2 * net/dccp/packet_history.c
4 * Copyright (c) 2007 The University of Aberdeen, Scotland, UK
5 * Copyright (c) 2005-7 The University of Waikato, Hamilton, New Zealand.
7 * An implementation of the DCCP protocol
9 * This code has been developed by the University of Waikato WAND
10 * research group. For further information please see http://www.wand.net.nz/
11 * or e-mail Ian McDonald - ian.mcdonald@jandi.co.nz
13 * This code also uses code from Lulea University, rereleased as GPL by its
15 * Copyright (c) 2003 Nils-Erik Mattsson, Joacim Haggmark, Magnus Erixzon
17 * Changes to meet Linux coding standards, to make it meet latest ccid3 draft
18 * and to make it work as a loadable module in the DCCP stack written by
19 * Arnaldo Carvalho de Melo <acme@conectiva.com.br>.
21 * Copyright (c) 2005 Arnaldo Carvalho de Melo <acme@conectiva.com.br>
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
33 * You should have received a copy of the GNU General Public License
34 * along with this program; if not, write to the Free Software
35 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include "packet_history.h"
41 #include "../../dccp.h"
44 * tfrc_tx_hist_entry - Simple singly-linked TX history list
45 * @next: next oldest entry (LIFO order)
46 * @seqno: sequence number of this entry
47 * @stamp: send time of packet with sequence number @seqno
49 struct tfrc_tx_hist_entry
{
50 struct tfrc_tx_hist_entry
*next
;
56 * Transmitter History Routines
58 static struct kmem_cache
*tfrc_tx_hist_slab
;
60 int __init
tfrc_tx_packet_history_init(void)
62 tfrc_tx_hist_slab
= kmem_cache_create("tfrc_tx_hist",
63 sizeof(struct tfrc_tx_hist_entry
),
64 0, SLAB_HWCACHE_ALIGN
, NULL
);
65 return tfrc_tx_hist_slab
== NULL
? -ENOBUFS
: 0;
68 void tfrc_tx_packet_history_exit(void)
70 if (tfrc_tx_hist_slab
!= NULL
) {
71 kmem_cache_destroy(tfrc_tx_hist_slab
);
72 tfrc_tx_hist_slab
= NULL
;
76 static struct tfrc_tx_hist_entry
*
77 tfrc_tx_hist_find_entry(struct tfrc_tx_hist_entry
*head
, u64 seqno
)
79 while (head
!= NULL
&& head
->seqno
!= seqno
)
85 int tfrc_tx_hist_add(struct tfrc_tx_hist_entry
**headp
, u64 seqno
)
87 struct tfrc_tx_hist_entry
*entry
= kmem_cache_alloc(tfrc_tx_hist_slab
, gfp_any());
92 entry
->stamp
= ktime_get_real();
98 void tfrc_tx_hist_purge(struct tfrc_tx_hist_entry
**headp
)
100 struct tfrc_tx_hist_entry
*head
= *headp
;
102 while (head
!= NULL
) {
103 struct tfrc_tx_hist_entry
*next
= head
->next
;
105 kmem_cache_free(tfrc_tx_hist_slab
, head
);
112 u32
tfrc_tx_hist_rtt(struct tfrc_tx_hist_entry
*head
, const u64 seqno
,
116 struct tfrc_tx_hist_entry
*packet
= tfrc_tx_hist_find_entry(head
, seqno
);
118 if (packet
!= NULL
) {
119 rtt
= ktime_us_delta(now
, packet
->stamp
);
121 * Garbage-collect older (irrelevant) entries:
123 tfrc_tx_hist_purge(&packet
->next
);
131 * Receiver History Routines
133 static struct kmem_cache
*tfrc_rx_hist_slab
;
135 int __init
tfrc_rx_packet_history_init(void)
137 tfrc_rx_hist_slab
= kmem_cache_create("tfrc_rxh_cache",
138 sizeof(struct tfrc_rx_hist_entry
),
139 0, SLAB_HWCACHE_ALIGN
, NULL
);
140 return tfrc_rx_hist_slab
== NULL
? -ENOBUFS
: 0;
143 void tfrc_rx_packet_history_exit(void)
145 if (tfrc_rx_hist_slab
!= NULL
) {
146 kmem_cache_destroy(tfrc_rx_hist_slab
);
