Linux 2.6.31.6
[linux/fpc-iii.git] / net / mac80211 / tx.c
blobe5d720e151370b02e42a6878d4b57fabf2899f2f
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 * Transmit and frame generation functions.
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
27 #include "ieee80211_i.h"
28 #include "driver-ops.h"
29 #include "led.h"
30 #include "mesh.h"
31 #include "wep.h"
32 #include "wpa.h"
33 #include "wme.h"
34 #include "rate.h"
36 #define IEEE80211_TX_OK 0
37 #define IEEE80211_TX_AGAIN 1
38 #define IEEE80211_TX_PENDING 2
40 /* misc utils */
42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
43 int next_frag_len)
45 int rate, mrate, erp, dur, i;
46 struct ieee80211_rate *txrate;
47 struct ieee80211_local *local = tx->local;
48 struct ieee80211_supported_band *sband;
49 struct ieee80211_hdr *hdr;
50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
52 /* assume HW handles this */
53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
54 return 0;
56 /* uh huh? */
57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
58 return 0;
60 sband = local->hw.wiphy->bands[tx->channel->band];
61 txrate = &sband->bitrates[info->control.rates[0].idx];
63 erp = txrate->flags & IEEE80211_RATE_ERP_G;
66 * data and mgmt (except PS Poll):
67 * - during CFP: 32768
68 * - during contention period:
69 * if addr1 is group address: 0
70 * if more fragments = 0 and addr1 is individual address: time to
71 * transmit one ACK plus SIFS
72 * if more fragments = 1 and addr1 is individual address: time to
73 * transmit next fragment plus 2 x ACK plus 3 x SIFS
75 * IEEE 802.11, 9.6:
76 * - control response frame (CTS or ACK) shall be transmitted using the
77 * same rate as the immediately previous frame in the frame exchange
78 * sequence, if this rate belongs to the PHY mandatory rates, or else
79 * at the highest possible rate belonging to the PHY rates in the
80 * BSSBasicRateSet
82 hdr = (struct ieee80211_hdr *)tx->skb->data;
83 if (ieee80211_is_ctl(hdr->frame_control)) {
84 /* TODO: These control frames are not currently sent by
85 * mac80211, but should they be implemented, this function
86 * needs to be updated to support duration field calculation.
88 * RTS: time needed to transmit pending data/mgmt frame plus
89 * one CTS frame plus one ACK frame plus 3 x SIFS
90 * CTS: duration of immediately previous RTS minus time
91 * required to transmit CTS and its SIFS
92 * ACK: 0 if immediately previous directed data/mgmt had
93 * more=0, with more=1 duration in ACK frame is duration
94 * from previous frame minus time needed to transmit ACK
95 * and its SIFS
96 * PS Poll: BIT(15) | BIT(14) | aid
98 return 0;
101 /* data/mgmt */
102 if (0 /* FIX: data/mgmt during CFP */)
103 return cpu_to_le16(32768);
105 if (group_addr) /* Group address as the destination - no ACK */
106 return 0;
108 /* Individual destination address:
109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
110 * CTS and ACK frames shall be transmitted using the highest rate in
111 * basic rate set that is less than or equal to the rate of the
112 * immediately previous frame and that is using the same modulation
113 * (CCK or OFDM). If no basic rate set matches with these requirements,
114 * the highest mandatory rate of the PHY that is less than or equal to
115 * the rate of the previous frame is used.
116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
118 rate = -1;
119 /* use lowest available if everything fails */
120 mrate = sband->bitrates[0].bitrate;
121 for (i = 0; i < sband->n_bitrates; i++) {
122 struct ieee80211_rate *r = &sband->bitrates[i];
124 if (r->bitrate > txrate->bitrate)
125 break;
127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
128 rate = r->bitrate;
130 switch (sband->band) {
131 case IEEE80211_BAND_2GHZ: {
132 u32 flag;
133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
134 flag = IEEE80211_RATE_MANDATORY_G;
135 else
136 flag = IEEE80211_RATE_MANDATORY_B;
137 if (r->flags & flag)
138 mrate = r->bitrate;
139 break;
141 case IEEE80211_BAND_5GHZ:
142 if (r->flags & IEEE80211_RATE_MANDATORY_A)
143 mrate = r->bitrate;
144 break;
145 case IEEE80211_NUM_BANDS:
146 WARN_ON(1);
147 break;
150 if (rate == -1) {
151 /* No matching basic rate found; use highest suitable mandatory
152 * PHY rate */
153 rate = mrate;
156 /* Time needed to transmit ACK
157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
158 * to closest integer */
160 dur = ieee80211_frame_duration(local, 10, rate, erp,
161 tx->sdata->vif.bss_conf.use_short_preamble);
163 if (next_frag_len) {
164 /* Frame is fragmented: duration increases with time needed to
165 * transmit next fragment plus ACK and 2 x SIFS. */
166 dur *= 2; /* ACK + SIFS */
167 /* next fragment */
168 dur += ieee80211_frame_duration(local, next_frag_len,
169 txrate->bitrate, erp,
170 tx->sdata->vif.bss_conf.use_short_preamble);
173 return cpu_to_le16(dur);
176 static int inline is_ieee80211_device(struct ieee80211_local *local,
177 struct net_device *dev)
179 return local == wdev_priv(dev->ieee80211_ptr);
182 /* tx handlers */
184 static ieee80211_tx_result debug_noinline
185 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
188 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
189 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
190 u32 sta_flags;
192 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
193 return TX_CONTINUE;
195 if (unlikely(tx->local->sw_scanning) &&
196 !ieee80211_is_probe_req(hdr->frame_control) &&
197 !ieee80211_is_nullfunc(hdr->frame_control))
199 * When software scanning only nullfunc frames (to notify
200 * the sleep state to the AP) and probe requests (for the
201 * active scan) are allowed, all other frames should not be
202 * sent and we should not get here, but if we do
203 * nonetheless, drop them to avoid sending them
204 * off-channel. See the link below and
205 * ieee80211_start_scan() for more.
207 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
209 return TX_DROP;
211 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
212 return TX_CONTINUE;
214 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
215 return TX_CONTINUE;
217 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
219 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
220 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
221 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
222 ieee80211_is_data(hdr->frame_control))) {
223 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
224 printk(KERN_DEBUG "%s: dropped data frame to not "
225 "associated station %pM\n",
226 tx->dev->name, hdr->addr1);
227 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
228 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
229 return TX_DROP;
231 } else {
232 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
233 tx->local->num_sta == 0 &&
234 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
236 * No associated STAs - no need to send multicast
237 * frames.
239 return TX_DROP;
241 return TX_CONTINUE;
244 return TX_CONTINUE;
247 /* This function is called whenever the AP is about to exceed the maximum limit
248 * of buffered frames for power saving STAs. This situation should not really
249 * happen often during normal operation, so dropping the oldest buffered packet
250 * from each queue should be OK to make some room for new frames. */
251 static void purge_old_ps_buffers(struct ieee80211_local *local)
253 int total = 0, purged = 0;
254 struct sk_buff *skb;
255 struct ieee80211_sub_if_data *sdata;
256 struct sta_info *sta;
259 * virtual interfaces are protected by RCU
261 rcu_read_lock();
263 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
264 struct ieee80211_if_ap *ap;
265 if (sdata->vif.type != NL80211_IFTYPE_AP)
266 continue;
267 ap = &sdata->u.ap;
268 skb = skb_dequeue(&ap->ps_bc_buf);
269 if (skb) {
270 purged++;
271 dev_kfree_skb(skb);
273 total += skb_queue_len(&ap->ps_bc_buf);
276 list_for_each_entry_rcu(sta, &local->sta_list, list) {
277 skb = skb_dequeue(&sta->ps_tx_buf);
278 if (skb) {
279 purged++;
280 dev_kfree_skb(skb);
282 total += skb_queue_len(&sta->ps_tx_buf);
285 rcu_read_unlock();
287 local->total_ps_buffered = total;
288 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
289 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
290 wiphy_name(local->hw.wiphy), purged);
291 #endif
294 static ieee80211_tx_result
295 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
297 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
298 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
301 * broadcast/multicast frame
303 * If any of the associated stations is in power save mode,
304 * the frame is buffered to be sent after DTIM beacon frame.
