ethtool: Change ETHTOOL_PHYS_ID implementation to allow dropping RTNL
[linux/fpc-iii.git] / mm / memory.c
blob9da8cab1b1b0abceae9569a794447f3ddb0c1134
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
68 #include "internal.h"
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
79 unsigned long num_physpages;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
87 void * high_memory;
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
101 #else
103 #endif
105 static int __init disable_randmaps(char *s)
107 randomize_va_space = 0;
108 return 1;
110 __setup("norandmaps", disable_randmaps);
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init init_zero_pfn(void)
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
123 core_initcall(init_zero_pfn);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
130 int i;
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
138 task->rss_stat.events = 0;
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 struct task_struct *task = current;
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
165 long val = 0;
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val = atomic_long_read(&mm->rss_stat.count[member]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
183 __sync_task_rss_stat(task, mm);
185 #else
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct *task)
194 #endif
197 * If a p?d_bad entry is found while walking page tables, report
198 * the error, before resetting entry to p?d_none. Usually (but
199 * very seldom) called out from the p?d_none_or_clear_bad macros.
202 void pgd_clear_bad(pgd_t *pgd)
204 pgd_ERROR(*pgd);
205 pgd_clear(pgd);
208 void pud_clear_bad(pud_t *pud)
210 pud_ERROR(*pud);
211 pud_clear(pud);
214 void pmd_clear_bad(pmd_t *pmd)
216 pmd_ERROR(*pmd);
217 pmd_clear(pmd);
221 * Note: this doesn't free the actual pages themselves. That
222 * has been handled earlier when unmapping all the memory regions.
224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
225 unsigned long addr)
227 pgtable_t token = pmd_pgtable(*pmd);
228 pmd_clear(pmd);
229 pte_free_tlb(tlb, token, addr);
230 tlb->mm->nr_ptes--;
233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
234 unsigned long addr, unsigned long end,
235 unsigned long floor, unsigned long ceiling)
237 pmd_t *pmd;
238 unsigned long next;
239 unsigned long start;
241 start = addr;
242 pmd = pmd_offset(pud, addr);
243 do {
244 next = pmd_addr_end(addr, end);
245 if (pmd_none_or_clear_bad(pmd))
246 continue;
247 free_pte_range(tlb, pmd, addr);
248 } while (pmd++, addr = next, addr != end);
250 start &= PUD_MASK;
251 if (start < floor)
252 return;
253 if (ceiling) {
254 ceiling &= PUD_MASK;
255 if (!ceiling)
256 return;
258 if (end - 1 > ceiling - 1)
259 return;
261 pmd = pmd_offset(pud, start);
262 pud_clear(pud);
263 pmd_free_tlb(tlb, pmd, start);
266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
270 pud_t *pud;
271 unsigned long next;
272 unsigned long start;
274 start = addr;
275 pud = pud_offset(pgd, addr);
276 do {
277 next = pud_addr_end(addr, end);
278 if (pud_none_or_clear_bad(pud))
279 continue;
280 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
281 } while (pud++, addr = next, addr != end);
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
291 if (end - 1 > ceiling - 1)
292 return;
294 pud = pud_offset(pgd, start);
295 pgd_clear(pgd);
296 pud_free_tlb(tlb, pud, start);
300 * This function frees user-level page tables of a process.
302 * Must be called with pagetable lock held.
304 void free_pgd_range(struct mmu_gather *tlb,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
308 pgd_t *pgd;
309 unsigned long next;
312 * The next few lines have given us lots of grief...
314 * Why are we testing PMD* at this top level? Because often
315 * there will be no work to do at all, and we'd prefer not to
316 * go all the way down to the bottom just to discover that.
318 * Why all these "- 1"s? Because 0 represents both the bottom
319 * of the address space and the top of it (using -1 for the
320 * top wouldn't help much: the masks would do the wrong thing).
321 * The rule is that addr 0 and floor 0 refer to the bottom of
322 * the address space, but end 0 and ceiling 0 refer to the top
323 * Comparisons need to use "end - 1" and "ceiling - 1" (though
324 * that end 0 case should be mythical).
326 * Wherever addr is brought up or ceiling brought down, we must
327 * be careful to reject "the opposite 0" before it confuses the
328 * subsequent tests. But what about where end is brought down
329 * by PMD_SIZE below? no, end can't go down to 0 there.
331 * Whereas we round start (addr) and ceiling down, by different
332 * masks at different levels, in order to test whether a table
333 * now has no other vmas using it, so can be freed, we don't
334 * bother to round floor or end up - the tests don't need that.
337 addr &= PMD_MASK;
338 if (addr < floor) {
339 addr += PMD_SIZE;
340 if (!addr)
341 return;
343 if (ceiling) {
344 ceiling &= PMD_MASK;
345 if (!ceiling)
346 return;
348 if (end - 1 > ceiling - 1)
349 end -= PMD_SIZE;
350 if (addr > end - 1)
351 return;
353 pgd = pgd_offset(tlb->mm, addr);
354 do {
355 next = pgd_addr_end(addr, end);
356 if (pgd_none_or_clear_bad(pgd))
357 continue;
358 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
359 } while (pgd++, addr = next, addr != end);
362 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
363 unsigned long floor, unsigned long ceiling)
365 while (vma) {
366 struct vm_area_struct *next = vma->vm_next;
367 unsigned long addr = vma->vm_start;
370 * Hide vma from rmap and truncate_pagecache before freeing
371 * pgtables
373 unlink_anon_vmas(vma);
374 unlink_file_vma(vma);
376 if (is_vm_hugetlb_page(vma)) {
377 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
378 floor, next? next->vm_start: ceiling);
379 } else {
381 * Optimization: gather nearby vmas into one call down
383 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
384 && !is_vm_hugetlb_page(next)) {
385 vma = next;
386 next = vma->vm_next;
387 unlink_anon_vmas(vma);
388 unlink_file_vma(vma);
390 free_pgd_range(tlb, addr, vma->vm_end,
391 floor, next? next->vm_start: ceiling);
393 vma = next;
397 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
398 pmd_t *pmd, unsigned long address)
400 pgtable_t new = pte_alloc_one(mm, address);
401 int wait_split_huge_page;
402 if (!new)
403 return -ENOMEM;
406 * Ensure all pte setup (eg. pte page lock and page clearing) are
407 * visible before the pte is made visible to other CPUs by being
408 * put into page tables.
410 * The other side of the story is the pointer chasing in the page
411 * table walking code (when walking the page table without locking;
412 * ie. most of the time). Fortunately, these data accesses consist
413 * of a chain of data-dependent loads, meaning most CPUs (alpha
414 * being the notable exception) will already guarantee loads are
415 * seen in-order. See the alpha page table accessors for the
416 * smp_read_barrier_depends() barriers in page table walking code.
418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
420 spin_lock(&mm->page_table_lock);
421 wait_split_huge_page = 0;
422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
423 mm->nr_ptes++;
424 pmd_populate(mm, pmd, new);
425 new = NULL;
426 } else if (unlikely(pmd_trans_splitting(*pmd)))
427 wait_split_huge_page = 1;
428 spin_unlock(&mm->page_table_lock);
429 if (new)
430 pte_free(mm, new);
431 if (wait_split_huge_page)
432 wait_split_huge_page(vma->anon_vma, pmd);
433 return 0;
436 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
438 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
439 if (!new)
440 return -ENOMEM;
442 smp_wmb(); /* See comment in __pte_alloc */
444 spin_lock(&init_mm.page_table_lock);
445 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
446 pmd_populate_kernel(&init_mm, pmd, new);
447 new = NULL;
448 } else
449 VM_BUG_ON(pmd_trans_splitting(*pmd));
450 spin_unlock(&init_mm.page_table_lock);
451 if (new)
452 pte_free_kernel(&init_mm, new);
453 return 0;
456 static inline void init_rss_vec(int *rss)
458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
463 int i;
465 if (current->mm == mm)
466 sync_mm_rss(current, mm);
467 for (i = 0; i < NR_MM_COUNTERS; i++)
468 if (rss[i])
469 add_mm_counter(mm, i, rss[i]);
473 * This function is called to print an error when a bad pte
474 * is found. For example, we might have a PFN-mapped pte in
475 * a region that doesn't allow it.
477 * The calling function must still handle the error.
479 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480 pte_t pte, struct page *page)
482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
483 pud_t *pud = pud_offset(pgd, addr);
484 pmd_t *pmd = pmd_offset(pud, addr);
485 struct address_space *mapping;
486 pgoff_t index;
487 static unsigned long resume;
488 static unsigned long nr_shown;
489 static unsigned long nr_unshown;
492 * Allow a burst of 60 reports, then keep quiet for that minute;
493 * or allow a steady drip of one report per second.
495 if (nr_shown == 60) {
496 if (time_before(jiffies, resume)) {
497 nr_unshown++;
498 return;
500 if (nr_unshown) {
501 printk(KERN_ALERT
502 "BUG: Bad page map: %lu messages suppressed\n",
503 nr_unshown);
504 nr_unshown = 0;
506 nr_shown = 0;
508 if (nr_shown++ == 0)
509 resume = jiffies + 60 * HZ;
511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512 index = linear_page_index(vma, addr);
514 printk(KERN_ALERT
515 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
516 current->comm,
517 (long long)pte_val(pte), (long long)pmd_val(*pmd));
518 if (page)
519 dump_page(page);
520 printk(KERN_ALERT
521 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
524 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
526 if (vma->vm_ops)
527 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
528 (unsigned long)vma->vm_ops->fault);
529 if (vma->vm_file && vma->vm_file->f_op)
530 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
531 (unsigned long)vma->vm_file->f_op->mmap);
532 dump_stack();
533 add_taint(TAINT_BAD_PAGE);
536 static inline int is_cow_mapping(unsigned int flags)
538 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
541 #ifndef is_zero_pfn
542 static inline int is_zero_pfn(unsigned long pfn)
544 return pfn == zero_pfn;
546 #endif
548 #ifndef my_zero_pfn
549 static inline unsigned long my_zero_pfn(unsigned long addr)
551 return zero_pfn;
553 #endif
556 * vm_normal_page -- This function gets the "struct page" associated with a pte.
558 * "Special" mappings do not wish to be associated with a "struct page" (either
559 * it doesn't exist, or it exists but they don't want to touch it). In this
560 * case, NULL is returned here. "Normal" mappings do have a struct page.
562 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
563 * pte bit, in which case this function is trivial. Secondly, an architecture
564 * may not have a spare pte bit, which requires a more complicated scheme,
565 * described below.
567 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
568 * special mapping (even if there are underlying and valid "struct pages").
569 * COWed pages of a VM_PFNMAP are always normal.
571 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
572 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
573 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
574 * mapping will always honor the rule
576 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
578 * And for normal mappings this is false.
580 * This restricts such mappings to be a linear translation from virtual address
581 * to pfn. To get around this restriction, we allow arbitrary mappings so long
582 * as the vma is not a COW mapping; in that case, we know that all ptes are
583 * special (because none can have been COWed).
586 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
588 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
589 * page" backing, however the difference is that _all_ pages with a struct
590 * page (that is, those where pfn_valid is true) are refcounted and considered
591 * normal pages by the VM. The disadvantage is that pages are refcounted
592 * (which can be slower and simply not an option for some PFNMAP users). The
593 * advantage is that we don't have to follow the strict linearity rule of
594 * PFNMAP mappings in order to support COWable mappings.
597 #ifdef __HAVE_ARCH_PTE_SPECIAL
598 # define HAVE_PTE_SPECIAL 1
599 #else
600 # define HAVE_PTE_SPECIAL 0
601 #endif
602 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
603 pte_t pte)
605 unsigned long pfn = pte_pfn(pte);
607 if (HAVE_PTE_SPECIAL) {
608 if (likely(!pte_special(pte)))
609 goto check_pfn;
610 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
611 return NULL;
612 if (!is_zero_pfn(pfn))
613 print_bad_pte(vma, addr, pte, NULL);
614 return NULL;
617 /* !HAVE_PTE_SPECIAL case follows: */
619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620 if (vma->vm_flags & VM_MIXEDMAP) {
621 if (!pfn_valid(pfn))
622 return NULL;
623 goto out;
624 } else {
625 unsigned long off;
626 off = (addr - vma->vm_start) >> PAGE_SHIFT;
627 if (pfn == vma->vm_pgoff + off)
628 return NULL;
629 if (!is_cow_mapping(vma->vm_flags))
630 return NULL;
634 if (is_zero_pfn(pfn))
635 return NULL;
636 check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
643 * NOTE! We still have PageReserved() pages in the page tables.
644 * eg. VDSO mappings can cause them to exist.
646 out:
647 return pfn_to_page(pfn);
651 * copy one vm_area from one task to the other. Assumes the page tables
652 * already present in the new task to be cleared in the whole range
653 * covered by this vma.
656 static inline unsigned long
657 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
658 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
659 unsigned long addr, int *rss)
661 unsigned long vm_flags = vma->vm_flags;
662 pte_t pte = *src_pte;
663 struct page *page;
665 /* pte contains position in swap or file, so copy. */
666 if (unlikely(!pte_present(pte))) {
667 if (!pte_file(pte)) {
668 swp_entry_t entry = pte_to_swp_entry(pte);
670 if (swap_duplicate(entry) < 0)
671 return entry.val;
673 /* make sure dst_mm is on swapoff's mmlist. */
674 if (unlikely(list_empty(&dst_mm->mmlist))) {
675 spin_lock(&mmlist_lock);
676 if (list_empty(&dst_mm->mmlist))
677 list_add(&dst_mm->mmlist,
678 &src_mm->mmlist);
679 spin_unlock(&mmlist_lock);
681 if (likely(!non_swap_entry(entry)))
682 rss[MM_SWAPENTS]++;
683 else if (is_write_migration_entry(entry) &&
684 is_cow_mapping(vm_flags)) {
686 * COW mappings require pages in both parent
687 * and child to be set to read.
689 make_migration_entry_read(&entry);
690 pte = swp_entry_to_pte(entry);
691 set_pte_at(src_mm, addr, src_pte, pte);
694 goto out_set_pte;
698 * If it's a COW mapping, write protect it both
699 * in the parent and the child
701 if (is_cow_mapping(vm_flags)) {
702 ptep_set_wrprotect(src_mm, addr, src_pte);
703 pte = pte_wrprotect(pte);
707 * If it's a shared mapping, mark it clean in
708 * the child
710 if (vm_flags & VM_SHARED)
711 pte = pte_mkclean(pte);
712 pte = pte_mkold(pte);
714 page = vm_normal_page(vma, addr, pte);
715 if (page) {
716 get_page(page);
717 page_dup_rmap(page);
718 if (PageAnon(page))
719 rss[MM_ANONPAGES]++;
720 else
721 rss[MM_FILEPAGES]++;
724 out_set_pte:
725 set_pte_at(dst_mm, addr, dst_pte, pte);
726 return 0;
729 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
730 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
731 unsigned long addr, unsigned long end)
733 pte_t *orig_src_pte, *orig_dst_pte;
734 pte_t *src_pte, *dst_pte;
735 spinlock_t *src_ptl, *dst_ptl;
736 int progress = 0;
737 int rss[NR_MM_COUNTERS];
738 swp_entry_t entry = (swp_entry_t){0};
740 again:
741 init_rss_vec(rss);
743 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
744 if (!dst_pte)
745 return -ENOMEM;
746 src_pte = pte_offset_map(src_pmd, addr);
747 src_ptl = pte_lockptr(src_mm, src_pmd);
748 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
749 orig_src_pte = src_pte;
750 orig_dst_pte = dst_pte;
751 arch_enter_lazy_mmu_mode();
753 do {
755 * We are holding two locks at this point - either of them
756 * could generate latencies in another task on another CPU.
758 if (progress >= 32) {
759 progress = 0;
760 if (need_resched() ||
761 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
762 break;
764 if (pte_none(*src_pte)) {
765 progress++;
766 continue;
768 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
769 vma, addr, rss);
770 if (entry.val)
771 break;
772 progress += 8;
773 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
775 arch_leave_lazy_mmu_mode();
776 spin_unlock(src_ptl);
777 pte_unmap(orig_src_pte);
778 add_mm_rss_vec(dst_mm, rss);
779 pte_unmap_unlock(orig_dst_pte, dst_ptl);
780 cond_resched();
782 if (entry.val) {
783 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
784 return -ENOMEM;
785 progress = 0;
787 if (addr != end)
788 goto again;
789 return 0;
792 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
793 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
794 unsigned long addr, unsigned long end)
796 pmd_t *src_pmd, *dst_pmd;
797 unsigned long next;
799 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
800 if (!dst_pmd)
801 return -ENOMEM;
802 src_pmd = pmd_offset(src_pud, addr);
803 do {
804 next = pmd_addr_end(addr, end);
805 if (pmd_trans_huge(*src_pmd)) {
806 int err;
807 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
808 err = copy_huge_pmd(dst_mm, src_mm,
809 dst_pmd, src_pmd, addr, vma);
810 if (err == -ENOMEM)
811 return -ENOMEM;
812 if (!err)
813 continue;
814 /* fall through */
816 if (pmd_none_or_clear_bad(src_pmd))
817 continue;
818 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
819 vma, addr, next))
820 return -ENOMEM;
821 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
822 return 0;
825 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
826 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
827 unsigned long addr, unsigned long end)
829 pud_t *src_pud, *dst_pud;
830 unsigned long next;
832 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
833 if (!dst_pud)
834 return -ENOMEM;
835 src_pud = pud_offset(src_pgd, addr);
836 do {
837 next = pud_addr_end(addr, end);
838 if (pud_none_or_clear_bad(src_pud))
839 continue;
840 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
841 vma, addr, next))
842 return -ENOMEM;
843 } while (dst_pud++, src_pud++, addr = next, addr != end);
844 return 0;
847 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848 struct vm_area_struct *vma)
850 pgd_t *src_pgd, *dst_pgd;
851 unsigned long next;
852 unsigned long addr = vma->vm_start;
853 unsigned long end = vma->vm_end;
854 int ret;
857 * Don't copy ptes where a page fault will fill them correctly.
858 * Fork becomes much lighter when there are big shared or private
859 * readonly mappings. The tradeoff is that copy_page_range is more
860 * efficient than faulting.
862 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
863 if (!vma->anon_vma)
864 return 0;
867 if (is_vm_hugetlb_page(vma))
868 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
870 if (unlikely(is_pfn_mapping(vma))) {
872 * We do not free on error cases below as remove_vma
873 * gets called on error from higher level routine
875 ret = track_pfn_vma_copy(vma);
876 if (ret)
877 return ret;
881 * We need to invalidate the secondary MMU mappings only when
882 * there could be a permission downgrade on the ptes of the
883 * parent mm. And a permission downgrade will only happen if
884 * is_cow_mapping() returns true.
886 if (is_cow_mapping(vma->vm_flags))
887 mmu_notifier_invalidate_range_start(src_mm, addr, end);
889 ret = 0;
890 dst_pgd = pgd_offset(dst_mm, addr);
891 src_pgd = pgd_offset(src_mm, addr);
892 do {
893 next = pgd_addr_end(addr, end);
894 if (pgd_none_or_clear_bad(src_pgd))
895 continue;
896 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
897 vma, addr, next))) {
898 ret = -ENOMEM;
899 break;
901 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
903 if (is_cow_mapping(vma->vm_flags))
904 mmu_notifier_invalidate_range_end(src_mm,
905 vma->vm_start, end);
906 return ret;
909 static unsigned long zap_pte_range(struct mmu_gather *tlb,
910 struct vm_area_struct *vma, pmd_t *pmd,
911 unsigned long addr, unsigned long end,
912 long *zap_work, struct zap_details *details)
914 struct mm_struct *mm = tlb->mm;
915 pte_t *pte;
916 spinlock_t *ptl;
917 int rss[NR_MM_COUNTERS];
919 init_rss_vec(rss);
921 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
922 arch_enter_lazy_mmu_mode();
923 do {
924 pte_t ptent = *pte;
925 if (pte_none(ptent)) {
926 (*zap_work)--;
927 continue;
930 (*zap_work) -= PAGE_SIZE;
932 if (pte_present(ptent)) {
933 struct page *page;
935 page = vm_normal_page(vma, addr, ptent);
936 if (unlikely(details) && page) {
938 * unmap_shared_mapping_pages() wants to
939 * invalidate cache without truncating:
940 * unmap shared but keep private pages.
942 if (details->check_mapping &&
943 details->check_mapping != page->mapping)
944 continue;
946 * Each page->index must be checked when
947 * invalidating or truncating nonlinear.
949 if (details->nonlinear_vma &&
950 (page->index < details->first_index ||
951 page->index > details->last_index))
952 continue;
954 ptent = ptep_get_and_clear_full(mm, addr, pte,
955 tlb->fullmm);
956 tlb_remove_tlb_entry(tlb, pte, addr);
957 if (unlikely(!page))
958 continue;
959 if (unlikely(details) && details->nonlinear_vma
960 && linear_page_index(details->nonlinear_vma,
961 addr) != page->index)
962 set_pte_at(mm, addr, pte,
963 pgoff_to_pte(page->index));
964 if (PageAnon(page))
965 rss[MM_ANONPAGES]--;
966 else {
967 if (pte_dirty(ptent))
968 set_page_dirty(page);
969 if (pte_young(ptent) &&
970 likely(!VM_SequentialReadHint(vma)))
971 mark_page_accessed(page);
972 rss[MM_FILEPAGES]--;
974 page_remove_rmap(page);
975 if (unlikely(page_mapcount(page) < 0))
976 print_bad_pte(vma, addr, ptent, page);
977 tlb_remove_page(tlb, page);
978 continue;
981 * If details->check_mapping, we leave swap entries;
982 * if details->nonlinear_vma, we leave file entries.
984 if (unlikely(details))
985 continue;
986 if (pte_file(ptent)) {
987 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
988 print_bad_pte(vma, addr, ptent, NULL);
989 } else {
990 swp_entry_t entry = pte_to_swp_entry(ptent);
992 if (!non_swap_entry(entry))
993 rss[MM_SWAPENTS]--;
994 if (unlikely(!free_swap_and_cache(entry)))
995 print_bad_pte(vma, addr, ptent, NULL);
997 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
998 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
1000 add_mm_rss_vec(mm, rss);
1001 arch_leave_lazy_mmu_mode();
1002 pte_unmap_unlock(pte - 1, ptl);
1004 return addr;
1007 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1008 struct vm_area_struct *vma, pud_t *pud,
1009 unsigned long addr, unsigned long end,
1010 long *zap_work, struct zap_details *details)
1012 pmd_t *pmd;
1013 unsigned long next;
1015 pmd = pmd_offset(pud, addr);
1016 do {
1017 next = pmd_addr_end(addr, end);
1018 if (pmd_trans_huge(*pmd)) {
1019 if (next-addr != HPAGE_PMD_SIZE) {
1020 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1021 split_huge_page_pmd(vma->vm_mm, pmd);
1022 } else if (zap_huge_pmd(tlb, vma, pmd)) {
1023 (*zap_work)--;
1024 continue;
1026 /* fall through */
1028 if (pmd_none_or_clear_bad(pmd)) {
1029 (*zap_work)--;
1030 continue;
1032 next = zap_pte_range(tlb, vma, pmd, addr, next,
1033 zap_work, details);
1034 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1036 return addr;
1039 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1040 struct vm_area_struct *vma, pgd_t *pgd,
1041 unsigned long addr, unsigned long end,
1042 long *zap_work, struct zap_details *details)
1044 pud_t *pud;
1045 unsigned long next;
1047 pud = pud_offset(pgd, addr);
1048 do {
1049 next = pud_addr_end(addr, end);
1050 if (pud_none_or_clear_bad(pud)) {
1051 (*zap_work)--;
1052 continue;
1054 next = zap_pmd_range(tlb, vma, pud, addr, next,
1055 zap_work, details);
1056 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1058 return addr;
1061 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1062 struct vm_area_struct *vma,
1063 unsigned long addr, unsigned long end,
1064 long *zap_work, struct zap_details *details)
1066 pgd_t *pgd;
1067 unsigned long next;
1069 if (details && !details->check_mapping && !details->nonlinear_vma)
1070 details = NULL;
1072 BUG_ON(addr >= end);
1073 mem_cgroup_uncharge_start();
1074 tlb_start_vma(tlb, vma);
1075 pgd = pgd_offset(vma->vm_mm, addr);
1076 do {
1077 next = pgd_addr_end(addr, end);
1078 if (pgd_none_or_clear_bad(pgd)) {
1079 (*zap_work)--;
1080 continue;
1082 next = zap_pud_range(tlb, vma, pgd, addr, next,
1083 zap_work, details);
1084 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1085 tlb_end_vma(tlb, vma);
1086 mem_cgroup_uncharge_end();
1088 return addr;
1091 #ifdef CONFIG_PREEMPT
1092 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1093 #else
1094 /* No preempt: go for improved straight-line efficiency */
1095 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1096 #endif
1099 * unmap_vmas - unmap a range of memory covered by a list of vma's
1100 * @tlbp: address of the caller's struct mmu_gather
1101 * @vma: the starting vma
1102 * @start_addr: virtual address at which to start unmapping
1103 * @end_addr: virtual address at which to end unmapping
1104 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1105 * @details: details of nonlinear truncation or shared cache invalidation
1107 * Returns the end address of the unmapping (restart addr if interrupted).
1109 * Unmap all pages in the vma list.
1111 * We aim to not hold locks for too long (for scheduling latency reasons).
1112 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1113 * return the ending mmu_gather to the caller.
1115 * Only addresses between `start' and `end' will be unmapped.
1117 * The VMA list must be sorted in ascending virtual address order.
1119 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1120 * range after unmap_vmas() returns. So the only responsibility here is to
1121 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1122 * drops the lock and schedules.
1124 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1125 struct vm_area_struct *vma, unsigned long start_addr,
1126 unsigned long end_addr, unsigned long *nr_accounted,
1127 struct zap_details *details)
1129 long zap_work = ZAP_BLOCK_SIZE;
1130 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1131 int tlb_start_valid = 0;
1132 unsigned long start = start_addr;
1133 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1134 int fullmm = (*tlbp)->fullmm;
1135 struct mm_struct *mm = vma->vm_mm;
1137 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1138 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1139 unsigned long end;
1141 start = max(vma->vm_start, start_addr);
1142 if (start >= vma->vm_end)
1143 continue;
1144 end = min(vma->vm_end, end_addr);
1145 if (end <= vma->vm_start)
1146 continue;
1148 if (vma->vm_flags & VM_ACCOUNT)
1149 *nr_accounted += (end - start) >> PAGE_SHIFT;
1151 if (unlikely(is_pfn_mapping(vma)))
1152 untrack_pfn_vma(vma, 0, 0);
1154 while (start != end) {
1155 if (!tlb_start_valid) {
1156 tlb_start = start;
1157 tlb_start_valid = 1;
1160 if (unlikely(is_vm_hugetlb_page(vma))) {
1162 * It is undesirable to test vma->vm_file as it
1163 * should be non-null for valid hugetlb area.
1164 * However, vm_file will be NULL in the error
1165 * cleanup path of do_mmap_pgoff. When
1166 * hugetlbfs ->mmap method fails,
1167 * do_mmap_pgoff() nullifies vma->vm_file
1168 * before calling this function to clean up.
1169 * Since no pte has actually been setup, it is
1170 * safe to do nothing in this case.
1172 if (vma->vm_file) {
1173 unmap_hugepage_range(vma, start, end, NULL);
1174 zap_work -= (end - start) /
1175 pages_per_huge_page(hstate_vma(vma));
1178 start = end;
1179 } else
1180 start = unmap_page_range(*tlbp, vma,
1181 start, end, &zap_work, details);
1183 if (zap_work > 0) {
1184 BUG_ON(start != end);
1185 break;
1188 tlb_finish_mmu(*tlbp, tlb_start, start);
1190 if (need_resched() ||
1191 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1192 if (i_mmap_lock) {
1193 *tlbp = NULL;
1194 goto out;
1196 cond_resched();
1199 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1200 tlb_start_valid = 0;
1201 zap_work = ZAP_BLOCK_SIZE;
1204 out:
1205 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1206 return start; /* which is now the end (or restart) address */
1210 * zap_page_range - remove user pages in a given range
1211 * @vma: vm_area_struct holding the applicable pages
1212 * @address: starting address of pages to zap
1213 * @size: number of bytes to zap
1214 * @details: details of nonlinear truncation or shared cache invalidation
1216 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1217 unsigned long size, struct zap_details *details)
1219 struct mm_struct *mm = vma->vm_mm;
1220 struct mmu_gather *tlb;
1221 unsigned long end = address + size;
1222 unsigned long nr_accounted = 0;
1224 lru_add_drain();
1225 tlb = tlb_gather_mmu(mm, 0);
1226 update_hiwater_rss(mm);
1227 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1228 if (tlb)
1229 tlb_finish_mmu(tlb, address, end);
1230 return end;
1234 * zap_vma_ptes - remove ptes mapping the vma
1235 * @vma: vm_area_struct holding ptes to be zapped
1236 * @address: starting address of pages to zap
1237 * @size: number of bytes to zap
1239 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1241 * The entire address range must be fully contained within the vma.
1243 * Returns 0 if successful.
1245 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1246 unsigned long size)
1248 if (address < vma->vm_start || address + size > vma->vm_end ||
1249 !(vma->vm_flags & VM_PFNMAP))
1250 return -1;
1251 zap_page_range(vma, address, size, NULL);
1252 return 0;
1254 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1257 * follow_page - look up a page descriptor from a user-virtual address
1258 * @vma: vm_area_struct mapping @address
1259 * @address: virtual address to look up
1260 * @flags: flags modifying lookup behaviour
1262 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1264 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1265 * an error pointer if there is a mapping to something not represented
1266 * by a page descriptor (see also vm_normal_page()).
1268 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1269 unsigned int flags)
1271 pgd_t *pgd;
1272 pud_t *pud;
1273 pmd_t *pmd;
1274 pte_t *ptep, pte;
1275 spinlock_t *ptl;
1276 struct page *page;
1277 struct mm_struct *mm = vma->vm_mm;
1279 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1280 if (!IS_ERR(page)) {
1281 BUG_ON(flags & FOLL_GET);
1282 goto out;
1285 page = NULL;
1286 pgd = pgd_offset(mm, address);
1287 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1288 goto no_page_table;
1290 pud = pud_offset(pgd, address);
1291 if (pud_none(*pud))
1292 goto no_page_table;
1293 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1294 BUG_ON(flags & FOLL_GET);
1295 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1296 goto out;
1298 if (unlikely(pud_bad(*pud)))
1299 goto no_page_table;
1301 pmd = pmd_offset(pud, address);
1302 if (pmd_none(*pmd))
1303 goto no_page_table;
1304 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1305 BUG_ON(flags & FOLL_GET);
1306 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1307 goto out;
1309 if (pmd_trans_huge(*pmd)) {
1310 if (flags & FOLL_SPLIT) {
1311 split_huge_page_pmd(mm, pmd);
1312 goto split_fallthrough;
1314 spin_lock(&mm->page_table_lock);
1315 if (likely(pmd_trans_huge(*pmd))) {
1316 if (unlikely(pmd_trans_splitting(*pmd))) {
1317 spin_unlock(&mm->page_table_lock);
1318 wait_split_huge_page(vma->anon_vma, pmd);
1319 } else {
1320 page = follow_trans_huge_pmd(mm, address,
1321 pmd, flags);
1322 spin_unlock(&mm->page_table_lock);
1323 goto out;
1325 } else
1326 spin_unlock(&mm->page_table_lock);
1327 /* fall through */
1329 split_fallthrough:
1330 if (unlikely(pmd_bad(*pmd)))
1331 goto no_page_table;
1333 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1335 pte = *ptep;
1336 if (!pte_present(pte))
1337 goto no_page;
1338 if ((flags & FOLL_WRITE) && !pte_write(pte))
1339 goto unlock;
1341 page = vm_normal_page(vma, address, pte);
1342 if (unlikely(!page)) {
1343 if ((flags & FOLL_DUMP) ||
1344 !is_zero_pfn(pte_pfn(pte)))
1345 goto bad_page;
1346 page = pte_page(pte);
1349 if (flags & FOLL_GET)
1350 get_page(page);
1351 if (flags & FOLL_TOUCH) {
1352 if ((flags & FOLL_WRITE) &&
1353 !pte_dirty(pte) && !PageDirty(page))
1354 set_page_dirty(page);
1356 * pte_mkyoung() would be more correct here, but atomic care
1357 * is needed to avoid losing the dirty bit: it is easier to use
1358 * mark_page_accessed().
1360 mark_page_accessed(page);
1362 if (flags & FOLL_MLOCK) {
1364 * The preliminary mapping check is mainly to avoid the
1365 * pointless overhead of lock_page on the ZERO_PAGE
1366 * which might bounce very badly if there is contention.
1368 * If the page is already locked, we don't need to
1369 * handle it now - vmscan will handle it later if and
1370 * when it attempts to reclaim the page.
1372 if (page->mapping && trylock_page(page)) {
1373 lru_add_drain(); /* push cached pages to LRU */
1375 * Because we lock page here and migration is
1376 * blocked by the pte's page reference, we need
1377 * only check for file-cache page truncation.
1379 if (page->mapping)
1380 mlock_vma_page(page);
1381 unlock_page(page);
1384 unlock:
1385 pte_unmap_unlock(ptep, ptl);
1386 out:
1387 return page;
1389 bad_page:
1390 pte_unmap_unlock(ptep, ptl);
1391 return ERR_PTR(-EFAULT);
1393 no_page:
1394 pte_unmap_unlock(ptep, ptl);
1395 if (!pte_none(pte))
1396 return page;
1398 no_page_table:
1400 * When core dumping an enormous anonymous area that nobody
1401 * has touched so far, we don't want to allocate unnecessary pages or
1402 * page tables. Return error instead of NULL to skip handle_mm_fault,
1403 * then get_dump_page() will return NULL to leave a hole in the dump.
1404 * But we can only make this optimization where a hole would surely
1405 * be zero-filled if handle_mm_fault() actually did handle it.
1407 if ((flags & FOLL_DUMP) &&
1408 (!vma->vm_ops || !vma->vm_ops->fault))
1409 return ERR_PTR(-EFAULT);
1410 return page;
1414 * __get_user_pages() - pin user pages in memory
1415 * @tsk: task_struct of target task
1416 * @mm: mm_struct of target mm
1417 * @start: starting user address
1418 * @nr_pages: number of pages from start to pin
1419 * @gup_flags: flags modifying pin behaviour
1420 * @pages: array that receives pointers to the pages pinned.
1421 * Should be at least nr_pages long. Or NULL, if caller
1422 * only intends to ensure the pages are faulted in.
1423 * @vmas: array of pointers to vmas corresponding to each page.
1424 * Or NULL if the caller does not require them.
1425 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1427 * Returns number of pages pinned. This may be fewer than the number
1428 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1429 * were pinned, returns -errno. Each page returned must be released
1430 * with a put_page() call when it is finished with. vmas will only
1431 * remain valid while mmap_sem is held.
1433 * Must be called with mmap_sem held for read or write.
1435 * __get_user_pages walks a process's page tables and takes a reference to
1436 * each struct page that each user address corresponds to at a given
1437 * instant. That is, it takes the page that would be accessed if a user
1438 * thread accesses the given user virtual address at that instant.
1440 * This does not guarantee that the page exists in the user mappings when
1441 * __get_user_pages returns, and there may even be a completely different
1442 * page there in some cases (eg. if mmapped pagecache has been invalidated
1443 * and subsequently re faulted). However it does guarantee that the page
1444 * won't be freed completely. And mostly callers simply care that the page
1445 * contains data that was valid *at some point in time*. Typically, an IO
1446 * or similar operation cannot guarantee anything stronger anyway because
1447 * locks can't be held over the syscall boundary.
1449 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1450 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1451 * appropriate) must be called after the page is finished with, and
1452 * before put_page is called.
1454 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1455 * or mmap_sem contention, and if waiting is needed to pin all pages,
1456 * *@nonblocking will be set to 0.
1458 * In most cases, get_user_pages or get_user_pages_fast should be used
1459 * instead of __get_user_pages. __get_user_pages should be used only if
1460 * you need some special @gup_flags.
1462 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1463 unsigned long start, int nr_pages, unsigned int gup_flags,
1464 struct page **pages, struct vm_area_struct **vmas,
1465 int *nonblocking)
1467 int i;
1468 unsigned long vm_flags;
1470 if (nr_pages <= 0)
1471 return 0;
1473 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1476 * Require read or write permissions.
1477 * If FOLL_FORCE is set, we only require the "MAY" flags.
1479 vm_flags = (gup_flags & FOLL_WRITE) ?
1480 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1481 vm_flags &= (gup_flags & FOLL_FORCE) ?
1482 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1483 i = 0;
1485 do {
1486 struct vm_area_struct *vma;
1488 vma = find_extend_vma(mm, start);
1489 if (!vma && in_gate_area(mm, start)) {
1490 unsigned long pg = start & PAGE_MASK;
1491 struct vm_area_struct *gate_vma = get_gate_vma(mm);
1492 pgd_t *pgd;
1493 pud_t *pud;
1494 pmd_t *pmd;
1495 pte_t *pte;
1497 /* user gate pages are read-only */
1498 if (gup_flags & FOLL_WRITE)
1499 return i ? : -EFAULT;
1500 if (pg > TASK_SIZE)
1501 pgd = pgd_offset_k(pg);
1502 else
1503 pgd = pgd_offset_gate(mm, pg);
1504 BUG_ON(pgd_none(*pgd));
1505 pud = pud_offset(pgd, pg);
1506 BUG_ON(pud_none(*pud));
1507 pmd = pmd_offset(pud, pg);
1508 if (pmd_none(*pmd))
1509 return i ? : -EFAULT;
1510 VM_BUG_ON(pmd_trans_huge(*pmd));
1511 pte = pte_offset_map(pmd, pg);
1512 if (pte_none(*pte)) {
1513 pte_unmap(pte);
1514 return i ? : -EFAULT;
1516 if (pages) {
1517 struct page *page;
1519 page = vm_normal_page(gate_vma, start, *pte);
1520 if (!page) {
1521 if (!(gup_flags & FOLL_DUMP) &&
1522 is_zero_pfn(pte_pfn(*pte)))
1523 page = pte_page(*pte);
1524 else {
1525 pte_unmap(pte);
1526 return i ? : -EFAULT;
1529 pages[i] = page;
1530 get_page(page);
1532 pte_unmap(pte);
1533 if (vmas)
1534 vmas[i] = gate_vma;
1535 i++;
1536 start += PAGE_SIZE;
1537 nr_pages--;
1538 continue;
1541 if (!vma ||
1542 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1543 !(vm_flags & vma->vm_flags))
1544 return i ? : -EFAULT;
1546 if (is_vm_hugetlb_page(vma)) {
1547 i = follow_hugetlb_page(mm, vma, pages, vmas,
1548 &start, &nr_pages, i, gup_flags);
1549 continue;
1552 do {
1553 struct page *page;
1554 unsigned int foll_flags = gup_flags;
1557 * If we have a pending SIGKILL, don't keep faulting
1558 * pages and potentially allocating memory.
1560 if (unlikely(fatal_signal_pending(current)))
1561 return i ? i : -ERESTARTSYS;
1563 cond_resched();
1564 while (!(page = follow_page(vma, start, foll_flags))) {
1565 int ret;
1566 unsigned int fault_flags = 0;
1568 if (foll_flags & FOLL_WRITE)
1569 fault_flags |= FAULT_FLAG_WRITE;
1570 if (nonblocking)
1571 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1572 if (foll_flags & FOLL_NOWAIT)
1573 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1575 ret = handle_mm_fault(mm, vma, start,
1576 fault_flags);
1578 if (ret & VM_FAULT_ERROR) {
1579 if (ret & VM_FAULT_OOM)
1580 return i ? i : -ENOMEM;
1581 if (ret & (VM_FAULT_HWPOISON |
1582 VM_FAULT_HWPOISON_LARGE)) {
1583 if (i)
1584 return i;
1585 else if (gup_flags & FOLL_HWPOISON)
1586 return -EHWPOISON;
1587 else
1588 return -EFAULT;
1590 if (ret & VM_FAULT_SIGBUS)
1591 return i ? i : -EFAULT;
1592 BUG();
1595 if (tsk) {
1596 if (ret & VM_FAULT_MAJOR)
1597 tsk->maj_flt++;
1598 else
1599 tsk->min_flt++;
1602 if (ret & VM_FAULT_RETRY) {
1603 if (nonblocking)
1604 *nonblocking = 0;
1605 return i;
1609 * The VM_FAULT_WRITE bit tells us that
1610 * do_wp_page has broken COW when necessary,
1611 * even if maybe_mkwrite decided not to set
1612 * pte_write. We can thus safely do subsequent
1613 * page lookups as if they were reads. But only
1614 * do so when looping for pte_write is futile:
1615 * in some cases userspace may also be wanting
1616 * to write to the gotten user page, which a
1617 * read fault here might prevent (a readonly
1618 * page might get reCOWed by userspace write).
1620 if ((ret & VM_FAULT_WRITE) &&
1621 !(vma->vm_flags & VM_WRITE))
1622 foll_flags &= ~FOLL_WRITE;
1624 cond_resched();
1626 if (IS_ERR(page))
1627 return i ? i : PTR_ERR(page);
1628 if (pages) {
1629 pages[i] = page;
1631 flush_anon_page(vma, page, start);
1632 flush_dcache_page(page);
1634 if (vmas)
1635 vmas[i] = vma;
1636 i++;
1637 start += PAGE_SIZE;
1638 nr_pages--;
1639 } while (nr_pages && start < vma->vm_end);
1640 } while (nr_pages);
1641 return i;
1643 EXPORT_SYMBOL(__get_user_pages);
1646 * get_user_pages() - pin user pages in memory
1647 * @tsk: the task_struct to use for page fault accounting, or
1648 * NULL if faults are not to be recorded.
1649 * @mm: mm_struct of target mm
1650 * @start: starting user address
1651 * @nr_pages: number of pages from start to pin
1652 * @write: whether pages will be written to by the caller
1653 * @force: whether to force write access even if user mapping is
1654 * readonly. This will result in the page being COWed even
1655 * in MAP_SHARED mappings. You do not want this.
1656 * @pages: array that receives pointers to the pages pinned.
1657 * Should be at least nr_pages long. Or NULL, if caller
1658 * only intends to ensure the pages are faulted in.
1659 * @vmas: array of pointers to vmas corresponding to each page.
1660 * Or NULL if the caller does not require them.
1662 * Returns number of pages pinned. This may be fewer than the number
1663 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1664 * were pinned, returns -errno. Each page returned must be released
1665 * with a put_page() call when it is finished with. vmas will only
1666 * remain valid while mmap_sem is held.
1668 * Must be called with mmap_sem held for read or write.
1670 * get_user_pages walks a process's page tables and takes a reference to
1671 * each struct page that each user address corresponds to at a given
1672 * instant. That is, it takes the page that would be accessed if a user
1673 * thread accesses the given user virtual address at that instant.
1675 * This does not guarantee that the page exists in the user mappings when
1676 * get_user_pages returns, and there may even be a completely different
1677 * page there in some cases (eg. if mmapped pagecache has been invalidated
1678 * and subsequently re faulted). However it does guarantee that the page
1679 * won't be freed completely. And mostly callers simply care that the page
1680 * contains data that was valid *at some point in time*. Typically, an IO
1681 * or similar operation cannot guarantee anything stronger anyway because
1682 * locks can't be held over the syscall boundary.
1684 * If write=0, the page must not be written to. If the page is written to,
1685 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1686 * after the page is finished with, and before put_page is called.
1688 * get_user_pages is typically used for fewer-copy IO operations, to get a
1689 * handle on the memory by some means other than accesses via the user virtual
1690 * addresses. The pages may be submitted for DMA to devices or accessed via
1691 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1692 * use the correct cache flushing APIs.
1694 * See also get_user_pages_fast, for performance critical applications.
1696 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1697 unsigned long start, int nr_pages, int write, int force,
1698 struct page **pages, struct vm_area_struct **vmas)
1700 int flags = FOLL_TOUCH;
1702 if (pages)
1703 flags |= FOLL_GET;
1704 if (write)
1705 flags |= FOLL_WRITE;
1706 if (force)
1707 flags |= FOLL_FORCE;
1709 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1710 NULL);
1712 EXPORT_SYMBOL(get_user_pages);
1715 * get_dump_page() - pin user page in memory while writing it to core dump
1716 * @addr: user address
1718 * Returns struct page pointer of user page pinned for dump,
1719 * to be freed afterwards by page_cache_release() or put_page().
1721 * Returns NULL on any kind of failure - a hole must then be inserted into
1722 * the corefile, to preserve alignment with its headers; and also returns
1723 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1724 * allowing a hole to be left in the corefile to save diskspace.
1726 * Called without mmap_sem, but after all other threads have been killed.
1728 #ifdef CONFIG_ELF_CORE
1729 struct page *get_dump_page(unsigned long addr)
1731 struct vm_area_struct *vma;
1732 struct page *page;
1734 if (__get_user_pages(current, current->mm, addr, 1,
1735 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1736 NULL) < 1)
1737 return NULL;
1738 flush_cache_page(vma, addr, page_to_pfn(page));
1739 return page;
1741 #endif /* CONFIG_ELF_CORE */
1743 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1744 spinlock_t **ptl)
1746 pgd_t * pgd = pgd_offset(mm, addr);
1747 pud_t * pud = pud_alloc(mm, pgd, addr);
1748 if (pud) {
1749 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1750 if (pmd) {
1751 VM_BUG_ON(pmd_trans_huge(*pmd));
1752 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1755 return NULL;
1759 * This is the old fallback for page remapping.
1761 * For historical reasons, it only allows reserved pages. Only
1762 * old drivers should use this, and they needed to mark their
1763 * pages reserved for the old functions anyway.
1765 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1766 struct page *page, pgprot_t prot)
1768 struct mm_struct *mm = vma->vm_mm;
1769 int retval;
1770 pte_t *pte;
1771 spinlock_t *ptl;
1773 retval = -EINVAL;
1774 if (PageAnon(page))
1775 goto out;
1776 retval = -ENOMEM;
1777 flush_dcache_page(page);
1778 pte = get_locked_pte(mm, addr, &ptl);
1779 if (!pte)
1780 goto out;
1781 retval = -EBUSY;
1782 if (!pte_none(*pte))
1783 goto out_unlock;
1785 /* Ok, finally just insert the thing.. */
1786 get_page(page);
1787 inc_mm_counter_fast(mm, MM_FILEPAGES);
1788 page_add_file_rmap(page);
1789 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1791 retval = 0;
1792 pte_unmap_unlock(pte, ptl);
1793 return retval;
1794 out_unlock:
1795 pte_unmap_unlock(pte, ptl);
1796 out:
1797 return retval;
1801 * vm_insert_page - insert single page into user vma
1802 * @vma: user vma to map to
1803 * @addr: target user address of this page
1804 * @page: source kernel page
1806 * This allows drivers to insert individual pages they've allocated
1807 * into a user vma.
1809 * The page has to be a nice clean _individual_ kernel allocation.
1810 * If you allocate a compound page, you need to have marked it as
1811 * such (__GFP_COMP), or manually just split the page up yourself
1812 * (see split_page()).
1814 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1815 * took an arbitrary page protection parameter. This doesn't allow
1816 * that. Your vma protection will have to be set up correctly, which
1817 * means that if you want a shared writable mapping, you'd better
1818 * ask for a shared writable mapping!
1820 * The page does not need to be reserved.
1822 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1823 struct page *page)
1825 if (addr < vma->vm_start || addr >= vma->vm_end)
1826 return -EFAULT;
1827 if (!page_count(page))
1828 return -EINVAL;
1829 vma->vm_flags |= VM_INSERTPAGE;
1830 return insert_page(vma, addr, page, vma->vm_page_prot);
1832 EXPORT_SYMBOL(vm_insert_page);
1834 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1835 unsigned long pfn, pgprot_t prot)
1837 struct mm_struct *mm = vma->vm_mm;
1838 int retval;
1839 pte_t *pte, entry;
1840 spinlock_t *ptl;
1842 retval = -ENOMEM;
1843 pte = get_locked_pte(mm, addr, &ptl);
1844 if (!pte)
1845 goto out;
1846 retval = -EBUSY;
1847 if (!pte_none(*pte))
1848 goto out_unlock;
1850 /* Ok, finally just insert the thing.. */
1851 entry = pte_mkspecial(pfn_pte(pfn, prot));
1852 set_pte_at(mm, addr, pte, entry);
1853 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1855 retval = 0;
1856 out_unlock:
1857 pte_unmap_unlock(pte, ptl);
1858 out:
1859 return retval;
1863 * vm_insert_pfn - insert single pfn into user vma
1864 * @vma: user vma to map to
1865 * @addr: target user address of this page
1866 * @pfn: source kernel pfn
1868 * Similar to vm_inert_page, this allows drivers to insert individual pages
1869 * they've allocated into a user vma. Same comments apply.
1871 * This function should only be called from a vm_ops->fault handler, and
1872 * in that case the handler should return NULL.
1874 * vma cannot be a COW mapping.
1876 * As this is called only for pages that do not currently exist, we
1877 * do not need to flush old virtual caches or the TLB.
1879 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1880 unsigned long pfn)
1882 int ret;
1883 pgprot_t pgprot = vma->vm_page_prot;
1885 * Technically, architectures with pte_special can avoid all these
1886 * restrictions (same for remap_pfn_range). However we would like
1887 * consistency in testing and feature parity among all, so we should
1888 * try to keep these invariants in place for everybody.
1890 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1891 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1892 (VM_PFNMAP|VM_MIXEDMAP));
1893 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1894 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1896 if (addr < vma->vm_start || addr >= vma->vm_end)
1897 return -EFAULT;
1898 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1899 return -EINVAL;
1901 ret = insert_pfn(vma, addr, pfn, pgprot);
1903 if (ret)
1904 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1906 return ret;
1908 EXPORT_SYMBOL(vm_insert_pfn);
1910 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1911 unsigned long pfn)
1913 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1915 if (addr < vma->vm_start || addr >= vma->vm_end)
1916 return -EFAULT;
1919 * If we don't have pte special, then we have to use the pfn_valid()
1920 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1921 * refcount the page if pfn_valid is true (hence insert_page rather
1922 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1923 * without pte special, it would there be refcounted as a normal page.
1925 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1926 struct page *page;
1928 page = pfn_to_page(pfn);
1929 return insert_page(vma, addr, page, vma->vm_page_prot);
1931 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1933 EXPORT_SYMBOL(vm_insert_mixed);
1936 * maps a range of physical memory into the requested pages. the old
1937 * mappings are removed. any references to nonexistent pages results
1938 * in null mappings (currently treated as "copy-on-access")
1940 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1941 unsigned long addr, unsigned long end,
1942 unsigned long pfn, pgprot_t prot)
1944 pte_t *pte;
1945 spinlock_t *ptl;
1947 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1948 if (!pte)
1949 return -ENOMEM;
1950 arch_enter_lazy_mmu_mode();
1951 do {
1952 BUG_ON(!pte_none(*pte));
1953 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1954 pfn++;
1955 } while (pte++, addr += PAGE_SIZE, addr != end);
1956 arch_leave_lazy_mmu_mode();
1957 pte_unmap_unlock(pte - 1, ptl);
1958 return 0;
1961 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1962 unsigned long addr, unsigned long end,
1963 unsigned long pfn, pgprot_t prot)
1965 pmd_t *pmd;
1966 unsigned long next;
1968 pfn -= addr >> PAGE_SHIFT;
1969 pmd = pmd_alloc(mm, pud, addr);
1970 if (!pmd)
1971 return -ENOMEM;
1972 VM_BUG_ON(pmd_trans_huge(*pmd));
1973 do {
1974 next = pmd_addr_end(addr, end);
1975 if (remap_pte_range(mm, pmd, addr, next,
1976 pfn + (addr >> PAGE_SHIFT), prot))
1977 return -ENOMEM;
1978 } while (pmd++, addr = next, addr != end);
1979 return 0;
1982 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1983 unsigned long addr, unsigned long end,
1984 unsigned long pfn, pgprot_t prot)
1986 pud_t *pud;
1987 unsigned long next;
1989 pfn -= addr >> PAGE_SHIFT;
1990 pud = pud_alloc(mm, pgd, addr);
1991 if (!pud)
1992 return -ENOMEM;
1993 do {
1994 next = pud_addr_end(addr, end);
1995 if (remap_pmd_range(mm, pud, addr, next,
1996 pfn + (addr >> PAGE_SHIFT), prot))
1997 return -ENOMEM;
1998 } while (pud++, addr = next, addr != end);
1999 return 0;
2003 * remap_pfn_range - remap kernel memory to userspace
2004 * @vma: user vma to map to
2005 * @addr: target user address to start at
2006 * @pfn: physical address of kernel memory
2007 * @size: size of map area
2008 * @prot: page protection flags for this mapping
2010 * Note: this is only safe if the mm semaphore is held when called.
2012 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2013 unsigned long pfn, unsigned long size, pgprot_t prot)
2015 pgd_t *pgd;
2016 unsigned long next;
2017 unsigned long end = addr + PAGE_ALIGN(size);
2018 struct mm_struct *mm = vma->vm_mm;
2019 int err;
2022 * Physically remapped pages are special. Tell the
2023 * rest of the world about it:
2024 * VM_IO tells people not to look at these pages
2025 * (accesses can have side effects).