147 tfrc_rx_hist_slab
= NULL
;
151 static inline void tfrc_rx_hist_entry_from_skb(struct tfrc_rx_hist_entry
*entry
,
152 const struct sk_buff
*skb
,
155 const struct dccp_hdr
*dh
= dccp_hdr(skb
);
157 entry
->tfrchrx_seqno
= DCCP_SKB_CB(skb
)->dccpd_seq
;
158 entry
->tfrchrx_ccval
= dh
->dccph_ccval
;
159 entry
->tfrchrx_type
= dh
->dccph_type
;
160 entry
->tfrchrx_ndp
= ndp
;
161 entry
->tfrchrx_tstamp
= ktime_get_real();
164 void tfrc_rx_hist_add_packet(struct tfrc_rx_hist
*h
,
165 const struct sk_buff
*skb
,
168 struct tfrc_rx_hist_entry
*entry
= tfrc_rx_hist_last_rcv(h
);
170 tfrc_rx_hist_entry_from_skb(entry
, skb
, ndp
);
173 /* has the packet contained in skb been seen before? */
174 int tfrc_rx_hist_duplicate(struct tfrc_rx_hist
*h
, struct sk_buff
*skb
)
176 const u64 seq
= DCCP_SKB_CB(skb
)->dccpd_seq
;
179 if (dccp_delta_seqno(tfrc_rx_hist_loss_prev(h
)->tfrchrx_seqno
, seq
) <= 0)
182 for (i
= 1; i
<= h
->loss_count
; i
++)
183 if (tfrc_rx_hist_entry(h
, i
)->tfrchrx_seqno
== seq
)
189 static void tfrc_rx_hist_swap(struct tfrc_rx_hist
*h
, const u8 a
, const u8 b
)
191 const u8 idx_a
= tfrc_rx_hist_index(h
, a
),
192 idx_b
= tfrc_rx_hist_index(h
, b
);
193 struct tfrc_rx_hist_entry
*tmp
= h
->ring
[idx_a
];
195 h
->ring
[idx_a
] = h
->ring
[idx_b
];
196 h
->ring
[idx_b
] = tmp
;
200 * Private helper functions for loss detection.
202 * In the descriptions, `Si' refers to the sequence number of entry number i,
203 * whose NDP count is `Ni' (lower case is used for variables).
204 * Note: All __xxx_loss functions expect that a test against duplicates has been
205 * performed already: the seqno of the skb must not be less than the seqno
206 * of loss_prev; and it must not equal that of any valid history entry.
208 static void __do_track_loss(struct tfrc_rx_hist
*h
, struct sk_buff
*skb
, u64 n1
)
210 u64 s0
= tfrc_rx_hist_loss_prev(h
)->tfrchrx_seqno
,
211 s1
= DCCP_SKB_CB(skb
)->dccpd_seq
;
213 if (!dccp_loss_free(s0
, s1
, n1
)) { /* gap between S0 and S1 */
215 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 1), skb
, n1
);
219 static void __one_after_loss(struct tfrc_rx_hist
*h
, struct sk_buff
*skb
, u32 n2
)
221 u64 s0
= tfrc_rx_hist_loss_prev(h
)->tfrchrx_seqno
,
222 s1
= tfrc_rx_hist_entry(h
, 1)->tfrchrx_seqno
,
223 s2
= DCCP_SKB_CB(skb
)->dccpd_seq
;
225 if (likely(dccp_delta_seqno(s1
, s2
) > 0)) { /* S1 < S2 */
227 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 2), skb
, n2
);
233 if (dccp_loss_free(s0
, s2
, n2
)) {
234 u64 n1
= tfrc_rx_hist_entry(h
, 1)->tfrchrx_ndp
;
236 if (dccp_loss_free(s2
, s1
, n1
)) {
237 /* hole is filled: S0, S2, and S1 are consecutive */
239 h
->loss_start
= tfrc_rx_hist_index(h
, 1);
241 /* gap between S2 and S1: just update loss_prev */
242 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h
), skb
, n2
);
244 } else { /* gap between S0 and S2 */
246 * Reorder history to insert S2 between S0 and S1
248 tfrc_rx_hist_swap(h
, 0, 3);
249 h
->loss_start
= tfrc_rx_hist_index(h
, 3);
250 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 1), skb
, n2
);
255 /* return 1 if a new loss event has been identified */
256 static int __two_after_loss(struct tfrc_rx_hist
*h
, struct sk_buff
*skb
, u32 n3
)
258 u64 s0
= tfrc_rx_hist_loss_prev(h
)->tfrchrx_seqno
,
259 s1
= tfrc_rx_hist_entry(h
, 1)->tfrchrx_seqno
,
260 s2
= tfrc_rx_hist_entry(h
, 2)->tfrchrx_seqno
,
261 s3
= DCCP_SKB_CB(skb
)->dccpd_seq
;
263 if (likely(dccp_delta_seqno(s2
, s3
) > 0)) { /* S2 < S3 */
265 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 3), skb
, n3
);
271 if (dccp_delta_seqno(s1
, s3
) > 0) { /* S1 < S3 < S2 */
273 * Reorder history to insert S3 between S1 and S2
275 tfrc_rx_hist_swap(h
, 2, 3);
276 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 2), skb
, n3
);
283 if (dccp_loss_free(s0
, s3
, n3
)) {
284 u64 n1
= tfrc_rx_hist_entry(h
, 1)->tfrchrx_ndp
;
286 if (dccp_loss_free(s3
, s1
, n1
)) {
287 /* hole between S0 and S1 filled by S3 */
288 u64 n2
= tfrc_rx_hist_entry(h
, 2)->tfrchrx_ndp
;
290 if (dccp_loss_free(s1
, s2
, n2
)) {
291 /* entire hole filled by S0, S3, S1, S2 */
292 h
->loss_start
= tfrc_rx_hist_index(h
, 2);
295 /* gap remains between S1 and S2 */
296 h
->loss_start
= tfrc_rx_hist_index(h
, 1);
300 } else /* gap exists between S3 and S1, loss_count stays at 2 */
301 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_loss_prev(h
), skb
, n3
);
307 * The remaining case: S0 < S3 < S1 < S2; gap between S0 and S3
308 * Reorder history to insert S3 between S0 and S1.
310 tfrc_rx_hist_swap(h
, 0, 3);
311 h
->loss_start
= tfrc_rx_hist_index(h
, 3);
312 tfrc_rx_hist_entry_from_skb(tfrc_rx_hist_entry(h
, 1), skb
, n3
);
318 /* recycle RX history records to continue loss detection if necessary */
319 static void __three_after_loss(struct tfrc_rx_hist
*h
)
322 * At this stage we know already that there is a gap between S0 and S1
323 * (since S0 was the highest sequence number received before detecting
324 * the loss). To recycle the loss record, it is thus only necessary to
325 * check for other possible gaps between S1/S2 and between S2/S3.
327 u64 s1
= tfrc_rx_hist_entry(h
, 1)->tfrchrx_seqno
,
328 s2
= tfrc_rx_hist_entry(h
, 2)->tfrchrx_seqno
,
329 s3
= tfrc_rx_hist_entry(h
, 3)->tfrchrx_seqno
;
330 u64 n2
= tfrc_rx_hist_entry(h
, 2)->tfrchrx_ndp
,
331 n3
= tfrc_rx_hist_entry(h
, 3)->tfrchrx_ndp
;
333 if (dccp_loss_free(s1
, s2
, n2
)) {
335 if (dccp_loss_free(s2
, s3
, n3
)) {
336 /* no gap between S2 and S3: entire hole is filled */
337 h
->loss_start
= tfrc_rx_hist_index(h
, 3);
340 /* gap between S2 and S3 */
341 h
->loss_start
= tfrc_rx_hist_index(h
, 2);
345 } else { /* gap between S1 and S2 */
346 h
->loss_start
= tfrc_rx_hist_index(h
, 1);
352 * tfrc_rx_handle_loss - Loss detection and further processing
353 * @h: The non-empty RX history object
354 * @lh: Loss Intervals database to update
355 * @skb: Currently received packet
356 * @ndp: The NDP count belonging to @skb
357 * @calc_first_li: Caller-dependent computation of first loss interval in @lh
358 * @sk: Used by @calc_first_li (see tfrc_lh_interval_add)
359 * Chooses action according to pending loss, updates LI database when a new
360 * loss was detected, and does required post-processing. Returns 1 when caller
361 * should send feedback, 0 otherwise.
362 * Since it also takes care of reordering during loss detection and updates the
363 * records accordingly, the caller should not perform any more RX history
364 * operations when loss_count is greater than 0 after calling this function.
366 int tfrc_rx_handle_loss(struct tfrc_rx_hist
*h
,
367 struct tfrc_loss_hist
*lh
,
368 struct sk_buff
*skb
, const u64 ndp
,
369 u32 (*calc_first_li
)(struct sock
*), struct sock
*sk
)
373 if (h
->loss_count
== 0) {
374 __do_track_loss(h
, skb
, ndp
);
375 } else if (h
->loss_count
== 1) {
376 __one_after_loss(h
, skb
, ndp
);
377 } else if (h
->loss_count
!= 2) {
378 DCCP_BUG("invalid loss_count %d", h
->loss_count
);
379 } else if (__two_after_loss(h
, skb
, ndp
)) {
381 * Update Loss Interval database and recycle RX records
383 is_new_loss
= tfrc_lh_interval_add(lh
, h
, calc_first_li
, sk
);
384 __three_after_loss(h
);
389 int tfrc_rx_hist_alloc(struct tfrc_rx_hist
*h
)
393 for (i
= 0; i
<= TFRC_NDUPACK
; i
++) {
394 h
->ring
[i
] = kmem_cache_alloc(tfrc_rx_hist_slab
, GFP_ATOMIC
);
395 if (h
->ring
[i
] == NULL
)
399 h
->loss_count
= h
->loss_start
= 0;
404 kmem_cache_free(tfrc_rx_hist_slab
, h
->ring
[i
]);
410 void tfrc_rx_hist_purge(struct tfrc_rx_hist
*h
)
414 for (i
= 0; i
<= TFRC_NDUPACK
; ++i
)
415 if (h
->ring
[i
] != NULL
) {
416 kmem_cache_free(tfrc_rx_hist_slab
, h
->ring
[i
]);
422 * tfrc_rx_hist_rtt_last_s - reference entry to compute RTT samples against
424 static inline struct tfrc_rx_hist_entry
*
425 tfrc_rx_hist_rtt_last_s(const struct tfrc_rx_hist
*h
)
431 * tfrc_rx_hist_rtt_prev_s: previously suitable (wrt rtt_last_s) RTT-sampling entry
433 static inline struct tfrc_rx_hist_entry
*
434 tfrc_rx_hist_rtt_prev_s(const struct tfrc_rx_hist
*h
)
436 return h
->ring
[h
->rtt_sample_prev
];
440 * tfrc_rx_hist_sample_rtt - Sample RTT from timestamp / CCVal
441 * Based on ideas presented in RFC 4342, 8.1. Returns 0 if it was not able
442 * to compute a sample with given data - calling function should check this.
444 u32
tfrc_rx_hist_sample_rtt(struct tfrc_rx_hist
*h
, const struct sk_buff
*skb
)
447 delta_v
= SUB16(dccp_hdr(skb
)->dccph_ccval
,
448 tfrc_rx_hist_rtt_last_s(h
)->tfrchrx_ccval
);
450 if (delta_v
< 1 || delta_v
> 4) { /* unsuitable CCVal delta */
451 if (h
->rtt_sample_prev
== 2) { /* previous candidate stored */
452 sample
= SUB16(tfrc_rx_hist_rtt_prev_s(h
)->tfrchrx_ccval
,
453 tfrc_rx_hist_rtt_last_s(h
)->tfrchrx_ccval
);
455 sample
= 4 / sample
*
456 ktime_us_delta(tfrc_rx_hist_rtt_prev_s(h
)->tfrchrx_tstamp
,
457 tfrc_rx_hist_rtt_last_s(h
)->tfrchrx_tstamp
);
459 * FIXME: This condition is in principle not
460 * possible but occurs when CCID is used for
461 * two-way data traffic. I have tried to trace
462 * it, but the cause does not seem to be here.
464 DCCP_BUG("please report to dccp@vger.kernel.org"
465 " => prev = %u, last = %u",
466 tfrc_rx_hist_rtt_prev_s(h
)->tfrchrx_ccval
,
467 tfrc_rx_hist_rtt_last_s(h
)->tfrchrx_ccval
);
468 } else if (delta_v
< 1) {
469 h
->rtt_sample_prev
= 1;
470 goto keep_ref_for_next_time
;
473 } else if (delta_v
== 4) /* optimal match */
474 sample
= ktime_to_us(net_timedelta(tfrc_rx_hist_rtt_last_s(h
)->tfrchrx_tstamp
));
475 else { /* suboptimal match */
476 h
->rtt_sample_prev
= 2;
477 goto keep_ref_for_next_time
;
480 if (unlikely(sample
> DCCP_SANE_RTT_MAX
)) {
481 DCCP_WARN("RTT sample %u too large, using max\n", sample
);
482 sample
= DCCP_SANE_RTT_MAX
;
485 h
->rtt_sample_prev
= 0; /* use current entry as next reference */
486 keep_ref_for_next_time
: