handle, inode, ex, a, b);
2150 if (err)
2151 goto out;
2153 if (num == 0) {
2154 /* this extent is removed; mark slot entirely unused */
2155 ext4_ext_store_pblock(ex, 0);
2156 le16_add_cpu(&eh->eh_entries, -1);
2159 ex->ee_block = cpu_to_le32(block);
2160 ex->ee_len = cpu_to_le16(num);
2162 * Do not mark uninitialized if all the blocks in the
2163 * extent have been removed.
2165 if (uninitialized && num)
2166 ext4_ext_mark_uninitialized(ex);
2168 err = ext4_ext_dirty(handle, inode, path + depth);
2169 if (err)
2170 goto out;
2172 ext_debug("new extent: %u:%u:%llu\n", block, num,
2173 ext_pblock(ex));
2174 ex--;
2175 ex_ee_block = le32_to_cpu(ex->ee_block);
2176 ex_ee_len = ext4_ext_get_actual_len(ex);
2179 if (correct_index && eh->eh_entries)
2180 err = ext4_ext_correct_indexes(handle, inode, path);
2182 /* if this leaf is free, then we should
2183 * remove it from index block above */
2184 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2185 err = ext4_ext_rm_idx(handle, inode, path + depth);
2187 out:
2188 return err;
2192 * ext4_ext_more_to_rm:
2193 * returns 1 if current index has to be freed (even partial)
2195 static int
2196 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2198 BUG_ON(path->p_idx == NULL);
2200 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2201 return 0;
2204 * if truncate on deeper level happened, it wasn't partial,
2205 * so we have to consider current index for truncation
2207 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2208 return 0;
2209 return 1;
2212 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2214 struct super_block *sb = inode->i_sb;
2215 int depth = ext_depth(inode);
2216 struct ext4_ext_path *path;
2217 handle_t *handle;
2218 int i = 0, err = 0;
2220 ext_debug("truncate since %u\n", start);
2222 /* probably first extent we're gonna free will be last in block */
2223 handle = ext4_journal_start(inode, depth + 1);
2224 if (IS_ERR(handle))
2225 return PTR_ERR(handle);
2227 ext4_ext_invalidate_cache(inode);
2230 * We start scanning from right side, freeing all the blocks
2231 * after i_size and walking into the tree depth-wise.
2233 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2234 if (path == NULL) {
2235 ext4_journal_stop(handle);
2236 return -ENOMEM;
2238 path[0].p_hdr = ext_inode_hdr(inode);
2239 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2240 err = -EIO;
2241 goto out;
2243 path[0].p_depth = depth;
2245 while (i >= 0 && err == 0) {
2246 if (i == depth) {
2247 /* this is leaf block */
2248 err = ext4_ext_rm_leaf(handle, inode, path, start);
2249 /* root level has p_bh == NULL, brelse() eats this */
2250 brelse(path[i].p_bh);
2251 path[i].p_bh = NULL;
2252 i--;
2253 continue;
2256 /* this is index block */
2257 if (!path[i].p_hdr) {
2258 ext_debug("initialize header\n");
2259 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2262 if (!path[i].p_idx) {
2263 /* this level hasn't been touched yet */
2264 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2265 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2266 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2267 path[i].p_hdr,
2268 le16_to_cpu(path[i].p_hdr->eh_entries));
2269 } else {
2270 /* we were already here, see at next index */
2271 path[i].p_idx--;
2274 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2275 i, EXT_FIRST_INDEX(path[i].p_hdr),
2276 path[i].p_idx);
2277 if (ext4_ext_more_to_rm(path + i)) {
2278 struct buffer_head *bh;
2279 /* go to the next level */
2280 ext_debug("move to level %d (block %llu)\n",
2281 i + 1, idx_pblock(path[i].p_idx));
2282 memset(path + i + 1, 0, sizeof(*path));
2283 bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2284 if (!bh) {
2285 /* should we reset i_size? */
2286 err = -EIO;
2287 break;
2289 if (WARN_ON(i + 1 > depth)) {
2290 err = -EIO;
2291 break;
2293 if (ext4_ext_check(inode, ext_block_hdr(bh),
2294 depth - i - 1)) {
2295 err = -EIO;
2296 break;
2298 path[i + 1].p_bh = bh;
2300 /* save actual number of indexes since this
2301 * number is changed at the next iteration */
2302 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2303 i++;
