ethtool: Change ETHTOOL_PHYS_ID implementation to allow dropping RTNL
[linux/fpc-iii.git] / mm / swap.c
bloba448db377cb046d0871506f156b430dceed818fe
1 /*
2 * linux/mm/swap.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
35 #include "internal.h"
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
45 * This path almost never happens for VM activity - pages are normally
46 * freed via pagevecs. But it gets used by networking.
48 static void __page_cache_release(struct page *page)
50 if (PageLRU(page)) {
51 unsigned long flags;
52 struct zone *zone = page_zone(page);
54 spin_lock_irqsave(&zone->lru_lock, flags);
55 VM_BUG_ON(!PageLRU(page));
56 __ClearPageLRU(page);
57 del_page_from_lru(zone, page);
58 spin_unlock_irqrestore(&zone->lru_lock, flags);
62 static void __put_single_page(struct page *page)
64 __page_cache_release(page);
65 free_hot_cold_page(page, 0);
68 static void __put_compound_page(struct page *page)
70 compound_page_dtor *dtor;
72 __page_cache_release(page);
73 dtor = get_compound_page_dtor(page);
74 (*dtor)(page);
77 static void put_compound_page(struct page *page)
79 if (unlikely(PageTail(page))) {
80 /* __split_huge_page_refcount can run under us */
81 struct page *page_head = page->first_page;
82 smp_rmb();
84 * If PageTail is still set after smp_rmb() we can be sure
85 * that the page->first_page we read wasn't a dangling pointer.
86 * See __split_huge_page_refcount() smp_wmb().
88 if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
89 unsigned long flags;
91 * Verify that our page_head wasn't converted
92 * to a a regular page before we got a
93 * reference on it.
95 if (unlikely(!PageHead(page_head))) {
96 /* PageHead is cleared after PageTail */
97 smp_rmb();
98 VM_BUG_ON(PageTail(page));
99 goto out_put_head;
102 * Only run compound_lock on a valid PageHead,
103 * after having it pinned with
104 * get_page_unless_zero() above.
106 smp_mb();
107 /* page_head wasn't a dangling pointer */
108 flags = compound_lock_irqsave(page_head);
109 if (unlikely(!PageTail(page))) {
110 /* __split_huge_page_refcount run before us */
111 compound_unlock_irqrestore(page_head, flags);
112 VM_BUG_ON(PageHead(page_head));
113 out_put_head:
114 if (put_page_testzero(page_head))
115 __put_single_page(page_head);
116 out_put_single:
117 if (put_page_testzero(page))
118 __put_single_page(page);
119 return;
121 VM_BUG_ON(page_head != page->first_page);
123 * We can release the refcount taken by
124 * get_page_unless_zero now that
125 * split_huge_page_refcount is blocked on the
126 * compound_lock.
128 if (put_page_testzero(page_head))
129 VM_BUG_ON(1);
130 /* __split_huge_page_refcount will wait now */
131 VM_BUG_ON(atomic_read(&page->_count) <= 0);
132 atomic_dec(&page->_count);
133 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
134 compound_unlock_irqrestore(page_head, flags);
135 if (put_page_testzero(page_head)) {
136 if (PageHead(page_head))
137 __put_compound_page(page_head);
138 else
139 __put_single_page(page_head);
141 } else {
142 /* page_head is a dangling pointer */
143 VM_BUG_ON(PageTail(page));
144 goto out_put_single;
146 } else if (put_page_testzero(page)) {
147 if (PageHead(page))
148 __put_compound_page(page);
149 else
150 __put_single_page(page);
154 void put_page(struct page *page)
156 if (unlikely(PageCompound(page)))
157 put_compound_page(page);
158 else if (put_page_testzero(page))
159 __put_single_page(page);
161 EXPORT_SYMBOL(put_page);
164 * put_pages_list() - release a list of pages
165 * @pages: list of pages threaded on page->lru
167 * Release a list of pages which are strung together on page.lru. Currently
168 * used by read_cache_pages() and related error recovery code.
170 void put_pages_list(struct list_head *pages)
172 while (!list_empty(pages)) {
173 struct page *victim;
175 victim = list_entry(pages->prev, struct page, lru);
176 list_del(&victim->lru);
177 page_cache_release(victim);
180 EXPORT_SYMBOL(put_pages_list);
182 static void pagevec_lru_move_fn(struct pagevec *pvec,
183 void (*move_fn)(struct page *page, void *arg),
184 void *arg)
186 int i;
187 struct zone *zone = NULL;
188 unsigned long flags = 0;
190 for (i = 0; i < pagevec_count(pvec); i++) {
191 struct page *page = pvec->pages[i];
192 struct zone *pagezone = page_zone(page);
194 if (pagezone != zone) {
195 if (zone)
196 spin_unlock_irqrestore(&zone->lru_lock, flags);
197 zone = pagezone;
198 spin_lock_irqsave(&zone->lru_lock, flags);
201 (*move_fn)(page, arg);
203 if (zone)
204 spin_unlock_irqrestore(&zone->lru_lock, flags);
205 release_pages(pvec->pages, pvec->nr, pvec->cold);
206 pagevec_reinit(pvec);
209 static void pagevec_move_tail_fn(struct page *page, void *arg)
211 int *pgmoved = arg;
212 struct zone *zone = page_zone(page);
214 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
215 enum lru_list lru = page_lru_base_type(page);
216 list_move_tail(&page->lru, &zone->lru[lru].list);
217 mem_cgroup_rotate_reclaimable_page(page);
218 (*pgmoved)++;
223 * pagevec_move_tail() must be called with IRQ disabled.
224 * Otherwise this may cause nasty races.
226 static void pagevec_move_tail(struct pagevec *pvec)
228 int pgmoved = 0;
230 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
231 __count_vm_events(PGROTATED, pgmoved);
235 * Writeback is about to end against a page which has been marked for immediate
236 * reclaim. If it still appears to be reclaimable, move it to the tail of the
237 * inactive list.
239 void rotate_reclaimable_page(struct page *page)
241 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
242 !PageUnevictable(page) && PageLRU(page)) {
243 struct pagevec *pvec;
244 unsigned long flags;
246 page_cache_get(page);
247 local_irq_save(flags);
248 pvec = &__get_cpu_var(lru_rotate_pvecs);
249 if (!pagevec_add(pvec, page))
250 pagevec_move_tail(pvec);
251 local_irq_restore(flags);
255 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
256 int file, int rotated)
258 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
259 struct zone_reclaim_stat *memcg_reclaim_stat;
261 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
263 reclaim_stat->recent_scanned[file]++;
264 if (rotated)
265 reclaim_stat->recent_rotated[file]++;
267 if (!memcg_reclaim_stat)
268 return;
270 memcg_reclaim_stat->recent_scanned[file]++;
271 if (rotated)
272 memcg_reclaim_stat->recent_rotated[file]++;
276 * FIXME: speed this up?
278 void activate_page(struct page *page)
280 struct zone *zone = page_zone(page);
282 spin_lock_irq(&zone->lru_lock);
283 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
284 int file = page_is_file_cache(page);
285 int lru = page_lru_base_type(page);
286 del_page_from_lru_list(zone, page, lru);
288 SetPageActive(page);
289 lru += LRU_ACTIVE;
290 add_page_to_lru_list(zone, page, lru);
291 __count_vm_event(PGACTIVATE);
293 update_page_reclaim_stat(zone, page, file, 1);
295 spin_unlock_irq(&zone->lru_lock);
299 * Mark a page as having seen activity.