2026 * VM_RESERVED is specified all over the place, because
2027 * in 2.4 it kept swapout's vma scan off this vma; but
2028 * in 2.6 the LRU scan won't even find its pages, so this
2029 * flag means no more than count its pages in reserved_vm,
2030 * and omit it from core dump, even when VM_IO turned off.
2031 * VM_PFNMAP tells the core MM that the base pages are just
2032 * raw PFN mappings, and do not have a "struct page" associated
2033 * with them.
2035 * There's a horrible special case to handle copy-on-write
2036 * behaviour that some programs depend on. We mark the "original"
2037 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2039 if (addr == vma->vm_start && end == vma->vm_end) {
2040 vma->vm_pgoff = pfn;
2041 vma->vm_flags |= VM_PFN_AT_MMAP;
2042 } else if (is_cow_mapping(vma->vm_flags))
2043 return -EINVAL;
2045 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2047 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2048 if (err) {
2050 * To indicate that track_pfn related cleanup is not
2051 * needed from higher level routine calling unmap_vmas
2053 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2054 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2055 return -EINVAL;
2058 BUG_ON(addr >= end);
2059 pfn -= addr >> PAGE_SHIFT;
2060 pgd = pgd_offset(mm, addr);
2061 flush_cache_range(vma, addr, end);
2062 do {
2063 next = pgd_addr_end(addr, end);
2064 err = remap_pud_range(mm, pgd, addr, next,
2065 pfn + (addr >> PAGE_SHIFT), prot);
2066 if (err)
2067 break;
2068 } while (pgd++, addr = next, addr != end);
2070 if (err)
2071 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2073 return err;
2075 EXPORT_SYMBOL(remap_pfn_range);
2077 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2078 unsigned long addr, unsigned long end,
2079 pte_fn_t fn, void *data)
2081 pte_t *pte;
2082 int err;
2083 pgtable_t token;
2084 spinlock_t *uninitialized_var(ptl);
2086 pte = (mm == &init_mm) ?
2087 pte_alloc_kernel(pmd, addr) :
2088 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2089 if (!pte)
2090 return -ENOMEM;
2092 BUG_ON(pmd_huge(*pmd));
2094 arch_enter_lazy_mmu_mode();
2096 token = pmd_pgtable(*pmd);
2098 do {
2099 err = fn(pte++, token, addr, data);
2100 if (err)
2101 break;
2102 } while (addr += PAGE_SIZE, addr != end);
2104 arch_leave_lazy_mmu_mode();
2106 if (mm != &init_mm)
2107 pte_unmap_unlock(pte-1, ptl);
2108 return err;
2111 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2112 unsigned long addr, unsigned long end,
2113 pte_fn_t fn, void *data)
2115 pmd_t *pmd;
2116 unsigned long next;
2117 int err;
2119 BUG_ON(pud_huge(*pud));
2121 pmd = pmd_alloc(mm, pud, addr);
2122 if (!pmd)
2123 return -ENOMEM;
2124 do {
2125 next = pmd_addr_end(addr, end);
2126 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2127 if (err)
2128 break;
2129 } while (pmd++, addr = next, addr != end);
2130 return err;
2133 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2134 unsigned long addr, unsigned long end,
2135 pte_fn_t fn, void *data)
2137 pud_t *pud;
2138 unsigned long next;
2139 int err;
2141 pud = pud_alloc(mm, pgd, addr);
2142 if (!pud)
2143 return -ENOMEM;
2144 do {
2145 next = pud_addr_end(addr, end);
2146 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2147 if (err)
2148 break;
2149 } while (pud++, addr = next, addr != end);
2150 return err;
2154 * Scan a region of virtual memory, filling in page tables as necessary
2155 * and calling a provided function on each leaf page table.
2157 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2158 unsigned long size, pte_fn_t fn, void *data)
2160 pgd_t *pgd;
2161 unsigned long next;
2162 unsigned long end = addr + size;
2163 int err;
2165 BUG_ON(addr >= end);
2166 pgd = pgd_offset(mm, addr);
2167 do {
2168 next = pgd_addr_end(addr, end);
2169 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2170 if (err)
2171 break;
2172 } while (pgd++, addr = next, addr != end);
2174 return err;
2176 EXPORT_SYMBOL_GPL(apply_to_page_range);
2179 * handle_pte_fault chooses page fault handler according to an entry
2180 * which was read non-atomically. Before making any commitment, on
2181 * those architectures or configurations (e.g. i386 with PAE) which
2182 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2183 * must check under lock before unmapping the pte and proceeding
2184 * (but do_wp_page is only called after already making such a check;
2185 * and do_anonymous_page can safely check later on).
2187 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2188 pte_t *page_table, pte_t orig_pte)
2190 int same = 1;
2191 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2192 if (sizeof(pte_t) > sizeof(unsigned long)) {
2193 spinlock_t *ptl = pte_lockptr(mm, pmd);
2194 spin_lock(ptl);
2195 same = pte_same(*page_table, orig_pte);
2196 spin_unlock(ptl);
2198 #endif
2199 pte_unmap(page_table);
2200 return same;
2203 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2206 * If the source page was a PFN mapping, we don't have
2207 * a "struct page" for it. We do a best-effort copy by
2208 * just copying from the original user address. If that
2209 * fails, we just zero-fill it. Live with it.
2211 if (unlikely(!src)) {
2212 void *kaddr = kmap_atomic(dst, KM_USER0);
2213 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2216 * This really shouldn't fail, because the page is there
2217 * in the page tables. But it might just be unreadable,
2218 * in which case we just give up and fill the result with
2219 * zeroes.
2221 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2222 clear_page(kaddr);
2223 kunmap_atomic(kaddr, KM_USER0);
2224 flush_dcache_page(dst);
2225 } else
2226 copy_user_highpage(dst, src, va, vma);
2230 * This routine handles present pages, when users try to write
2231 * to a shared page. It is done by copying the page to a new address
2232 * and decrementing the shared-page counter for the old page.
2234 * Note that this routine assumes that the protection checks have been
2235 * done by the caller (the low-level page fault routine in most cases).
2236 * Thus we can safely just mark it writable once we've done any necessary
2237 * COW.
2239 * We also mark the page dirty at this point even though the page will
2240 * change only once the write actually happens. This avoids a few races,
2241 * and potentially makes it more efficient.
2243 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2244 * but allow concurrent faults), with pte both mapped and locked.
2245 * We return with mmap_sem still held, but pte unmapped and unlocked.
2247 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2248 unsigned long address, pte_t *page_table, pmd_t *pmd,
2249 spinlock_t *ptl, pte_t orig_pte)
2250 __releases(ptl)
2252 struct page *old_page, *new_page;
2253 pte_t entry;
2254 int ret = 0;
2255 int page_mkwrite = 0;
2256 struct page *dirty_page = NULL;
2258 old_page = vm_normal_page(vma, address, orig_pte);
2259 if (!old_page) {
2261 * VM_MIXEDMAP !pfn_valid() case
2263 * We should not cow pages in a shared writeable mapping.
2264 * Just mark the pages writable as we can't do any dirty
2265 * accounting on raw pfn maps.
2267 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2268 (VM_WRITE|VM_SHARED))
2269 goto reuse;
2270 goto gotten;
2274 * Take out anonymous pages first, anonymous shared vmas are
2275 * not dirty accountable.
2277 if (PageAnon(old_page) && !PageKsm(old_page)) {
2278 if (!trylock_page(old_page)) {
2279 page_cache_get(old_page);
2280 pte_unmap_unlock(page_table, ptl);
2281 lock_page(old_page);
2282 page_table = pte_offset_map_lock(mm, pmd, address,
2283 &ptl);
2284 if (!pte_same(*page_table, orig_pte)) {
2285 unlock_page(old_page);
2286 goto unlock;
2288 page_cache_release(old_page);
2290 if (reuse_swap_page(old_page)) {
2292 * The page is all ours. Move it to our anon_vma so
2293 * the rmap code will not search our parent or siblings.
2294 * Protected against the rmap code by the page lock.
2296 page_move_anon_rmap(old_page, vma, address);
2297 unlock_page(old_page);
2298 goto reuse;
2300 unlock_page(old_page);
2301 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2302 (VM_WRITE|VM_SHARED))) {
2304 * Only catch write-faults on shared writable pages,
2305 * read-only shared pages can get COWed by
2306 * get_user_pages(.write=1, .force=1).
2308 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2309 struct vm_fault vmf;
2310 int tmp;
2312 vmf.virtual_address = (void __user *)(address &
2313 PAGE_MASK);
2314 vmf.pgoff = old_page->index;
2315 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2316 vmf.page = old_page;
2319 * Notify the address space that the page is about to
2320 * become writable so that it can prohibit this or wait
2321 * for the page to get into an appropriate state.
2323 * We do this without the lock held, so that it can
2324 * sleep if it needs to.
2326 page_cache_get(old_page);
2327 pte_unmap_unlock(page_table, ptl);
2329 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2330 if (unlikely(tmp &
2331 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2332 ret = tmp;
2333 goto unwritable_page;
2335 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2336 lock_page(old_page);
2337 if (!old_page->mapping) {
2338 ret = 0; /* retry the fault */
2339 unlock_page(old_page);
2340 goto unwritable_page;
2342 } else
2343 VM_BUG_ON(!PageLocked(old_page));
2346 * Since we dropped the lock we need to revalidate
2347 * the PTE as someone else may have changed it. If
2348 * they did, we just return, as we can count on the
2349 * MMU to tell us if they didn't also make it writable.
2351 page_table = pte_offset_map_lock(mm, pmd, address,
2352 &ptl);
2353 if (!pte_same(*page_table, orig_pte)) {
2354 unlock_page(old_page);
2355 goto unlock;
2358 page_mkwrite = 1;
2360 dirty_page = old_page;
2361 get_page(dirty_page);
2363 reuse:
2364 flush_cache_page(vma, address, pte_pfn(orig_pte));
2365 entry = pte_mkyoung(orig_pte);
2366 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2367 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2368 update_mmu_cache(vma, address, page_table);
2369 pte_unmap_unlock(page_table, ptl);
2370 ret |= VM_FAULT_WRITE;
2372 if (!dirty_page)
2373 return ret;
2376 * Yes, Virginia, this is actually required to prevent a race
2377 * with clear_page_dirty_for_io() from clearing the page dirty
2378 * bit after it clear all dirty ptes, but before a racing
2379 * do_wp_page installs a dirty pte.
2381 * __do_fault is protected similarly.
2383 if (!page_mkwrite) {
2384 wait_on_page_locked(dirty_page);
2385 set_page_dirty_balance(dirty_page, page_mkwrite);
2387 put_page(dirty_page);
2388 if (page_mkwrite) {
2389 struct address_space *mapping = dirty_page->mapping;
2391 set_page_dirty(dirty_page);
2392 unlock_page(dirty_page);
2393 page_cache_release(dirty_page);
2394 if (mapping) {
2396 * Some device drivers do not set page.mapping
2397 * but still dirty their pages
2399 balance_dirty_pages_ratelimited(mapping);
2403 /* file_update_time outside page_lock */
2404 if (vma->vm_file)
2405 file_update_time(vma->vm_file);
2407 return ret;
2411 * Ok, we need to copy. Oh, well..
2413 page_cache_get(old_page);
2414 gotten:
2415 pte_unmap_unlock(page_table, ptl);
2417 if (unlikely(anon_vma_prepare(vma)))
2418 goto oom;
2420 if (is_zero_pfn(pte_pfn(orig_pte))) {
2421 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2422 if (!new_page)
2423 goto oom;
2424 } else {
2425 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2426 if (!new_page)
2427 goto oom;
2428 cow_user_page(new_page, old_page, address, vma);
2430 __SetPageUptodate(new_page);
2432 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2433 goto oom_free_new;
2436 * Re-check the pte - we dropped the lock
2438 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2439 if (likely(pte_same(*page_table, orig_pte))) {
2440 if (old_page) {
2441 if (!PageAnon(old_page)) {
2442 dec_mm_counter_fast(mm, MM_FILEPAGES);
2443 inc_mm_counter_fast(mm, MM_ANONPAGES);
2445 } else
2446 inc_mm_counter_fast(mm, MM_ANONPAGES);
2447 flush_cache_page(vma, address, pte_pfn(orig_pte));
2448 entry = mk_pte(new_page, vma->vm_page_prot);
2449 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2451 * Clear the pte entry and flush it first, before updating the
2452 * pte with the new entry. This will avoid a race condition
2453 * seen in the presence of one thread doing SMC and another
2454 * thread doing COW.
2456 ptep_clear_flush(vma, address, page_table);
2457 page_add_new_anon_rmap(new_page, vma, address);
2459 * We call the notify macro here because, when using secondary
2460 * mmu page tables (such as kvm shadow page tables), we want the
2461 * new page to be mapped directly into the secondary page table.
2463 set_pte_at_notify(mm, address, page_table, entry);
2464 update_mmu_cache(vma, address, page_table);
2465 if (old_page) {
2467 * Only after switching the pte to the new page may
2468 * we remove the mapcount here. Otherwise another
2469 * process may come and find the rmap count decremented
2470 * before the pte is switched to the new page, and
2471 * "reuse" the old page writing into it while our pte
2472 * here still points into it and can be read by other
2473 * threads.
2475 * The critical issue is to order this
2476 * page_remove_rmap with the ptp_clear_flush above.
2477 * Those stores are ordered by (if nothing else,)
2478 * the barrier present in the atomic_add_negative
2479 * in page_remove_rmap.
2481 * Then the TLB flush in ptep_clear_flush ensures that
2482 * no process can access the old page before the
2483 * decremented mapcount is visible. And the old page
2484 * cannot be reused until after the decremented
2485 * mapcount is visible. So transitively, TLBs to
2486 * old page will be flushed before it can be reused.
2488 page_remove_rmap(old_page);
2491 /* Free the old page.. */
2492 new_page = old_page;
2493 ret |= VM_FAULT_WRITE;
2494 } else
2495 mem_cgroup_uncharge_page(new_page);
2497 if (new_page)
2498 page_cache_release(new_page);
2499 unlock:
2500 pte_unmap_unlock(page_table, ptl);
2501 if (old_page) {
2503 * Don't let another task, with possibly unlocked vma,
2504 * keep the mlocked page.
2506 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2507 lock_page(old_page); /* LRU manipulation */
2508 munlock_vma_page(old_page);
2509 unlock_page(old_page);
2511 page_cache_release(old_page);
2513 return ret;
2514 oom_free_new:
2515 page_cache_release(new_page);
2516 oom:
2517 if (old_page) {
2518 if (page_mkwrite) {
2519 unlock_page(old_page);
2520 page_cache_release(old_page);
2522 page_cache_release(old_page);
2524 return VM_FAULT_OOM;
2526 unwritable_page:
2527 page_cache_release(old_page);
2528 return ret;
2532 * Helper functions for unmap_mapping_range().
2534 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2536 * We have to restart searching the prio_tree whenever we drop the lock,
2537 * since the iterator is only valid while the lock is held, and anyway
2538 * a later vma might be split and reinserted earlier while lock dropped.
2540 * The list of nonlinear vmas could be handled more efficiently, using
2541 * a placeholder, but handle it in the same way until a need is shown.
2542 * It is important to search the prio_tree before nonlinear list: a vma
2543 * may become nonlinear and be shifted from prio_tree to nonlinear list
2544 * while the lock is dropped; but never shifted from list to prio_tree.
2546 * In order to make forward progress despite restarting the search,
2547 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2548 * quickly skip it next time around. Since the prio_tree search only
2549 * shows us those vmas affected by unmapping the range in question, we
2550 * can't efficiently keep all vmas in step with mapping->truncate_count:
2551 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2552 * mapping->truncate_count and vma->vm_truncate_count are protected by
2553 * i_mmap_lock.
2555 * In order to make forward progress despite repeatedly restarting some
2556 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2557 * and restart from that address when we reach that vma again. It might
2558 * have been split or merged, shrunk or extended, but never shifted: so
2559 * restart_addr remains valid so long as it remains in the vma's range.
2560 * unmap_mapping_range forces truncate_count to leap over page-aligned
2561 * values so we can save vma's restart_addr in its truncate_count field.
2563 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2565 static void reset_vma_truncate_counts(struct address_space *mapping)
2567 struct vm_area_struct *vma;
2568 struct prio_tree_iter iter;
2570 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2571 vma->vm_truncate_count = 0;
2572 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2573 vma->vm_truncate_count = 0;
2576 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2577 unsigned long start_addr, unsigned long end_addr,
2578 struct zap_details *details)
2580 unsigned long restart_addr;
2581 int need_break;
2584 * files that support invalidating or truncating portions of the
2585 * file from under mmaped areas must have their ->fault function
2586 * return a locked page (and set VM_FAULT_LOCKED in the return).
2587 * This provides synchronisation against concurrent unmapping here.
2590 again:
2591 restart_addr = vma->vm_truncate_count;
2592 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2593 start_addr = restart_addr;
2594 if (start_addr >= end_addr) {
2595 /* Top of vma has been split off since last time */
2596 vma->vm_truncate_count = details->truncate_count;
2597 return 0;
2601 restart_addr = zap_page_range(vma, start_addr,
2602 end_addr - start_addr, details);
2603 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2605 if (restart_addr >= end_addr) {
2606 /* We have now completed this vma: mark it so */
2607 vma->vm_truncate_count = details->truncate_count;
2608 if (!need_break)
2609 return 0;
2610 } else {
2611 /* Note restart_addr in vma's truncate_count field */
2612 vma->vm_truncate_count = restart_addr;
2613 if (!need_break)
2614 goto again;
2617 spin_unlock(details->i_mmap_lock);
2618 cond_resched();
2619 spin_lock(details->i_mmap_lock);
2620 return -EINTR;
2623 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2624 struct zap_details *details)
2626 struct vm_area_struct *vma;
2627 struct prio_tree_iter iter;
2628 pgoff_t vba, vea, zba, zea;
2630 restart:
2631 vma_prio_tree_foreach(vma, &iter, root,
2632 details->first_index, details->last_index) {
2633 /* Skip quickly over those we have already dealt with */
2634 if (vma->vm_truncate_count == details->truncate_count)
2635 continue;
2637 vba = vma->vm_pgoff;
2638 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2639 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2640 zba = details->first_index;
2641 if (zba < vba)
2642 zba = vba;
2643 zea = details->last_index;
2644 if (zea > vea)
2645 zea = vea;
2647 if (unmap_mapping_range_vma(vma,
2648 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2649 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2650 details) < 0)
2651 goto restart;
2655 static inline void unmap_mapping_range_list(struct list_head *head,
2656 struct zap_details *details)
2658 struct vm_area_struct *vma;
2661 * In nonlinear VMAs there is no correspondence between virtual address
2662 * offset and file offset. So we must perform an exhaustive search
2663 * across *all* the pages in each nonlinear VMA, not just the pages
2664 * whose virtual address lies outside the file truncation point.
2666 restart:
2667 list_for_each_entry(vma, head, shared.vm_set.list) {
2668 /* Skip quickly over those we have already dealt with */
2669 if (vma->vm_truncate_count == details->truncate_count)
2670 continue;
2671 details->nonlinear_vma = vma;
2672 if (unmap_mapping_range_vma(vma, vma->vm_start,
2673 vma->vm_end, details) < 0)
2674 goto restart;
2679 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2680 * @mapping: the address space containing mmaps to be unmapped.
2681 * @holebegin: byte in first page to unmap, relative to the start of
2682 * the underlying file. This will be rounded down to a PAGE_SIZE
2683 * boundary. Note that this is different from truncate_pagecache(), which
2684 * must keep the partial page. In contrast, we must get rid of
2685 * partial pages.
2686 * @holelen: size of prospective hole in bytes. This will be rounded
2687 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2688 * end of the file.
2689 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2690 * but 0 when invalidating pagecache, don't throw away private data.
2692 void unmap_mapping_range(struct address_space *mapping,
2693 loff_t const holebegin, loff_t const holelen, int even_cows)
2695 struct zap_details details;
2696 pgoff_t hba = holebegin >> PAGE_SHIFT;
2697 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2699 /* Check for overflow. */
2700 if (sizeof(holelen) > sizeof(hlen)) {
2701 long long holeend =
2702 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2703 if (holeend & ~(long long)ULONG_MAX)
2704 hlen = ULONG_MAX - hba + 1;
2707 details.check_mapping = even_cows? NULL: mapping;
2708 details.nonlinear_vma = NULL;
2709 details.first_index = hba;
2710 details.last_index = hba + hlen - 1;
2711 if (details.last_index < details.first_index)
2712 details.last_index = ULONG_MAX;
2713 details.i_mmap_lock = &mapping->i_mmap_lock;
2715 mutex_lock(&mapping->unmap_mutex);
2716 spin_lock(&mapping->i_mmap_lock);
2718 /* Protect against endless unmapping loops */
2719 mapping->truncate_count++;
2720 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2721 if (mapping->truncate_count == 0)
2722 reset_vma_truncate_counts(mapping);
2723 mapping->truncate_count++;
2725 details.truncate_count = mapping->truncate_count;
2727 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2728 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2729 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2730 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2731 spin_unlock(&mapping->i_mmap_lock);
2732 mutex_unlock(&mapping->unmap_mutex);
2734 EXPORT_SYMBOL(unmap_mapping_range);
2736 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2738 struct address_space *mapping = inode->i_mapping;
2741 * If the underlying filesystem is not going to provide
2742 * a way to truncate a range of blocks (punch a hole) -
2743 * we should return failure right now.
2745 if (!inode->i_op->truncate_range)
2746 return -ENOSYS;
2748 mutex_lock(&inode->i_mutex);
2749 down_write(&inode->i_alloc_sem);
2750 unmap_mapping_range(mapping, offset, (end - offset), 1);
2751 truncate_inode_pages_range(mapping, offset, end);
2752 unmap_mapping_range(mapping, offset, (end - offset), 1);
2753 inode->i_op->truncate_range(inode, offset, end);
2754 up_write(&inode->i_alloc_sem);
2755 mutex_unlock(&inode->i_mutex);
2757 return 0;
2761 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2762 * but allow concurrent faults), and pte mapped but not yet locked.
2763 * We return with mmap_sem still held, but pte unmapped and unlocked.
2765 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2766 unsigned long address, pte_t *page_table, pmd_t *pmd,
2767 unsigned int flags, pte_t orig_pte)
2769 spinlock_t *ptl;
2770 struct page *page, *swapcache = NULL;
2771 swp_entry_t entry;
2772 pte_t pte;
2773 int locked;
2774 struct mem_cgroup *ptr;
2775 int exclusive = 0;
2776 int ret = 0;
2778 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2779 goto out;
2781 entry = pte_to_swp_entry(orig_pte);
2782 if (unlikely(non_swap_entry(entry))) {
2783 if (is_migration_entry(entry)) {
2784 migration_entry_wait(mm, pmd, address);
2785 } else if (is_hwpoison_entry(entry)) {
2786 ret = VM_FAULT_HWPOISON;
2787 } else {
2788 print_bad_pte(vma, address, orig_pte, NULL);
2789 ret = VM_FAULT_SIGBUS;
2791 goto out;
2793 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2794 page = lookup_swap_cache(entry);
2795 if (!page) {
2796 grab_swap_token(mm); /* Contend for token _before_ read-in */
2797 page = swapin_readahead(entry,
2798 GFP_HIGHUSER_MOVABLE, vma, address);
2799 if (!page) {
2801 * Back out if somebody else faulted in this pte
2802 * while we released the pte lock.
2804 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2805 if (likely(pte_same(*page_table, orig_pte)))
2806 ret = VM_FAULT_OOM;
2807 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2808 goto unlock;
2811 /* Had to read the page from swap area: Major fault */
2812 ret = VM_FAULT_MAJOR;
2813 count_vm_event(PGMAJFAULT);
2814 } else if (PageHWPoison(page)) {
2816 * hwpoisoned dirty swapcache pages are kept for killing
2817 * owner processes (which may be unknown at hwpoison time)
2819 ret = VM_FAULT_HWPOISON;
2820 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2821 goto out_release;
2824 locked = lock_page_or_retry(page, mm, flags);
2825 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2826 if (!locked) {
2827 ret |= VM_FAULT_RETRY;
2828 goto out_release;
2832 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2833 * release the swapcache from under us. The page pin, and pte_same
2834 * test below, are not enough to exclude that. Even if it is still
2835 * swapcache, we need to check that the page's swap has not changed.
2837 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2838 goto out_page;
2840 if (ksm_might_need_to_copy(page, vma, address)) {
2841 swapcache = page;
2842 page = ksm_does_need_to_copy(page, vma, address);
2844 if (unlikely(!page)) {
2845 ret = VM_FAULT_OOM;
2846 page = swapcache;
2847 swapcache = NULL;
2848 goto out_page;
2852 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2853 ret = VM_FAULT_OOM;
2854 goto out_page;
2858 * Back out if somebody else already faulted in this pte.
2860 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2861 if (unlikely(!pte_same(*page_table, orig_pte)))
2862 goto out_nomap;
2864 if (unlikely(!PageUptodate(page))) {
2865 ret = VM_FAULT_SIGBUS;
2866 goto out_nomap;
2870 * The page isn't present yet, go ahead with the fault.
2872 * Be careful about the sequence of operations here.
2873 * To get its accounting right, reuse_swap_page() must be called
2874 * while the page is counted on swap but not yet in mapcount i.e.
2875 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2876 * must be called after the swap_free(), or it will never succeed.
2877 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2878 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2879 * in page->private. In this case, a record in swap_cgroup is silently
2880 * discarded at swap_free().
2883 inc_mm_counter_fast(mm, MM_ANONPAGES);
2884 dec_mm_counter_fast(mm, MM_SWAPENTS);
2885 pte = mk_pte(page, vma->vm_page_prot);
2886 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2887 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2888 flags &= ~FAULT_FLAG_WRITE;
2889 ret |= VM_FAULT_WRITE;
2890 exclusive = 1;
2892 flush_icache_page(vma, page);
2893 set_pte_at(mm, address, page_table, pte);
2894 do_page_add_anon_rmap(page, vma, address, exclusive);
2895 /* It's better to call commit-charge after rmap is established */
2896 mem_cgroup_commit_charge_swapin(page, ptr);
2898 swap_free(entry);
2899 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2900 try_to_free_swap(page);
2901 unlock_page(page);
2902 if (swapcache) {
2904 * Hold the lock to avoid the swap entry to be reused
2905 * until we take the PT lock for the pte_same() check
2906 * (to avoid false positives from pte_same). For
2907 * further safety release the lock after the swap_free
2908 * so that the swap count won't change under a
2909 * parallel locked swapcache.