2304 } else {
2305 /* we finished processing this index, go up */
2306 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2307 /* index is empty, remove it;
2308 * handle must be already prepared by the
2309 * truncatei_leaf() */
2310 err = ext4_ext_rm_idx(handle, inode, path + i);
2312 /* root level has p_bh == NULL, brelse() eats this */
2313 brelse(path[i].p_bh);
2314 path[i].p_bh = NULL;
2315 i--;
2316 ext_debug("return to level %d\n", i);
2320 /* TODO: flexible tree reduction should be here */
2321 if (path->p_hdr->eh_entries == 0) {
2323 * truncate to zero freed all the tree,
2324 * so we need to correct eh_depth
2326 err = ext4_ext_get_access(handle, inode, path);
2327 if (err == 0) {
2328 ext_inode_hdr(inode)->eh_depth = 0;
2329 ext_inode_hdr(inode)->eh_max =
2330 cpu_to_le16(ext4_ext_space_root(inode));
2331 err = ext4_ext_dirty(handle, inode, path);
2334 out:
2335 ext4_ext_drop_refs(path);
2336 kfree(path);
2337 ext4_journal_stop(handle);
2339 return err;
2343 * called at mount time
2345 void ext4_ext_init(struct super_block *sb)
2348 * possible initialization would be here
2351 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2352 printk(KERN_INFO "EXT4-fs: file extents enabled");
2353 #ifdef AGGRESSIVE_TEST
2354 printk(", aggressive tests");
2355 #endif
2356 #ifdef CHECK_BINSEARCH
2357 printk(", check binsearch");
2358 #endif
2359 #ifdef EXTENTS_STATS
2360 printk(", stats");
2361 #endif
2362 printk("\n");
2363 #ifdef EXTENTS_STATS
2364 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2365 EXT4_SB(sb)->s_ext_min = 1 << 30;
2366 EXT4_SB(sb)->s_ext_max = 0;
2367 #endif
2372 * called at umount time
2374 void ext4_ext_release(struct super_block *sb)
2376 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2377 return;
2379 #ifdef EXTENTS_STATS
2380 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2381 struct ext4_sb_info *sbi = EXT4_SB(sb);
2382 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2383 sbi->s_ext_blocks, sbi->s_ext_extents,
2384 sbi->s_ext_blocks / sbi->s_ext_extents);
2385 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2386 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2388 #endif
2391 static void bi_complete(struct bio *bio, int error)
2393 complete((struct completion *)bio->bi_private);
2396 /* FIXME!! we need to try to merge to left or right after zero-out */
2397 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2399 int ret = -EIO;
2400 struct bio *bio;
2401 int blkbits, blocksize;
2402 sector_t ee_pblock;
2403 struct completion event;
2404 unsigned int ee_len, len, done, offset;
2407 blkbits = inode->i_blkbits;
2408 blocksize = inode->i_sb->s_blocksize;
2409 ee_len = ext4_ext_get_actual_len(ex);
2410 ee_pblock = ext_pblock(ex);
2412 /* convert ee_pblock to 512 byte sectors */
2413 ee_pblock = ee_pblock << (blkbits - 9);
2415 while (ee_len > 0) {
2417 if (ee_len > BIO_MAX_PAGES)
2418 len = BIO_MAX_PAGES;
2419 else
2420 len = ee_len;
2422 bio = bio_alloc(GFP_NOIO, len);
2423 bio->bi_sector = ee_pblock;
2424 bio->bi_bdev = inode->i_sb->s_bdev;
2426 done = 0;
2427 offset = 0;
2428 while (done < len) {
2429 ret = bio_add_page(bio, ZERO_PAGE(0),
2430 blocksize, offset);
2431 if (ret != blocksize) {
2433 * We can't add any more pages because of
2434 * hardware limitations. Start a new bio.
2436 break;
2438 done++;
2439 offset += blocksize;
2440 if (offset >= PAGE_CACHE_SIZE)
2441 offset = 0;
2444 init_completion(&event);
2445 bio->bi_private = &event;
2446 bio->bi_end_io = bi_complete;
2447 submit_bio(WRITE, bio);
2448 wait_for_completion(&event);
2450 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
2451 ret = 0;
2452 else {
2453 ret = -EIO;
2454 break;
2456 bio_put(bio);
2457 ee_len -= done;
2458 ee_pblock += done << (blkbits - 9);
2460 return ret;
2463 #define EXT4_EXT_ZERO_LEN 7
2466 * This function is called by ext4_ext_get_blocks() if someone tries to write
2467 * to an uninitialized extent. It may result in splitting the uninitialized
2468 * extent into multiple extents (upto three - one initialized and two
2469 * uninitialized).
2470 * There are three possibilities:
2471 * a> There is no split required: Entire extent should be initialized
2472 * b> Splits in two extents: Write is happening at either end of the extent
2473 * c> Splits in three extents: Somone is writing in middle of the extent
2475 static int ext4_ext_convert_to_initialized(handle_t *handle,
2476 struct inode *inode,
2477 struct ext4_ext_path *path,
2478 ext4_lblk_t iblock,
2479 unsigned int max_blocks)
2481 struct ext4_extent *ex, newex, orig_ex;
2482 struct ext4_extent *ex1 = NULL;
2483 struct ext4_extent *ex2 = NULL;
2484 struct ext4_extent *ex3 = NULL;
2485 struct ext4_extent_header *eh;
2486 ext4_lblk_t ee_block;
2487 unsigned int allocated, ee_len, depth;
2488 ext4_fsblk_t newblock;
2489 int err = 0;
2490 int ret = 0;
2492 depth = ext_depth(inode);
2493 eh = path[depth].p_hdr;
2494 ex = path[depth].p_ext;
2495 ee_block = le32_to_cpu(ex->ee_block);
2496 ee_len = ext4_ext_get_actual_len(ex);
2497 allocated = ee_len - (iblock - ee_block);
2498 newblock = iblock - ee_block + ext_pblock(ex);
2499 ex2 = ex;
2500 orig_ex.ee_block = ex->ee_block;
2501 orig_ex.ee_len = cpu_to_le16(ee_len);
2502 ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2504 err = ext4_ext_get_access(handle, inode, path + depth);
2505 if (err)
2506 goto out;
2507 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2508 if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
2509 err = ext4_ext_zeroout(inode, &orig_ex);
2510 if (err)
2511 goto fix_extent_len;
2512 /* update the extent length and mark as initialized */
2513 ex->ee_block = orig_ex.ee_block;
2514 ex->ee_len = orig_ex.ee_len;
2515 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2516 ext4_ext_dirty(handle, inode, path + depth);
2517 /* zeroed the full extent */
2518 return allocated;
2521 /* ex1: ee_block to iblock - 1 : uninitialized */
2522 if (iblock > ee_block) {
2523 ex1 = ex;
2524 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2525 ext4_ext_mark_uninitialized(ex1);
2526 ex2 = &newex;
2529 * for sanity, update the length of the ex2 extent before
2530 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2531 * overlap of blocks.
2533 if (!ex1 && allocated > max_blocks)
2534 ex2->ee_len = cpu_to_le16(max_blocks);
2535 /* ex3: to ee_block + ee_len : uninitialised */
2536 if (allocated > max_blocks) {
2537 unsigned int newdepth;
2538 /* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2539 if (allocated <= EXT4_EXT_ZERO_LEN) {
2541 * iblock == ee_block is handled by the zerouout
2542 * at the beginning.
2543 * Mark first half uninitialized.
2544 * Mark second half initialized and zero out the
2545 * initialized extent
2547 ex->ee_block = orig_ex.ee_block;
2548 ex->ee_len = cpu_to_le16(ee_len - allocated);
2549 ext4_ext_mark_uninitialized(ex);
2550 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2551 ext4_ext_dirty(handle, inode, path + depth);
2553 ex3 = &newex;
2554 ex3->ee_block = cpu_to_le32(iblock);
2555 ext4_ext_store_pblock(ex3, newblock);
2556 ex3->ee_len = cpu_to_le16(allocated);
2557 err = ext4_ext_insert_extent(handle, inode, path, ex3);
2558 if (err == -ENOSPC) {
2559 err = ext4_ext_zeroout(inode, &orig_ex);
2560 if (err)
2561 goto fix_extent_len;
2562 ex->ee_block = orig_ex.ee_block;
2563 ex->ee_len = orig_ex.ee_len;
2564 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2565 ext4_ext_dirty(handle, inode, path + depth);
2566 /* blocks available from iblock */
2567 return allocated;
2569 } else if (err)
2570 goto fix_extent_len;
2573 * We need to zero out the second half because
2574 * an fallocate request can update file size and
2575 * converting the second half to initialized extent
2576 * implies that we can leak some junk data to user
2577 * space.
2579 err = ext4_ext_zeroout(inode, ex3);
2580 if (err) {
2582 * We should actually mark the
2583 * second half as uninit and return error
2584 * Insert would have changed the extent
2586 depth = ext_depth(inode);
2587 ext4_ext_drop_refs(path);
2588 path = ext4_ext_find_extent(inode,
2589 iblock, path);
2590 if (IS_ERR(path)) {
2591 err = PTR_ERR(path);
2592 return err;
2594 /* get the second half extent details */
2595 ex = path[depth].p_ext;
2596 err = ext4_ext_get_access(handle, inode,
2597 path + depth);
2598 if (err)
2599 return err;
2600 ext4_ext_mark_uninitialized(ex);
2601 ext4_ext_dirty(handle, inode, path + depth);
2602 return err;
2605 /* zeroed the second half */
2606 return allocated;
2608 ex3 = &newex;
2609 ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2610 ext4_ext_store_pblock(ex3, newblock + max_blocks);
2611 ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2612 ext4_ext_mark_uninitialized(ex3);
2613 err = ext4_ext_insert_extent(handle, inode, path, ex3);
2614 if (err == -ENOSPC) {
2615 err = ext4_ext_zeroout(inode, &orig_ex);
2616 if (err)
2617 goto fix_extent_len;
2618 /* update the extent length and mark as initialized */
2619 ex->ee_block = orig_ex.ee_block;
2620 ex->ee_len = orig_ex.ee_len;
2621 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2622 ext4_ext_dirty(handle, inode, path + depth);
2623 /* zeroed the full extent */
2624 /* blocks available from iblock */
2625 return allocated;
2627 } else if (err)
2628 goto fix_extent_len;
2630 * The depth, and hence eh & ex might change
2631 * as part of the insert above.
2633 newdepth = ext_depth(inode);
2635 * update the extent length after successful insert of the
2636 * split extent
2638 orig_ex.ee_len = cpu_to_le16(ee_len -
2639 ext4_ext_get_actual_len(ex3));
2640 depth = newdepth;
2641 ext4_ext_drop_refs(path);
2642 path = ext4_ext_find_extent(inode, iblock, path);
2643 if (IS_ERR(path)) {
2644 err = PTR_ERR(path);
2645 goto out;
2647 eh = path[depth].p_hdr;
2648 ex = path[depth].p_ext;
2649 if (ex2 != &newex)
2650 ex2 = ex;
2652 err = ext4_ext_get_access(handle, inode, path + depth);
2653 if (err)
2654 goto out;
2656 allocated = max_blocks;
2658 /* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2659 * to insert a extent in the middle zerout directly
2660 * otherwise give the extent a chance to merge to left
2662 if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2663 iblock != ee_block) {
2664 err = ext4_ext_zeroout(inode, &orig_ex);
2665 if (err)
2666 goto fix_extent_len;
2667 /* update the extent length and mark as initialized */
2668 ex->ee_block = orig_ex.ee_block;
2669 ex->ee_len = orig_ex.ee_len;
2670 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2671 ext4_ext_dirty(handle, inode, path + depth);
2672 /* zero out the first half */
2673 /* blocks available from iblock */
2674 return allocated;
2678 * If there was a change of depth as part of the
2679 * insertion of ex3 above, we need to update the length
2680 * of the ex1 extent again here
2682 if (ex1 && ex1 != ex) {
2683 ex1 = ex;
2684 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2685 ext4_ext_mark_uninitialized(ex1);
2686 ex2 = &newex;
2688 /* ex2: iblock to iblock + maxblocks-1 : initialised */
2689 ex2->ee_block = cpu_to_le32(iblock);
2690 ext4_ext_store_pblock(ex2, newblock);
2691 ex2->ee_len = cpu_to_le16(allocated);
2692 if (ex2 != ex)
2693 goto insert;
2695 * New (initialized) extent starts from the first block
2696 * in the current extent. i.e., ex2 == ex
2697 * We have to see if it can be merged with the extent
2698 * on the left.
2700 if (ex2 > EXT_FIRST_EXTENT(eh)) {
2702 * To merge left, pass "ex2 - 1" to try_to_merge(),
2703 * since it merges towards right _only_.
2705 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2706 if (ret) {
2707 err = ext4_ext_correct_indexes(handle, inode, path);
2708 if (err)
2709 goto out;
2710 depth = ext_depth(inode);
2711 ex2--;
2715 * Try to Merge towards right. This might be required
2716 * only when the whole extent is being written to.
2717 * i.e. ex2 == ex and ex3 == NULL.