301 * inactive,unreferenced -> inactive,referenced
302 * inactive,referenced -> active,unreferenced
303 * active,unreferenced -> active,referenced
305 void mark_page_accessed(struct page *page)
307 if (!PageActive(page) && !PageUnevictable(page) &&
308 PageReferenced(page) && PageLRU(page)) {
309 activate_page(page);
310 ClearPageReferenced(page);
311 } else if (!PageReferenced(page)) {
312 SetPageReferenced(page);
316 EXPORT_SYMBOL(mark_page_accessed);
318 void __lru_cache_add(struct page *page, enum lru_list lru)
320 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
322 page_cache_get(page);
323 if (!pagevec_add(pvec, page))
324 ____pagevec_lru_add(pvec, lru);
325 put_cpu_var(lru_add_pvecs);
327 EXPORT_SYMBOL(__lru_cache_add);
330 * lru_cache_add_lru - add a page to a page list
331 * @page: the page to be added to the LRU.
332 * @lru: the LRU list to which the page is added.
334 void lru_cache_add_lru(struct page *page, enum lru_list lru)
336 if (PageActive(page)) {
337 VM_BUG_ON(PageUnevictable(page));
338 ClearPageActive(page);
339 } else if (PageUnevictable(page)) {
340 VM_BUG_ON(PageActive(page));
341 ClearPageUnevictable(page);
344 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
345 __lru_cache_add(page, lru);
349 * add_page_to_unevictable_list - add a page to the unevictable list
350 * @page: the page to be added to the unevictable list
352 * Add page directly to its zone's unevictable list. To avoid races with
353 * tasks that might be making the page evictable, through eg. munlock,
354 * munmap or exit, while it's not on the lru, we want to add the page
355 * while it's locked or otherwise "invisible" to other tasks. This is
356 * difficult to do when using the pagevec cache, so bypass that.
358 void add_page_to_unevictable_list(struct page *page)
360 struct zone *zone = page_zone(page);
362 spin_lock_irq(&zone->lru_lock);
363 SetPageUnevictable(page);
364 SetPageLRU(page);
365 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
366 spin_unlock_irq(&zone->lru_lock);
370 * If the page can not be invalidated, it is moved to the
371 * inactive list to speed up its reclaim. It is moved to the
372 * head of the list, rather than the tail, to give the flusher
373 * threads some time to write it out, as this is much more
374 * effective than the single-page writeout from reclaim.
376 * If the page isn't page_mapped and dirty/writeback, the page
377 * could reclaim asap using PG_reclaim.
379 * 1. active, mapped page -> none
380 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
381 * 3. inactive, mapped page -> none
382 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
383 * 5. inactive, clean -> inactive, tail
384 * 6. Others -> none
386 * In 4, why it moves inactive's head, the VM expects the page would
387 * be write it out by flusher threads as this is much more effective
388 * than the single-page writeout from reclaim.
390 static void lru_deactivate_fn(struct page *page, void *arg)
392 int lru, file;
393 bool active;
394 struct zone *zone = page_zone(page);
396 if (!PageLRU(page))
397 return;
399 /* Some processes are using the page */
400 if (page_mapped(page))
401 return;
403 active = PageActive(page);
405 file = page_is_file_cache(page);
406 lru = page_lru_base_type(page);
407 del_page_from_lru_list(zone, page, lru + active);
408 ClearPageActive(page);
409 ClearPageReferenced(page);
410 add_page_to_lru_list(zone, page, lru);
412 if (PageWriteback(page) || PageDirty(page)) {
414 * PG_reclaim could be raced with end_page_writeback
415 * It can make readahead confusing. But race window
416 * is _really_ small and it's non-critical problem.
418 SetPageReclaim(page);
419 } else {
421 * The page's writeback ends up during pagevec
422 * We moves tha page into tail of inactive.
424 list_move_tail(&page->lru, &zone->lru[lru].list);
425 mem_cgroup_rotate_reclaimable_page(page);
426 __count_vm_event(PGROTATED);
429 if (active)
430 __count_vm_event(PGDEACTIVATE);
431 update_page_reclaim_stat(zone, page, file, 0);
435 * Drain pages out of the cpu's pagevecs.
436 * Either "cpu" is the current CPU, and preemption has already been
437 * disabled; or "cpu" is being hot-unplugged, and is already dead.
439 static void drain_cpu_pagevecs(int cpu)
441 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
442 struct pagevec *pvec;
443 int lru;
445 for_each_lru(lru) {
446 pvec = &pvecs[lru - LRU_BASE];
447 if (pagevec_count(pvec))
448 ____pagevec_lru_add(pvec, lru);
451 pvec = &per_cpu(lru_rotate_pvecs, cpu);
452 if (pagevec_count(pvec)) {
453 unsigned long flags;
455 /* No harm done if a racing interrupt already did this */
456 local_irq_save(flags);
457 pagevec_move_tail(pvec);
458 local_irq_restore(flags);
461 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
462 if (pagevec_count(pvec))
463 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
467 * deactivate_page - forcefully deactivate a page
468 * @page: page to deactivate
470 * This function hints the VM that @page is a good reclaim candidate,
471 * for example if its invalidation fails due to the page being dirty
472 * or under writeback.
474 void deactivate_page(struct page *page)
476 if (likely(get_page_unless_zero(page))) {
477 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
479 if (!pagevec_add(pvec, page))
480 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
481 put_cpu_var(lru_deactivate_pvecs);
485 void lru_add_drain(void)
487 drain_cpu_pagevecs(get_cpu());
488 put_cpu();
491 static void lru_add_drain_per_cpu(struct work_struct *dummy)
493 lru_add_drain();
497 * Returns 0 for success
499 int lru_add_drain_all(void)
501 return schedule_on_each_cpu(lru_add_drain_per_cpu);
505 * Batched page_cache_release(). Decrement the reference count on all the
506 * passed pages. If it fell to zero then remove the page from the LRU and
507 * free it.
509 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
510 * for the remainder of the operation.
512 * The locking in this function is against shrink_inactive_list(): we recheck
513 * the page count inside the lock to see whether shrink_inactive_list()
514 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
515 * will free it.
517 void release_pages(struct page **pages, int nr, int cold)
519 int i;
520 struct pagevec pages_to_free;
521 struct zone *zone = NULL;
522 unsigned long uninitialized_var(flags);
524 pagevec_init(&pages_to_free, cold);
525 for (i = 0; i < nr; i++) {
526 struct page *page = pages[i];
528 if (unlikely(PageCompound(page))) {
529 if (zone) {
530 spin_unlock_irqrestore(&zone->lru_lock, flags);
531 zone = NULL;
533 put_compound_page(page);
534 continue;
537 if (!put_page_testzero(page))
538 continue;
540 if (PageLRU(page)) {
541 struct zone *pagezone = page_zone(page);
543 if (pagezone != zone) {
544 if (zone)
545 spin_unlock_irqrestore(&zone->lru_lock,
546 flags);
547 zone = pagezone;
548 spin_lock_irqsave(&zone->lru_lock, flags);
550 VM_BUG_ON(!PageLRU(page));
551 __ClearPageLRU(page);
552 del_page_from_lru(zone, page);
555 if (!pagevec_add(&pages_to_free, page)) {
556 if (zone) {
557 spin_unlock_irqrestore(&zone->lru_lock, flags);
558 zone = NULL;
560 __pagevec_free(&pages_to_free);
561 pagevec_reinit(&pages_to_free);
564 if (zone)
565 spin_unlock_irqrestore(&zone->lru_lock, flags);
567 pagevec_free(&pages_to_free);
569 EXPORT_SYMBOL(release_pages);
572 * The pages which we're about to release may be in the deferred lru-addition
573 * queues. That would prevent them from really being freed right now. That's
574 * OK from a correctness point of view but is inefficient - those pages may be
575 * cache-warm and we want to give them back to the page allocator ASAP.
577 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
578 * and __pagevec_lru_add_active() call release_pages() directly to avoid
579 * mutual recursion.
581 void __pagevec_release(struct pagevec *pvec)
583 lru_add_drain();
584 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
585 pagevec_reinit(pvec);
588 EXPORT_SYMBOL(__pagevec_release);
590 /* used by __split_huge_page_refcount() */
591 void lru_add_page_tail(struct zone* zone,
592 struct page *page, struct page *page_tail)
594 int active;
595 enum lru_list lru;
596 const int file = 0;
597 struct list_head *head;
599 VM_BUG_ON(!PageHead(page));
600 VM_BUG_ON(PageCompound(page_tail));
601 VM_BUG_ON(PageLRU(page_tail));
602 VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
604 SetPageLRU(page_tail);
606 if (page_evictable(page_tail, NULL)) {
607 if (PageActive(page)) {
608 SetPageActive(page_tail);
609 active = 1;
610 lru = LRU_ACTIVE_ANON;
611 } else {
612 active = 0;
613 lru = LRU_INACTIVE_ANON;
615 update_page_reclaim_stat(zone, page_tail, file, active);
616 if (likely(PageLRU(page)))
617 head = page->lru.prev;
618 else
619 head = &zone->lru[lru].list;
620 __add_page_to_lru_list(zone, page_tail, lru, head);
621 } else {
622 SetPageUnevictable(page_tail);
623 add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
627 static void ____pagevec_lru_add_fn(struct page *page, void *arg)
629 enum lru_list lru = (enum lru_list)arg;
630 struct zone *zone = page_zone(page);
631 int file = is_file_lru(lru);
632 int active = is_active_lru(lru);
634 VM_BUG_ON(PageActive(page));
635 VM_BUG_ON(PageUnevictable(page));
636 VM_BUG_ON(PageLRU(page));
638 SetPageLRU(page);
639 if (active)
640 SetPageActive(page);
641 update_page_reclaim_stat(zone, page, file, active);
642 add_page_to_lru_list(zone, page, lru);
646 * Add the passed pages to the LRU, then drop the caller's refcount
647 * on them. Reinitialises the caller's pagevec.
649 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
651 VM_BUG_ON(is_unevictable_lru(lru));
653 pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
656 EXPORT_SYMBOL(____pagevec_lru_add);
659 * Try to drop buffers from the pages in a pagevec
661 void pagevec_strip(struct pagevec *pvec)
663 int i;
665 for (i = 0; i < pagevec_count(pvec); i++) {
666 struct page *page = pvec->pages[i];
668 if (page_has_private(page) && trylock_page(page)) {
669 if (page_has_private(page))
670 try_to_release_page(page, 0);
671 unlock_page(page);
677 * pagevec_lookup - gang pagecache lookup
678 * @pvec: Where the resulting pages are placed
679 * @mapping: The address_space to search
680 * @start: The starting page index
681 * @nr_pages: The maximum number of pages
683 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
684 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
685 * reference against the pages in @pvec.
687 * The search returns a group of mapping-contiguous pages with ascending
688 * indexes. There may be holes in the indices due to not-present pages.
690 * pagevec_lookup() returns the number of pages which were found.
692 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
693 pgoff_t start, unsigned nr_pages)
695 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
696 return pagevec_count(pvec);
699 EXPORT_SYMBOL(pagevec_lookup);
701 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
702 pgoff_t *index, int tag, unsigned nr_pages)
704 pvec->nr = find_get_pages_tag(mapping, index, tag,
705 nr_pages, pvec->pages);
706 return pagevec_count(pvec);
709 EXPORT_SYMBOL(pagevec_lookup_tag);
712 * Perform any setup for the swap system
714 void __init swap_setup(void)
716 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
718 #ifdef CONFIG_SWAP
719 bdi_init(swapper_space.backing_dev_info);
720 #endif
722 /* Use a smaller cluster for small-memory machines */
723 if (megs < 16)
724 page_cluster = 2;
725 else
726 page_cluster = 3;
728 * Right now other parts of the system means that we
729 * _really_ don't want to cluster much more