2911 unlock_page(swapcache);
2912 page_cache_release(swapcache);
2915 if (flags & FAULT_FLAG_WRITE) {
2916 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2917 if (ret & VM_FAULT_ERROR)
2918 ret &= VM_FAULT_ERROR;
2919 goto out;
2922 /* No need to invalidate - it was non-present before */
2923 update_mmu_cache(vma, address, page_table);
2924 unlock:
2925 pte_unmap_unlock(page_table, ptl);
2926 out:
2927 return ret;
2928 out_nomap:
2929 mem_cgroup_cancel_charge_swapin(ptr);
2930 pte_unmap_unlock(page_table, ptl);
2931 out_page:
2932 unlock_page(page);
2933 out_release:
2934 page_cache_release(page);
2935 if (swapcache) {
2936 unlock_page(swapcache);
2937 page_cache_release(swapcache);
2939 return ret;
2943 * This is like a special single-page "expand_{down|up}wards()",
2944 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2945 * doesn't hit another vma.
2947 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2949 address &= PAGE_MASK;
2950 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2951 struct vm_area_struct *prev = vma->vm_prev;
2954 * Is there a mapping abutting this one below?
2956 * That's only ok if it's the same stack mapping
2957 * that has gotten split..
2959 if (prev && prev->vm_end == address)
2960 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2962 expand_stack(vma, address - PAGE_SIZE);
2964 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2965 struct vm_area_struct *next = vma->vm_next;
2967 /* As VM_GROWSDOWN but s/below/above/ */
2968 if (next && next->vm_start == address + PAGE_SIZE)
2969 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2971 expand_upwards(vma, address + PAGE_SIZE);
2973 return 0;
2977 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2978 * but allow concurrent faults), and pte mapped but not yet locked.
2979 * We return with mmap_sem still held, but pte unmapped and unlocked.
2981 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2982 unsigned long address, pte_t *page_table, pmd_t *pmd,
2983 unsigned int flags)
2985 struct page *page;
2986 spinlock_t *ptl;
2987 pte_t entry;
2989 pte_unmap(page_table);
2991 /* Check if we need to add a guard page to the stack */
2992 if (check_stack_guard_page(vma, address) < 0)
2993 return VM_FAULT_SIGBUS;
2995 /* Use the zero-page for reads */
2996 if (!(flags & FAULT_FLAG_WRITE)) {
2997 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2998 vma->vm_page_prot));
2999 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3000 if (!pte_none(*page_table))
3001 goto unlock;
3002 goto setpte;
3005 /* Allocate our own private page. */
3006 if (unlikely(anon_vma_prepare(vma)))
3007 goto oom;
3008 page = alloc_zeroed_user_highpage_movable(vma, address);
3009 if (!page)
3010 goto oom;
3011 __SetPageUptodate(page);
3013 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3014 goto oom_free_page;
3016 entry = mk_pte(page, vma->vm_page_prot);
3017 if (vma->vm_flags & VM_WRITE)
3018 entry = pte_mkwrite(pte_mkdirty(entry));
3020 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3021 if (!pte_none(*page_table))
3022 goto release;
3024 inc_mm_counter_fast(mm, MM_ANONPAGES);
3025 page_add_new_anon_rmap(page, vma, address);
3026 setpte:
3027 set_pte_at(mm, address, page_table, entry);
3029 /* No need to invalidate - it was non-present before */
3030 update_mmu_cache(vma, address, page_table);
3031 unlock:
3032 pte_unmap_unlock(page_table, ptl);
3033 return 0;
3034 release:
3035 mem_cgroup_uncharge_page(page);
3036 page_cache_release(page);
3037 goto unlock;
3038 oom_free_page:
3039 page_cache_release(page);
3040 oom:
3041 return VM_FAULT_OOM;
3045 * __do_fault() tries to create a new page mapping. It aggressively
3046 * tries to share with existing pages, but makes a separate copy if
3047 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3048 * the next page fault.
3050 * As this is called only for pages that do not currently exist, we
3051 * do not need to flush old virtual caches or the TLB.
3053 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3054 * but allow concurrent faults), and pte neither mapped nor locked.
3055 * We return with mmap_sem still held, but pte unmapped and unlocked.
3057 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3058 unsigned long address, pmd_t *pmd,
3059 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3061 pte_t *page_table;
3062 spinlock_t *ptl;
3063 struct page *page;
3064 pte_t entry;
3065 int anon = 0;
3066 int charged = 0;
3067 struct page *dirty_page = NULL;
3068 struct vm_fault vmf;
3069 int ret;
3070 int page_mkwrite = 0;
3072 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3073 vmf.pgoff = pgoff;
3074 vmf.flags = flags;
3075 vmf.page = NULL;
3077 ret = vma->vm_ops->fault(vma, &vmf);
3078 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3079 VM_FAULT_RETRY)))
3080 return ret;
3082 if (unlikely(PageHWPoison(vmf.page))) {
3083 if (ret & VM_FAULT_LOCKED)
3084 unlock_page(vmf.page);
3085 return VM_FAULT_HWPOISON;
3089 * For consistency in subsequent calls, make the faulted page always
3090 * locked.
3092 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3093 lock_page(vmf.page);
3094 else
3095 VM_BUG_ON(!PageLocked(vmf.page));
3098 * Should we do an early C-O-W break?
3100 page = vmf.page;
3101 if (flags & FAULT_FLAG_WRITE) {
3102 if (!(vma->vm_flags & VM_SHARED)) {
3103 anon = 1;
3104 if (unlikely(anon_vma_prepare(vma))) {
3105 ret = VM_FAULT_OOM;
3106 goto out;
3108 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3109 vma, address);
3110 if (!page) {
3111 ret = VM_FAULT_OOM;
3112 goto out;
3114 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3115 ret = VM_FAULT_OOM;
3116 page_cache_release(page);
3117 goto out;
3119 charged = 1;
3120 copy_user_highpage(page, vmf.page, address, vma);
3121 __SetPageUptodate(page);
3122 } else {
3124 * If the page will be shareable, see if the backing
3125 * address space wants to know that the page is about
3126 * to become writable
3128 if (vma->vm_ops->page_mkwrite) {
3129 int tmp;
3131 unlock_page(page);
3132 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3133 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3134 if (unlikely(tmp &
3135 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3136 ret = tmp;
3137 goto unwritable_page;
3139 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3140 lock_page(page);
3141 if (!page->mapping) {
3142 ret = 0; /* retry the fault */
3143 unlock_page(page);
3144 goto unwritable_page;
3146 } else
3147 VM_BUG_ON(!PageLocked(page));
3148 page_mkwrite = 1;
3154 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3157 * This silly early PAGE_DIRTY setting removes a race
3158 * due to the bad i386 page protection. But it's valid
3159 * for other architectures too.
3161 * Note that if FAULT_FLAG_WRITE is set, we either now have
3162 * an exclusive copy of the page, or this is a shared mapping,
3163 * so we can make it writable and dirty to avoid having to
3164 * handle that later.
3166 /* Only go through if we didn't race with anybody else... */
3167 if (likely(pte_same(*page_table, orig_pte))) {
3168 flush_icache_page(vma, page);
3169 entry = mk_pte(page, vma->vm_page_prot);
3170 if (flags & FAULT_FLAG_WRITE)
3171 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3172 if (anon) {
3173 inc_mm_counter_fast(mm, MM_ANONPAGES);
3174 page_add_new_anon_rmap(page, vma, address);
3175 } else {
3176 inc_mm_counter_fast(mm, MM_FILEPAGES);
3177 page_add_file_rmap(page);
3178 if (flags & FAULT_FLAG_WRITE) {
3179 dirty_page = page;
3180 get_page(dirty_page);
3183 set_pte_at(mm, address, page_table, entry);
3185 /* no need to invalidate: a not-present page won't be cached */
3186 update_mmu_cache(vma, address, page_table);
3187 } else {
3188 if (charged)
3189 mem_cgroup_uncharge_page(page);
3190 if (anon)
3191 page_cache_release(page);
3192 else
3193 anon = 1; /* no anon but release faulted_page */
3196 pte_unmap_unlock(page_table, ptl);
3198 out:
3199 if (dirty_page) {
3200 struct address_space *mapping = page->mapping;
3202 if (set_page_dirty(dirty_page))
3203 page_mkwrite = 1;
3204 unlock_page(dirty_page);
3205 put_page(dirty_page);
3206 if (page_mkwrite && mapping) {
3208 * Some device drivers do not set page.mapping but still
3209 * dirty their pages
3211 balance_dirty_pages_ratelimited(mapping);
3214 /* file_update_time outside page_lock */
3215 if (vma->vm_file)
3216 file_update_time(vma->vm_file);
3217 } else {
3218 unlock_page(vmf.page);
3219 if (anon)
3220 page_cache_release(vmf.page);
3223 return ret;
3225 unwritable_page:
3226 page_cache_release(page);
3227 return ret;
3230 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3231 unsigned long address, pte_t *page_table, pmd_t *pmd,
3232 unsigned int flags, pte_t orig_pte)
3234 pgoff_t pgoff = (((address & PAGE_MASK)
3235 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3237 pte_unmap(page_table);
3238 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3242 * Fault of a previously existing named mapping. Repopulate the pte
3243 * from the encoded file_pte if possible. This enables swappable
3244 * nonlinear vmas.
3246 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3247 * but allow concurrent faults), and pte mapped but not yet locked.
3248 * We return with mmap_sem still held, but pte unmapped and unlocked.
3250 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3251 unsigned long address, pte_t *page_table, pmd_t *pmd,
3252 unsigned int flags, pte_t orig_pte)
3254 pgoff_t pgoff;
3256 flags |= FAULT_FLAG_NONLINEAR;
3258 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3259 return 0;
3261 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3263 * Page table corrupted: show pte and kill process.
3265 print_bad_pte(vma, address, orig_pte, NULL);
3266 return VM_FAULT_SIGBUS;
3269 pgoff = pte_to_pgoff(orig_pte);
3270 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3274 * These routines also need to handle stuff like marking pages dirty
3275 * and/or accessed for architectures that don't do it in hardware (most
3276 * RISC architectures). The early dirtying is also good on the i386.
3278 * There is also a hook called "update_mmu_cache()" that architectures
3279 * with external mmu caches can use to update those (ie the Sparc or
3280 * PowerPC hashed page tables that act as extended TLBs).
3282 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3283 * but allow concurrent faults), and pte mapped but not yet locked.
3284 * We return with mmap_sem still held, but pte unmapped and unlocked.
3286 int handle_pte_fault(struct mm_struct *mm,
3287 struct vm_area_struct *vma, unsigned long address,
3288 pte_t *pte, pmd_t *pmd, unsigned int flags)
3290 pte_t entry;
3291 spinlock_t *ptl;
3293 entry = *pte;
3294 if (!pte_present(entry)) {
3295 if (pte_none(entry)) {
3296 if (vma->vm_ops) {
3297 if (likely(vma->vm_ops->fault))
3298 return do_linear_fault(mm, vma, address,
3299 pte, pmd, flags, entry);
3301 return do_anonymous_page(mm, vma, address,
3302 pte, pmd, flags);
3304 if (pte_file(entry))
3305 return do_nonlinear_fault(mm, vma, address,
3306 pte, pmd, flags, entry);
3307 return do_swap_page(mm, vma, address,
3308 pte, pmd, flags, entry);
3311 ptl = pte_lockptr(mm, pmd);
3312 spin_lock(ptl);
3313 if (unlikely(!pte_same(*pte, entry)))
3314 goto unlock;
3315 if (flags & FAULT_FLAG_WRITE) {
3316 if (!pte_write(entry))
3317 return do_wp_page(mm, vma, address,
3318 pte, pmd, ptl, entry);
3319 entry = pte_mkdirty(entry);
3321 entry = pte_mkyoung(entry);
3322 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3323 update_mmu_cache(vma, address, pte);
3324 } else {
3326 * This is needed only for protection faults but the arch code
3327 * is not yet telling us if this is a protection fault or not.
3328 * This still avoids useless tlb flushes for .text page faults
3329 * with threads.
3331 if (flags & FAULT_FLAG_WRITE)
3332 flush_tlb_fix_spurious_fault(vma, address);
3334 unlock:
3335 pte_unmap_unlock(pte, ptl);
3336 return 0;
3340 * By the time we get here, we already hold the mm semaphore
3342 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3343 unsigned long address, unsigned int flags)
3345 pgd_t *pgd;
3346 pud_t *pud;
3347 pmd_t *pmd;
3348 pte_t *pte;
3350 __set_current_state(TASK_RUNNING);
3352 count_vm_event(PGFAULT);
3354 /* do counter updates before entering really critical section. */
3355 check_sync_rss_stat(current);
3357 if (unlikely(is_vm_hugetlb_page(vma)))
3358 return hugetlb_fault(mm, vma, address, flags);
3360 pgd = pgd_offset(mm, address);
3361 pud = pud_alloc(mm, pgd, address);
3362 if (!pud)
3363 return VM_FAULT_OOM;
3364 pmd = pmd_alloc(mm, pud, address);
3365 if (!pmd)
3366 return VM_FAULT_OOM;
3367 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3368 if (!vma->vm_ops)
3369 return do_huge_pmd_anonymous_page(mm, vma, address,
3370 pmd, flags);
3371 } else {
3372 pmd_t orig_pmd = *pmd;
3373 barrier();
3374 if (pmd_trans_huge(orig_pmd)) {
3375 if (flags & FAULT_FLAG_WRITE &&
3376 !pmd_write(orig_pmd) &&
3377 !pmd_trans_splitting(orig_pmd))
3378 return do_huge_pmd_wp_page(mm, vma, address,
3379 pmd, orig_pmd);
3380 return 0;
3385 * Use __pte_alloc instead of pte_alloc_map, because we can't
3386 * run pte_offset_map on the pmd, if an huge pmd could
3387 * materialize from under us from a different thread.