305 * This is done either by the hardware or us.
308 /* powersaving STAs only in AP/VLAN mode */
309 if (!tx->sdata->bss)
310 return TX_CONTINUE;
312 /* no buffering for ordered frames */
313 if (ieee80211_has_order(hdr->frame_control))
314 return TX_CONTINUE;
316 /* no stations in PS mode */
317 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
318 return TX_CONTINUE;
320 /* buffered in mac80211 */
321 if (tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) {
322 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
323 purge_old_ps_buffers(tx->local);
324 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
325 AP_MAX_BC_BUFFER) {
326 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
327 if (net_ratelimit()) {
328 printk(KERN_DEBUG "%s: BC TX buffer full - "
329 "dropping the oldest frame\n",
330 tx->dev->name);
332 #endif
333 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
334 } else
335 tx->local->total_ps_buffered++;
336 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
337 return TX_QUEUED;
340 /* buffered in hardware */
341 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
343 return TX_CONTINUE;
346 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
347 struct sk_buff *skb)
349 if (!ieee80211_is_mgmt(fc))
350 return 0;
352 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
353 return 0;
355 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
356 skb->data))
357 return 0;
359 return 1;
362 static ieee80211_tx_result
363 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
365 struct sta_info *sta = tx->sta;
366 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
367 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
368 u32 staflags;
370 if (unlikely(!sta || ieee80211_is_probe_resp(hdr->frame_control)))
371 return TX_CONTINUE;
373 staflags = get_sta_flags(sta);
375 if (unlikely((staflags & WLAN_STA_PS) &&
376 !(staflags & WLAN_STA_PSPOLL))) {
377 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
378 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
379 "before %d)\n",
380 sta->sta.addr, sta->sta.aid,
381 skb_queue_len(&sta->ps_tx_buf));
382 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
383 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
384 purge_old_ps_buffers(tx->local);
385 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
386 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
387 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
388 if (net_ratelimit()) {
389 printk(KERN_DEBUG "%s: STA %pM TX "
390 "buffer full - dropping oldest frame\n",
391 tx->dev->name, sta->sta.addr);
393 #endif
394 dev_kfree_skb(old);
395 } else
396 tx->local->total_ps_buffered++;
398 /* Queue frame to be sent after STA sends an PS Poll frame */
399 if (skb_queue_empty(&sta->ps_tx_buf))
400 sta_info_set_tim_bit(sta);
402 info->control.jiffies = jiffies;
403 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
404 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
405 return TX_QUEUED;
407 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
408 else if (unlikely(test_sta_flags(sta, WLAN_STA_PS))) {
409 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
410 "set -> send frame\n", tx->dev->name,
411 sta->sta.addr);
413 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
414 if (test_and_clear_sta_flags(sta, WLAN_STA_PSPOLL)) {
416 * The sleeping station with pending data is now snoozing.
417 * It queried us for its buffered frames and will go back
418 * to deep sleep once it got everything.
420 * inform the driver, in case the hardware does powersave
421 * frame filtering and keeps a station blacklist on its own
422 * (e.g: p54), so that frames can be delivered unimpeded.
424 * Note: It should be safe to disable the filter now.
425 * As, it is really unlikely that we still have any pending
426 * frame for this station in the hw's buffers/fifos left,
427 * that is not rejected with a unsuccessful tx_status yet.
430 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
432 return TX_CONTINUE;
435 static ieee80211_tx_result debug_noinline
436 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
438 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
439 return TX_CONTINUE;
441 if (tx->flags & IEEE80211_TX_UNICAST)
442 return ieee80211_tx_h_unicast_ps_buf(tx);
443 else
444 return ieee80211_tx_h_multicast_ps_buf(tx);
447 static ieee80211_tx_result debug_noinline
448 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
450 struct ieee80211_key *key = NULL;
451 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
452 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
454 if (unlikely(tx->skb->do_not_encrypt))
455 tx->key = NULL;
456 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
457 tx->key = key;
458 else if (ieee80211_is_mgmt(hdr->frame_control) &&
459 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
460 tx->key = key;
461 else if ((key = rcu_dereference(tx->sdata->default_key)))
462 tx->key = key;
463 else if (tx->sdata->drop_unencrypted &&
464 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
465 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
466 (!ieee80211_is_robust_mgmt_frame(hdr) ||
467 (ieee80211_is_action(hdr->frame_control) &&
468 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
469 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
470 return TX_DROP;
471 } else
472 tx->key = NULL;
474 if (tx->key) {
475 tx->key->tx_rx_count++;
476 /* TODO: add threshold stuff again */
478 switch (tx->key->conf.alg) {
479 case ALG_WEP:
480 if (ieee80211_is_auth(hdr->frame_control))
481 break;
482 case ALG_TKIP:
483 if (!ieee80211_is_data_present(hdr->frame_control))
484 tx->key = NULL;
485 break;
486 case ALG_CCMP:
487 if (!ieee80211_is_data_present(hdr->frame_control) &&
488 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
489 tx->skb))
490 tx->key = NULL;
491 break;
492 case ALG_AES_CMAC:
493 if (!ieee80211_is_mgmt(hdr->frame_control))
494 tx->key = NULL;
495 break;
499 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
500 tx->skb->do_not_encrypt = 1;
502 return TX_CONTINUE;
505 static ieee80211_tx_result debug_noinline
506 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
508 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
509 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
510 struct ieee80211_supported_band *sband;
511 struct ieee80211_rate *rate;
512 int i, len;
513 bool inval = false, rts = false, short_preamble = false;
514 struct ieee80211_tx_rate_control txrc;
516 memset(&txrc, 0, sizeof(txrc));
518 sband = tx->local->hw.wiphy->bands[tx->channel->band];
520 len = min_t(int, tx->skb->len + FCS_LEN,
521 tx->local->hw.wiphy->frag_threshold);
523 /* set up the tx rate control struct we give the RC algo */
524 txrc.hw = local_to_hw(tx->local);
525 txrc.sband = sband;
526 txrc.bss_conf = &tx->sdata->vif.bss_conf;
527 txrc.skb = tx->skb;
528 txrc.reported_rate.idx = -1;
529 txrc.max_rate_idx = tx->sdata->max_ratectrl_rateidx;
531 /* set up RTS protection if desired */
532 if (len > tx->local->hw.wiphy->rts_threshold) {
533 txrc.rts = rts = true;
537 * Use short preamble if the BSS can handle it, but not for
538 * management frames unless we know the receiver can handle
539 * that -- the management frame might be to a station that
540 * just wants a probe response.
542 if (tx->sdata->vif.bss_conf.use_short_preamble &&
543 (ieee80211_is_data(hdr->frame_control) ||
544 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
545 txrc.short_preamble = short_preamble = true;
548 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
550 if (unlikely(info->control.rates[0].idx < 0))
551 return TX_DROP;
553 if (txrc.reported_rate.idx < 0)
554 txrc.reported_rate = info->control.rates[0];
556 if (tx->sta)
557 tx->sta->last_tx_rate = txrc.reported_rate;
559 if (unlikely(!info->control.rates[0].count))
560 info->control.rates[0].count = 1;
562 if (WARN_ON_ONCE((info->control.rates[0].count > 1) &&
563 (info->flags & IEEE80211_TX_CTL_NO_ACK)))
564 info->control.rates[0].count = 1;
566 if (is_multicast_ether_addr(hdr->addr1)) {
568 * XXX: verify the rate is in the basic rateset
570 return TX_CONTINUE;
574 * set up the RTS/CTS rate as the fastest basic rate
575 * that is not faster than the data rate
577 * XXX: Should this check all retry rates?
579 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
580 s8 baserate = 0;
582 rate = &sband->bitrates[info->control.rates[0].idx];
584 for (i = 0; i < sband->n_bitrates; i++) {
585 /* must be a basic rate */
586 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
587 continue;
588 /* must not be faster than the data rate */
589 if (sband->bitrates[i].bitrate > rate->bitrate)
590 continue;
591 /* maximum */
592 if (sband->bitrates[baserate].bitrate <
593 sband->bitrates[i].bitrate)
594 baserate = i;
597 info->control.rts_cts_rate_idx = baserate;
600 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
602 * make sure there's no valid rate following
603 * an invalid one, just in case drivers don't
604 * take the API seriously to stop at -1.
606 if (inval) {
607 info->control.rates[i].idx = -1;
608 continue;
610 if (info->control.rates[i].idx < 0) {
611 inval = true;
612 continue;
616 * For now assume MCS is already set up correctly, this
617 * needs to be fixed.
619 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
620 WARN_ON(info->control.rates[i].idx > 76);
621 continue;
624 /* set up RTS protection if desired */
625 if (rts)
626 info->control.rates[i].flags |=
627 IEEE80211_TX_RC_USE_RTS_CTS;
629 /* RC is busted */
630 if (WARN_ON_ONCE(info->control.rates[i].idx >=
631 sband->n_bitrates)) {
632 info->control.rates[i].idx = -1;
633 continue;
636 rate = &sband->bitrates[info->control.rates[i].idx];
638 /* set up short preamble */
639 if (short_preamble &&
640 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
641 info->control.rates[i].flags |=
642 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
644 /* set up G protection */
645 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
646 rate->flags & IEEE80211_RATE_ERP_G)
647 info->control.rates[i].flags |=
648 IEEE80211_TX_RC_USE_CTS_PROTECT;
651 return TX_CONTINUE;
654 static ieee80211_tx_result debug_noinline
655 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx)
657 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
659 if (tx->sta)
660 info->control.sta = &tx->sta->sta;
662 return TX_CONTINUE;
665 static ieee80211_tx_result debug_noinline
666 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
668 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
669 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
670 u16 *seq;
671 u8 *qc;
672 int tid;
675 * Packet injection may want to control the sequence
676 * number, if we have no matching interface then we
677 * neither assign one ourselves nor ask the driver to.
679 if (unlikely(!info->control.vif))
680 return TX_CONTINUE;
682 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
683 return TX_CONTINUE;
685 if (ieee80211_hdrlen(hdr->frame_control) < 24)
686 return TX_CONTINUE;
689 * Anything but QoS data that has a sequence number field
690 * (is long enough) gets a sequence number from the global
691 * counter.
693 if (!ieee80211_is_data_qos(hdr->frame_control)) {
694 /* driver should assign sequence number */
695 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
696 /* for pure STA mode without beacons, we can do it */
697 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
698 tx->sdata->sequence_number += 0x10;
699 tx->sdata->sequence_number &= IEEE80211_SCTL_SEQ;
700 return TX_CONTINUE;
704 * This should be true for injected/management frames only, for
705 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
706 * above since they are not QoS-data frames.
708 if (!tx->sta)
709 return TX_CONTINUE;
711 /* include per-STA, per-TID sequence counter */
713 qc = ieee80211_get_qos_ctl(hdr);
714 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
715 seq = &tx->sta->tid_seq[tid];
717 hdr->seq_ctrl = cpu_to_le16(*seq);
719 /* Increase the sequence number. */
720 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
722 return TX_CONTINUE;
725 static int ieee80211_fragment(struct ieee80211_local *local,
726 struct sk_buff *skb, int hdrlen,
727 int frag_threshold)
729 struct sk_buff *tail = skb, *tmp;
730 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
731 int pos = hdrlen + per_fragm;
732 int rem = skb->len - hdrlen - per_fragm;
734 if (WARN_ON(rem < 0))
735 return -EINVAL;
737 while (rem) {
738 int fraglen = per_fragm;
740 if (fraglen > rem)
741 fraglen = rem;
742 rem -= fraglen;
743 tmp = dev_alloc_skb(local->tx_headroom +
744 frag_threshold +
745 IEEE80211_ENCRYPT_HEADROOM +
746 IEEE80211_ENCRYPT_TAILROOM);
747 if (!tmp)
748 return -ENOMEM;
749 tail->next = tmp;
750 tail = tmp;
751 skb_reserve(tmp, local->tx_headroom +
752 IEEE80211_ENCRYPT_HEADROOM);
753 /* copy control information */
754 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
755 skb_copy_queue_mapping(tmp, skb);
756 tmp->priority = skb->priority;
757 tmp->do_not_encrypt = skb->do_not_encrypt;
758 tmp->dev = skb->dev;
759 tmp->iif = skb->iif;
761 /* copy header and data */
762 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
763 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
765 pos += fraglen;
768 skb->len = hdrlen + per_fragm;
769 return 0;
772 static ieee80211_tx_result debug_noinline
773 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
775 struct sk_buff *skb = tx->skb;
776 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
777 struct ieee80211_hdr *hdr = (void *)skb->data;
778 int frag_threshold = tx->local->hw.wiphy->frag_threshold;
779 int hdrlen;
780 int fragnum;
782 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
783 return TX_CONTINUE;
786 * Warn when submitting a fragmented A-MPDU frame and drop it.
787 * This scenario is handled in __ieee80211_tx_prepare but extra
788 * caution taken here as fragmented ampdu may cause Tx stop.
790 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
791 return TX_DROP;
793 hdrlen = ieee80211_hdrlen(hdr->frame_control);
795 /* internal error, why is TX_FRAGMENTED set? */
796 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold))
797 return TX_DROP;
800 * Now fragment the frame. This will allocate all the fragments and
801 * chain them (using skb as the first fragment) to skb->next.
802 * During transmission, we will remove the successfully transmitted
803 * fragments from this list. When the low-level driver rejects one
804 * of the fragments then we will simply pretend to accept the skb
805 * but store it away as pending.
807 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
808 return TX_DROP;
810 /* update duration/seq/flags of fragments */
811 fragnum = 0;
812 do {
813 int next_len;
814 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
816 hdr = (void *)skb->data;
817 info = IEEE80211_SKB_CB(skb);
819 if (skb->next) {
820 hdr->frame_control |= morefrags;
821 next_len = skb->next->len;
823 * No multi-rate retries for fragmented frames, that
824 * would completely throw off the NAV at other STAs.
826 info->control.rates[1].idx = -1;
827 info->control.rates[2].idx = -1;
828 info->control.rates[3].idx = -1;
829 info->control.rates[4].idx = -1;
830 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
831 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
832 } else {
833 hdr->frame_control &= ~morefrags;
834 next_len = 0;
836 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
837 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
838 fragnum++;
839 } while ((skb = skb->next));
841 return TX_CONTINUE;
844 static ieee80211_tx_result debug_noinline
845 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
847 if (!tx->key)
848 return TX_CONTINUE;
850 switch (tx->key->conf.alg) {
851 case ALG_WEP:
852 return ieee80211_crypto_wep_encrypt(tx);
853 case ALG_TKIP:
854 return ieee80211_crypto_tkip_encrypt(tx);
855 case ALG_CCMP:
856 return ieee80211_crypto_ccmp_encrypt(tx);
857 case ALG_AES_CMAC:
858 return ieee80211_crypto_aes_cmac_encrypt(tx);
861 /* not reached */
862 WARN_ON(1);
863 return TX_DROP;
866 static ieee80211_tx_result debug_noinline
867 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
869 struct sk_buff *skb = tx->skb;
870 struct ieee80211_hdr *hdr;
871 int next_len;
872 bool group_addr;
874 do {
875 hdr = (void *) skb->data;
876 if (unlikely(ieee80211_is_pspoll(hdr->frame_control)))
877 break; /* must not overwrite AID */
878 next_len = skb->next ? skb->next->len : 0;
879 group_addr = is_multicast_ether_addr(hdr->addr1);
881 hdr->duration_id =
882 ieee80211_duration(tx, group_addr, next_len);
883 } while ((skb = skb->next));
885 return TX_CONTINUE;
888 static ieee80211_tx_result debug_noinline
889 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
891 struct sk_buff *skb = tx->skb;
893 if (!tx->sta)
894 return TX_CONTINUE;
896 tx->sta->tx_packets++;
897 do {
898 tx->sta->tx_fragments++;
899 tx->sta->tx_bytes += skb->len;
900 } while ((skb = skb->next));
902 return TX_CONTINUE;
905 /* actual transmit path */
908 * deal with packet injection down monitor interface
909 * with Radiotap Header -- only called for monitor mode interface
911 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
912 struct sk_buff *skb)
915 * this is the moment to interpret and discard the radiotap header that
916 * must be at the start of the packet injected in Monitor mode
918 * Need to take some care with endian-ness since radiotap
919 * args are little-endian
922 struct ieee80211_radiotap_iterator iterator;
923 struct ieee80211_radiotap_header *rthdr =
924 (struct ieee80211_radiotap_header *) skb->data;
925 struct ieee80211_supported_band *sband;
926 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
928 sband = tx->local->hw.wiphy->bands[tx->channel->band];
930 skb->do_not_encrypt = 1;
931 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
934 * for every radiotap entry that is present
935 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
936 * entries present, or -EINVAL on error)
939 while (!ret) {
940 ret = ieee80211_radiotap_iterator_next(&iterator);
942 if (ret)
943 continue;
945 /* see if this argument is something we can use */
946 switch (iterator.this_arg_index) {
948 * You must take care when dereferencing iterator.this_arg
949 * for multibyte types... the pointer is not aligned. Use
950 * get_unaligned((type *)iterator.this_arg) to dereference
951 * iterator.this_arg for type "type" safely on all arches.
953 case IEEE80211_RADIOTAP_FLAGS:
954 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
956 * this indicates that the skb we have been
957 * handed has the 32-bit FCS CRC at the end...
958 * we should react to that by snipping it off
959 * because it will be recomputed and added
960 * on transmission
962 if (skb->len < (iterator.max_length + FCS_LEN))
963 return false;
965 skb_trim(skb, skb->len - FCS_LEN);
967 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
968 tx->skb->do_not_encrypt = 0;
969 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
970 tx->flags |= IEEE80211_TX_FRAGMENTED;
971 break;
974 * Please update the file
975 * Documentation/networking/mac80211-injection.txt
976 * when parsing new fields here.
979 default:
980 break;
984 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
985 return false;
988 * remove the radiotap header
989 * iterator->max_length was sanity-checked against
990 * skb->len by iterator init
992 skb_pull(skb, iterator.max_length);
994 return true;
998 * initialises @tx
1000 static ieee80211_tx_result
1001 __ieee80211_tx_prepare(struct ieee80211_tx_data *tx,
1002 struct sk_buff *skb,
1003 struct net_device *dev)
1005 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1006 struct ieee80211_hdr *hdr;
1007 struct ieee80211_sub_if_data *sdata;
1008 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1009 int hdrlen, tid;
1010 u8 *qc, *state;
1011 bool queued = false;
1013 memset(tx, 0, sizeof(*tx));
1014 tx->skb = skb;
1015 tx->dev = dev; /* use original interface */
1016 tx->local = local;
1017 tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1018 tx->channel = local->hw.conf.channel;
1020 * Set this flag (used below to indicate "automatic fragmentation"),
1021 * it will be cleared/left by radiotap as desired.
1023 tx->flags |= IEEE80211_TX_FRAGMENTED;
1025 /* process and remove the injection radiotap header */
1026 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1027 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) {
1028 if (!__ieee80211_parse_tx_radiotap(tx, skb))
1029 return TX_DROP;
1032 * __ieee80211_parse_tx_radiotap has now removed
1033 * the radiotap header that was present and pre-filled
1034 * 'tx' with tx control information.
1039 * If this flag is set to true anywhere, and we get here,
1040 * we are doing the needed processing, so remove the flag
1041 * now.
1043 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1045 hdr = (struct ieee80211_hdr *) skb->data;
1047 tx->sta = sta_info_get(local, hdr->addr1);
1049 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1050 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1051 unsigned long flags;
1052 struct tid_ampdu_tx *tid_tx;
1054 qc = ieee80211_get_qos_ctl(hdr);
1055 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1057 spin_lock_irqsave(&tx->sta->lock, flags);
1059 * XXX: This spinlock could be fairly expensive, but see the
1060 * comment in agg-tx.c:ieee80211_agg_tx_operational().
1061 * One way to solve this would be to do something RCU-like
1062 * for managing the tid_tx struct and using atomic bitops
1063 * for the actual state -- by introducing an actual
1064 * 'operational' bit that would be possible. It would
1065 * require changing ieee80211_agg_tx_operational() to
1066 * set that bit, and changing the way tid_tx is managed
1067 * everywhere, including races between that bit and
1068 * tid_tx going away (tid_tx being added can be easily
1069 * committed to memory before the 'operational' bit).
1071 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1072 state = &tx->sta->ampdu_mlme.tid_state_tx[tid];
1073 if (*state == HT_AGG_STATE_OPERATIONAL) {
1074 info->flags |= IEEE80211_TX_CTL_AMPDU;
1075 } else if (*state != HT_AGG_STATE_IDLE) {
1076 /* in progress */
1077 queued = true;
1078 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1079 __skb_queue_tail(&tid_tx->pending, skb);
1081 spin_unlock_irqrestore(&tx->sta->lock, flags);
1083 if (unlikely(queued))
1084 return TX_QUEUED;
1087 if (is_multicast_ether_addr(hdr->addr1)) {
1088 tx->flags &= ~IEEE80211_TX_UNICAST;
1089 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1090 } else {
1091 tx->flags |= IEEE80211_TX_UNICAST;
1092 if (unlikely(local->wifi_wme_noack_test))
1093 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1094 else
1095 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1098 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1099 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1100 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold &&
1101 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1102 tx->flags |= IEEE80211_TX_FRAGMENTED;
1103 else
1104 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1107 if (!tx->sta)
1108 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1109 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1110 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1112 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1113 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1114 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1115 tx->ethertype = (pos[0] << 8) | pos[1];
1117 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1119 return TX_CONTINUE;
1123 * NB: @tx is uninitialised when passed in here
1125 static int ieee80211_tx_prepare(struct ieee80211_local *local,
1126 struct ieee80211_tx_data *tx,
1127 struct sk_buff *skb)
1129 struct net_device *dev;
1131 dev = dev_get_by_index(&init_net, skb->iif);
1132 if (unlikely(dev && !is_ieee80211_device(local, dev))) {
1133 dev_put(dev);
1134 dev = NULL;
1136 if (unlikely(!dev))
1137 return -ENODEV;
1139 * initialises tx with control
1141 * return value is safe to ignore here because this function
1142 * can only be invoked for multicast frames
1144 * XXX: clean up
1146 __ieee80211_tx_prepare(tx, skb, dev);
1147 dev_put(dev);
1148 return 0;
1151 static int __ieee80211_tx(struct ieee80211_local *local,
1152 struct sk_buff **skbp,
1153 struct sta_info *sta)
1155 struct sk_buff *skb = *skbp, *next;
1156 struct ieee80211_tx_info *info;
1157 int ret, len;
1158 bool fragm = false;
1160 local->mdev->trans_start = jiffies;
1162 while (skb) {
1163 if (ieee80211_queue_stopped(&local->hw,
1164 skb_get_queue_mapping(skb)))
1165 return IEEE80211_TX_PENDING;
1167 info = IEEE80211_SKB_CB(skb);
1169 if (fragm)
1170 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1171 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1173 next = skb->next;
1174 len = skb->len;
1175 ret = drv_tx(local, skb);
1176 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
1177 dev_kfree_skb(skb);
1178 ret = NETDEV_TX_OK;
1180 if (ret != NETDEV_TX_OK)
1181 return IEEE80211_TX_AGAIN;
1182 *skbp = skb = next;
1183 ieee80211_led_tx(local, 1);
1184 fragm = true;
1187 return IEEE80211_TX_OK;
1191 * Invoke TX handlers, return 0 on success and non-zero if the
1192 * frame was dropped or queued.
1194 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1196 struct sk_buff *skb = tx->skb;
1197 ieee80211_tx_result res = TX_DROP;
1199 #define CALL_TXH(txh) \
1200 res = txh(tx); \
1201 if (res != TX_CONTINUE) \
1202 goto txh_done;
1204 CALL_TXH(ieee80211_tx_h_check_assoc)
1205 CALL_TXH(ieee80211_tx_h_ps_buf)
1206 CALL_TXH(ieee80211_tx_h_select_key)
1207 CALL_TXH(ieee80211_tx_h_michael_mic_add)
1208 CALL_TXH(ieee80211_tx_h_rate_ctrl)
1209 CALL_TXH(ieee80211_tx_h_misc)
1210 CALL_TXH(ieee80211_tx_h_sequence)
1211 CALL_TXH(ieee80211_tx_h_fragment)
1212 /* handlers after fragment must be aware of tx info fragmentation! */
1213 CALL_TXH(ieee80211_tx_h_encrypt)
1214 CALL_TXH(ieee80211_tx_h_calculate_duration)
1215 CALL_TXH(ieee80211_tx_h_stats)
1216 #undef CALL_TXH
1218 txh_done:
1219 if (unlikely(res == TX_DROP)) {
1220 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1221 while (skb) {
1222 struct sk_buff *next;
1224 next = skb->next;
1225 dev_kfree_skb(skb);
1226 skb = next;
1228 return -1;
1229 } else if (unlikely(res == TX_QUEUED)) {
1230 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1231 return -1;
1234 return 0;
1237 static void ieee80211_tx(struct net_device *dev, struct sk_buff *skb,
1238 bool txpending)
1240 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1241 struct ieee80211_tx_data tx;
1242 ieee80211_tx_result res_prepare;
1243 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1244 struct sk_buff *next;
1245 unsigned long flags;
1246 int ret, retries;
1247 u16 queue;
1249 queue = skb_get_queue_mapping(skb);
1251 WARN_ON(!txpending && !skb_queue_empty(&local->pending[queue]));
1253 if (unlikely(skb->len < 10)) {
1254 dev_kfree_skb(skb);
1255 return;
1258 rcu_read_lock();
1260 /* initialises tx */
1261 res_prepare = __ieee80211_tx_prepare(&tx, skb, dev);
1263 if (unlikely(res_prepare == TX_DROP)) {
1264 dev_kfree_skb(skb);
1265 rcu_read_unlock();
1266 return;
1267 } else if (unlikely(res_prepare == TX_QUEUED)) {
1268 rcu_read_unlock();
1269 return;
1272 tx.channel = local->hw.conf.channel;
1273 info->band = tx.channel->band;
1275 if (invoke_tx_handlers(&tx))
1276 goto out;
1278 retries = 0;
1279 retry:
1280 ret = __ieee80211_tx(local, &tx.skb, tx.sta);
1281 switch (ret) {
1282 case IEEE80211_TX_OK:
1283 break;
1284 case IEEE80211_TX_AGAIN:
1286 * Since there are no fragmented frames on A-MPDU
1287 * queues, there's no reason for a driver to reject
1288 * a frame there, warn and drop it.
1290 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1291 goto drop;
1292 /* fall through */
1293 case IEEE80211_TX_PENDING:
1294 skb = tx.skb;
1296 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1298 if (__netif_subqueue_stopped(local->mdev, queue)) {
1299 do {
1300 next = skb->next;
1301 skb->next = NULL;
1302 if (unlikely(txpending))
1303 skb_queue_head(&local->pending[queue],
1304 skb);
1305 else
1306 skb_queue_tail(&local->pending[queue],
1307 skb);
1308 } while ((skb = next));
1311 * Make sure nobody will enable the queue on us
1312 * (without going through the tasklet) nor disable the
1313 * netdev queue underneath the pending handling code.
1315 __set_bit(IEEE80211_QUEUE_STOP_REASON_PENDING,
1316 &local->queue_stop_reasons[queue]);
1318 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1319 flags);
1320 } else {
1321 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1322 flags);
1324 retries++;
1325 if (WARN(retries > 10, "tx refused but queue active"))
1326 goto drop;
1327 goto retry;
1330 out:
1331 rcu_read_unlock();
1332 return;
1334 drop:
1335 rcu_read_unlock();
1337 skb = tx.skb;
1338 while (skb) {
1339 next = skb->next;
1340 dev_kfree_skb(skb);
1341 skb = next;
1345 /* device xmit handlers */
1347 static int ieee80211_skb_resize(struct ieee80211_local *local,
1348 struct sk_buff *skb,
1349 int head_need, bool may_encrypt)
1351 int tail_need = 0;
1354 * This could be optimised, devices that do full hardware
1355 * crypto (including TKIP MMIC) need no tailroom... But we
1356 * have no drivers for such devices currently.
1358 if (may_encrypt) {
1359 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1360 tail_need -= skb_tailroom(skb);
1361 tail_need = max_t(int, tail_need, 0);
1364 if (head_need || tail_need) {
1365 /* Sorry. Can't account for this any more */
1366 skb_orphan(skb);
1369 if (skb_header_cloned(skb))
1370 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1371 else
1372 I802_DEBUG_INC(local->tx_expand_skb_head);
1374 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1375 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1376 wiphy_name(local->hw.wiphy));
1377 return -ENOMEM;
1380 /* update truesize too */
1381 skb->truesize += head_need + tail_need;
1383 return 0;
1386 int ieee80211_master_start_xmit(struct sk_buff *skb, struct net_device *dev)
1388 struct ieee80211_master_priv *mpriv = netdev_priv(dev);
1389 struct ieee80211_local *local = mpriv->local;
1390 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1391 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1392 struct net_device *odev = NULL;
1393 struct ieee80211_sub_if_data *osdata;
1394 int headroom;
1395 bool may_encrypt;
1396 enum {
1397 NOT_MONITOR,
1398 FOUND_SDATA,
1399 UNKNOWN_ADDRESS,
1400 } monitor_iface = NOT_MONITOR;
1402 if (skb->iif)
1403 odev = dev_get_by_index(&init_net, skb->iif);
1404 if (unlikely(odev && !is_ieee80211_device(local, odev))) {
1405 dev_put(odev);
1406 odev = NULL;
1408 if (unlikely(!odev)) {
1409 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1410 printk(KERN_DEBUG "%s: Discarded packet with nonexistent "
1411 "originating device\n", dev->name);
1412 #endif
1413 dev_kfree_skb(skb);
1414 return NETDEV_TX_OK;
1417 if ((local->hw.flags & IEEE80211_HW_PS_NULLFUNC_STACK) &&
1418 local->hw.conf.dynamic_ps_timeout > 0 &&
1419 !local->sw_scanning && !local->hw_scanning && local->ps_sdata) {
1420 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
1421 ieee80211_stop_queues_by_reason(&local->hw,
1422 IEEE80211_QUEUE_STOP_REASON_PS);
1423 queue_work(local->hw.workqueue,
1424 &local->dynamic_ps_disable_work);
1427 mod_timer(&local->dynamic_ps_timer, jiffies +
1428 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1431 memset(info, 0, sizeof(*info));
1433 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1435 osdata = IEEE80211_DEV_TO_SUB_IF(odev);
1437 if (ieee80211_vif_is_mesh(&osdata->vif) &&
1438 ieee80211_is_data(hdr->frame_control)) {
1439 if (is_multicast_ether_addr(hdr->addr3))
1440 memcpy(hdr->addr1, hdr->addr3, ETH_ALEN);
1441 else
1442 if (mesh_nexthop_lookup(skb, osdata)) {
1443 dev_put(odev);
1444 return NETDEV_TX_OK;
1446 if (memcmp(odev->dev_addr, hdr->addr4, ETH_ALEN) != 0)
1447 IEEE80211_IFSTA_MESH_CTR_INC(&osdata->u.mesh,
1448 fwded_frames);
1449 } else if (unlikely(osdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1450 struct ieee80211_sub_if_data *sdata;
1451 int hdrlen;
1452 u16 len_rthdr;
1454 info->flags |= IEEE80211_TX_CTL_INJECTED;
1455 monitor_iface = UNKNOWN_ADDRESS;
1457 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1458 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr);
1459 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1461 /* check the header is complete in the frame */
1462 if (likely(skb->len >= len_rthdr + hdrlen)) {
1464 * We process outgoing injected frames that have a
1465 * local address we handle as though they are our
1466 * own frames.
1467 * This code here isn't entirely correct, the local
1468 * MAC address is not necessarily enough to find
1469 * the interface to use; for that proper VLAN/WDS
1470 * support we will need a different mechanism.
1473 rcu_read_lock();
1474 list_for_each_entry_rcu(sdata, &local->interfaces,
1475 list) {
1476 if (!netif_running(sdata->dev))
1477 continue;
1478 if (sdata->vif.type != NL80211_IFTYPE_AP)
1479 continue;
1480 if (compare_ether_addr(sdata->dev->dev_addr,
1481 hdr->addr2) == 0) {
1482 dev_hold(sdata->dev);
1483 dev_put(odev);
1484 osdata = sdata;
1485 odev = osdata->dev;
1486 skb->iif = sdata->dev->ifindex;
1487 monitor_iface = FOUND_SDATA;
1488 break;
1491 rcu_read_unlock();
1495 may_encrypt = !skb->do_not_encrypt;
1497 headroom = osdata->local->tx_headroom;
1498 if (may_encrypt)
1499 headroom += IEEE80211_ENCRYPT_HEADROOM;
1500 headroom -= skb_headroom(skb);
1501 headroom = max_t(int, 0, headroom);
1503 if (ieee80211_skb_resize(osdata->local, skb, headroom, may_encrypt)) {
1504 dev_kfree_skb(skb);
1505 dev_put(odev);
1506 return NETDEV_TX_OK;
1509 if (osdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1510 osdata = container_of(osdata->bss,
1511 struct ieee80211_sub_if_data,
1512 u.ap);
1513 if (likely(monitor_iface != UNKNOWN_ADDRESS))
1514 info->control.vif = &osdata->vif;
1516 ieee80211_tx(odev, skb, false);
1517 dev_put(odev);
1519 return NETDEV_TX_OK;
1522 int ieee80211_monitor_start_xmit(struct sk_buff *skb,
1523 struct net_device *dev)
1525 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1526 struct ieee80211_channel *chan = local->hw.conf.channel;
1527 struct ieee80211_radiotap_header *prthdr =
1528 (struct ieee80211_radiotap_header *)skb->data;
1529 u16 len_rthdr;
1532 * Frame injection is not allowed if beaconing is not allowed
1533 * or if we need radar detection. Beaconing is usually not allowed when
1534 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1535 * Passive scan is also used in world regulatory domains where
1536 * your country is not known and as such it should be treated as
1537 * NO TX unless the channel is explicitly allowed in which case
1538 * your current regulatory domain would not have the passive scan
1539 * flag.
1541 * Since AP mode uses monitor interfaces to inject/TX management
1542 * frames we can make AP mode the exception to this rule once it
1543 * supports radar detection as its implementation can deal with
1544 * radar detection by itself. We can do that later by adding a
1545 * monitor flag interfaces used for AP support.
1547 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1548 IEEE80211_CHAN_PASSIVE_SCAN)))
1549 goto fail;
1551 /* check for not even having the fixed radiotap header part */
1552 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1553 goto fail; /* too short to be possibly valid */
1555 /* is it a header version we can trust to find length from? */
1556 if (unlikely(prthdr->it_version))
1557 goto fail; /* only version 0 is supported */
1559 /* then there must be a radiotap header with a length we can use */
1560 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1562 /* does the skb contain enough to deliver on the alleged length? */
1563 if (unlikely(skb->len < len_rthdr))
1564 goto fail; /* skb too short for claimed rt header extent */
1566 skb->dev = local->mdev;
1568 /* needed because we set skb device to master */
1569 skb->iif = dev->ifindex;
1571 /* sometimes we do encrypt injected frames, will be fixed
1572 * up in radiotap parser if not wanted */
1573 skb->do_not_encrypt = 0;
1576 * fix up the pointers accounting for the radiotap
1577 * header still being in there. We are being given
1578 * a precooked IEEE80211 header so no need for
1579 * normal processing
1581 skb_set_mac_header(skb, len_rthdr);
1583 * these are just fixed to the end of the rt area since we
1584 * don't have any better information and at this point, nobody cares
1586 skb_set_network_header(skb, len_rthdr);
1587 skb_set_transport_header(skb, len_rthdr);
1589 /* pass the radiotap header up to the next stage intact */
1590 dev_queue_xmit(skb);
1591 return NETDEV_TX_OK;
1593 fail:
1594 dev_kfree_skb(skb);
1595 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1599 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1600 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1601 * @skb: packet to be sent
1602 * @dev: incoming interface
1604 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1605 * not be freed, and caller is responsible for either retrying later or freeing
1606 * skb).
1608 * This function takes in an Ethernet header and encapsulates it with suitable
1609 * IEEE 802.11 header based on which interface the packet is coming in. The
1610 * encapsulated packet will then be passed to master interface, wlan#.11, for
1611 * transmission (through low-level driver).
1613 int ieee80211_subif_start_xmit(struct sk_buff *skb,
1614 struct net_device *dev)
1616 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1617 struct ieee80211_local *local = sdata->local;
1618 int ret = NETDEV_TX_BUSY, head_need;
1619 u16 ethertype, hdrlen, meshhdrlen = 0;
1620 __le16 fc;
1621 struct ieee80211_hdr hdr;
1622 struct ieee80211s_hdr mesh_hdr;
1623 const u8 *encaps_data;
1624 int encaps_len, skip_header_bytes;
1625 int nh_pos, h_pos;
1626 struct sta_info *sta;
1627 u32 sta_flags = 0;
1629 if (unlikely(skb->len < ETH_HLEN)) {
1630 ret = 0;
1631 goto fail;
1634 nh_pos = skb_network_header(skb) - skb->data;
1635 h_pos = skb_transport_header(skb) - skb->data;
1637 /* convert Ethernet header to proper 802.11 header (based on
1638 * operation mode) */
1639 ethertype = (skb->data[12] << 8) | skb->data[13];
1640 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1642 switch (sdata->vif.type) {
1643 case NL80211_IFTYPE_AP:
1644 case NL80211_IFTYPE_AP_VLAN:
1645 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1646 /* DA BSSID SA */
1647 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1648 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1649 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1650 hdrlen = 24;
1651 break;
1652 case NL80211_IFTYPE_WDS:
1653 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1654 /* RA TA DA SA */
1655 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1656 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1657 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1658 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1659 hdrlen = 30;
1660 break;
1661 #ifdef CONFIG_MAC80211_MESH
1662 case NL80211_IFTYPE_MESH_POINT:
1663 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1664 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1665 /* Do not send frames with mesh_ttl == 0 */
1666 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1667 ret = 0;
1668 goto fail;
1670 memset(&mesh_hdr, 0, sizeof(mesh_hdr));
1672 if (compare_ether_addr(dev->dev_addr,
1673 skb->data + ETH_ALEN) == 0) {
1674 /* RA TA DA SA */
1675 memset(hdr.addr1, 0, ETH_ALEN);
1676 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1677 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1678 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1679 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, sdata);
1680 } else {
1681 /* packet from other interface */
1682 struct mesh_path *mppath;
1684 memset(hdr.addr1, 0, ETH_ALEN);
1685 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1686 memcpy(hdr.addr4, dev->dev_addr, ETH_ALEN);
1688 if (is_multicast_ether_addr(skb->data))
1689 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1690 else {
1691 rcu_read_lock();
1692 mppath = mpp_path_lookup(skb->data, sdata);
1693 if (mppath)
1694 memcpy(hdr.addr3, mppath->mpp, ETH_ALEN);
1695 else
1696 memset(hdr.addr3, 0xff, ETH_ALEN);
1697 rcu_read_unlock();
1700 mesh_hdr.flags |= MESH_FLAGS_AE_A5_A6;
1701 mesh_hdr.ttl = sdata->u.mesh.mshcfg.dot11MeshTTL;
1702 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &mesh_hdr.seqnum);
1703 memcpy(mesh_hdr.eaddr1, skb->data, ETH_ALEN);
1704 memcpy(mesh_hdr.eaddr2, skb->data + ETH_ALEN, ETH_ALEN);
1705 sdata->u.mesh.mesh_seqnum++;
1706 meshhdrlen = 18;
1708 hdrlen = 30;
1709 break;
1710 #endif
1711 case NL80211_IFTYPE_STATION:
1712 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1713 /* BSSID SA DA */
1714 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1715 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1716 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1717 hdrlen = 24;
1718 break;
1719 case NL80211_IFTYPE_ADHOC:
1720 /* DA SA BSSID */
1721 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1722 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1723 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1724 hdrlen = 24;
1725 break;
1726 default:
1727 ret = 0;
1728 goto fail;
1732 * There's no need to try to look up the destination
1733 * if it is a multicast address (which can only happen
1734 * in AP mode)
1736 if (!is_multicast_ether_addr(hdr.addr1)) {
1737 rcu_read_lock();
1738 sta = sta_info_get(local, hdr.addr1);
1739 /* XXX: in the future, use sdata to look up the sta */
1740 if (sta && sta->sdata == sdata)
1741 sta_flags = get_sta_flags(sta);
1742 rcu_read_unlock();
1745 /* receiver and we are QoS enabled, use a QoS type frame */
1746 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1747 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1748 hdrlen += 2;
1752 * Drop unicast frames to unauthorised stations unless they are
1753 * EAPOL frames from the local station.
1755 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1756 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1757 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1758 !(ethertype == ETH_P_PAE &&
1759 compare_ether_addr(dev->dev_addr,
1760 skb->data + ETH_ALEN) == 0))) {
1761 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1762 if (net_ratelimit())
1763 printk(KERN_DEBUG "%s: dropped frame to %pM"
1764 " (unauthorized port)\n", dev->name,
1765 hdr.addr1);
1766 #endif
1768 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1770 ret = 0;
1771 goto fail;
1774 hdr.frame_control = fc;
1775 hdr.duration_id = 0;
1776 hdr.seq_ctrl = 0;
1778 skip_header_bytes = ETH_HLEN;
1779 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1780 encaps_data = bridge_tunnel_header;
1781 encaps_len = sizeof(bridge_tunnel_header);
1782 skip_header_bytes -= 2;
1783 } else if (ethertype >= 0x600) {
1784 encaps_data = rfc1042_header;
1785 encaps_len = sizeof(rfc1042_header);
1786 skip_header_bytes -= 2;
1787 } else {
1788 encaps_data = NULL;
1789 encaps_len = 0;
1792 skb_pull(skb, skip_header_bytes);
1793 nh_pos -= skip_header_bytes;
1794 h_pos -= skip_header_bytes;
1796 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1799 * So we need to modify the skb header and hence need a copy of
1800 * that. The head_need variable above doesn't, so far, include
1801 * the needed header space that we don't need right away. If we
1802 * can, then we don't reallocate right now but only after the
1803 * frame arrives at the master device (if it does...)
1805 * If we cannot, however, then we will reallocate to include all
1806 * the ever needed space. Also, if we need to reallocate it anyway,
1807 * make it big enough for everything we may ever need.
1810 if (head_need > 0 || skb_cloned(skb)) {
1811 head_need += IEEE80211_ENCRYPT_HEADROOM;
1812 head_need += local->tx_headroom;
1813 head_need = max_t(int, 0, head_need);
1814 if (ieee80211_skb_resize(local, skb, head_need, true))
1815 goto fail;
1818 if (encaps_data) {
1819 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1820 nh_pos += encaps_len;
1821 h_pos += encaps_len;
1824 if (meshhdrlen > 0) {
1825 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1826 nh_pos += meshhdrlen;
1827 h_pos += meshhdrlen;
1830 if (ieee80211_is_data_qos(fc)) {
1831 __le16 *qos_control;
1833 qos_control = (__le16*) skb_push(skb, 2);
1834 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1836 * Maybe we could actually set some fields here, for now just
1837 * initialise to zero to indicate no special operation.
1839 *qos_control = 0;
1840 } else
1841 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1843 nh_pos += hdrlen;
1844 h_pos += hdrlen;
1846 skb->iif = dev->ifindex;
1848 skb->dev = local->mdev;
1849 dev->stats.tx_packets++;
1850 dev->stats.tx_bytes += skb->len;
1852 /* Update skb pointers to various headers since this modified frame
1853 * is going to go through Linux networking code that may potentially
1854 * need things like pointer to IP header. */
1855 skb_set_mac_header(skb, 0);
1856 skb_set_network_header(skb, nh_pos);
1857 skb_set_transport_header(skb, h_pos);
1859 dev->trans_start = jiffies;
1860 dev_queue_xmit(skb);
1862 return 0;
1864 fail:
1865 if (!ret)
1866 dev_kfree_skb(skb);
1868 return ret;
1873 * ieee80211_clear_tx_pending may not be called in a context where
1874 * it is possible that it packets could come in again.
1876 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1878 int i;
1880 for (i = 0; i < local->hw.queues; i++)
1881 skb_queue_purge(&local->pending[i]);
1884 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
1885 struct sk_buff *skb)
1887 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1888 struct ieee80211_sub_if_data *sdata;
1889 struct sta_info *sta;
1890 struct ieee80211_hdr *hdr;
1891 struct net_device *dev;
1892 int ret;
1893 bool result = true;
1895 /* does interface still exist? */
1896 dev = dev_get_by_index(&init_net, skb->iif);
1897 if (!dev) {
1898 dev_kfree_skb(skb);
1899 return true;
1902 /* validate info->control.vif against skb->iif */
1903 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1904 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1905 sdata = container_of(sdata->bss,
1906 struct ieee80211_sub_if_data,
1907 u.ap);
1909 if (unlikely(info->control.vif && info->control.vif != &sdata->vif)) {
1910 dev_kfree_skb(skb);
1911 result = true;
1912 goto out;
1915 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
1916 ieee80211_tx(dev, skb, true);
1917 } else {
1918 hdr = (struct ieee80211_hdr *)skb->data;
1919 sta = sta_info_get(local, hdr->addr1);
1921 ret = __ieee80211_tx(local, &skb, sta);
1922 if (ret != IEEE80211_TX_OK)
1923 result = false;
1926 out:
1927 dev_put(dev);
1929 return result;
1933 * Transmit all pending packets. Called from tasklet, locks master device
1934 * TX lock so that no new packets can come in.
1936 void ieee80211_tx_pending(unsigned long data)
1938 struct ieee80211_local *local = (struct ieee80211_local *)data;
1939 struct net_device *dev = local->mdev;
1940 unsigned long flags;
1941 int i;
1942 bool next;
1944 rcu_read_lock();
1945 netif_tx_lock_bh(dev);
1947 for (i = 0; i < local->hw.queues; i++) {
1949 * If queue is stopped by something other than due to pending
1950 * frames, or we have no pending frames, proceed to next queue.
1952 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1953 next = false;
1954 if (local->queue_stop_reasons[i] !=
1955 BIT(IEEE80211_QUEUE_STOP_REASON_PENDING) ||
1956 skb_queue_empty(&local->pending[i]))
1957 next = true;
1958 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1960 if (next)
1961 continue;
1964 * start the queue now to allow processing our packets,
1965 * we're under the tx lock here anyway so nothing will
1966 * happen as a result of this
1968 netif_start_subqueue(local->mdev, i);
1970 while (!skb_queue_empty(&local->pending[i])) {
1971 struct sk_buff *skb = skb_dequeue(&local->pending[i]);
1973 if (!ieee80211_tx_pending_skb(local, skb)) {
1974 skb_queue_head(&local->pending[i], skb);
1975 break;
1979 /* Start regular packet processing again. */
1980 if (skb_queue_empty(&local->pending[i]))
1981 ieee80211_wake_queue_by_reason(&local->hw, i,
1982 IEEE80211_QUEUE_STOP_REASON_PENDING);
1985 netif_tx_unlock_bh(dev);
1986 rcu_read_unlock();
1989 /* functions for drivers to get certain frames */
1991 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
1992 struct sk_buff *skb,
1993 struct beacon_data *beacon)
1995 u8 *pos, *tim;
1996 int aid0 = 0;
1997 int i, have_bits = 0, n1, n2;
1999 /* Generate bitmap for TIM only if there are any STAs in power save
2000 * mode. */
2001 if (atomic_read(&bss->num_sta_ps) > 0)
2002 /* in the hope that this is faster than
2003 * checking byte-for-byte */
2004 have_bits = !bitmap_empty((unsigned long*)bss->tim,
2005 IEEE80211_MAX_AID+1);
2007 if (bss->dtim_count == 0)
2008 bss->dtim_count = beacon->dtim_period - 1;
2009 else
2010 bss->dtim_count--;
2012 tim = pos = (u8 *) skb_put(skb, 6);
2013 *pos++ = WLAN_EID_TIM;
2014 *pos++ = 4;
2015 *pos++ = bss->dtim_count;
2016 *pos++ = beacon->dtim_period;
2018 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2019 aid0 = 1;
2021 if (have_bits) {
2022 /* Find largest even number N1 so that bits numbered 1 through
2023 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2024 * (N2 + 1) x 8 through 2007 are 0. */
2025 n1 = 0;
2026 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2027 if (bss->tim[i]) {
2028 n1 = i & 0xfe;
2029 break;
2032 n2 = n1;
2033 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2034 if (bss->tim[i]) {
2035 n2 = i;
2036 break;
2040 /* Bitmap control */
2041 *pos++ = n1 | aid0;
2042 /* Part Virt Bitmap */
2043 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2045 tim[1] = n2 - n1 + 4;
2046 skb_put(skb, n2 - n1);
2047 } else {
2048 *pos++ = aid0; /* Bitmap control */
2049 *pos++ = 0; /* Part Virt Bitmap */
2053 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
2054 struct ieee80211_vif *vif)
2056 struct ieee80211_local *local = hw_to_local(hw);
2057 struct sk_buff *skb = NULL;
2058 struct ieee80211_tx_info *info;
2059 struct ieee80211_sub_if_data *sdata = NULL;
2060 struct ieee80211_if_ap *ap = NULL;
2061 struct beacon_data *beacon;
2062 struct ieee80211_supported_band *sband;
2063 enum ieee80211_band band = local->hw.conf.channel->band;
2065 sband = local->hw.wiphy->bands[band];
2067 rcu_read_lock();
2069 sdata = vif_to_sdata(vif);
2071 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2072 ap = &sdata->u.ap;
2073 beacon = rcu_dereference(ap->beacon);
2074 if (ap && beacon) {
2076 * headroom, head length,
2077 * tail length and maximum TIM length
2079 skb = dev_alloc_skb(local->tx_headroom +
2080 beacon->head_len +
2081 beacon->tail_len + 256);
2082 if (!skb)
2083 goto out;
2085 skb_reserve(skb, local->tx_headroom);
2086 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2087 beacon->head_len);
2090 * Not very nice, but we want to allow the driver to call
2091 * ieee80211_beacon_get() as a response to the set_tim()
2092 * callback. That, however, is already invoked under the
2093 * sta_lock to guarantee consistent and race-free update
2094 * of the tim bitmap in mac80211 and the driver.
2096 if (local->tim_in_locked_section) {
2097 ieee80211_beacon_add_tim(ap, skb, beacon);
2098 } else {
2099 unsigned long flags;
2101 spin_lock_irqsave(&local->sta_lock, flags);
2102 ieee80211_beacon_add_tim(ap, skb, beacon);
2103 spin_unlock_irqrestore(&local->sta_lock, flags);
2106 if (beacon->tail)
2107 memcpy(skb_put(skb, beacon->tail_len),
2108 beacon->tail, beacon->tail_len);
2109 } else
2110 goto out;
2111 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2112 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2113 struct ieee80211_hdr *hdr;
2114 struct sk_buff *presp = rcu_dereference(ifibss->presp);
2116 if (!presp)
2117 goto out;
2119 skb = skb_copy(presp, GFP_ATOMIC);
2120 if (!skb)
2121 goto out;
2123 hdr = (struct ieee80211_hdr *) skb->data;
2124 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2125 IEEE80211_STYPE_BEACON);
2126 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2127 struct ieee80211_mgmt *mgmt;
2128 u8 *pos;
2130 /* headroom, head length, tail length and maximum TIM length */
2131 skb = dev_alloc_skb(local->tx_headroom + 400);
2132 if (!skb)
2133 goto out;
2135 skb_reserve(skb, local->hw.extra_tx_headroom);
2136 mgmt = (struct ieee80211_mgmt *)
2137 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2138 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2139 mgmt->frame_control =
2140 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2141 memset(mgmt->da, 0xff, ETH_ALEN);
2142 memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN);
2143 /* BSSID is left zeroed, wildcard value */
2144 mgmt->u.beacon.beacon_int =
2145 cpu_to_le16(sdata->vif.bss_conf.beacon_int);
2146 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2148 pos = skb_put(skb, 2);
2149 *pos++ = WLAN_EID_SSID;
2150 *pos++ = 0x0;
2152 mesh_mgmt_ies_add(skb, sdata);
2153 } else {
2154 WARN_ON(1);
2155 goto out;
2158 info = IEEE80211_SKB_CB(skb);
2160 skb->do_not_encrypt = 1;
2162 info->band = band;
2164 * XXX: For now, always use the lowest rate
2166 info->control.rates[0].idx = 0;
2167 info->control.rates[0].count = 1;
2168 info->control.rates[1].idx = -1;
2169 info->control.rates[2].idx = -1;
2170 info->control.rates[3].idx = -1;
2171 info->control.rates[4].idx = -1;
2172 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
2174 info->control.vif = vif;
2176 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2177 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2178 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
2179 out:
2180 rcu_read_unlock();
2181 return skb;
2183 EXPORT_SYMBOL(ieee80211_beacon_get);
2185 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2186 const void *frame, size_t frame_len,
2187 const struct ieee80211_tx_info *frame_txctl,
2188 struct ieee80211_rts *rts)
2190 const struct ieee80211_hdr *hdr = frame;
2192 rts->frame_control =
2193 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2194 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2195 frame_txctl);
2196 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2197 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2199 EXPORT_SYMBOL(ieee80211_rts_get);
2201 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2202 const void *frame, size_t frame_len,
2203 const struct ieee80211_tx_info *frame_txctl,
2204 struct ieee80211_cts *cts)
2206 const struct ieee80211_hdr *hdr = frame;
2208 cts->frame_control =
2209 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2210 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2211 frame_len, frame_txctl);
2212 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2214 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2216 struct sk_buff *
2217 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2218 struct ieee80211_vif *vif)
2220 struct ieee80211_local *local = hw_to_local(hw);
2221 struct sk_buff *skb = NULL;
2222 struct sta_info *sta;
2223 struct ieee80211_tx_data tx;
2224 struct ieee80211_sub_if_data *sdata;
2225 struct ieee80211_if_ap *bss = NULL;
2226 struct beacon_data *beacon;
2227 struct ieee80211_tx_info *info;
2229 sdata = vif_to_sdata(vif);
2230 bss = &sdata->u.ap;
2232 if (!bss)
2233 return NULL;
2235 rcu_read_lock();
2236 beacon = rcu_dereference(bss->beacon);
2238 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2239 goto out;
2241 if (bss->dtim_count != 0)
2242 goto out; /* send buffered bc/mc only after DTIM beacon */
2244 while (1) {
2245 skb = skb_dequeue(&bss->ps_bc_buf);
2246 if (!skb)
2247 goto out;
2248 local->total_ps_buffered--;
2250 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2251 struct ieee80211_hdr *hdr =
2252 (struct ieee80211_hdr *) skb->data;
2253 /* more buffered multicast/broadcast frames ==> set
2254 * MoreData flag in IEEE 802.11 header to inform PS
2255 * STAs */
2256 hdr->frame_control |=
2257 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2260 if (!ieee80211_tx_prepare(local, &tx, skb))
2261 break;
2262 dev_kfree_skb_any(skb);
2265 info = IEEE80211_SKB_CB(skb);
2267 sta = tx.sta;
2268 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2269 tx.channel = local->hw.conf.channel;
2270 info->band = tx.channel->band;
2272 if (invoke_tx_handlers(&tx))
2273 skb = NULL;
2274 out:
2275 rcu_read_unlock();
2277 return skb;
2279 EXPORT_SYMBOL(ieee80211_get_buffered_bc);