2719 if (!ex3) {
2720 ret = ext4_ext_try_to_merge(inode, path, ex2);
2721 if (ret) {
2722 err = ext4_ext_correct_indexes(handle, inode, path);
2723 if (err)
2724 goto out;
2727 /* Mark modified extent as dirty */
2728 err = ext4_ext_dirty(handle, inode, path + depth);
2729 goto out;
2730 insert:
2731 err = ext4_ext_insert_extent(handle, inode, path, &newex);
2732 if (err == -ENOSPC) {
2733 err = ext4_ext_zeroout(inode, &orig_ex);
2734 if (err)
2735 goto fix_extent_len;
2736 /* update the extent length and mark as initialized */
2737 ex->ee_block = orig_ex.ee_block;
2738 ex->ee_len = orig_ex.ee_len;
2739 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2740 ext4_ext_dirty(handle, inode, path + depth);
2741 /* zero out the first half */
2742 return allocated;
2743 } else if (err)
2744 goto fix_extent_len;
2745 out:
2746 return err ? err : allocated;
2748 fix_extent_len:
2749 ex->ee_block = orig_ex.ee_block;
2750 ex->ee_len = orig_ex.ee_len;
2751 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2752 ext4_ext_mark_uninitialized(ex);
2753 ext4_ext_dirty(handle, inode, path + depth);
2754 return err;
2758 * Block allocation/map/preallocation routine for extents based files
2761 * Need to be called with
2762 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
2763 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
2765 * return > 0, number of of blocks already mapped/allocated
2766 * if create == 0 and these are pre-allocated blocks
2767 * buffer head is unmapped
2768 * otherwise blocks are mapped
2770 * return = 0, if plain look up failed (blocks have not been allocated)
2771 * buffer head is unmapped
2773 * return < 0, error case.
2775 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
2776 ext4_lblk_t iblock,
2777 unsigned int max_blocks, struct buffer_head *bh_result,
2778 int flags)
2780 struct ext4_ext_path *path = NULL;
2781 struct ext4_extent_header *eh;
2782 struct ext4_extent newex, *ex;
2783 ext4_fsblk_t newblock;
2784 int err = 0, depth, ret, cache_type;
2785 unsigned int allocated = 0;
2786 struct ext4_allocation_request ar;
2788 __clear_bit(BH_New, &bh_result->b_state);
2789 ext_debug("blocks %u/%u requested for inode %u\n",
2790 iblock, max_blocks, inode->i_ino);
2792 /* check in cache */
2793 cache_type = ext4_ext_in_cache(inode, iblock, &newex);
2794 if (cache_type) {
2795 if (cache_type == EXT4_EXT_CACHE_GAP) {
2796 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
2798 * block isn't allocated yet and
2799 * user doesn't want to allocate it
2801 goto out2;
2803 /* we should allocate requested block */
2804 } else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
2805 /* block is already allocated */
2806 newblock = iblock
2807 - le32_to_cpu(newex.ee_block)
2808 + ext_pblock(&newex);
2809 /* number of remaining blocks in the extent */
2810 allocated = ext4_ext_get_actual_len(&newex) -
2811 (iblock - le32_to_cpu(newex.ee_block));
2812 goto out;
2813 } else {
2814 BUG();
2818 /* find extent for this block */
2819 path = ext4_ext_find_extent(inode, iblock, NULL);
2820 if (IS_ERR(path)) {
2821 err = PTR_ERR(path);
2822 path = NULL;
2823 goto out2;
2826 depth = ext_depth(inode);
2829 * consistent leaf must not be empty;
2830 * this situation is possible, though, _during_ tree modification;
2831 * this is why assert can't be put in ext4_ext_find_extent()
2833 BUG_ON(path[depth].p_ext == NULL && depth != 0);
2834 eh = path[depth].p_hdr;
2836 ex = path[depth].p_ext;
2837 if (ex) {
2838 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
2839 ext4_fsblk_t ee_start = ext_pblock(ex);
2840 unsigned short ee_len;
2843 * Uninitialized extents are treated as holes, except that
2844 * we split out initialized portions during a write.
2846 ee_len = ext4_ext_get_actual_len(ex);
2847 /* if found extent covers block, simply return it */
2848 if (iblock >= ee_block && iblock < ee_block + ee_len) {
2849 newblock = iblock - ee_block + ee_start;
2850 /* number of remaining blocks in the extent */
2851 allocated = ee_len - (iblock - ee_block);
2852 ext_debug("%u fit into %lu:%d -> %llu\n", iblock,
2853 ee_block, ee_len, newblock);
2855 /* Do not put uninitialized extent in the cache */
2856 if (!ext4_ext_is_uninitialized(ex)) {
2857 ext4_ext_put_in_cache(inode, ee_block,
2858 ee_len, ee_start,
2859 EXT4_EXT_CACHE_EXTENT);
2860 goto out;
2862 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
2863 goto out;
2864 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
2865 if (allocated > max_blocks)
2866 allocated = max_blocks;
2868 * We have blocks reserved already. We
2869 * return allocated blocks so that delalloc
2870 * won't do block reservation for us. But
2871 * the buffer head will be unmapped so that
2872 * a read from the block returns 0s.
2874 set_buffer_unwritten(bh_result);
2875 bh_result->b_bdev = inode->i_sb->s_bdev;
2876 bh_result->b_blocknr = newblock;
2877 goto out2;
2880 ret = ext4_ext_convert_to_initialized(handle, inode,
2881 path, iblock,
2882 max_blocks);
2883 if (ret <= 0) {
2884 err = ret;
2885 goto out2;
2886 } else
2887 allocated = ret;
2888 goto outnew;
2893 * requested block isn't allocated yet;
2894 * we couldn't try to create block if create flag is zero
2896 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
2898 * put just found gap into cache to speed up
2899 * subsequent requests
2901 ext4_ext_put_gap_in_cache(inode, path, iblock);
2902 goto out2;
2905 * Okay, we need to do block allocation.
2908 /* find neighbour allocated blocks */
2909 ar.lleft = iblock;
2910 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
2911 if (err)
2912 goto out2;
2913 ar.lright = iblock;
2914 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
2915 if (err)
2916 goto out2;
2919 * See if request is beyond maximum number of blocks we can have in
2920 * a single extent. For an initialized extent this limit is
2921 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2922 * EXT_UNINIT_MAX_LEN.
2924 if (max_blocks > EXT_INIT_MAX_LEN &&
2925 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
2926 max_blocks = EXT_INIT_MAX_LEN;
2927 else if (max_blocks > EXT_UNINIT_MAX_LEN &&
2928 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
2929 max_blocks = EXT_UNINIT_MAX_LEN;
2931 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2932 newex.ee_block = cpu_to_le32(iblock);
2933 newex.ee_len = cpu_to_le16(max_blocks);
2934 err = ext4_ext_check_overlap(inode, &newex, path);
2935 if (err)
2936 allocated = ext4_ext_get_actual_len(&newex);
2937 else
2938 allocated = max_blocks;
2940 /* allocate new block */
2941 ar.inode = inode;
2942 ar.goal = ext4_ext_find_goal(inode, path, iblock);
2943 ar.logical = iblock;
2944 ar.len = allocated;
2945 if (S_ISREG(inode->i_mode))
2946 ar.flags = EXT4_MB_HINT_DATA;
2947 else
2948 /* disable in-core preallocation for non-regular files */
2949 ar.flags = 0;
2950 newblock = ext4_mb_new_blocks(handle, &ar, &err);
2951 if (!newblock)
2952 goto out2;
2953 ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2954 ar.goal, newblock, allocated);
2956 /* try to insert new extent into found leaf and return */
2957 ext4_ext_store_pblock(&newex, newblock);
2958 newex.ee_len = cpu_to_le16(ar.len);
2959 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) /* Mark uninitialized */
2960 ext4_ext_mark_uninitialized(&newex);
2961 err = ext4_ext_insert_extent(handle, inode, path, &newex);
2962 if (err) {
2963 /* free data blocks we just allocated */
2964 /* not a good idea to call discard here directly,
2965 * but otherwise we'd need to call it every free() */
2966 ext4_discard_preallocations(inode);
2967 ext4_free_blocks(handle, inode, ext_pblock(&newex),
2968 ext4_ext_get_actual_len(&newex), 0);
2969 goto out2;
2972 /* previous routine could use block we allocated */
2973 newblock = ext_pblock(&newex);
2974 allocated = ext4_ext_get_actual_len(&newex);
2975 outnew:
2976 set_buffer_new(bh_result);
2978 /* Cache only when it is _not_ an uninitialized extent */
2979 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
2980 ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2981 EXT4_EXT_CACHE_EXTENT);
2982 out:
2983 if (allocated > max_blocks)
2984 allocated = max_blocks;
2985 ext4_ext_show_leaf(inode, path);
2986 set_buffer_mapped(bh_result);
2987 bh_result->b_bdev = inode->i_sb->s_bdev;
2988 bh_result->b_blocknr = newblock;
2989 out2:
2990 if (path) {
2991 ext4_ext_drop_refs(path);
2992 kfree(path);
2994 return err ? err : allocated;
2997 void ext4_ext_truncate(struct inode *inode)
2999 struct address_space *mapping = inode->i_mapping;
3000 struct super_block *sb = inode->i_sb;
3001 ext4_lblk_t last_block;
3002 handle_t *handle;
3003 int err = 0;
3006 * probably first extent we're gonna free will be last in block
3008 err = ext4_writepage_trans_blocks(inode);
3009 handle = ext4_journal_start(inode, err);
3010 if (IS_ERR(handle))
3011 return;
3013 if (inode->i_size & (sb->s_blocksize - 1))
3014 ext4_block_truncate_page(handle, mapping, inode->i_size);
3016 if (ext4_orphan_add(handle, inode))
3017 goto out_stop;
3019 down_write(&EXT4_I(inode)->i_data_sem);
3020 ext4_ext_invalidate_cache(inode);
3022 ext4_discard_preallocations(inode);
3025 * TODO: optimization is possible here.
3026 * Probably we need not scan at all,
3027 * because page truncation is enough.
3030 /* we have to know where to truncate from in crash case */
3031 EXT4_I(inode)->i_disksize = inode->i_size;
3032 ext4_mark_inode_dirty(handle, inode);
3034 last_block = (inode->i_size + sb->s_blocksize - 1)
3035 >> EXT4_BLOCK_SIZE_BITS(sb);
3036 err = ext4_ext_remove_space(inode, last_block);
3038 /* In a multi-transaction truncate, we only make the final
3039 * transaction synchronous.
3041 if (IS_SYNC(inode))
3042 ext4_handle_sync(handle);
3044 out_stop:
3045 up_write(&EXT4_I(inode)->i_data_sem);
3047 * If this was a simple ftruncate() and the file will remain alive,
3048 * then we need to clear up the orphan record which we created above.
3049 * However, if this was a real unlink then we were called by
3050 * ext4_delete_inode(), and we allow that function to clean up the
3051 * orphan info for us.
3053 if (inode->i_nlink)
3054 ext4_orphan_del(handle, inode);
3056 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3057 ext4_mark_inode_dirty(handle, inode);
3058 ext4_journal_stop(handle);
3061 static void ext4_falloc_update_inode(struct inode *inode,
3062 int mode, loff_t new_size, int update_ctime)
3064 struct timespec now;
3066 if (update_ctime) {
3067 now = current_fs_time(inode->i_sb);
3068 if (!timespec_equal(&inode->i_ctime, &now))
3069 inode->i_ctime = now;
3072 * Update only when preallocation was requested beyond
3073 * the file size.
3075 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3076 if (new_size > i_size_read(inode))
3077 i_size_write(inode, new_size);
3078 if (new_size > EXT4_I(inode)->i_disksize)
3079 ext4_update_i_disksize(inode, new_size);
3085 * preallocate space for a file. This implements ext4's fallocate inode
3086 * operation, which gets called from sys_fallocate system call.
3087 * For block-mapped files, posix_fallocate should fall back to the method
3088 * of writing zeroes to the required new blocks (the same behavior which is
3089 * expected for file systems which do not support fallocate() system call).
3091 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3093 handle_t *handle;
3094 ext4_lblk_t block;
3095 loff_t new_size;
3096 unsigned int max_blocks;
3097 int ret = 0;
3098 int ret2 = 0;
3099 int retries = 0;
3100 struct buffer_head map_bh;
3101 unsigned int credits, blkbits = inode->i_blkbits;
3104 * currently supporting (pre)allocate mode for extent-based
3105 * files _only_
3107 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3108 return -EOPNOTSUPP;
3110 /* preallocation to directories is currently not supported */
3111 if (S_ISDIR(inode->i_mode))
3112 return -ENODEV;
3114 block = offset >> blkbits;
3116 * We can't just convert len to max_blocks because
3117 * If blocksize = 4096 offset = 3072 and len = 2048
3119 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3120 - block;
3122 * credits to insert 1 extent into extent tree
3124 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3125 mutex_lock(&inode->i_mutex);
3126 retry:
3127 while (ret >= 0 && ret < max_blocks) {
3128 block = block + ret;
3129 max_blocks = max_blocks - ret;
3130 handle = ext4_journal_start(inode, credits);
3131 if (IS_ERR(handle)) {
3132 ret = PTR_ERR(handle);
3133 break;
3135 map_bh.b_state = 0;
3136 ret = ext4_get_blocks(handle, inode, block,
3137 max_blocks, &map_bh,
3138 EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
3139 if (ret <= 0) {
3140 #ifdef EXT4FS_DEBUG
3141 WARN_ON(ret <= 0);
3142 printk(KERN_ERR "%s: ext4_ext_get_blocks "
3143 "returned error inode#%lu, block=%u, "
3144 "max_blocks=%u", __func__,
3145 inode->i_ino, block, max_blocks);
3146 #endif
3147 ext4_mark_inode_dirty(handle, inode);
3148 ret2 = ext4_journal_stop(handle);
3149 break;
3151 if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3152 blkbits) >> blkbits))
3153 new_size = offset + len;
3154 else
3155 new_size = (block + ret) << blkbits;
3157 ext4_falloc_update_inode(inode, mode, new_size,
3158 buffer_new(&map_bh));
3159 ext4_mark_inode_dirty(handle, inode);
3160 ret2 = ext4_journal_stop(handle);
3161 if (ret2)
3162 break;
3164 if (ret == -ENOSPC &&
3165 ext4_should_retry_alloc(inode->i_sb, &retries)) {
3166 ret = 0;
3167 goto retry;
3169 mutex_unlock(&inode->i_mutex);
3170 return ret > 0 ? ret2 : ret;
3174 * Callback function called for each extent to gather FIEMAP information.
3176 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3177 struct ext4_ext_cache *newex, struct ext4_extent *ex,
3178 void *data)
3180 struct fiemap_extent_info *fieinfo = data;
3181 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
3182 __u64 logical;
3183 __u64 physical;
3184 __u64 length;
3185 __u32 flags = 0;
3186 int error;
3188 logical = (__u64)newex->ec_block << blksize_bits;
3190 if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3191 pgoff_t offset;
3192 struct page *page;
3193 struct buffer_head *bh = NULL;
3195 offset = logical >> PAGE_SHIFT;
3196 page = find_get_page(inode->i_mapping, offset);
3197 if (!page || !page_has_buffers(page))
3198 return EXT_CONTINUE;
3200 bh = page_buffers(page);
3202 if (!bh)
3203 return EXT_CONTINUE;
3205 if (buffer_delay(bh)) {
3206 flags |= FIEMAP_EXTENT_DELALLOC;
3207 page_cache_release(page);
3208 } else {
3209 page_cache_release(page);
3210 return EXT_CONTINUE;
3214 physical = (__u64)newex->ec_start << blksize_bits;
3215 length = (__u64)newex->ec_len << blksize_bits;
3217 if (ex && ext4_ext_is_uninitialized(ex))
3218 flags |= FIEMAP_EXTENT_UNWRITTEN;
3221 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3223 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3224 * this also indicates no more allocated blocks.
3226 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3228 if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK ||
3229 newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) {
3230 loff_t size = i_size_read(inode);
3231 loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb);
3233 flags |= FIEMAP_EXTENT_LAST;
3234 if ((flags & FIEMAP_EXTENT_DELALLOC) &&
3235 logical+length > size)
3236 length = (size - logical + bs - 1) & ~(bs-1);
3239 error = fiemap_fill_next_extent(fieinfo, logical, physical,
3240 length, flags);
3241 if (error < 0)
3242 return error;
3243 if (error == 1)
3244 return EXT_BREAK;
3246 return EXT_CONTINUE;
3249 /* fiemap flags we can handle specified here */
3250 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3252 static int ext4_xattr_fiemap(struct inode *inode,
3253 struct fiemap_extent_info *fieinfo)
3255 __u64 physical = 0;
3256 __u64 length;
3257 __u32 flags = FIEMAP_EXTENT_LAST;
3258 int blockbits = inode->i_sb->s_blocksize_bits;
3259 int error = 0;
3261 /* in-inode? */
3262 if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) {
3263 struct ext4_iloc iloc;
3264 int offset; /* offset of xattr in inode */
3266 error = ext4_get_inode_loc(inode, &iloc);
3267 if (error)
3268 return error;
3269 physical = iloc.bh->b_blocknr << blockbits;
3270 offset = EXT4_GOOD_OLD_INODE_SIZE +
3271 EXT4_I(inode)->i_extra_isize;
3272 physical += offset;
3273 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3274 flags |= FIEMAP_EXTENT_DATA_INLINE;
3275 } else { /* external block */
3276 physical = EXT4_I(inode)->i_file_acl << blockbits;
3277 length = inode->i_sb->s_blocksize;
3280 if (physical)
3281 error = fiemap_fill_next_extent(fieinfo, 0, physical,
3282 length, flags);
3283 return (error < 0 ? error : 0);
3286 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3287 __u64 start, __u64 len)
3289 ext4_lblk_t start_blk;
3290 ext4_lblk_t len_blks;
3291 int error = 0;
3293 /* fallback to generic here if not in extents fmt */
3294 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3295 return generic_block_fiemap(inode, fieinfo, start, len,
3296 ext4_get_block);
3298 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3299 return -EBADR;
3301 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3302 error = ext4_xattr_fiemap(inode, fieinfo);
3303 } else {
3304 start_blk = start >> inode->i_sb->s_blocksize_bits;
3305 len_blks = len >> inode->i_sb->s_blocksize_bits;
3308 * Walk the extent tree gathering extent information.
3309 * ext4_ext_fiemap_cb will push extents back to user.
3311 down_read(&EXT4_I(inode)->i_data_sem);
3312 error = ext4_ext_walk_space(inode, start_blk, len_blks,
3313 ext4_ext_fiemap_cb, fieinfo);
3314 up_read(&EXT4_I(inode)->i_data_sem);
3317 return error;