3389 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
3390 return VM_FAULT_OOM;
3391 /* if an huge pmd materialized from under us just retry later */
3392 if (unlikely(pmd_trans_huge(*pmd)))
3393 return 0;
3395 * A regular pmd is established and it can't morph into a huge pmd
3396 * from under us anymore at this point because we hold the mmap_sem
3397 * read mode and khugepaged takes it in write mode. So now it's
3398 * safe to run pte_offset_map().
3400 pte = pte_offset_map(pmd, address);
3402 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3405 #ifndef __PAGETABLE_PUD_FOLDED
3407 * Allocate page upper directory.
3408 * We've already handled the fast-path in-line.
3410 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3412 pud_t *new = pud_alloc_one(mm, address);
3413 if (!new)
3414 return -ENOMEM;
3416 smp_wmb(); /* See comment in __pte_alloc */
3418 spin_lock(&mm->page_table_lock);
3419 if (pgd_present(*pgd)) /* Another has populated it */
3420 pud_free(mm, new);
3421 else
3422 pgd_populate(mm, pgd, new);
3423 spin_unlock(&mm->page_table_lock);
3424 return 0;
3426 #endif /* __PAGETABLE_PUD_FOLDED */
3428 #ifndef __PAGETABLE_PMD_FOLDED
3430 * Allocate page middle directory.
3431 * We've already handled the fast-path in-line.
3433 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3435 pmd_t *new = pmd_alloc_one(mm, address);
3436 if (!new)
3437 return -ENOMEM;
3439 smp_wmb(); /* See comment in __pte_alloc */
3441 spin_lock(&mm->page_table_lock);
3442 #ifndef __ARCH_HAS_4LEVEL_HACK
3443 if (pud_present(*pud)) /* Another has populated it */
3444 pmd_free(mm, new);
3445 else
3446 pud_populate(mm, pud, new);
3447 #else
3448 if (pgd_present(*pud)) /* Another has populated it */
3449 pmd_free(mm, new);
3450 else
3451 pgd_populate(mm, pud, new);
3452 #endif /* __ARCH_HAS_4LEVEL_HACK */
3453 spin_unlock(&mm->page_table_lock);
3454 return 0;
3456 #endif /* __PAGETABLE_PMD_FOLDED */
3458 int make_pages_present(unsigned long addr, unsigned long end)
3460 int ret, len, write;
3461 struct vm_area_struct * vma;
3463 vma = find_vma(current->mm, addr);
3464 if (!vma)
3465 return -ENOMEM;
3467 * We want to touch writable mappings with a write fault in order
3468 * to break COW, except for shared mappings because these don't COW
3469 * and we would not want to dirty them for nothing.
3471 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3472 BUG_ON(addr >= end);
3473 BUG_ON(end > vma->vm_end);
3474 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3475 ret = get_user_pages(current, current->mm, addr,
3476 len, write, 0, NULL, NULL);
3477 if (ret < 0)
3478 return ret;
3479 return ret == len ? 0 : -EFAULT;
3482 #if !defined(__HAVE_ARCH_GATE_AREA)
3484 #if defined(AT_SYSINFO_EHDR)
3485 static struct vm_area_struct gate_vma;
3487 static int __init gate_vma_init(void)
3489 gate_vma.vm_mm = NULL;
3490 gate_vma.vm_start = FIXADDR_USER_START;
3491 gate_vma.vm_end = FIXADDR_USER_END;
3492 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3493 gate_vma.vm_page_prot = __P101;
3495 * Make sure the vDSO gets into every core dump.
3496 * Dumping its contents makes post-mortem fully interpretable later
3497 * without matching up the same kernel and hardware config to see
3498 * what PC values meant.
3500 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3501 return 0;
3503 __initcall(gate_vma_init);
3504 #endif
3506 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3508 #ifdef AT_SYSINFO_EHDR
3509 return &gate_vma;
3510 #else
3511 return NULL;
3512 #endif
3515 int in_gate_area_no_mm(unsigned long addr)
3517 #ifdef AT_SYSINFO_EHDR
3518 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3519 return 1;
3520 #endif
3521 return 0;
3524 #endif /* __HAVE_ARCH_GATE_AREA */
3526 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3527 pte_t **ptepp, spinlock_t **ptlp)
3529 pgd_t *pgd;
3530 pud_t *pud;
3531 pmd_t *pmd;
3532 pte_t *ptep;
3534 pgd = pgd_offset(mm, address);
3535 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3536 goto out;
3538 pud = pud_offset(pgd, address);
3539 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3540 goto out;
3542 pmd = pmd_offset(pud, address);
3543 VM_BUG_ON(pmd_trans_huge(*pmd));
3544 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3545 goto out;
3547 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3548 if (pmd_huge(*pmd))
3549 goto out;
3551 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3552 if (!ptep)
3553 goto out;
3554 if (!pte_present(*ptep))
3555 goto unlock;
3556 *ptepp = ptep;
3557 return 0;
3558 unlock:
3559 pte_unmap_unlock(ptep, *ptlp);
3560 out:
3561 return -EINVAL;
3564 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3565 pte_t **ptepp, spinlock_t **ptlp)
3567 int res;
3569 /* (void) is needed to make gcc happy */
3570 (void) __cond_lock(*ptlp,
3571 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3572 return res;
3576 * follow_pfn - look up PFN at a user virtual address
3577 * @vma: memory mapping
3578 * @address: user virtual address
3579 * @pfn: location to store found PFN
3581 * Only IO mappings and raw PFN mappings are allowed.
3583 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3585 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3586 unsigned long *pfn)
3588 int ret = -EINVAL;
3589 spinlock_t *ptl;
3590 pte_t *ptep;
3592 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3593 return ret;
3595 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3596 if (ret)
3597 return ret;
3598 *pfn = pte_pfn(*ptep);
3599 pte_unmap_unlock(ptep, ptl);
3600 return 0;
3602 EXPORT_SYMBOL(follow_pfn);
3604 #ifdef CONFIG_HAVE_IOREMAP_PROT
3605 int follow_phys(struct vm_area_struct *vma,
3606 unsigned long address, unsigned int flags,
3607 unsigned long *prot, resource_size_t *phys)
3609 int ret = -EINVAL;
3610 pte_t *ptep, pte;
3611 spinlock_t *ptl;
3613 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3614 goto out;
3616 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3617 goto out;
3618 pte = *ptep;
3620 if ((flags & FOLL_WRITE) && !pte_write(pte))
3621 goto unlock;
3623 *prot = pgprot_val(pte_pgprot(pte));
3624 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3626 ret = 0;
3627 unlock:
3628 pte_unmap_unlock(ptep, ptl);
3629 out:
3630 return ret;
3633 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3634 void *buf, int len, int write)
3636 resource_size_t phys_addr;
3637 unsigned long prot = 0;
3638 void __iomem *maddr;
3639 int offset = addr & (PAGE_SIZE-1);
3641 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3642 return -EINVAL;
3644 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3645 if (write)
3646 memcpy_toio(maddr + offset, buf, len);
3647 else
3648 memcpy_fromio(buf, maddr + offset, len);
3649 iounmap(maddr);
3651 return len;
3653 #endif
3656 * Access another process' address space as given in mm. If non-NULL, use the
3657 * given task for page fault accounting.
3659 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3660 unsigned long addr, void *buf, int len, int write)
3662 struct vm_area_struct *vma;
3663 void *old_buf = buf;
3665 down_read(&mm->mmap_sem);
3666 /* ignore errors, just check how much was successfully transferred */
3667 while (len) {
3668 int bytes, ret, offset;
3669 void *maddr;
3670 struct page *page = NULL;
3672 ret = get_user_pages(tsk, mm, addr, 1,
3673 write, 1, &page, &vma);
3674 if (ret <= 0) {
3676 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3677 * we can access using slightly different code.
3679 #ifdef CONFIG_HAVE_IOREMAP_PROT
3680 vma = find_vma(mm, addr);
3681 if (!vma)
3682 break;
3683 if (vma->vm_ops && vma->vm_ops->access)
3684 ret = vma->vm_ops->access(vma, addr, buf,
3685 len, write);
3686 if (ret <= 0)
3687 #endif
3688 break;
3689 bytes = ret;
3690 } else {
3691 bytes = len;
3692 offset = addr & (PAGE_SIZE-1);
3693 if (bytes > PAGE_SIZE-offset)
3694 bytes = PAGE_SIZE-offset;
3696 maddr = kmap(page);
3697 if (write) {
3698 copy_to_user_page(vma, page, addr,
3699 maddr + offset, buf, bytes);
3700 set_page_dirty_lock(page);
3701 } else {
3702 copy_from_user_page(vma, page, addr,
3703 buf, maddr + offset, bytes);
3705 kunmap(page);
3706 page_cache_release(page);
3708 len -= bytes;
3709 buf += bytes;
3710 addr += bytes;
3712 up_read(&mm->mmap_sem);
3714 return buf - old_buf;
3718 * access_remote_vm - access another process' address space
3719 * @mm: the mm_struct of the target address space
3720 * @addr: start address to access
3721 * @buf: source or destination buffer
3722 * @len: number of bytes to transfer
3723 * @write: whether the access is a write
3725 * The caller must hold a reference on @mm.
3727 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3728 void *buf, int len, int write)
3730 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3734 * Access another process' address space.
3735 * Source/target buffer must be kernel space,
3736 * Do not walk the page table directly, use get_user_pages
3738 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3739 void *buf, int len, int write)
3741 struct mm_struct *mm;
3742 int ret;
3744 mm = get_task_mm(tsk);
3745 if (!mm)
3746 return 0;
3748 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3749 mmput(mm);
3751 return ret;
3755 * Print the name of a VMA.
3757 void print_vma_addr(char *prefix, unsigned long ip)
3759 struct mm_struct *mm = current->mm;
3760 struct vm_area_struct *vma;
3763 * Do not print if we are in atomic
3764 * contexts (in exception stacks, etc.):
3766 if (preempt_count())
3767 return;
3769 down_read(&mm->mmap_sem);
3770 vma = find_vma(mm, ip);
3771 if (vma && vma->vm_file) {
3772 struct file *f = vma->vm_file;
3773 char *buf = (char *)__get_free_page(GFP_KERNEL);
3774 if (buf) {
3775 char *p, *s;
3777 p = d_path(&f->f_path, buf, PAGE_SIZE);
3778 if (IS_ERR(p))
3779 p = "?";
3780 s = strrchr(p, '/');
3781 if (s)
3782 p = s+1;
3783 printk("%s%s[%lx+%lx]", prefix, p,
3784 vma->vm_start,
3785 vma->vm_end - vma->vm_start);
3786 free_page((unsigned long)buf);
3789 up_read(&current->mm->mmap_sem);
3792 #ifdef CONFIG_PROVE_LOCKING
3793 void might_fault(void)
3796 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3797 * holding the mmap_sem, this is safe because kernel memory doesn't
3798 * get paged out, therefore we'll never actually fault, and the
3799 * below annotations will generate false positives.
3801 if (segment_eq(get_fs(), KERNEL_DS))
3802 return;
3804 might_sleep();
3806 * it would be nicer only to annotate paths which are not under
3807 * pagefault_disable, however that requires a larger audit and
3808 * providing helpers like get_user_atomic.
3810 if (!in_atomic() && current->mm)
3811 might_lock_read(&current->mm->mmap_sem);
3813 EXPORT_SYMBOL(might_fault);
3814 #endif
3816 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3817 static void clear_gigantic_page(struct page *page,
3818 unsigned long addr,
3819 unsigned int pages_per_huge_page)
3821 int i;
3822 struct page *p = page;
3824 might_sleep();
3825 for (i = 0; i < pages_per_huge_page;
3826 i++, p = mem_map_next(p, page, i)) {
3827 cond_resched();
3828 clear_user_highpage(p, addr + i * PAGE_SIZE);
3831 void clear_huge_page(struct page *page,
3832 unsigned long addr, unsigned int pages_per_huge_page)
3834 int i;
3836 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3837 clear_gigantic_page(page, addr, pages_per_huge_page);
3838 return;
3841 might_sleep();
3842 for (i = 0; i < pages_per_huge_page; i++) {
3843 cond_resched();
3844 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3848 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3849 unsigned long addr,
3850 struct vm_area_struct *vma,
3851 unsigned int pages_per_huge_page)
3853 int i;
3854 struct page *dst_base = dst;
3855 struct page *src_base = src;
3857 for (i = 0; i < pages_per_huge_page; ) {
3858 cond_resched();
3859 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3861 i++;
3862 dst = mem_map_next(dst, dst_base, i);
3863 src = mem_map_next(src, src_base, i);
3867 void copy_user_huge_page(struct page *dst, struct page *src,
3868 unsigned long addr, struct vm_area_struct *vma,
3869 unsigned int pages_per_huge_page)
3871 int i;
3873 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3874 copy_user_gigantic_page(dst, src, addr, vma,
3875 pages_per_huge_page);
3876 return;
3879 might_sleep();
3880 for (i = 0; i < pages_per_huge_page; i++) {
3881 cond_resched();
3882 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3885 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */