2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
60 #include <linux/ftrace.h>
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
68 #define MODULE_PARAM_PREFIX "rcutree."
70 /* Data structures. */
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
81 # define DEFINE_RCU_TPS(sname) \
82 static char sname##_varname[] = #sname; \
83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84 # define RCU_STATE_NAME(sname) sname##_varname
86 # define DEFINE_RCU_TPS(sname)
87 # define RCU_STATE_NAME(sname) __stringify(sname)
90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91 DEFINE_RCU_TPS(sname) \
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93 struct rcu_state sname##_state = { \
94 .level = { &sname##_state.node[0] }, \
95 .rda = &sname##_data, \
97 .gp_state = RCU_GP_IDLE, \
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 .name = RCU_STATE_NAME(sname), \
103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 RCU_STATE_INITIALIZER(rcu_sched
, 's', call_rcu_sched
);
108 RCU_STATE_INITIALIZER(rcu_bh
, 'b', call_rcu_bh
);
110 static struct rcu_state
*const rcu_state_p
;
111 LIST_HEAD(rcu_struct_flavors
);
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree
;
115 module_param(dump_tree
, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact
;
118 module_param(rcu_fanout_exact
, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
121 module_param(rcu_fanout_leaf
, int, 0444);
122 int rcu_num_lvls __read_mostly
= RCU_NUM_LVLS
;
123 /* Number of rcu_nodes at specified level. */
124 int num_rcu_lvl
[] = NUM_RCU_LVL_INIT
;
125 int rcu_num_nodes __read_mostly
= NUM_RCU_NODES
; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly
;
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_rcu() to a simple barrier(). When this variable
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
141 int rcu_scheduler_active __read_mostly
;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
156 static int rcu_scheduler_fully_active __read_mostly
;
158 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
);
159 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
163 static void rcu_report_exp_rdp(struct rcu_state
*rsp
,
164 struct rcu_data
*rdp
, bool wake
);
165 static void sync_sched_exp_online_cleanup(int cpu
);
167 /* rcuc/rcub kthread realtime priority */
168 static int kthread_prio
= IS_ENABLED(CONFIG_RCU_BOOST
) ? 1 : 0;
169 module_param(kthread_prio
, int, 0644);
171 /* Delay in jiffies for grace-period initialization delays, debug only. */
173 static int gp_preinit_delay
;
174 module_param(gp_preinit_delay
, int, 0444);
175 static int gp_init_delay
;
176 module_param(gp_init_delay
, int, 0444);
177 static int gp_cleanup_delay
;
178 module_param(gp_cleanup_delay
, int, 0444);
181 * Number of grace periods between delays, normalized by the duration of
182 * the delay. The longer the delay, the more the grace periods between
183 * each delay. The reason for this normalization is that it means that,
184 * for non-zero delays, the overall slowdown of grace periods is constant
185 * regardless of the duration of the delay. This arrangement balances
186 * the need for long delays to increase some race probabilities with the
187 * need for fast grace periods to increase other race probabilities.
189 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
192 * Track the rcutorture test sequence number and the update version
193 * number within a given test. The rcutorture_testseq is incremented
194 * on every rcutorture module load and unload, so has an odd value
195 * when a test is running. The rcutorture_vernum is set to zero
196 * when rcutorture starts and is incremented on each rcutorture update.
197 * These variables enable correlating rcutorture output with the
198 * RCU tracing information.
200 unsigned long rcutorture_testseq
;
201 unsigned long rcutorture_vernum
;
204 * Compute the mask of online CPUs for the specified rcu_node structure.
205 * This will not be stable unless the rcu_node structure's ->lock is
206 * held, but the bit corresponding to the current CPU will be stable
209 unsigned long rcu_rnp_online_cpus(struct rcu_node
*rnp
)
211 return READ_ONCE(rnp
->qsmaskinitnext
);
215 * Return true if an RCU grace period is in progress. The READ_ONCE()s
216 * permit this function to be invoked without holding the root rcu_node
217 * structure's ->lock, but of course results can be subject to change.
219 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
221 return READ_ONCE(rsp
->completed
) != READ_ONCE(rsp
->gpnum
);
225 * Note a quiescent state. Because we do not need to know
226 * how many quiescent states passed, just if there was at least
227 * one since the start of the grace period, this just sets a flag.
228 * The caller must have disabled preemption.
230 void rcu_sched_qs(void)
232 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
233 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.s
))
235 trace_rcu_grace_period(TPS("rcu_sched"),
236 __this_cpu_read(rcu_sched_data
.gpnum
),
238 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.norm
, false);
239 if (!__this_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
))
241 __this_cpu_write(rcu_sched_data
.cpu_no_qs
.b
.exp
, false);
242 rcu_report_exp_rdp(&rcu_sched_state
,
243 this_cpu_ptr(&rcu_sched_data
), true);
248 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
249 if (__this_cpu_read(rcu_bh_data
.cpu_no_qs
.s
)) {
250 trace_rcu_grace_period(TPS("rcu_bh"),
251 __this_cpu_read(rcu_bh_data
.gpnum
),
253 __this_cpu_write(rcu_bh_data
.cpu_no_qs
.b
.norm
, false);
258 * Steal a bit from the bottom of ->dynticks for idle entry/exit
259 * control. Initially this is for TLB flushing.
261 #define RCU_DYNTICK_CTRL_MASK 0x1
262 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
263 #ifndef rcu_eqs_special_exit
264 #define rcu_eqs_special_exit() do { } while (0)
267 static DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
268 .dynticks_nesting
= 1,
269 .dynticks_nmi_nesting
= DYNTICK_IRQ_NONIDLE
,
270 .dynticks
= ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR
),
274 * Record entry into an extended quiescent state. This is only to be
275 * called when not already in an extended quiescent state.
277 static void rcu_dynticks_eqs_enter(void)
279 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
283 * CPUs seeing atomic_add_return() must see prior RCU read-side
284 * critical sections, and we also must force ordering with the
287 seq
= atomic_add_return(RCU_DYNTICK_CTRL_CTR
, &rdtp
->dynticks
);
288 /* Better be in an extended quiescent state! */
289 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
290 (seq
& RCU_DYNTICK_CTRL_CTR
));
291 /* Better not have special action (TLB flush) pending! */
292 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
293 (seq
& RCU_DYNTICK_CTRL_MASK
));
297 * Record exit from an extended quiescent state. This is only to be
298 * called from an extended quiescent state.
300 static void rcu_dynticks_eqs_exit(void)
302 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
306 * CPUs seeing atomic_add_return() must see prior idle sojourns,
307 * and we also must force ordering with the next RCU read-side
310 seq
= atomic_add_return(RCU_DYNTICK_CTRL_CTR
, &rdtp
->dynticks
);
311 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
312 !(seq
& RCU_DYNTICK_CTRL_CTR
));
313 if (seq
& RCU_DYNTICK_CTRL_MASK
) {
314 atomic_andnot(RCU_DYNTICK_CTRL_MASK
, &rdtp
->dynticks
);
315 smp_mb__after_atomic(); /* _exit after clearing mask. */
316 /* Prefer duplicate flushes to losing a flush. */
317 rcu_eqs_special_exit();
322 * Reset the current CPU's ->dynticks counter to indicate that the
323 * newly onlined CPU is no longer in an extended quiescent state.
324 * This will either leave the counter unchanged, or increment it
325 * to the next non-quiescent value.
327 * The non-atomic test/increment sequence works because the upper bits
328 * of the ->dynticks counter are manipulated only by the corresponding CPU,
329 * or when the corresponding CPU is offline.
331 static void rcu_dynticks_eqs_online(void)
333 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
335 if (atomic_read(&rdtp
->dynticks
) & RCU_DYNTICK_CTRL_CTR
)
337 atomic_add(RCU_DYNTICK_CTRL_CTR
, &rdtp
->dynticks
);
341 * Is the current CPU in an extended quiescent state?
343 * No ordering, as we are sampling CPU-local information.
345 bool rcu_dynticks_curr_cpu_in_eqs(void)
347 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
349 return !(atomic_read(&rdtp
->dynticks
) & RCU_DYNTICK_CTRL_CTR
);
353 * Snapshot the ->dynticks counter with full ordering so as to allow
354 * stable comparison of this counter with past and future snapshots.
356 int rcu_dynticks_snap(struct rcu_dynticks
*rdtp
)
358 int snap
= atomic_add_return(0, &rdtp
->dynticks
);
360 return snap
& ~RCU_DYNTICK_CTRL_MASK
;
364 * Return true if the snapshot returned from rcu_dynticks_snap()
365 * indicates that RCU is in an extended quiescent state.
367 static bool rcu_dynticks_in_eqs(int snap
)
369 return !(snap
& RCU_DYNTICK_CTRL_CTR
);
373 * Return true if the CPU corresponding to the specified rcu_dynticks
374 * structure has spent some time in an extended quiescent state since
375 * rcu_dynticks_snap() returned the specified snapshot.
377 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks
*rdtp
, int snap
)
379 return snap
!= rcu_dynticks_snap(rdtp
);
383 * Do a double-increment of the ->dynticks counter to emulate a
384 * momentary idle-CPU quiescent state.
386 static void rcu_dynticks_momentary_idle(void)
388 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
389 int special
= atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR
,
392 /* It is illegal to call this from idle state. */
393 WARN_ON_ONCE(!(special
& RCU_DYNTICK_CTRL_CTR
));
397 * Set the special (bottom) bit of the specified CPU so that it
398 * will take special action (such as flushing its TLB) on the
399 * next exit from an extended quiescent state. Returns true if
400 * the bit was successfully set, or false if the CPU was not in
401 * an extended quiescent state.
403 bool rcu_eqs_special_set(int cpu
)
407 struct rcu_dynticks
*rdtp
= &per_cpu(rcu_dynticks
, cpu
);
410 old
= atomic_read(&rdtp
->dynticks
);
411 if (old
& RCU_DYNTICK_CTRL_CTR
)
413 new = old
| RCU_DYNTICK_CTRL_MASK
;
414 } while (atomic_cmpxchg(&rdtp
->dynticks
, old
, new) != old
);
419 * Let the RCU core know that this CPU has gone through the scheduler,
420 * which is a quiescent state. This is called when the need for a
421 * quiescent state is urgent, so we burn an atomic operation and full
422 * memory barriers to let the RCU core know about it, regardless of what
423 * this CPU might (or might not) do in the near future.
425 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
427 * The caller must have disabled interrupts.
429 static void rcu_momentary_dyntick_idle(void)
431 raw_cpu_write(rcu_dynticks
.rcu_need_heavy_qs
, false);
432 rcu_dynticks_momentary_idle();
436 * Note a context switch. This is a quiescent state for RCU-sched,
437 * and requires special handling for preemptible RCU.
438 * The caller must have disabled interrupts.
440 void rcu_note_context_switch(bool preempt
)
442 barrier(); /* Avoid RCU read-side critical sections leaking down. */
443 trace_rcu_utilization(TPS("Start context switch"));
445 rcu_preempt_note_context_switch(preempt
);
446 /* Load rcu_urgent_qs before other flags. */
447 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
)))
449 this_cpu_write(rcu_dynticks
.rcu_urgent_qs
, false);
450 if (unlikely(raw_cpu_read(rcu_dynticks
.rcu_need_heavy_qs
)))
451 rcu_momentary_dyntick_idle();
452 this_cpu_inc(rcu_dynticks
.rcu_qs_ctr
);
454 rcu_note_voluntary_context_switch_lite(current
);
456 trace_rcu_utilization(TPS("End context switch"));
457 barrier(); /* Avoid RCU read-side critical sections leaking up. */
459 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
462 * Register a quiescent state for all RCU flavors. If there is an
463 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
464 * dyntick-idle quiescent state visible to other CPUs (but only for those
465 * RCU flavors in desperate need of a quiescent state, which will normally
466 * be none of them). Either way, do a lightweight quiescent state for
469 * The barrier() calls are redundant in the common case when this is
470 * called externally, but just in case this is called from within this
474 void rcu_all_qs(void)
478 if (!raw_cpu_read(rcu_dynticks
.rcu_urgent_qs
))
481 /* Load rcu_urgent_qs before other flags. */
482 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
))) {
486 this_cpu_write(rcu_dynticks
.rcu_urgent_qs
, false);
487 barrier(); /* Avoid RCU read-side critical sections leaking down. */
488 if (unlikely(raw_cpu_read(rcu_dynticks
.rcu_need_heavy_qs
))) {
489 local_irq_save(flags
);
490 rcu_momentary_dyntick_idle();
491 local_irq_restore(flags
);
493 if (unlikely(raw_cpu_read(rcu_sched_data
.cpu_no_qs
.b
.exp
)))
495 this_cpu_inc(rcu_dynticks
.rcu_qs_ctr
);
496 barrier(); /* Avoid RCU read-side critical sections leaking up. */
499 EXPORT_SYMBOL_GPL(rcu_all_qs
);
501 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
502 static long blimit
= DEFAULT_RCU_BLIMIT
;
503 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
504 static long qhimark
= DEFAULT_RCU_QHIMARK
;
505 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
506 static long qlowmark
= DEFAULT_RCU_QLOMARK
;
508 module_param(blimit
, long, 0444);
509 module_param(qhimark
, long, 0444);
510 module_param(qlowmark
, long, 0444);
512 static ulong jiffies_till_first_fqs
= ULONG_MAX
;
513 static ulong jiffies_till_next_fqs
= ULONG_MAX
;
514 static bool rcu_kick_kthreads
;
516 module_param(jiffies_till_first_fqs
, ulong
, 0644);
517 module_param(jiffies_till_next_fqs
, ulong
, 0644);
518 module_param(rcu_kick_kthreads
, bool, 0644);
521 * How long the grace period must be before we start recruiting
522 * quiescent-state help from rcu_note_context_switch().
524 static ulong jiffies_till_sched_qs
= HZ
/ 10;
525 module_param(jiffies_till_sched_qs
, ulong
, 0444);
527 static bool rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
528 struct rcu_data
*rdp
);
529 static void force_qs_rnp(struct rcu_state
*rsp
, int (*f
)(struct rcu_data
*rsp
));
530 static void force_quiescent_state(struct rcu_state
*rsp
);
531 static int rcu_pending(void);
534 * Return the number of RCU batches started thus far for debug & stats.
536 unsigned long rcu_batches_started(void)
538 return rcu_state_p
->gpnum
;
540 EXPORT_SYMBOL_GPL(rcu_batches_started
);
543 * Return the number of RCU-sched batches started thus far for debug & stats.
545 unsigned long rcu_batches_started_sched(void)
547 return rcu_sched_state
.gpnum
;
549 EXPORT_SYMBOL_GPL(rcu_batches_started_sched
);
552 * Return the number of RCU BH batches started thus far for debug & stats.
554 unsigned long rcu_batches_started_bh(void)
556 return rcu_bh_state
.gpnum
;
558 EXPORT_SYMBOL_GPL(rcu_batches_started_bh
);
561 * Return the number of RCU batches completed thus far for debug & stats.
563 unsigned long rcu_batches_completed(void)
565 return rcu_state_p
->completed
;
567 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
570 * Return the number of RCU-sched batches completed thus far for debug & stats.
572 unsigned long rcu_batches_completed_sched(void)
574 return rcu_sched_state
.completed
;
576 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
579 * Return the number of RCU BH batches completed thus far for debug & stats.
581 unsigned long rcu_batches_completed_bh(void)
583 return rcu_bh_state
.completed
;
585 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
588 * Return the number of RCU expedited batches completed thus far for
589 * debug & stats. Odd numbers mean that a batch is in progress, even
590 * numbers mean idle. The value returned will thus be roughly double
591 * the cumulative batches since boot.
593 unsigned long rcu_exp_batches_completed(void)
595 return rcu_state_p
->expedited_sequence
;
597 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed
);
600 * Return the number of RCU-sched expedited batches completed thus far
601 * for debug & stats. Similar to rcu_exp_batches_completed().
603 unsigned long rcu_exp_batches_completed_sched(void)
605 return rcu_sched_state
.expedited_sequence
;
607 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched
);
610 * Force a quiescent state.
612 void rcu_force_quiescent_state(void)
614 force_quiescent_state(rcu_state_p
);
616 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
619 * Force a quiescent state for RCU BH.
621 void rcu_bh_force_quiescent_state(void)
623 force_quiescent_state(&rcu_bh_state
);
625 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
628 * Force a quiescent state for RCU-sched.
630 void rcu_sched_force_quiescent_state(void)
632 force_quiescent_state(&rcu_sched_state
);
634 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
637 * Show the state of the grace-period kthreads.
639 void show_rcu_gp_kthreads(void)
641 struct rcu_state
*rsp
;
643 for_each_rcu_flavor(rsp
) {
644 pr_info("%s: wait state: %d ->state: %#lx\n",
645 rsp
->name
, rsp
->gp_state
, rsp
->gp_kthread
->state
);
646 /* sched_show_task(rsp->gp_kthread); */
649 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads
);
652 * Record the number of times rcutorture tests have been initiated and
653 * terminated. This information allows the debugfs tracing stats to be
654 * correlated to the rcutorture messages, even when the rcutorture module
655 * is being repeatedly loaded and unloaded. In other words, we cannot
656 * store this state in rcutorture itself.
658 void rcutorture_record_test_transition(void)
660 rcutorture_testseq
++;
661 rcutorture_vernum
= 0;
663 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
666 * Send along grace-period-related data for rcutorture diagnostics.
668 void rcutorture_get_gp_data(enum rcutorture_type test_type
, int *flags
,
669 unsigned long *gpnum
, unsigned long *completed
)
671 struct rcu_state
*rsp
= NULL
;
680 case RCU_SCHED_FLAVOR
:
681 rsp
= &rcu_sched_state
;
688 *flags
= READ_ONCE(rsp
->gp_flags
);
689 *gpnum
= READ_ONCE(rsp
->gpnum
);
690 *completed
= READ_ONCE(rsp
->completed
);
692 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data
);
695 * Record the number of writer passes through the current rcutorture test.
696 * This is also used to correlate debugfs tracing stats with the rcutorture
699 void rcutorture_record_progress(unsigned long vernum
)
703 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
706 * Return the root node of the specified rcu_state structure.
708 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
710 return &rsp
->node
[0];
714 * Is there any need for future grace periods?
715 * Interrupts must be disabled. If the caller does not hold the root
716 * rnp_node structure's ->lock, the results are advisory only.
718 static int rcu_future_needs_gp(struct rcu_state
*rsp
)
720 struct rcu_node
*rnp
= rcu_get_root(rsp
);
721 int idx
= (READ_ONCE(rnp
->completed
) + 1) & 0x1;
722 int *fp
= &rnp
->need_future_gp
[idx
];
724 lockdep_assert_irqs_disabled();
725 return READ_ONCE(*fp
);
729 * Does the current CPU require a not-yet-started grace period?
730 * The caller must have disabled interrupts to prevent races with
731 * normal callback registry.
734 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
736 lockdep_assert_irqs_disabled();
737 if (rcu_gp_in_progress(rsp
))
738 return false; /* No, a grace period is already in progress. */
739 if (rcu_future_needs_gp(rsp
))
740 return true; /* Yes, a no-CBs CPU needs one. */
741 if (!rcu_segcblist_is_enabled(&rdp
->cblist
))
742 return false; /* No, this is a no-CBs (or offline) CPU. */
743 if (!rcu_segcblist_restempty(&rdp
->cblist
, RCU_NEXT_READY_TAIL
))
744 return true; /* Yes, CPU has newly registered callbacks. */
745 if (rcu_segcblist_future_gp_needed(&rdp
->cblist
,
746 READ_ONCE(rsp
->completed
)))
747 return true; /* Yes, CBs for future grace period. */
748 return false; /* No grace period needed. */
752 * Enter an RCU extended quiescent state, which can be either the
753 * idle loop or adaptive-tickless usermode execution.
755 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
756 * the possibility of usermode upcalls having messed up our count
757 * of interrupt nesting level during the prior busy period.
759 static void rcu_eqs_enter(bool user
)
761 struct rcu_state
*rsp
;
762 struct rcu_data
*rdp
;
763 struct rcu_dynticks
*rdtp
;
765 rdtp
= this_cpu_ptr(&rcu_dynticks
);
766 WRITE_ONCE(rdtp
->dynticks_nmi_nesting
, 0);
767 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
768 rdtp
->dynticks_nesting
== 0);
769 if (rdtp
->dynticks_nesting
!= 1) {
770 rdtp
->dynticks_nesting
--;
774 lockdep_assert_irqs_disabled();
775 trace_rcu_dyntick(TPS("Start"), rdtp
->dynticks_nesting
, 0, rdtp
->dynticks
);
776 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && !user
&& !is_idle_task(current
));
777 for_each_rcu_flavor(rsp
) {
778 rdp
= this_cpu_ptr(rsp
->rda
);
779 do_nocb_deferred_wakeup(rdp
);
781 rcu_prepare_for_idle();
782 WRITE_ONCE(rdtp
->dynticks_nesting
, 0); /* Avoid irq-access tearing. */
783 rcu_dynticks_eqs_enter();
784 rcu_dynticks_task_enter();
788 * rcu_idle_enter - inform RCU that current CPU is entering idle
790 * Enter idle mode, in other words, -leave- the mode in which RCU
791 * read-side critical sections can occur. (Though RCU read-side
792 * critical sections can occur in irq handlers in idle, a possibility
793 * handled by irq_enter() and irq_exit().)
795 * If you add or remove a call to rcu_idle_enter(), be sure to test with
796 * CONFIG_RCU_EQS_DEBUG=y.
798 void rcu_idle_enter(void)
800 lockdep_assert_irqs_disabled();
801 rcu_eqs_enter(false);
804 #ifdef CONFIG_NO_HZ_FULL
806 * rcu_user_enter - inform RCU that we are resuming userspace.
808 * Enter RCU idle mode right before resuming userspace. No use of RCU
809 * is permitted between this call and rcu_user_exit(). This way the
810 * CPU doesn't need to maintain the tick for RCU maintenance purposes
811 * when the CPU runs in userspace.
813 * If you add or remove a call to rcu_user_enter(), be sure to test with
814 * CONFIG_RCU_EQS_DEBUG=y.
816 void rcu_user_enter(void)
818 lockdep_assert_irqs_disabled();
821 #endif /* CONFIG_NO_HZ_FULL */
824 * rcu_nmi_exit - inform RCU of exit from NMI context
826 * If we are returning from the outermost NMI handler that interrupted an
827 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
828 * to let the RCU grace-period handling know that the CPU is back to
831 * If you add or remove a call to rcu_nmi_exit(), be sure to test
832 * with CONFIG_RCU_EQS_DEBUG=y.
834 void rcu_nmi_exit(void)
836 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
839 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
840 * (We are exiting an NMI handler, so RCU better be paying attention
843 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
<= 0);
844 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
847 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
848 * leave it in non-RCU-idle state.
850 if (rdtp
->dynticks_nmi_nesting
!= 1) {
851 trace_rcu_dyntick(TPS("--="), rdtp
->dynticks_nmi_nesting
, rdtp
->dynticks_nmi_nesting
- 2, rdtp
->dynticks
);
852 WRITE_ONCE(rdtp
->dynticks_nmi_nesting
, /* No store tearing. */
853 rdtp
->dynticks_nmi_nesting
- 2);
857 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
858 trace_rcu_dyntick(TPS("Startirq"), rdtp
->dynticks_nmi_nesting
, 0, rdtp
->dynticks
);
859 WRITE_ONCE(rdtp
->dynticks_nmi_nesting
, 0); /* Avoid store tearing. */
860 rcu_dynticks_eqs_enter();
864 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
866 * Exit from an interrupt handler, which might possibly result in entering
867 * idle mode, in other words, leaving the mode in which read-side critical
868 * sections can occur. The caller must have disabled interrupts.
870 * This code assumes that the idle loop never does anything that might
871 * result in unbalanced calls to irq_enter() and irq_exit(). If your
872 * architecture's idle loop violates this assumption, RCU will give you what
873 * you deserve, good and hard. But very infrequently and irreproducibly.
875 * Use things like work queues to work around this limitation.
877 * You have been warned.
879 * If you add or remove a call to rcu_irq_exit(), be sure to test with
880 * CONFIG_RCU_EQS_DEBUG=y.
882 void rcu_irq_exit(void)
884 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
886 lockdep_assert_irqs_disabled();
887 if (rdtp
->dynticks_nmi_nesting
== 1)
888 rcu_prepare_for_idle();
890 if (rdtp
->dynticks_nmi_nesting
== 0)
891 rcu_dynticks_task_enter();
895 * Wrapper for rcu_irq_exit() where interrupts are enabled.
897 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
898 * with CONFIG_RCU_EQS_DEBUG=y.
900 void rcu_irq_exit_irqson(void)
904 local_irq_save(flags
);
906 local_irq_restore(flags
);
910 * Exit an RCU extended quiescent state, which can be either the
911 * idle loop or adaptive-tickless usermode execution.
913 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
914 * allow for the possibility of usermode upcalls messing up our count of
915 * interrupt nesting level during the busy period that is just now starting.
917 static void rcu_eqs_exit(bool user
)
919 struct rcu_dynticks
*rdtp
;
922 lockdep_assert_irqs_disabled();
923 rdtp
= this_cpu_ptr(&rcu_dynticks
);
924 oldval
= rdtp
->dynticks_nesting
;
925 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && oldval
< 0);
927 rdtp
->dynticks_nesting
++;
930 rcu_dynticks_task_exit();
931 rcu_dynticks_eqs_exit();
932 rcu_cleanup_after_idle();
933 trace_rcu_dyntick(TPS("End"), rdtp
->dynticks_nesting
, 1, rdtp
->dynticks
);
934 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && !user
&& !is_idle_task(current
));
935 WRITE_ONCE(rdtp
->dynticks_nesting
, 1);
936 WRITE_ONCE(rdtp
->dynticks_nmi_nesting
, DYNTICK_IRQ_NONIDLE
);
940 * rcu_idle_exit - inform RCU that current CPU is leaving idle
942 * Exit idle mode, in other words, -enter- the mode in which RCU
943 * read-side critical sections can occur.
945 * If you add or remove a call to rcu_idle_exit(), be sure to test with
946 * CONFIG_RCU_EQS_DEBUG=y.
948 void rcu_idle_exit(void)
952 local_irq_save(flags
);
954 local_irq_restore(flags
);
957 #ifdef CONFIG_NO_HZ_FULL
959 * rcu_user_exit - inform RCU that we are exiting userspace.
961 * Exit RCU idle mode while entering the kernel because it can
962 * run a RCU read side critical section anytime.
964 * If you add or remove a call to rcu_user_exit(), be sure to test with
965 * CONFIG_RCU_EQS_DEBUG=y.
967 void rcu_user_exit(void)
971 #endif /* CONFIG_NO_HZ_FULL */
974 * rcu_nmi_enter - inform RCU of entry to NMI context
976 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
977 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
978 * that the CPU is active. This implementation permits nested NMIs, as
979 * long as the nesting level does not overflow an int. (You will probably
980 * run out of stack space first.)
982 * If you add or remove a call to rcu_nmi_enter(), be sure to test
983 * with CONFIG_RCU_EQS_DEBUG=y.
985 void rcu_nmi_enter(void)
987 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
990 /* Complain about underflow. */
991 WARN_ON_ONCE(rdtp
->dynticks_nmi_nesting
< 0);
994 * If idle from RCU viewpoint, atomically increment ->dynticks
995 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
996 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
997 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
998 * to be in the outermost NMI handler that interrupted an RCU-idle
999 * period (observation due to Andy Lutomirski).
1001 if (rcu_dynticks_curr_cpu_in_eqs()) {
1002 rcu_dynticks_eqs_exit();
1005 trace_rcu_dyntick(incby
== 1 ? TPS("Endirq") : TPS("++="),
1006 rdtp
->dynticks_nmi_nesting
,
1007 rdtp
->dynticks_nmi_nesting
+ incby
, rdtp
->dynticks
);
1008 WRITE_ONCE(rdtp
->dynticks_nmi_nesting
, /* Prevent store tearing. */
1009 rdtp
->dynticks_nmi_nesting
+ incby
);
1014 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1016 * Enter an interrupt handler, which might possibly result in exiting
1017 * idle mode, in other words, entering the mode in which read-side critical
1018 * sections can occur. The caller must have disabled interrupts.
1020 * Note that the Linux kernel is fully capable of entering an interrupt
1021 * handler that it never exits, for example when doing upcalls to user mode!
1022 * This code assumes that the idle loop never does upcalls to user mode.
1023 * If your architecture's idle loop does do upcalls to user mode (or does
1024 * anything else that results in unbalanced calls to the irq_enter() and
1025 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1026 * But very infrequently and irreproducibly.
1028 * Use things like work queues to work around this limitation.
1030 * You have been warned.
1032 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1033 * CONFIG_RCU_EQS_DEBUG=y.
1035 void rcu_irq_enter(void)
1037 struct rcu_dynticks
*rdtp
= this_cpu_ptr(&rcu_dynticks
);
1039 lockdep_assert_irqs_disabled();
1040 if (rdtp
->dynticks_nmi_nesting
== 0)
1041 rcu_dynticks_task_exit();
1043 if (rdtp
->dynticks_nmi_nesting
== 1)
1044 rcu_cleanup_after_idle();
1048 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1050 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1051 * with CONFIG_RCU_EQS_DEBUG=y.
1053 void rcu_irq_enter_irqson(void)
1055 unsigned long flags
;
1057 local_irq_save(flags
);
1059 local_irq_restore(flags
);
1063 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1065 * Return true if RCU is watching the running CPU, which means that this
1066 * CPU can safely enter RCU read-side critical sections. In other words,
1067 * if the current CPU is in its idle loop and is neither in an interrupt
1068 * or NMI handler, return true.
1070 bool notrace
rcu_is_watching(void)
1074 preempt_disable_notrace();
1075 ret
= !rcu_dynticks_curr_cpu_in_eqs();
1076 preempt_enable_notrace();
1079 EXPORT_SYMBOL_GPL(rcu_is_watching
);
1082 * If a holdout task is actually running, request an urgent quiescent
1083 * state from its CPU. This is unsynchronized, so migrations can cause
1084 * the request to go to the wrong CPU. Which is OK, all that will happen
1085 * is that the CPU's next context switch will be a bit slower and next
1086 * time around this task will generate another request.
1088 void rcu_request_urgent_qs_task(struct task_struct
*t
)
1095 return; /* This task is not running on that CPU. */
1096 smp_store_release(per_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
, cpu
), true);
1099 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1102 * Is the current CPU online? Disable preemption to avoid false positives
1103 * that could otherwise happen due to the current CPU number being sampled,
1104 * this task being preempted, its old CPU being taken offline, resuming
1105 * on some other CPU, then determining that its old CPU is now offline.
1106 * It is OK to use RCU on an offline processor during initial boot, hence
1107 * the check for rcu_scheduler_fully_active. Note also that it is OK
1108 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1109 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1110 * offline to continue to use RCU for one jiffy after marking itself
1111 * offline in the cpu_online_mask. This leniency is necessary given the
1112 * non-atomic nature of the online and offline processing, for example,
1113 * the fact that a CPU enters the scheduler after completing the teardown
1116 * This is also why RCU internally marks CPUs online during in the
1117 * preparation phase and offline after the CPU has been taken down.
1119 * Disable checking if in an NMI handler because we cannot safely report
1120 * errors from NMI handlers anyway.
1122 bool rcu_lockdep_current_cpu_online(void)
1124 struct rcu_data
*rdp
;
1125 struct rcu_node
*rnp
;
1131 rdp
= this_cpu_ptr(&rcu_sched_data
);
1133 ret
= (rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) ||
1134 !rcu_scheduler_fully_active
;
1138 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
1140 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1143 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1145 * If the current CPU is idle or running at a first-level (not nested)
1146 * interrupt from idle, return true. The caller must have at least
1147 * disabled preemption.
1149 static int rcu_is_cpu_rrupt_from_idle(void)
1151 return __this_cpu_read(rcu_dynticks
.dynticks_nesting
) <= 0 &&
1152 __this_cpu_read(rcu_dynticks
.dynticks_nmi_nesting
) <= 1;
1156 * We are reporting a quiescent state on behalf of some other CPU, so
1157 * it is our responsibility to check for and handle potential overflow
1158 * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
1159 * After all, the CPU might be in deep idle state, and thus executing no
1162 static void rcu_gpnum_ovf(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1164 lockdep_assert_held(&rnp
->lock
);
1165 if (ULONG_CMP_LT(READ_ONCE(rdp
->gpnum
) + ULONG_MAX
/ 4, rnp
->gpnum
))
1166 WRITE_ONCE(rdp
->gpwrap
, true);
1167 if (ULONG_CMP_LT(rdp
->rcu_iw_gpnum
+ ULONG_MAX
/ 4, rnp
->gpnum
))
1168 rdp
->rcu_iw_gpnum
= rnp
->gpnum
+ ULONG_MAX
/ 4;
1172 * Snapshot the specified CPU's dynticks counter so that we can later
1173 * credit them with an implicit quiescent state. Return 1 if this CPU
1174 * is in dynticks idle mode, which is an extended quiescent state.
1176 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
1178 rdp
->dynticks_snap
= rcu_dynticks_snap(rdp
->dynticks
);
1179 if (rcu_dynticks_in_eqs(rdp
->dynticks_snap
)) {
1180 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1181 rcu_gpnum_ovf(rdp
->mynode
, rdp
);
1188 * Handler for the irq_work request posted when a grace period has
1189 * gone on for too long, but not yet long enough for an RCU CPU
1190 * stall warning. Set state appropriately, but just complain if
1191 * there is unexpected state on entry.
1193 static void rcu_iw_handler(struct irq_work
*iwp
)
1195 struct rcu_data
*rdp
;
1196 struct rcu_node
*rnp
;
1198 rdp
= container_of(iwp
, struct rcu_data
, rcu_iw
);
1200 raw_spin_lock_rcu_node(rnp
);
1201 if (!WARN_ON_ONCE(!rdp
->rcu_iw_pending
)) {
1202 rdp
->rcu_iw_gpnum
= rnp
->gpnum
;
1203 rdp
->rcu_iw_pending
= false;
1205 raw_spin_unlock_rcu_node(rnp
);
1209 * Return true if the specified CPU has passed through a quiescent
1210 * state by virtue of being in or having passed through an dynticks
1211 * idle state since the last call to dyntick_save_progress_counter()
1212 * for this same CPU, or by virtue of having been offline.
1214 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
1219 struct rcu_node
*rnp
= rdp
->mynode
;
1222 * If the CPU passed through or entered a dynticks idle phase with
1223 * no active irq/NMI handlers, then we can safely pretend that the CPU
1224 * already acknowledged the request to pass through a quiescent
1225 * state. Either way, that CPU cannot possibly be in an RCU
1226 * read-side critical section that started before the beginning
1227 * of the current RCU grace period.
1229 if (rcu_dynticks_in_eqs_since(rdp
->dynticks
, rdp
->dynticks_snap
)) {
1230 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("dti"));
1231 rdp
->dynticks_fqs
++;
1232 rcu_gpnum_ovf(rnp
, rdp
);
1237 * Has this CPU encountered a cond_resched_rcu_qs() since the
1238 * beginning of the grace period? For this to be the case,
1239 * the CPU has to have noticed the current grace period. This
1240 * might not be the case for nohz_full CPUs looping in the kernel.
1242 jtsq
= jiffies_till_sched_qs
;
1243 ruqp
= per_cpu_ptr(&rcu_dynticks
.rcu_urgent_qs
, rdp
->cpu
);
1244 if (time_after(jiffies
, rdp
->rsp
->gp_start
+ jtsq
) &&
1245 READ_ONCE(rdp
->rcu_qs_ctr_snap
) != per_cpu(rcu_dynticks
.rcu_qs_ctr
, rdp
->cpu
) &&
1246 READ_ONCE(rdp
->gpnum
) == rnp
->gpnum
&& !rdp
->gpwrap
) {
1247 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("rqc"));
1248 rcu_gpnum_ovf(rnp
, rdp
);
1250 } else if (time_after(jiffies
, rdp
->rsp
->gp_start
+ jtsq
)) {
1251 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1252 smp_store_release(ruqp
, true);
1255 /* Check for the CPU being offline. */
1256 if (!(rdp
->grpmask
& rcu_rnp_online_cpus(rnp
))) {
1257 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, TPS("ofl"));
1259 rcu_gpnum_ovf(rnp
, rdp
);
1264 * A CPU running for an extended time within the kernel can
1265 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1266 * even context-switching back and forth between a pair of
1267 * in-kernel CPU-bound tasks cannot advance grace periods.
1268 * So if the grace period is old enough, make the CPU pay attention.
1269 * Note that the unsynchronized assignments to the per-CPU
1270 * rcu_need_heavy_qs variable are safe. Yes, setting of
1271 * bits can be lost, but they will be set again on the next
1272 * force-quiescent-state pass. So lost bit sets do not result
1273 * in incorrect behavior, merely in a grace period lasting
1274 * a few jiffies longer than it might otherwise. Because
1275 * there are at most four threads involved, and because the
1276 * updates are only once every few jiffies, the probability of
1277 * lossage (and thus of slight grace-period extension) is
1280 rnhqp
= &per_cpu(rcu_dynticks
.rcu_need_heavy_qs
, rdp
->cpu
);
1281 if (!READ_ONCE(*rnhqp
) &&
1282 (time_after(jiffies
, rdp
->rsp
->gp_start
+ jtsq
) ||
1283 time_after(jiffies
, rdp
->rsp
->jiffies_resched
))) {
1284 WRITE_ONCE(*rnhqp
, true);
1285 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1286 smp_store_release(ruqp
, true);
1287 rdp
->rsp
->jiffies_resched
+= jtsq
; /* Re-enable beating. */
1291 * If more than halfway to RCU CPU stall-warning time, do a
1292 * resched_cpu() to try to loosen things up a bit. Also check to
1293 * see if the CPU is getting hammered with interrupts, but only
1294 * once per grace period, just to keep the IPIs down to a dull roar.
1296 if (jiffies
- rdp
->rsp
->gp_start
> rcu_jiffies_till_stall_check() / 2) {
1297 resched_cpu(rdp
->cpu
);
1298 if (IS_ENABLED(CONFIG_IRQ_WORK
) &&
1299 !rdp
->rcu_iw_pending
&& rdp
->rcu_iw_gpnum
!= rnp
->gpnum
&&
1300 (rnp
->ffmask
& rdp
->grpmask
)) {
1301 init_irq_work(&rdp
->rcu_iw
, rcu_iw_handler
);
1302 rdp
->rcu_iw_pending
= true;
1303 rdp
->rcu_iw_gpnum
= rnp
->gpnum
;
1304 irq_work_queue_on(&rdp
->rcu_iw
, rdp
->cpu
);
1311 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
1313 unsigned long j
= jiffies
;
1317 smp_wmb(); /* Record start time before stall time. */
1318 j1
= rcu_jiffies_till_stall_check();
1319 WRITE_ONCE(rsp
->jiffies_stall
, j
+ j1
);
1320 rsp
->jiffies_resched
= j
+ j1
/ 2;
1321 rsp
->n_force_qs_gpstart
= READ_ONCE(rsp
->n_force_qs
);
1325 * Convert a ->gp_state value to a character string.
1327 static const char *gp_state_getname(short gs
)
1329 if (gs
< 0 || gs
>= ARRAY_SIZE(gp_state_names
))
1331 return gp_state_names
[gs
];
1335 * Complain about starvation of grace-period kthread.
1337 static void rcu_check_gp_kthread_starvation(struct rcu_state
*rsp
)
1343 gpa
= READ_ONCE(rsp
->gp_activity
);
1344 if (j
- gpa
> 2 * HZ
) {
1345 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1347 rsp
->gpnum
, rsp
->completed
,
1349 gp_state_getname(rsp
->gp_state
), rsp
->gp_state
,
1350 rsp
->gp_kthread
? rsp
->gp_kthread
->state
: ~0,
1351 rsp
->gp_kthread
? task_cpu(rsp
->gp_kthread
) : -1);
1352 if (rsp
->gp_kthread
) {
1353 sched_show_task(rsp
->gp_kthread
);
1354 wake_up_process(rsp
->gp_kthread
);
1360 * Dump stacks of all tasks running on stalled CPUs. First try using
1361 * NMIs, but fall back to manual remote stack tracing on architectures
1362 * that don't support NMI-based stack dumps. The NMI-triggered stack
1363 * traces are more accurate because they are printed by the target CPU.
1365 static void rcu_dump_cpu_stacks(struct rcu_state
*rsp
)
1368 unsigned long flags
;
1369 struct rcu_node
*rnp
;
1371 rcu_for_each_leaf_node(rsp
, rnp
) {
1372 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1373 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1374 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
))
1375 if (!trigger_single_cpu_backtrace(cpu
))
1377 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1382 * If too much time has passed in the current grace period, and if
1383 * so configured, go kick the relevant kthreads.
1385 static void rcu_stall_kick_kthreads(struct rcu_state
*rsp
)
1389 if (!rcu_kick_kthreads
)
1391 j
= READ_ONCE(rsp
->jiffies_kick_kthreads
);
1392 if (time_after(jiffies
, j
) && rsp
->gp_kthread
&&
1393 (rcu_gp_in_progress(rsp
) || READ_ONCE(rsp
->gp_flags
))) {
1394 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp
->name
);
1395 rcu_ftrace_dump(DUMP_ALL
);
1396 wake_up_process(rsp
->gp_kthread
);
1397 WRITE_ONCE(rsp
->jiffies_kick_kthreads
, j
+ HZ
);
1401 static inline void panic_on_rcu_stall(void)
1403 if (sysctl_panic_on_rcu_stall
)
1404 panic("RCU Stall\n");
1407 static void print_other_cpu_stall(struct rcu_state
*rsp
, unsigned long gpnum
)
1411 unsigned long flags
;
1415 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1418 /* Kick and suppress, if so configured. */
1419 rcu_stall_kick_kthreads(rsp
);
1420 if (rcu_cpu_stall_suppress
)
1423 /* Only let one CPU complain about others per time interval. */
1425 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1426 delta
= jiffies
- READ_ONCE(rsp
->jiffies_stall
);
1427 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
1428 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1431 WRITE_ONCE(rsp
->jiffies_stall
,
1432 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1433 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1436 * OK, time to rat on our buddy...
1437 * See Documentation/RCU/stallwarn.txt for info on how to debug
1438 * RCU CPU stall warnings.
1440 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1442 print_cpu_stall_info_begin();
1443 rcu_for_each_leaf_node(rsp
, rnp
) {
1444 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1445 ndetected
+= rcu_print_task_stall(rnp
);
1446 if (rnp
->qsmask
!= 0) {
1447 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1448 if (rnp
->qsmask
& leaf_node_cpu_bit(rnp
, cpu
)) {
1449 print_cpu_stall_info(rsp
, cpu
);
1453 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1456 print_cpu_stall_info_end();
1457 for_each_possible_cpu(cpu
)
1458 totqlen
+= rcu_segcblist_n_cbs(&per_cpu_ptr(rsp
->rda
,
1460 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1461 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
),
1462 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1464 rcu_dump_cpu_stacks(rsp
);
1466 /* Complain about tasks blocking the grace period. */
1467 rcu_print_detail_task_stall(rsp
);
1469 if (READ_ONCE(rsp
->gpnum
) != gpnum
||
1470 READ_ONCE(rsp
->completed
) == gpnum
) {
1471 pr_err("INFO: Stall ended before state dump start\n");
1474 gpa
= READ_ONCE(rsp
->gp_activity
);
1475 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1476 rsp
->name
, j
- gpa
, j
, gpa
,
1477 jiffies_till_next_fqs
,
1478 rcu_get_root(rsp
)->qsmask
);
1479 /* In this case, the current CPU might be at fault. */
1480 sched_show_task(current
);
1484 rcu_check_gp_kthread_starvation(rsp
);
1486 panic_on_rcu_stall();
1488 force_quiescent_state(rsp
); /* Kick them all. */
1491 static void print_cpu_stall(struct rcu_state
*rsp
)
1494 unsigned long flags
;
1495 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1496 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1499 /* Kick and suppress, if so configured. */
1500 rcu_stall_kick_kthreads(rsp
);
1501 if (rcu_cpu_stall_suppress
)
1505 * OK, time to rat on ourselves...
1506 * See Documentation/RCU/stallwarn.txt for info on how to debug
1507 * RCU CPU stall warnings.
1509 pr_err("INFO: %s self-detected stall on CPU", rsp
->name
);
1510 print_cpu_stall_info_begin();
1511 raw_spin_lock_irqsave_rcu_node(rdp
->mynode
, flags
);
1512 print_cpu_stall_info(rsp
, smp_processor_id());
1513 raw_spin_unlock_irqrestore_rcu_node(rdp
->mynode
, flags
);
1514 print_cpu_stall_info_end();
1515 for_each_possible_cpu(cpu
)
1516 totqlen
+= rcu_segcblist_n_cbs(&per_cpu_ptr(rsp
->rda
,
1518 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1519 jiffies
- rsp
->gp_start
,
1520 (long)rsp
->gpnum
, (long)rsp
->completed
, totqlen
);
1522 rcu_check_gp_kthread_starvation(rsp
);
1524 rcu_dump_cpu_stacks(rsp
);
1526 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1527 if (ULONG_CMP_GE(jiffies
, READ_ONCE(rsp
->jiffies_stall
)))
1528 WRITE_ONCE(rsp
->jiffies_stall
,
1529 jiffies
+ 3 * rcu_jiffies_till_stall_check() + 3);
1530 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1532 panic_on_rcu_stall();
1535 * Attempt to revive the RCU machinery by forcing a context switch.
1537 * A context switch would normally allow the RCU state machine to make
1538 * progress and it could be we're stuck in kernel space without context
1539 * switches for an entirely unreasonable amount of time.
1541 resched_cpu(smp_processor_id());
1544 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1546 unsigned long completed
;
1547 unsigned long gpnum
;
1551 struct rcu_node
*rnp
;
1553 if ((rcu_cpu_stall_suppress
&& !rcu_kick_kthreads
) ||
1554 !rcu_gp_in_progress(rsp
))
1556 rcu_stall_kick_kthreads(rsp
);
1560 * Lots of memory barriers to reject false positives.
1562 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1563 * then rsp->gp_start, and finally rsp->completed. These values
1564 * are updated in the opposite order with memory barriers (or
1565 * equivalent) during grace-period initialization and cleanup.
1566 * Now, a false positive can occur if we get an new value of
1567 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1568 * the memory barriers, the only way that this can happen is if one
1569 * grace period ends and another starts between these two fetches.
1570 * Detect this by comparing rsp->completed with the previous fetch
1573 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1574 * and rsp->gp_start suffice to forestall false positives.
1576 gpnum
= READ_ONCE(rsp
->gpnum
);
1577 smp_rmb(); /* Pick up ->gpnum first... */
1578 js
= READ_ONCE(rsp
->jiffies_stall
);
1579 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1580 gps
= READ_ONCE(rsp
->gp_start
);
1581 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1582 completed
= READ_ONCE(rsp
->completed
);
1583 if (ULONG_CMP_GE(completed
, gpnum
) ||
1584 ULONG_CMP_LT(j
, js
) ||
1585 ULONG_CMP_GE(gps
, js
))
1586 return; /* No stall or GP completed since entering function. */
1588 if (rcu_gp_in_progress(rsp
) &&
1589 (READ_ONCE(rnp
->qsmask
) & rdp
->grpmask
)) {
1591 /* We haven't checked in, so go dump stack. */
1592 print_cpu_stall(rsp
);
1594 } else if (rcu_gp_in_progress(rsp
) &&
1595 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
1597 /* They had a few time units to dump stack, so complain. */
1598 print_other_cpu_stall(rsp
, gpnum
);
1603 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1605 * Set the stall-warning timeout way off into the future, thus preventing
1606 * any RCU CPU stall-warning messages from appearing in the current set of
1607 * RCU grace periods.
1609 * The caller must disable hard irqs.
1611 void rcu_cpu_stall_reset(void)
1613 struct rcu_state
*rsp
;
1615 for_each_rcu_flavor(rsp
)
1616 WRITE_ONCE(rsp
->jiffies_stall
, jiffies
+ ULONG_MAX
/ 2);
1620 * Determine the value that ->completed will have at the end of the
1621 * next subsequent grace period. This is used to tag callbacks so that
1622 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1623 * been dyntick-idle for an extended period with callbacks under the
1624 * influence of RCU_FAST_NO_HZ.
1626 * The caller must hold rnp->lock with interrupts disabled.
1628 static unsigned long rcu_cbs_completed(struct rcu_state
*rsp
,
1629 struct rcu_node
*rnp
)
1631 lockdep_assert_held(&rnp
->lock
);
1634 * If RCU is idle, we just wait for the next grace period.
1635 * But we can only be sure that RCU is idle if we are looking
1636 * at the root rcu_node structure -- otherwise, a new grace
1637 * period might have started, but just not yet gotten around
1638 * to initializing the current non-root rcu_node structure.
1640 if (rcu_get_root(rsp
) == rnp
&& rnp
->gpnum
== rnp
->completed
)
1641 return rnp
->completed
+ 1;
1644 * Otherwise, wait for a possible partial grace period and
1645 * then the subsequent full grace period.
1647 return rnp
->completed
+ 2;
1651 * Trace-event helper function for rcu_start_future_gp() and
1652 * rcu_nocb_wait_gp().
1654 static void trace_rcu_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1655 unsigned long c
, const char *s
)
1657 trace_rcu_future_grace_period(rdp
->rsp
->name
, rnp
->gpnum
,
1658 rnp
->completed
, c
, rnp
->level
,
1659 rnp
->grplo
, rnp
->grphi
, s
);
1663 * Start some future grace period, as needed to handle newly arrived
1664 * callbacks. The required future grace periods are recorded in each
1665 * rcu_node structure's ->need_future_gp field. Returns true if there
1666 * is reason to awaken the grace-period kthread.
1668 * The caller must hold the specified rcu_node structure's ->lock.
1670 static bool __maybe_unused
1671 rcu_start_future_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1672 unsigned long *c_out
)
1676 struct rcu_node
*rnp_root
= rcu_get_root(rdp
->rsp
);
1678 lockdep_assert_held(&rnp
->lock
);
1681 * Pick up grace-period number for new callbacks. If this
1682 * grace period is already marked as needed, return to the caller.
1684 c
= rcu_cbs_completed(rdp
->rsp
, rnp
);
1685 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startleaf"));
1686 if (rnp
->need_future_gp
[c
& 0x1]) {
1687 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartleaf"));
1692 * If either this rcu_node structure or the root rcu_node structure
1693 * believe that a grace period is in progress, then we must wait
1694 * for the one following, which is in "c". Because our request
1695 * will be noticed at the end of the current grace period, we don't
1696 * need to explicitly start one. We only do the lockless check
1697 * of rnp_root's fields if the current rcu_node structure thinks
1698 * there is no grace period in flight, and because we hold rnp->lock,
1699 * the only possible change is when rnp_root's two fields are
1700 * equal, in which case rnp_root->gpnum might be concurrently
1701 * incremented. But that is OK, as it will just result in our
1702 * doing some extra useless work.
1704 if (rnp
->gpnum
!= rnp
->completed
||
1705 READ_ONCE(rnp_root
->gpnum
) != READ_ONCE(rnp_root
->completed
)) {
1706 rnp
->need_future_gp
[c
& 0x1]++;
1707 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleaf"));
1712 * There might be no grace period in progress. If we don't already
1713 * hold it, acquire the root rcu_node structure's lock in order to
1714 * start one (if needed).
1716 if (rnp
!= rnp_root
)
1717 raw_spin_lock_rcu_node(rnp_root
);
1720 * Get a new grace-period number. If there really is no grace
1721 * period in progress, it will be smaller than the one we obtained
1722 * earlier. Adjust callbacks as needed.
1724 c
= rcu_cbs_completed(rdp
->rsp
, rnp_root
);
1725 if (!rcu_is_nocb_cpu(rdp
->cpu
))
1726 (void)rcu_segcblist_accelerate(&rdp
->cblist
, c
);
1729 * If the needed for the required grace period is already
1730 * recorded, trace and leave.
1732 if (rnp_root
->need_future_gp
[c
& 0x1]) {
1733 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Prestartedroot"));
1737 /* Record the need for the future grace period. */
1738 rnp_root
->need_future_gp
[c
& 0x1]++;
1740 /* If a grace period is not already in progress, start one. */
1741 if (rnp_root
->gpnum
!= rnp_root
->completed
) {
1742 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedleafroot"));
1744 trace_rcu_future_gp(rnp
, rdp
, c
, TPS("Startedroot"));
1745 ret
= rcu_start_gp_advanced(rdp
->rsp
, rnp_root
, rdp
);
1748 if (rnp
!= rnp_root
)
1749 raw_spin_unlock_rcu_node(rnp_root
);
1757 * Clean up any old requests for the just-ended grace period. Also return
1758 * whether any additional grace periods have been requested.
1760 static int rcu_future_gp_cleanup(struct rcu_state
*rsp
, struct rcu_node
*rnp
)
1762 int c
= rnp
->completed
;
1764 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1766 rnp
->need_future_gp
[c
& 0x1] = 0;
1767 needmore
= rnp
->need_future_gp
[(c
+ 1) & 0x1];
1768 trace_rcu_future_gp(rnp
, rdp
, c
,
1769 needmore
? TPS("CleanupMore") : TPS("Cleanup"));
1774 * Awaken the grace-period kthread for the specified flavor of RCU.
1775 * Don't do a self-awaken, and don't bother awakening when there is
1776 * nothing for the grace-period kthread to do (as in several CPUs
1777 * raced to awaken, and we lost), and finally don't try to awaken
1778 * a kthread that has not yet been created.
1780 static void rcu_gp_kthread_wake(struct rcu_state
*rsp
)
1782 if (current
== rsp
->gp_kthread
||
1783 !READ_ONCE(rsp
->gp_flags
) ||
1786 swake_up(&rsp
->gp_wq
);
1790 * If there is room, assign a ->completed number to any callbacks on
1791 * this CPU that have not already been assigned. Also accelerate any
1792 * callbacks that were previously assigned a ->completed number that has
1793 * since proven to be too conservative, which can happen if callbacks get
1794 * assigned a ->completed number while RCU is idle, but with reference to
1795 * a non-root rcu_node structure. This function is idempotent, so it does
1796 * not hurt to call it repeatedly. Returns an flag saying that we should
1797 * awaken the RCU grace-period kthread.
1799 * The caller must hold rnp->lock with interrupts disabled.
1801 static bool rcu_accelerate_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1802 struct rcu_data
*rdp
)
1806 lockdep_assert_held(&rnp
->lock
);
1808 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1809 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
))
1813 * Callbacks are often registered with incomplete grace-period
1814 * information. Something about the fact that getting exact
1815 * information requires acquiring a global lock... RCU therefore
1816 * makes a conservative estimate of the grace period number at which
1817 * a given callback will become ready to invoke. The following
1818 * code checks this estimate and improves it when possible, thus
1819 * accelerating callback invocation to an earlier grace-period
1822 if (rcu_segcblist_accelerate(&rdp
->cblist
, rcu_cbs_completed(rsp
, rnp
)))
1823 ret
= rcu_start_future_gp(rnp
, rdp
, NULL
);
1825 /* Trace depending on how much we were able to accelerate. */
1826 if (rcu_segcblist_restempty(&rdp
->cblist
, RCU_WAIT_TAIL
))
1827 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccWaitCB"));
1829 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("AccReadyCB"));
1834 * Move any callbacks whose grace period has completed to the
1835 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1836 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1837 * sublist. This function is idempotent, so it does not hurt to
1838 * invoke it repeatedly. As long as it is not invoked -too- often...
1839 * Returns true if the RCU grace-period kthread needs to be awakened.
1841 * The caller must hold rnp->lock with interrupts disabled.
1843 static bool rcu_advance_cbs(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1844 struct rcu_data
*rdp
)
1846 lockdep_assert_held(&rnp
->lock
);
1848 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1849 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
))
1853 * Find all callbacks whose ->completed numbers indicate that they
1854 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1856 rcu_segcblist_advance(&rdp
->cblist
, rnp
->completed
);
1858 /* Classify any remaining callbacks. */
1859 return rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1863 * Update CPU-local rcu_data state to record the beginnings and ends of
1864 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1865 * structure corresponding to the current CPU, and must have irqs disabled.
1866 * Returns true if the grace-period kthread needs to be awakened.
1868 static bool __note_gp_changes(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
1869 struct rcu_data
*rdp
)
1874 lockdep_assert_held(&rnp
->lock
);
1876 /* Handle the ends of any preceding grace periods first. */
1877 if (rdp
->completed
== rnp
->completed
&&
1878 !unlikely(READ_ONCE(rdp
->gpwrap
))) {
1880 /* No grace period end, so just accelerate recent callbacks. */
1881 ret
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
1885 /* Advance callbacks. */
1886 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
);
1888 /* Remember that we saw this grace-period completion. */
1889 rdp
->completed
= rnp
->completed
;
1890 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuend"));
1893 if (rdp
->gpnum
!= rnp
->gpnum
|| unlikely(READ_ONCE(rdp
->gpwrap
))) {
1895 * If the current grace period is waiting for this CPU,
1896 * set up to detect a quiescent state, otherwise don't
1897 * go looking for one.
1899 rdp
->gpnum
= rnp
->gpnum
;
1900 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpustart"));
1901 need_gp
= !!(rnp
->qsmask
& rdp
->grpmask
);
1902 rdp
->cpu_no_qs
.b
.norm
= need_gp
;
1903 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_dynticks
.rcu_qs_ctr
);
1904 rdp
->core_needs_qs
= need_gp
;
1905 zero_cpu_stall_ticks(rdp
);
1906 WRITE_ONCE(rdp
->gpwrap
, false);
1907 rcu_gpnum_ovf(rnp
, rdp
);
1912 static void note_gp_changes(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1914 unsigned long flags
;
1916 struct rcu_node
*rnp
;
1918 local_irq_save(flags
);
1920 if ((rdp
->gpnum
== READ_ONCE(rnp
->gpnum
) &&
1921 rdp
->completed
== READ_ONCE(rnp
->completed
) &&
1922 !unlikely(READ_ONCE(rdp
->gpwrap
))) || /* w/out lock. */
1923 !raw_spin_trylock_rcu_node(rnp
)) { /* irqs already off, so later. */
1924 local_irq_restore(flags
);
1927 needwake
= __note_gp_changes(rsp
, rnp
, rdp
);
1928 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1930 rcu_gp_kthread_wake(rsp
);
1933 static void rcu_gp_slow(struct rcu_state
*rsp
, int delay
)
1936 !(rsp
->gpnum
% (rcu_num_nodes
* PER_RCU_NODE_PERIOD
* delay
)))
1937 schedule_timeout_uninterruptible(delay
);
1941 * Initialize a new grace period. Return false if no grace period required.
1943 static bool rcu_gp_init(struct rcu_state
*rsp
)
1945 unsigned long oldmask
;
1946 struct rcu_data
*rdp
;
1947 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1949 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
1950 raw_spin_lock_irq_rcu_node(rnp
);
1951 if (!READ_ONCE(rsp
->gp_flags
)) {
1952 /* Spurious wakeup, tell caller to go back to sleep. */
1953 raw_spin_unlock_irq_rcu_node(rnp
);
1956 WRITE_ONCE(rsp
->gp_flags
, 0); /* Clear all flags: New grace period. */
1958 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp
))) {
1960 * Grace period already in progress, don't start another.
1961 * Not supposed to be able to happen.
1963 raw_spin_unlock_irq_rcu_node(rnp
);
1967 /* Advance to a new grace period and initialize state. */
1968 record_gp_stall_check_time(rsp
);
1969 /* Record GP times before starting GP, hence smp_store_release(). */
1970 smp_store_release(&rsp
->gpnum
, rsp
->gpnum
+ 1);
1971 trace_rcu_grace_period(rsp
->name
, rsp
->gpnum
, TPS("start"));
1972 raw_spin_unlock_irq_rcu_node(rnp
);
1975 * Apply per-leaf buffered online and offline operations to the
1976 * rcu_node tree. Note that this new grace period need not wait
1977 * for subsequent online CPUs, and that quiescent-state forcing
1978 * will handle subsequent offline CPUs.
1980 rcu_for_each_leaf_node(rsp
, rnp
) {
1981 rcu_gp_slow(rsp
, gp_preinit_delay
);
1982 raw_spin_lock_irq_rcu_node(rnp
);
1983 if (rnp
->qsmaskinit
== rnp
->qsmaskinitnext
&&
1984 !rnp
->wait_blkd_tasks
) {
1985 /* Nothing to do on this leaf rcu_node structure. */
1986 raw_spin_unlock_irq_rcu_node(rnp
);
1990 /* Record old state, apply changes to ->qsmaskinit field. */
1991 oldmask
= rnp
->qsmaskinit
;
1992 rnp
->qsmaskinit
= rnp
->qsmaskinitnext
;
1994 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1995 if (!oldmask
!= !rnp
->qsmaskinit
) {
1996 if (!oldmask
) /* First online CPU for this rcu_node. */
1997 rcu_init_new_rnp(rnp
);
1998 else if (rcu_preempt_has_tasks(rnp
)) /* blocked tasks */
1999 rnp
->wait_blkd_tasks
= true;
2000 else /* Last offline CPU and can propagate. */
2001 rcu_cleanup_dead_rnp(rnp
);
2005 * If all waited-on tasks from prior grace period are
2006 * done, and if all this rcu_node structure's CPUs are
2007 * still offline, propagate up the rcu_node tree and
2008 * clear ->wait_blkd_tasks. Otherwise, if one of this
2009 * rcu_node structure's CPUs has since come back online,
2010 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2011 * checks for this, so just call it unconditionally).
2013 if (rnp
->wait_blkd_tasks
&&
2014 (!rcu_preempt_has_tasks(rnp
) ||
2016 rnp
->wait_blkd_tasks
= false;
2017 rcu_cleanup_dead_rnp(rnp
);
2020 raw_spin_unlock_irq_rcu_node(rnp
);
2024 * Set the quiescent-state-needed bits in all the rcu_node
2025 * structures for all currently online CPUs in breadth-first order,
2026 * starting from the root rcu_node structure, relying on the layout
2027 * of the tree within the rsp->node[] array. Note that other CPUs
2028 * will access only the leaves of the hierarchy, thus seeing that no
2029 * grace period is in progress, at least until the corresponding
2030 * leaf node has been initialized.
2032 * The grace period cannot complete until the initialization
2033 * process finishes, because this kthread handles both.
2035 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2036 rcu_gp_slow(rsp
, gp_init_delay
);
2037 raw_spin_lock_irq_rcu_node(rnp
);
2038 rdp
= this_cpu_ptr(rsp
->rda
);
2039 rcu_preempt_check_blocked_tasks(rnp
);
2040 rnp
->qsmask
= rnp
->qsmaskinit
;
2041 WRITE_ONCE(rnp
->gpnum
, rsp
->gpnum
);
2042 if (WARN_ON_ONCE(rnp
->completed
!= rsp
->completed
))
2043 WRITE_ONCE(rnp
->completed
, rsp
->completed
);
2044 if (rnp
== rdp
->mynode
)
2045 (void)__note_gp_changes(rsp
, rnp
, rdp
);
2046 rcu_preempt_boost_start_gp(rnp
);
2047 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
2048 rnp
->level
, rnp
->grplo
,
2049 rnp
->grphi
, rnp
->qsmask
);
2050 raw_spin_unlock_irq_rcu_node(rnp
);
2051 cond_resched_rcu_qs();
2052 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2059 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2062 static bool rcu_gp_fqs_check_wake(struct rcu_state
*rsp
, int *gfp
)
2064 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2066 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2067 *gfp
= READ_ONCE(rsp
->gp_flags
);
2068 if (*gfp
& RCU_GP_FLAG_FQS
)
2071 /* The current grace period has completed. */
2072 if (!READ_ONCE(rnp
->qsmask
) && !rcu_preempt_blocked_readers_cgp(rnp
))
2079 * Do one round of quiescent-state forcing.
2081 static void rcu_gp_fqs(struct rcu_state
*rsp
, bool first_time
)
2083 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2085 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2088 /* Collect dyntick-idle snapshots. */
2089 force_qs_rnp(rsp
, dyntick_save_progress_counter
);
2091 /* Handle dyntick-idle and offline CPUs. */
2092 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
);
2094 /* Clear flag to prevent immediate re-entry. */
2095 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2096 raw_spin_lock_irq_rcu_node(rnp
);
2097 WRITE_ONCE(rsp
->gp_flags
,
2098 READ_ONCE(rsp
->gp_flags
) & ~RCU_GP_FLAG_FQS
);
2099 raw_spin_unlock_irq_rcu_node(rnp
);
2104 * Clean up after the old grace period.
2106 static void rcu_gp_cleanup(struct rcu_state
*rsp
)
2108 unsigned long gp_duration
;
2109 bool needgp
= false;
2111 struct rcu_data
*rdp
;
2112 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2113 struct swait_queue_head
*sq
;
2115 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2116 raw_spin_lock_irq_rcu_node(rnp
);
2117 gp_duration
= jiffies
- rsp
->gp_start
;
2118 if (gp_duration
> rsp
->gp_max
)
2119 rsp
->gp_max
= gp_duration
;
2122 * We know the grace period is complete, but to everyone else
2123 * it appears to still be ongoing. But it is also the case
2124 * that to everyone else it looks like there is nothing that
2125 * they can do to advance the grace period. It is therefore
2126 * safe for us to drop the lock in order to mark the grace
2127 * period as completed in all of the rcu_node structures.
2129 raw_spin_unlock_irq_rcu_node(rnp
);
2132 * Propagate new ->completed value to rcu_node structures so
2133 * that other CPUs don't have to wait until the start of the next
2134 * grace period to process their callbacks. This also avoids
2135 * some nasty RCU grace-period initialization races by forcing
2136 * the end of the current grace period to be completely recorded in
2137 * all of the rcu_node structures before the beginning of the next
2138 * grace period is recorded in any of the rcu_node structures.
2140 rcu_for_each_node_breadth_first(rsp
, rnp
) {
2141 raw_spin_lock_irq_rcu_node(rnp
);
2142 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
));
2143 WARN_ON_ONCE(rnp
->qsmask
);
2144 WRITE_ONCE(rnp
->completed
, rsp
->gpnum
);
2145 rdp
= this_cpu_ptr(rsp
->rda
);
2146 if (rnp
== rdp
->mynode
)
2147 needgp
= __note_gp_changes(rsp
, rnp
, rdp
) || needgp
;
2148 /* smp_mb() provided by prior unlock-lock pair. */
2149 nocb
+= rcu_future_gp_cleanup(rsp
, rnp
);
2150 sq
= rcu_nocb_gp_get(rnp
);
2151 raw_spin_unlock_irq_rcu_node(rnp
);
2152 rcu_nocb_gp_cleanup(sq
);
2153 cond_resched_rcu_qs();
2154 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2155 rcu_gp_slow(rsp
, gp_cleanup_delay
);
2157 rnp
= rcu_get_root(rsp
);
2158 raw_spin_lock_irq_rcu_node(rnp
); /* Order GP before ->completed update. */
2159 rcu_nocb_gp_set(rnp
, nocb
);
2161 /* Declare grace period done. */
2162 WRITE_ONCE(rsp
->completed
, rsp
->gpnum
);
2163 trace_rcu_grace_period(rsp
->name
, rsp
->completed
, TPS("end"));
2164 rsp
->gp_state
= RCU_GP_IDLE
;
2165 rdp
= this_cpu_ptr(rsp
->rda
);
2166 /* Advance CBs to reduce false positives below. */
2167 needgp
= rcu_advance_cbs(rsp
, rnp
, rdp
) || needgp
;
2168 if (needgp
|| cpu_needs_another_gp(rsp
, rdp
)) {
2169 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2170 trace_rcu_grace_period(rsp
->name
,
2171 READ_ONCE(rsp
->gpnum
),
2174 raw_spin_unlock_irq_rcu_node(rnp
);
2178 * Body of kthread that handles grace periods.
2180 static int __noreturn
rcu_gp_kthread(void *arg
)
2186 struct rcu_state
*rsp
= arg
;
2187 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2189 rcu_bind_gp_kthread();
2192 /* Handle grace-period start. */
2194 trace_rcu_grace_period(rsp
->name
,
2195 READ_ONCE(rsp
->gpnum
),
2197 rsp
->gp_state
= RCU_GP_WAIT_GPS
;
2198 swait_event_idle(rsp
->gp_wq
, READ_ONCE(rsp
->gp_flags
) &
2200 rsp
->gp_state
= RCU_GP_DONE_GPS
;
2201 /* Locking provides needed memory barrier. */
2202 if (rcu_gp_init(rsp
))
2204 cond_resched_rcu_qs();
2205 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2206 WARN_ON(signal_pending(current
));
2207 trace_rcu_grace_period(rsp
->name
,
2208 READ_ONCE(rsp
->gpnum
),
2212 /* Handle quiescent-state forcing. */
2213 first_gp_fqs
= true;
2214 j
= jiffies_till_first_fqs
;
2217 jiffies_till_first_fqs
= HZ
;
2222 rsp
->jiffies_force_qs
= jiffies
+ j
;
2223 WRITE_ONCE(rsp
->jiffies_kick_kthreads
,
2226 trace_rcu_grace_period(rsp
->name
,
2227 READ_ONCE(rsp
->gpnum
),
2229 rsp
->gp_state
= RCU_GP_WAIT_FQS
;
2230 ret
= swait_event_idle_timeout(rsp
->gp_wq
,
2231 rcu_gp_fqs_check_wake(rsp
, &gf
), j
);
2232 rsp
->gp_state
= RCU_GP_DOING_FQS
;
2233 /* Locking provides needed memory barriers. */
2234 /* If grace period done, leave loop. */
2235 if (!READ_ONCE(rnp
->qsmask
) &&
2236 !rcu_preempt_blocked_readers_cgp(rnp
))
2238 /* If time for quiescent-state forcing, do it. */
2239 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_force_qs
) ||
2240 (gf
& RCU_GP_FLAG_FQS
)) {
2241 trace_rcu_grace_period(rsp
->name
,
2242 READ_ONCE(rsp
->gpnum
),
2244 rcu_gp_fqs(rsp
, first_gp_fqs
);
2245 first_gp_fqs
= false;
2246 trace_rcu_grace_period(rsp
->name
,
2247 READ_ONCE(rsp
->gpnum
),
2249 cond_resched_rcu_qs();
2250 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2251 ret
= 0; /* Force full wait till next FQS. */
2252 j
= jiffies_till_next_fqs
;
2255 jiffies_till_next_fqs
= HZ
;
2258 jiffies_till_next_fqs
= 1;
2261 /* Deal with stray signal. */
2262 cond_resched_rcu_qs();
2263 WRITE_ONCE(rsp
->gp_activity
, jiffies
);
2264 WARN_ON(signal_pending(current
));
2265 trace_rcu_grace_period(rsp
->name
,
2266 READ_ONCE(rsp
->gpnum
),
2268 ret
= 1; /* Keep old FQS timing. */
2270 if (time_after(jiffies
, rsp
->jiffies_force_qs
))
2273 j
= rsp
->jiffies_force_qs
- j
;
2277 /* Handle grace-period end. */
2278 rsp
->gp_state
= RCU_GP_CLEANUP
;
2279 rcu_gp_cleanup(rsp
);
2280 rsp
->gp_state
= RCU_GP_CLEANED
;
2285 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2286 * in preparation for detecting the next grace period. The caller must hold
2287 * the root node's ->lock and hard irqs must be disabled.
2289 * Note that it is legal for a dying CPU (which is marked as offline) to
2290 * invoke this function. This can happen when the dying CPU reports its
2293 * Returns true if the grace-period kthread must be awakened.
2296 rcu_start_gp_advanced(struct rcu_state
*rsp
, struct rcu_node
*rnp
,
2297 struct rcu_data
*rdp
)
2299 lockdep_assert_held(&rnp
->lock
);
2300 if (!rsp
->gp_kthread
|| !cpu_needs_another_gp(rsp
, rdp
)) {
2302 * Either we have not yet spawned the grace-period
2303 * task, this CPU does not need another grace period,
2304 * or a grace period is already in progress.
2305 * Either way, don't start a new grace period.
2309 WRITE_ONCE(rsp
->gp_flags
, RCU_GP_FLAG_INIT
);
2310 trace_rcu_grace_period(rsp
->name
, READ_ONCE(rsp
->gpnum
),
2314 * We can't do wakeups while holding the rnp->lock, as that
2315 * could cause possible deadlocks with the rq->lock. Defer
2316 * the wakeup to our caller.
2322 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2323 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2324 * is invoked indirectly from rcu_advance_cbs(), which would result in
2325 * endless recursion -- or would do so if it wasn't for the self-deadlock
2326 * that is encountered beforehand.
2328 * Returns true if the grace-period kthread needs to be awakened.
2330 static bool rcu_start_gp(struct rcu_state
*rsp
)
2332 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
2333 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2337 * If there is no grace period in progress right now, any
2338 * callbacks we have up to this point will be satisfied by the
2339 * next grace period. Also, advancing the callbacks reduces the
2340 * probability of false positives from cpu_needs_another_gp()
2341 * resulting in pointless grace periods. So, advance callbacks
2342 * then start the grace period!
2344 ret
= rcu_advance_cbs(rsp
, rnp
, rdp
) || ret
;
2345 ret
= rcu_start_gp_advanced(rsp
, rnp
, rdp
) || ret
;
2350 * Report a full set of quiescent states to the specified rcu_state data
2351 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2352 * kthread if another grace period is required. Whether we wake
2353 * the grace-period kthread or it awakens itself for the next round
2354 * of quiescent-state forcing, that kthread will clean up after the
2355 * just-completed grace period. Note that the caller must hold rnp->lock,
2356 * which is released before return.
2358 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
2359 __releases(rcu_get_root(rsp
)->lock
)
2361 lockdep_assert_held(&rcu_get_root(rsp
)->lock
);
2362 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
2363 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2364 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp
), flags
);
2365 rcu_gp_kthread_wake(rsp
);
2369 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2370 * Allows quiescent states for a group of CPUs to be reported at one go
2371 * to the specified rcu_node structure, though all the CPUs in the group
2372 * must be represented by the same rcu_node structure (which need not be a
2373 * leaf rcu_node structure, though it often will be). The gps parameter
2374 * is the grace-period snapshot, which means that the quiescent states
2375 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2376 * must be held upon entry, and it is released before return.
2379 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
2380 struct rcu_node
*rnp
, unsigned long gps
, unsigned long flags
)
2381 __releases(rnp
->lock
)
2383 unsigned long oldmask
= 0;
2384 struct rcu_node
*rnp_c
;
2386 lockdep_assert_held(&rnp
->lock
);
2388 /* Walk up the rcu_node hierarchy. */
2390 if (!(rnp
->qsmask
& mask
) || rnp
->gpnum
!= gps
) {
2393 * Our bit has already been cleared, or the
2394 * relevant grace period is already over, so done.
2396 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2399 WARN_ON_ONCE(oldmask
); /* Any child must be all zeroed! */
2400 WARN_ON_ONCE(rnp
->level
!= rcu_num_lvls
- 1 &&
2401 rcu_preempt_blocked_readers_cgp(rnp
));
2402 rnp
->qsmask
&= ~mask
;
2403 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gpnum
,
2404 mask
, rnp
->qsmask
, rnp
->level
,
2405 rnp
->grplo
, rnp
->grphi
,
2407 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2409 /* Other bits still set at this level, so done. */
2410 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2413 mask
= rnp
->grpmask
;
2414 if (rnp
->parent
== NULL
) {
2416 /* No more levels. Exit loop holding root lock. */
2420 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2423 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2424 oldmask
= rnp_c
->qsmask
;
2428 * Get here if we are the last CPU to pass through a quiescent
2429 * state for this grace period. Invoke rcu_report_qs_rsp()
2430 * to clean up and start the next grace period if one is needed.
2432 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
2436 * Record a quiescent state for all tasks that were previously queued
2437 * on the specified rcu_node structure and that were blocking the current
2438 * RCU grace period. The caller must hold the specified rnp->lock with
2439 * irqs disabled, and this lock is released upon return, but irqs remain
2442 static void rcu_report_unblock_qs_rnp(struct rcu_state
*rsp
,
2443 struct rcu_node
*rnp
, unsigned long flags
)
2444 __releases(rnp
->lock
)
2448 struct rcu_node
*rnp_p
;
2450 lockdep_assert_held(&rnp
->lock
);
2451 if (rcu_state_p
== &rcu_sched_state
|| rsp
!= rcu_state_p
||
2452 rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2453 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2454 return; /* Still need more quiescent states! */
2457 rnp_p
= rnp
->parent
;
2458 if (rnp_p
== NULL
) {
2460 * Only one rcu_node structure in the tree, so don't
2461 * try to report up to its nonexistent parent!
2463 rcu_report_qs_rsp(rsp
, flags
);
2467 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2469 mask
= rnp
->grpmask
;
2470 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2471 raw_spin_lock_rcu_node(rnp_p
); /* irqs already disabled. */
2472 rcu_report_qs_rnp(mask
, rsp
, rnp_p
, gps
, flags
);
2476 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2477 * structure. This must be called from the specified CPU.
2480 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2482 unsigned long flags
;
2485 struct rcu_node
*rnp
;
2488 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2489 if (rdp
->cpu_no_qs
.b
.norm
|| rdp
->gpnum
!= rnp
->gpnum
||
2490 rnp
->completed
== rnp
->gpnum
|| rdp
->gpwrap
) {
2493 * The grace period in which this quiescent state was
2494 * recorded has ended, so don't report it upwards.
2495 * We will instead need a new quiescent state that lies
2496 * within the current grace period.
2498 rdp
->cpu_no_qs
.b
.norm
= true; /* need qs for new gp. */
2499 rdp
->rcu_qs_ctr_snap
= __this_cpu_read(rcu_dynticks
.rcu_qs_ctr
);
2500 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2503 mask
= rdp
->grpmask
;
2504 if ((rnp
->qsmask
& mask
) == 0) {
2505 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2507 rdp
->core_needs_qs
= false;
2510 * This GP can't end until cpu checks in, so all of our
2511 * callbacks can be processed during the next GP.
2513 needwake
= rcu_accelerate_cbs(rsp
, rnp
, rdp
);
2515 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2516 /* ^^^ Released rnp->lock */
2518 rcu_gp_kthread_wake(rsp
);
2523 * Check to see if there is a new grace period of which this CPU
2524 * is not yet aware, and if so, set up local rcu_data state for it.
2525 * Otherwise, see if this CPU has just passed through its first
2526 * quiescent state for this grace period, and record that fact if so.
2529 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2531 /* Check for grace-period ends and beginnings. */
2532 note_gp_changes(rsp
, rdp
);
2535 * Does this CPU still need to do its part for current grace period?
2536 * If no, return and let the other CPUs do their part as well.
2538 if (!rdp
->core_needs_qs
)
2542 * Was there a quiescent state since the beginning of the grace
2543 * period? If no, then exit and wait for the next call.
2545 if (rdp
->cpu_no_qs
.b
.norm
)
2549 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2552 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
);
2556 * Trace the fact that this CPU is going offline.
2558 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
2560 RCU_TRACE(unsigned long mask
;)
2561 RCU_TRACE(struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);)
2562 RCU_TRACE(struct rcu_node
*rnp
= rdp
->mynode
;)
2564 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2567 RCU_TRACE(mask
= rdp
->grpmask
;)
2568 trace_rcu_grace_period(rsp
->name
,
2569 rnp
->gpnum
+ 1 - !!(rnp
->qsmask
& mask
),
2574 * All CPUs for the specified rcu_node structure have gone offline,
2575 * and all tasks that were preempted within an RCU read-side critical
2576 * section while running on one of those CPUs have since exited their RCU
2577 * read-side critical section. Some other CPU is reporting this fact with
2578 * the specified rcu_node structure's ->lock held and interrupts disabled.
2579 * This function therefore goes up the tree of rcu_node structures,
2580 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2581 * the leaf rcu_node structure's ->qsmaskinit field has already been
2584 * This function does check that the specified rcu_node structure has
2585 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2586 * prematurely. That said, invoking it after the fact will cost you
2587 * a needless lock acquisition. So once it has done its work, don't
2590 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
)
2593 struct rcu_node
*rnp
= rnp_leaf
;
2595 lockdep_assert_held(&rnp
->lock
);
2596 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2597 rnp
->qsmaskinit
|| rcu_preempt_has_tasks(rnp
))
2600 mask
= rnp
->grpmask
;
2604 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
2605 rnp
->qsmaskinit
&= ~mask
;
2606 rnp
->qsmask
&= ~mask
;
2607 if (rnp
->qsmaskinit
) {
2608 raw_spin_unlock_rcu_node(rnp
);
2609 /* irqs remain disabled. */
2612 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2617 * The CPU has been completely removed, and some other CPU is reporting
2618 * this fact from process context. Do the remainder of the cleanup.
2619 * There can only be one CPU hotplug operation at a time, so no need for
2622 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
2624 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2625 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
2627 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2630 /* Adjust any no-longer-needed kthreads. */
2631 rcu_boost_kthread_setaffinity(rnp
, -1);
2635 * Invoke any RCU callbacks that have made it to the end of their grace
2636 * period. Thottle as specified by rdp->blimit.
2638 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2640 unsigned long flags
;
2641 struct rcu_head
*rhp
;
2642 struct rcu_cblist rcl
= RCU_CBLIST_INITIALIZER(rcl
);
2645 /* If no callbacks are ready, just return. */
2646 if (!rcu_segcblist_ready_cbs(&rdp
->cblist
)) {
2647 trace_rcu_batch_start(rsp
->name
,
2648 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
2649 rcu_segcblist_n_cbs(&rdp
->cblist
), 0);
2650 trace_rcu_batch_end(rsp
->name
, 0,
2651 !rcu_segcblist_empty(&rdp
->cblist
),
2652 need_resched(), is_idle_task(current
),
2653 rcu_is_callbacks_kthread());
2658 * Extract the list of ready callbacks, disabling to prevent
2659 * races with call_rcu() from interrupt handlers. Leave the
2660 * callback counts, as rcu_barrier() needs to be conservative.
2662 local_irq_save(flags
);
2663 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2665 trace_rcu_batch_start(rsp
->name
, rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
2666 rcu_segcblist_n_cbs(&rdp
->cblist
), bl
);
2667 rcu_segcblist_extract_done_cbs(&rdp
->cblist
, &rcl
);
2668 local_irq_restore(flags
);
2670 /* Invoke callbacks. */
2671 rhp
= rcu_cblist_dequeue(&rcl
);
2672 for (; rhp
; rhp
= rcu_cblist_dequeue(&rcl
)) {
2673 debug_rcu_head_unqueue(rhp
);
2674 if (__rcu_reclaim(rsp
->name
, rhp
))
2675 rcu_cblist_dequeued_lazy(&rcl
);
2677 * Stop only if limit reached and CPU has something to do.
2678 * Note: The rcl structure counts down from zero.
2680 if (-rcl
.len
>= bl
&&
2682 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
2686 local_irq_save(flags
);
2688 trace_rcu_batch_end(rsp
->name
, count
, !!rcl
.head
, need_resched(),
2689 is_idle_task(current
), rcu_is_callbacks_kthread());
2691 /* Update counts and requeue any remaining callbacks. */
2692 rcu_segcblist_insert_done_cbs(&rdp
->cblist
, &rcl
);
2693 smp_mb(); /* List handling before counting for rcu_barrier(). */
2694 rdp
->n_cbs_invoked
+= count
;
2695 rcu_segcblist_insert_count(&rdp
->cblist
, &rcl
);
2697 /* Reinstate batch limit if we have worked down the excess. */
2698 count
= rcu_segcblist_n_cbs(&rdp
->cblist
);
2699 if (rdp
->blimit
== LONG_MAX
&& count
<= qlowmark
)
2700 rdp
->blimit
= blimit
;
2702 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2703 if (count
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
2704 rdp
->qlen_last_fqs_check
= 0;
2705 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2706 } else if (count
< rdp
->qlen_last_fqs_check
- qhimark
)
2707 rdp
->qlen_last_fqs_check
= count
;
2710 * The following usually indicates a double call_rcu(). To track
2711 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2713 WARN_ON_ONCE(rcu_segcblist_empty(&rdp
->cblist
) != (count
== 0));
2715 local_irq_restore(flags
);
2717 /* Re-invoke RCU core processing if there are callbacks remaining. */
2718 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
2723 * Check to see if this CPU is in a non-context-switch quiescent state
2724 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2725 * Also schedule RCU core processing.
2727 * This function must be called from hardirq context. It is normally
2728 * invoked from the scheduling-clock interrupt.
2730 void rcu_check_callbacks(int user
)
2732 trace_rcu_utilization(TPS("Start scheduler-tick"));
2733 increment_cpu_stall_ticks();
2734 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
2737 * Get here if this CPU took its interrupt from user
2738 * mode or from the idle loop, and if this is not a
2739 * nested interrupt. In this case, the CPU is in
2740 * a quiescent state, so note it.
2742 * No memory barrier is required here because both
2743 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2744 * variables that other CPUs neither access nor modify,
2745 * at least not while the corresponding CPU is online.
2751 } else if (!in_softirq()) {
2754 * Get here if this CPU did not take its interrupt from
2755 * softirq, in other words, if it is not interrupting
2756 * a rcu_bh read-side critical section. This is an _bh
2757 * critical section, so note it.
2762 rcu_preempt_check_callbacks();
2766 rcu_note_voluntary_context_switch(current
);
2767 trace_rcu_utilization(TPS("End scheduler-tick"));
2771 * Scan the leaf rcu_node structures, processing dyntick state for any that
2772 * have not yet encountered a quiescent state, using the function specified.
2773 * Also initiate boosting for any threads blocked on the root rcu_node.
2775 * The caller must have suppressed start of new grace periods.
2777 static void force_qs_rnp(struct rcu_state
*rsp
, int (*f
)(struct rcu_data
*rsp
))
2780 unsigned long flags
;
2782 struct rcu_node
*rnp
;
2784 rcu_for_each_leaf_node(rsp
, rnp
) {
2785 cond_resched_rcu_qs();
2787 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2788 if (rnp
->qsmask
== 0) {
2789 if (rcu_state_p
== &rcu_sched_state
||
2790 rsp
!= rcu_state_p
||
2791 rcu_preempt_blocked_readers_cgp(rnp
)) {
2793 * No point in scanning bits because they
2794 * are all zero. But we might need to
2795 * priority-boost blocked readers.
2797 rcu_initiate_boost(rnp
, flags
);
2798 /* rcu_initiate_boost() releases rnp->lock */
2802 (rnp
->parent
->qsmask
& rnp
->grpmask
)) {
2804 * Race between grace-period
2805 * initialization and task exiting RCU
2806 * read-side critical section: Report.
2808 rcu_report_unblock_qs_rnp(rsp
, rnp
, flags
);
2809 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2813 for_each_leaf_node_possible_cpu(rnp
, cpu
) {
2814 unsigned long bit
= leaf_node_cpu_bit(rnp
, cpu
);
2815 if ((rnp
->qsmask
& bit
) != 0) {
2816 if (f(per_cpu_ptr(rsp
->rda
, cpu
)))
2821 /* Idle/offline CPUs, report (releases rnp->lock. */
2822 rcu_report_qs_rnp(mask
, rsp
, rnp
, rnp
->gpnum
, flags
);
2824 /* Nothing to do here, so just drop the lock. */
2825 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2831 * Force quiescent states on reluctant CPUs, and also detect which
2832 * CPUs are in dyntick-idle mode.
2834 static void force_quiescent_state(struct rcu_state
*rsp
)
2836 unsigned long flags
;
2838 struct rcu_node
*rnp
;
2839 struct rcu_node
*rnp_old
= NULL
;
2841 /* Funnel through hierarchy to reduce memory contention. */
2842 rnp
= __this_cpu_read(rsp
->rda
->mynode
);
2843 for (; rnp
!= NULL
; rnp
= rnp
->parent
) {
2844 ret
= (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) ||
2845 !raw_spin_trylock(&rnp
->fqslock
);
2846 if (rnp_old
!= NULL
)
2847 raw_spin_unlock(&rnp_old
->fqslock
);
2849 rsp
->n_force_qs_lh
++;
2854 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2856 /* Reached the root of the rcu_node tree, acquire lock. */
2857 raw_spin_lock_irqsave_rcu_node(rnp_old
, flags
);
2858 raw_spin_unlock(&rnp_old
->fqslock
);
2859 if (READ_ONCE(rsp
->gp_flags
) & RCU_GP_FLAG_FQS
) {
2860 rsp
->n_force_qs_lh
++;
2861 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2862 return; /* Someone beat us to it. */
2864 WRITE_ONCE(rsp
->gp_flags
, READ_ONCE(rsp
->gp_flags
) | RCU_GP_FLAG_FQS
);
2865 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2866 rcu_gp_kthread_wake(rsp
);
2870 * This does the RCU core processing work for the specified rcu_state
2871 * and rcu_data structures. This may be called only from the CPU to
2872 * whom the rdp belongs.
2875 __rcu_process_callbacks(struct rcu_state
*rsp
)
2877 unsigned long flags
;
2879 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
2881 WARN_ON_ONCE(!rdp
->beenonline
);
2883 /* Update RCU state based on any recent quiescent states. */
2884 rcu_check_quiescent_state(rsp
, rdp
);
2886 /* Does this CPU require a not-yet-started grace period? */
2887 local_irq_save(flags
);
2888 if (cpu_needs_another_gp(rsp
, rdp
)) {
2889 raw_spin_lock_rcu_node(rcu_get_root(rsp
)); /* irqs disabled. */
2890 needwake
= rcu_start_gp(rsp
);
2891 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp
), flags
);
2893 rcu_gp_kthread_wake(rsp
);
2895 local_irq_restore(flags
);
2898 /* If there are callbacks ready, invoke them. */
2899 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
2900 invoke_rcu_callbacks(rsp
, rdp
);
2902 /* Do any needed deferred wakeups of rcuo kthreads. */
2903 do_nocb_deferred_wakeup(rdp
);
2907 * Do RCU core processing for the current CPU.
2909 static __latent_entropy
void rcu_process_callbacks(struct softirq_action
*unused
)
2911 struct rcu_state
*rsp
;
2913 if (cpu_is_offline(smp_processor_id()))
2915 trace_rcu_utilization(TPS("Start RCU core"));
2916 for_each_rcu_flavor(rsp
)
2917 __rcu_process_callbacks(rsp
);
2918 trace_rcu_utilization(TPS("End RCU core"));
2922 * Schedule RCU callback invocation. If the specified type of RCU
2923 * does not support RCU priority boosting, just do a direct call,
2924 * otherwise wake up the per-CPU kernel kthread. Note that because we
2925 * are running on the current CPU with softirqs disabled, the
2926 * rcu_cpu_kthread_task cannot disappear out from under us.
2928 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2930 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active
)))
2932 if (likely(!rsp
->boost
)) {
2933 rcu_do_batch(rsp
, rdp
);
2936 invoke_rcu_callbacks_kthread();
2939 static void invoke_rcu_core(void)
2941 if (cpu_online(smp_processor_id()))
2942 raise_softirq(RCU_SOFTIRQ
);
2946 * Handle any core-RCU processing required by a call_rcu() invocation.
2948 static void __call_rcu_core(struct rcu_state
*rsp
, struct rcu_data
*rdp
,
2949 struct rcu_head
*head
, unsigned long flags
)
2954 * If called from an extended quiescent state, invoke the RCU
2955 * core in order to force a re-evaluation of RCU's idleness.
2957 if (!rcu_is_watching())
2960 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2961 if (irqs_disabled_flags(flags
) || cpu_is_offline(smp_processor_id()))
2965 * Force the grace period if too many callbacks or too long waiting.
2966 * Enforce hysteresis, and don't invoke force_quiescent_state()
2967 * if some other CPU has recently done so. Also, don't bother
2968 * invoking force_quiescent_state() if the newly enqueued callback
2969 * is the only one waiting for a grace period to complete.
2971 if (unlikely(rcu_segcblist_n_cbs(&rdp
->cblist
) >
2972 rdp
->qlen_last_fqs_check
+ qhimark
)) {
2974 /* Are we ignoring a completed grace period? */
2975 note_gp_changes(rsp
, rdp
);
2977 /* Start a new grace period if one not already started. */
2978 if (!rcu_gp_in_progress(rsp
)) {
2979 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
2981 raw_spin_lock_rcu_node(rnp_root
);
2982 needwake
= rcu_start_gp(rsp
);
2983 raw_spin_unlock_rcu_node(rnp_root
);
2985 rcu_gp_kthread_wake(rsp
);
2987 /* Give the grace period a kick. */
2988 rdp
->blimit
= LONG_MAX
;
2989 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
2990 rcu_segcblist_first_pend_cb(&rdp
->cblist
) != head
)
2991 force_quiescent_state(rsp
);
2992 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2993 rdp
->qlen_last_fqs_check
= rcu_segcblist_n_cbs(&rdp
->cblist
);
2999 * RCU callback function to leak a callback.
3001 static void rcu_leak_callback(struct rcu_head
*rhp
)
3006 * Helper function for call_rcu() and friends. The cpu argument will
3007 * normally be -1, indicating "currently running CPU". It may specify
3008 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3009 * is expected to specify a CPU.
3012 __call_rcu(struct rcu_head
*head
, rcu_callback_t func
,
3013 struct rcu_state
*rsp
, int cpu
, bool lazy
)
3015 unsigned long flags
;
3016 struct rcu_data
*rdp
;
3018 /* Misaligned rcu_head! */
3019 WARN_ON_ONCE((unsigned long)head
& (sizeof(void *) - 1));
3021 if (debug_rcu_head_queue(head
)) {
3023 * Probable double call_rcu(), so leak the callback.
3024 * Use rcu:rcu_callback trace event to find the previous
3025 * time callback was passed to __call_rcu().
3027 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3029 WRITE_ONCE(head
->func
, rcu_leak_callback
);
3034 local_irq_save(flags
);
3035 rdp
= this_cpu_ptr(rsp
->rda
);
3037 /* Add the callback to our list. */
3038 if (unlikely(!rcu_segcblist_is_enabled(&rdp
->cblist
)) || cpu
!= -1) {
3042 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3043 if (likely(rdp
->mynode
)) {
3044 /* Post-boot, so this should be for a no-CBs CPU. */
3045 offline
= !__call_rcu_nocb(rdp
, head
, lazy
, flags
);
3046 WARN_ON_ONCE(offline
);
3047 /* Offline CPU, _call_rcu() illegal, leak callback. */
3048 local_irq_restore(flags
);
3052 * Very early boot, before rcu_init(). Initialize if needed
3053 * and then drop through to queue the callback.
3056 WARN_ON_ONCE(!rcu_is_watching());
3057 if (rcu_segcblist_empty(&rdp
->cblist
))
3058 rcu_segcblist_init(&rdp
->cblist
);
3060 rcu_segcblist_enqueue(&rdp
->cblist
, head
, lazy
);
3062 rcu_idle_count_callbacks_posted();
3064 if (__is_kfree_rcu_offset((unsigned long)func
))
3065 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
3066 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
3067 rcu_segcblist_n_cbs(&rdp
->cblist
));
3069 trace_rcu_callback(rsp
->name
, head
,
3070 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
),
3071 rcu_segcblist_n_cbs(&rdp
->cblist
));
3073 /* Go handle any RCU core processing required. */
3074 __call_rcu_core(rsp
, rdp
, head
, flags
);
3075 local_irq_restore(flags
);
3079 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3080 * @head: structure to be used for queueing the RCU updates.
3081 * @func: actual callback function to be invoked after the grace period
3083 * The callback function will be invoked some time after a full grace
3084 * period elapses, in other words after all currently executing RCU
3085 * read-side critical sections have completed. call_rcu_sched() assumes
3086 * that the read-side critical sections end on enabling of preemption
3087 * or on voluntary preemption.
3088 * RCU read-side critical sections are delimited by:
3090 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3091 * - anything that disables preemption.
3093 * These may be nested.
3095 * See the description of call_rcu() for more detailed information on
3096 * memory ordering guarantees.
3098 void call_rcu_sched(struct rcu_head
*head
, rcu_callback_t func
)
3100 __call_rcu(head
, func
, &rcu_sched_state
, -1, 0);
3102 EXPORT_SYMBOL_GPL(call_rcu_sched
);
3105 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3106 * @head: structure to be used for queueing the RCU updates.
3107 * @func: actual callback function to be invoked after the grace period
3109 * The callback function will be invoked some time after a full grace
3110 * period elapses, in other words after all currently executing RCU
3111 * read-side critical sections have completed. call_rcu_bh() assumes
3112 * that the read-side critical sections end on completion of a softirq
3113 * handler. This means that read-side critical sections in process
3114 * context must not be interrupted by softirqs. This interface is to be
3115 * used when most of the read-side critical sections are in softirq context.
3116 * RCU read-side critical sections are delimited by:
3118 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR
3119 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3121 * These may be nested.
3123 * See the description of call_rcu() for more detailed information on
3124 * memory ordering guarantees.
3126 void call_rcu_bh(struct rcu_head
*head
, rcu_callback_t func
)
3128 __call_rcu(head
, func
, &rcu_bh_state
, -1, 0);
3130 EXPORT_SYMBOL_GPL(call_rcu_bh
);
3133 * Queue an RCU callback for lazy invocation after a grace period.
3134 * This will likely be later named something like "call_rcu_lazy()",
3135 * but this change will require some way of tagging the lazy RCU
3136 * callbacks in the list of pending callbacks. Until then, this
3137 * function may only be called from __kfree_rcu().
3139 void kfree_call_rcu(struct rcu_head
*head
,
3140 rcu_callback_t func
)
3142 __call_rcu(head
, func
, rcu_state_p
, -1, 1);
3144 EXPORT_SYMBOL_GPL(kfree_call_rcu
);
3147 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3148 * any blocking grace-period wait automatically implies a grace period
3149 * if there is only one CPU online at any point time during execution
3150 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3151 * occasionally incorrectly indicate that there are multiple CPUs online
3152 * when there was in fact only one the whole time, as this just adds
3153 * some overhead: RCU still operates correctly.
3155 static inline int rcu_blocking_is_gp(void)
3159 might_sleep(); /* Check for RCU read-side critical section. */
3161 ret
= num_online_cpus() <= 1;
3167 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3169 * Control will return to the caller some time after a full rcu-sched
3170 * grace period has elapsed, in other words after all currently executing
3171 * rcu-sched read-side critical sections have completed. These read-side
3172 * critical sections are delimited by rcu_read_lock_sched() and
3173 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3174 * local_irq_disable(), and so on may be used in place of
3175 * rcu_read_lock_sched().
3177 * This means that all preempt_disable code sequences, including NMI and
3178 * non-threaded hardware-interrupt handlers, in progress on entry will
3179 * have completed before this primitive returns. However, this does not
3180 * guarantee that softirq handlers will have completed, since in some
3181 * kernels, these handlers can run in process context, and can block.
3183 * Note that this guarantee implies further memory-ordering guarantees.
3184 * On systems with more than one CPU, when synchronize_sched() returns,
3185 * each CPU is guaranteed to have executed a full memory barrier since the
3186 * end of its last RCU-sched read-side critical section whose beginning
3187 * preceded the call to synchronize_sched(). In addition, each CPU having
3188 * an RCU read-side critical section that extends beyond the return from
3189 * synchronize_sched() is guaranteed to have executed a full memory barrier
3190 * after the beginning of synchronize_sched() and before the beginning of
3191 * that RCU read-side critical section. Note that these guarantees include
3192 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3193 * that are executing in the kernel.
3195 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3196 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3197 * to have executed a full memory barrier during the execution of
3198 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3199 * again only if the system has more than one CPU).
3201 void synchronize_sched(void)
3203 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3204 lock_is_held(&rcu_lock_map
) ||
3205 lock_is_held(&rcu_sched_lock_map
),
3206 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3207 if (rcu_blocking_is_gp())
3209 if (rcu_gp_is_expedited())
3210 synchronize_sched_expedited();
3212 wait_rcu_gp(call_rcu_sched
);
3214 EXPORT_SYMBOL_GPL(synchronize_sched
);
3217 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3219 * Control will return to the caller some time after a full rcu_bh grace
3220 * period has elapsed, in other words after all currently executing rcu_bh
3221 * read-side critical sections have completed. RCU read-side critical
3222 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3223 * and may be nested.
3225 * See the description of synchronize_sched() for more detailed information
3226 * on memory ordering guarantees.
3228 void synchronize_rcu_bh(void)
3230 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3231 lock_is_held(&rcu_lock_map
) ||
3232 lock_is_held(&rcu_sched_lock_map
),
3233 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3234 if (rcu_blocking_is_gp())
3236 if (rcu_gp_is_expedited())
3237 synchronize_rcu_bh_expedited();
3239 wait_rcu_gp(call_rcu_bh
);
3241 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
3244 * get_state_synchronize_rcu - Snapshot current RCU state
3246 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3247 * to determine whether or not a full grace period has elapsed in the
3250 unsigned long get_state_synchronize_rcu(void)
3253 * Any prior manipulation of RCU-protected data must happen
3254 * before the load from ->gpnum.
3259 * Make sure this load happens before the purportedly
3260 * time-consuming work between get_state_synchronize_rcu()
3261 * and cond_synchronize_rcu().
3263 return smp_load_acquire(&rcu_state_p
->gpnum
);
3265 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu
);
3268 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3270 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3272 * If a full RCU grace period has elapsed since the earlier call to
3273 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3274 * synchronize_rcu() to wait for a full grace period.
3276 * Yes, this function does not take counter wrap into account. But
3277 * counter wrap is harmless. If the counter wraps, we have waited for
3278 * more than 2 billion grace periods (and way more on a 64-bit system!),
3279 * so waiting for one additional grace period should be just fine.
3281 void cond_synchronize_rcu(unsigned long oldstate
)
3283 unsigned long newstate
;
3286 * Ensure that this load happens before any RCU-destructive
3287 * actions the caller might carry out after we return.
3289 newstate
= smp_load_acquire(&rcu_state_p
->completed
);
3290 if (ULONG_CMP_GE(oldstate
, newstate
))
3293 EXPORT_SYMBOL_GPL(cond_synchronize_rcu
);
3296 * get_state_synchronize_sched - Snapshot current RCU-sched state
3298 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3299 * to determine whether or not a full grace period has elapsed in the
3302 unsigned long get_state_synchronize_sched(void)
3305 * Any prior manipulation of RCU-protected data must happen
3306 * before the load from ->gpnum.
3311 * Make sure this load happens before the purportedly
3312 * time-consuming work between get_state_synchronize_sched()
3313 * and cond_synchronize_sched().
3315 return smp_load_acquire(&rcu_sched_state
.gpnum
);
3317 EXPORT_SYMBOL_GPL(get_state_synchronize_sched
);
3320 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3322 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3324 * If a full RCU-sched grace period has elapsed since the earlier call to
3325 * get_state_synchronize_sched(), just return. Otherwise, invoke
3326 * synchronize_sched() to wait for a full grace period.
3328 * Yes, this function does not take counter wrap into account. But
3329 * counter wrap is harmless. If the counter wraps, we have waited for
3330 * more than 2 billion grace periods (and way more on a 64-bit system!),
3331 * so waiting for one additional grace period should be just fine.
3333 void cond_synchronize_sched(unsigned long oldstate
)
3335 unsigned long newstate
;
3338 * Ensure that this load happens before any RCU-destructive
3339 * actions the caller might carry out after we return.
3341 newstate
= smp_load_acquire(&rcu_sched_state
.completed
);
3342 if (ULONG_CMP_GE(oldstate
, newstate
))
3343 synchronize_sched();
3345 EXPORT_SYMBOL_GPL(cond_synchronize_sched
);
3348 * Check to see if there is any immediate RCU-related work to be done
3349 * by the current CPU, for the specified type of RCU, returning 1 if so.
3350 * The checks are in order of increasing expense: checks that can be
3351 * carried out against CPU-local state are performed first. However,
3352 * we must check for CPU stalls first, else we might not get a chance.
3354 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
3356 struct rcu_node
*rnp
= rdp
->mynode
;
3358 rdp
->n_rcu_pending
++;
3360 /* Check for CPU stalls, if enabled. */
3361 check_cpu_stall(rsp
, rdp
);
3363 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3364 if (rcu_nohz_full_cpu(rsp
))
3367 /* Is the RCU core waiting for a quiescent state from this CPU? */
3368 if (rcu_scheduler_fully_active
&&
3369 rdp
->core_needs_qs
&& rdp
->cpu_no_qs
.b
.norm
&&
3370 rdp
->rcu_qs_ctr_snap
== __this_cpu_read(rcu_dynticks
.rcu_qs_ctr
)) {
3371 rdp
->n_rp_core_needs_qs
++;
3372 } else if (rdp
->core_needs_qs
&& !rdp
->cpu_no_qs
.b
.norm
) {
3373 rdp
->n_rp_report_qs
++;
3377 /* Does this CPU have callbacks ready to invoke? */
3378 if (rcu_segcblist_ready_cbs(&rdp
->cblist
)) {
3379 rdp
->n_rp_cb_ready
++;
3383 /* Has RCU gone idle with this CPU needing another grace period? */
3384 if (cpu_needs_another_gp(rsp
, rdp
)) {
3385 rdp
->n_rp_cpu_needs_gp
++;
3389 /* Has another RCU grace period completed? */
3390 if (READ_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
3391 rdp
->n_rp_gp_completed
++;
3395 /* Has a new RCU grace period started? */
3396 if (READ_ONCE(rnp
->gpnum
) != rdp
->gpnum
||
3397 unlikely(READ_ONCE(rdp
->gpwrap
))) { /* outside lock */
3398 rdp
->n_rp_gp_started
++;
3402 /* Does this CPU need a deferred NOCB wakeup? */
3403 if (rcu_nocb_need_deferred_wakeup(rdp
)) {
3404 rdp
->n_rp_nocb_defer_wakeup
++;
3409 rdp
->n_rp_need_nothing
++;
3414 * Check to see if there is any immediate RCU-related work to be done
3415 * by the current CPU, returning 1 if so. This function is part of the
3416 * RCU implementation; it is -not- an exported member of the RCU API.
3418 static int rcu_pending(void)
3420 struct rcu_state
*rsp
;
3422 for_each_rcu_flavor(rsp
)
3423 if (__rcu_pending(rsp
, this_cpu_ptr(rsp
->rda
)))
3429 * Return true if the specified CPU has any callback. If all_lazy is
3430 * non-NULL, store an indication of whether all callbacks are lazy.
3431 * (If there are no callbacks, all of them are deemed to be lazy.)
3433 static bool __maybe_unused
rcu_cpu_has_callbacks(bool *all_lazy
)
3437 struct rcu_data
*rdp
;
3438 struct rcu_state
*rsp
;
3440 for_each_rcu_flavor(rsp
) {
3441 rdp
= this_cpu_ptr(rsp
->rda
);
3442 if (rcu_segcblist_empty(&rdp
->cblist
))
3445 if (rcu_segcblist_n_nonlazy_cbs(&rdp
->cblist
) || !all_lazy
) {
3456 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3457 * the compiler is expected to optimize this away.
3459 static void _rcu_barrier_trace(struct rcu_state
*rsp
, const char *s
,
3460 int cpu
, unsigned long done
)
3462 trace_rcu_barrier(rsp
->name
, s
, cpu
,
3463 atomic_read(&rsp
->barrier_cpu_count
), done
);
3467 * RCU callback function for _rcu_barrier(). If we are last, wake
3468 * up the task executing _rcu_barrier().
3470 static void rcu_barrier_callback(struct rcu_head
*rhp
)
3472 struct rcu_data
*rdp
= container_of(rhp
, struct rcu_data
, barrier_head
);
3473 struct rcu_state
*rsp
= rdp
->rsp
;
3475 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
)) {
3476 _rcu_barrier_trace(rsp
, TPS("LastCB"), -1,
3477 rsp
->barrier_sequence
);
3478 complete(&rsp
->barrier_completion
);
3480 _rcu_barrier_trace(rsp
, TPS("CB"), -1, rsp
->barrier_sequence
);
3485 * Called with preemption disabled, and from cross-cpu IRQ context.
3487 static void rcu_barrier_func(void *type
)
3489 struct rcu_state
*rsp
= type
;
3490 struct rcu_data
*rdp
= raw_cpu_ptr(rsp
->rda
);
3492 _rcu_barrier_trace(rsp
, TPS("IRQ"), -1, rsp
->barrier_sequence
);
3493 rdp
->barrier_head
.func
= rcu_barrier_callback
;
3494 debug_rcu_head_queue(&rdp
->barrier_head
);
3495 if (rcu_segcblist_entrain(&rdp
->cblist
, &rdp
->barrier_head
, 0)) {
3496 atomic_inc(&rsp
->barrier_cpu_count
);
3498 debug_rcu_head_unqueue(&rdp
->barrier_head
);
3499 _rcu_barrier_trace(rsp
, TPS("IRQNQ"), -1,
3500 rsp
->barrier_sequence
);
3505 * Orchestrate the specified type of RCU barrier, waiting for all
3506 * RCU callbacks of the specified type to complete.
3508 static void _rcu_barrier(struct rcu_state
*rsp
)
3511 struct rcu_data
*rdp
;
3512 unsigned long s
= rcu_seq_snap(&rsp
->barrier_sequence
);
3514 _rcu_barrier_trace(rsp
, TPS("Begin"), -1, s
);
3516 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3517 mutex_lock(&rsp
->barrier_mutex
);
3519 /* Did someone else do our work for us? */
3520 if (rcu_seq_done(&rsp
->barrier_sequence
, s
)) {
3521 _rcu_barrier_trace(rsp
, TPS("EarlyExit"), -1,
3522 rsp
->barrier_sequence
);
3523 smp_mb(); /* caller's subsequent code after above check. */
3524 mutex_unlock(&rsp
->barrier_mutex
);
3528 /* Mark the start of the barrier operation. */
3529 rcu_seq_start(&rsp
->barrier_sequence
);
3530 _rcu_barrier_trace(rsp
, TPS("Inc1"), -1, rsp
->barrier_sequence
);
3533 * Initialize the count to one rather than to zero in order to
3534 * avoid a too-soon return to zero in case of a short grace period
3535 * (or preemption of this task). Exclude CPU-hotplug operations
3536 * to ensure that no offline CPU has callbacks queued.
3538 init_completion(&rsp
->barrier_completion
);
3539 atomic_set(&rsp
->barrier_cpu_count
, 1);
3543 * Force each CPU with callbacks to register a new callback.
3544 * When that callback is invoked, we will know that all of the
3545 * corresponding CPU's preceding callbacks have been invoked.
3547 for_each_possible_cpu(cpu
) {
3548 if (!cpu_online(cpu
) && !rcu_is_nocb_cpu(cpu
))
3550 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3551 if (rcu_is_nocb_cpu(cpu
)) {
3552 if (!rcu_nocb_cpu_needs_barrier(rsp
, cpu
)) {
3553 _rcu_barrier_trace(rsp
, TPS("OfflineNoCB"), cpu
,
3554 rsp
->barrier_sequence
);
3556 _rcu_barrier_trace(rsp
, TPS("OnlineNoCB"), cpu
,
3557 rsp
->barrier_sequence
);
3558 smp_mb__before_atomic();
3559 atomic_inc(&rsp
->barrier_cpu_count
);
3560 __call_rcu(&rdp
->barrier_head
,
3561 rcu_barrier_callback
, rsp
, cpu
, 0);
3563 } else if (rcu_segcblist_n_cbs(&rdp
->cblist
)) {
3564 _rcu_barrier_trace(rsp
, TPS("OnlineQ"), cpu
,
3565 rsp
->barrier_sequence
);
3566 smp_call_function_single(cpu
, rcu_barrier_func
, rsp
, 1);
3568 _rcu_barrier_trace(rsp
, TPS("OnlineNQ"), cpu
,
3569 rsp
->barrier_sequence
);
3575 * Now that we have an rcu_barrier_callback() callback on each
3576 * CPU, and thus each counted, remove the initial count.
3578 if (atomic_dec_and_test(&rsp
->barrier_cpu_count
))
3579 complete(&rsp
->barrier_completion
);
3581 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3582 wait_for_completion(&rsp
->barrier_completion
);
3584 /* Mark the end of the barrier operation. */
3585 _rcu_barrier_trace(rsp
, TPS("Inc2"), -1, rsp
->barrier_sequence
);
3586 rcu_seq_end(&rsp
->barrier_sequence
);
3588 /* Other rcu_barrier() invocations can now safely proceed. */
3589 mutex_unlock(&rsp
->barrier_mutex
);
3593 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3595 void rcu_barrier_bh(void)
3597 _rcu_barrier(&rcu_bh_state
);
3599 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
3602 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3604 void rcu_barrier_sched(void)
3606 _rcu_barrier(&rcu_sched_state
);
3608 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
3611 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3612 * first CPU in a given leaf rcu_node structure coming online. The caller
3613 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3616 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
)
3619 struct rcu_node
*rnp
= rnp_leaf
;
3621 lockdep_assert_held(&rnp
->lock
);
3623 mask
= rnp
->grpmask
;
3627 raw_spin_lock_rcu_node(rnp
); /* Interrupts already disabled. */
3628 rnp
->qsmaskinit
|= mask
;
3629 raw_spin_unlock_rcu_node(rnp
); /* Interrupts remain disabled. */
3634 * Do boot-time initialization of a CPU's per-CPU RCU data.
3637 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
3639 unsigned long flags
;
3640 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3641 struct rcu_node
*rnp
= rcu_get_root(rsp
);
3643 /* Set up local state, ensuring consistent view of global state. */
3644 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3645 rdp
->grpmask
= leaf_node_cpu_bit(rdp
->mynode
, cpu
);
3646 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
3647 WARN_ON_ONCE(rdp
->dynticks
->dynticks_nesting
!= 1);
3648 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp
->dynticks
)));
3651 rcu_boot_init_nocb_percpu_data(rdp
);
3652 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3656 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3657 * offline event can be happening at a given time. Note also that we
3658 * can accept some slop in the rsp->completed access due to the fact
3659 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3662 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
3664 unsigned long flags
;
3665 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3666 struct rcu_node
*rnp
= rcu_get_root(rsp
);
3668 /* Set up local state, ensuring consistent view of global state. */
3669 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3670 rdp
->qlen_last_fqs_check
= 0;
3671 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
3672 rdp
->blimit
= blimit
;
3673 if (rcu_segcblist_empty(&rdp
->cblist
) && /* No early-boot CBs? */
3674 !init_nocb_callback_list(rdp
))
3675 rcu_segcblist_init(&rdp
->cblist
); /* Re-enable callbacks. */
3676 rdp
->dynticks
->dynticks_nesting
= 1; /* CPU not up, no tearing. */
3677 rcu_dynticks_eqs_online();
3678 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
3681 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3682 * propagation up the rcu_node tree will happen at the beginning
3683 * of the next grace period.
3686 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
3687 rdp
->beenonline
= true; /* We have now been online. */
3688 rdp
->gpnum
= rnp
->completed
; /* Make CPU later note any new GP. */
3689 rdp
->completed
= rnp
->completed
;
3690 rdp
->cpu_no_qs
.b
.norm
= true;
3691 rdp
->rcu_qs_ctr_snap
= per_cpu(rcu_dynticks
.rcu_qs_ctr
, cpu
);
3692 rdp
->core_needs_qs
= false;
3693 rdp
->rcu_iw_pending
= false;
3694 rdp
->rcu_iw_gpnum
= rnp
->gpnum
- 1;
3695 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, TPS("cpuonl"));
3696 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3700 * Invoked early in the CPU-online process, when pretty much all
3701 * services are available. The incoming CPU is not present.
3703 int rcutree_prepare_cpu(unsigned int cpu
)
3705 struct rcu_state
*rsp
;
3707 for_each_rcu_flavor(rsp
)
3708 rcu_init_percpu_data(cpu
, rsp
);
3710 rcu_prepare_kthreads(cpu
);
3711 rcu_spawn_all_nocb_kthreads(cpu
);
3717 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3719 static void rcutree_affinity_setting(unsigned int cpu
, int outgoing
)
3721 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state_p
->rda
, cpu
);
3723 rcu_boost_kthread_setaffinity(rdp
->mynode
, outgoing
);
3727 * Near the end of the CPU-online process. Pretty much all services
3728 * enabled, and the CPU is now very much alive.
3730 int rcutree_online_cpu(unsigned int cpu
)
3732 unsigned long flags
;
3733 struct rcu_data
*rdp
;
3734 struct rcu_node
*rnp
;
3735 struct rcu_state
*rsp
;
3737 for_each_rcu_flavor(rsp
) {
3738 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3740 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3741 rnp
->ffmask
|= rdp
->grpmask
;
3742 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3744 if (IS_ENABLED(CONFIG_TREE_SRCU
))
3745 srcu_online_cpu(cpu
);
3746 if (rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
)
3747 return 0; /* Too early in boot for scheduler work. */
3748 sync_sched_exp_online_cleanup(cpu
);
3749 rcutree_affinity_setting(cpu
, -1);
3754 * Near the beginning of the process. The CPU is still very much alive
3755 * with pretty much all services enabled.
3757 int rcutree_offline_cpu(unsigned int cpu
)
3759 unsigned long flags
;
3760 struct rcu_data
*rdp
;
3761 struct rcu_node
*rnp
;
3762 struct rcu_state
*rsp
;
3764 for_each_rcu_flavor(rsp
) {
3765 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3767 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3768 rnp
->ffmask
&= ~rdp
->grpmask
;
3769 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3772 rcutree_affinity_setting(cpu
, cpu
);
3773 if (IS_ENABLED(CONFIG_TREE_SRCU
))
3774 srcu_offline_cpu(cpu
);
3779 * Near the end of the offline process. We do only tracing here.
3781 int rcutree_dying_cpu(unsigned int cpu
)
3783 struct rcu_state
*rsp
;
3785 for_each_rcu_flavor(rsp
)
3786 rcu_cleanup_dying_cpu(rsp
);
3791 * The outgoing CPU is gone and we are running elsewhere.
3793 int rcutree_dead_cpu(unsigned int cpu
)
3795 struct rcu_state
*rsp
;
3797 for_each_rcu_flavor(rsp
) {
3798 rcu_cleanup_dead_cpu(cpu
, rsp
);
3799 do_nocb_deferred_wakeup(per_cpu_ptr(rsp
->rda
, cpu
));
3805 * Mark the specified CPU as being online so that subsequent grace periods
3806 * (both expedited and normal) will wait on it. Note that this means that
3807 * incoming CPUs are not allowed to use RCU read-side critical sections
3808 * until this function is called. Failing to observe this restriction
3809 * will result in lockdep splats.
3811 * Note that this function is special in that it is invoked directly
3812 * from the incoming CPU rather than from the cpuhp_step mechanism.
3813 * This is because this function must be invoked at a precise location.
3815 void rcu_cpu_starting(unsigned int cpu
)
3817 unsigned long flags
;
3820 unsigned long oldmask
;
3821 struct rcu_data
*rdp
;
3822 struct rcu_node
*rnp
;
3823 struct rcu_state
*rsp
;
3825 for_each_rcu_flavor(rsp
) {
3826 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3828 mask
= rdp
->grpmask
;
3829 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3830 rnp
->qsmaskinitnext
|= mask
;
3831 oldmask
= rnp
->expmaskinitnext
;
3832 rnp
->expmaskinitnext
|= mask
;
3833 oldmask
^= rnp
->expmaskinitnext
;
3834 nbits
= bitmap_weight(&oldmask
, BITS_PER_LONG
);
3835 /* Allow lockless access for expedited grace periods. */
3836 smp_store_release(&rsp
->ncpus
, rsp
->ncpus
+ nbits
); /* ^^^ */
3837 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3839 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3842 #ifdef CONFIG_HOTPLUG_CPU
3844 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3845 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3848 static void rcu_cleanup_dying_idle_cpu(int cpu
, struct rcu_state
*rsp
)
3850 unsigned long flags
;
3852 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3853 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
3855 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3856 mask
= rdp
->grpmask
;
3857 raw_spin_lock_irqsave_rcu_node(rnp
, flags
); /* Enforce GP memory-order guarantee. */
3858 rnp
->qsmaskinitnext
&= ~mask
;
3859 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3863 * The outgoing function has no further need of RCU, so remove it from
3864 * the list of CPUs that RCU must track.
3866 * Note that this function is special in that it is invoked directly
3867 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3868 * This is because this function must be invoked at a precise location.
3870 void rcu_report_dead(unsigned int cpu
)
3872 struct rcu_state
*rsp
;
3874 /* QS for any half-done expedited RCU-sched GP. */
3876 rcu_report_exp_rdp(&rcu_sched_state
,
3877 this_cpu_ptr(rcu_sched_state
.rda
), true);
3879 for_each_rcu_flavor(rsp
)
3880 rcu_cleanup_dying_idle_cpu(cpu
, rsp
);
3883 /* Migrate the dead CPU's callbacks to the current CPU. */
3884 static void rcu_migrate_callbacks(int cpu
, struct rcu_state
*rsp
)
3886 unsigned long flags
;
3887 struct rcu_data
*my_rdp
;
3888 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
3889 struct rcu_node
*rnp_root
= rcu_get_root(rdp
->rsp
);
3891 if (rcu_is_nocb_cpu(cpu
) || rcu_segcblist_empty(&rdp
->cblist
))
3892 return; /* No callbacks to migrate. */
3894 local_irq_save(flags
);
3895 my_rdp
= this_cpu_ptr(rsp
->rda
);
3896 if (rcu_nocb_adopt_orphan_cbs(my_rdp
, rdp
, flags
)) {
3897 local_irq_restore(flags
);
3900 raw_spin_lock_rcu_node(rnp_root
); /* irqs already disabled. */
3901 rcu_advance_cbs(rsp
, rnp_root
, rdp
); /* Leverage recent GPs. */
3902 rcu_advance_cbs(rsp
, rnp_root
, my_rdp
); /* Assign GP to pending CBs. */
3903 rcu_segcblist_merge(&my_rdp
->cblist
, &rdp
->cblist
);
3904 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp
->cblist
) !=
3905 !rcu_segcblist_n_cbs(&my_rdp
->cblist
));
3906 raw_spin_unlock_irqrestore_rcu_node(rnp_root
, flags
);
3907 WARN_ONCE(rcu_segcblist_n_cbs(&rdp
->cblist
) != 0 ||
3908 !rcu_segcblist_empty(&rdp
->cblist
),
3909 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3910 cpu
, rcu_segcblist_n_cbs(&rdp
->cblist
),
3911 rcu_segcblist_first_cb(&rdp
->cblist
));
3915 * The outgoing CPU has just passed through the dying-idle state,
3916 * and we are being invoked from the CPU that was IPIed to continue the
3917 * offline operation. We need to migrate the outgoing CPU's callbacks.
3919 void rcutree_migrate_callbacks(int cpu
)
3921 struct rcu_state
*rsp
;
3923 for_each_rcu_flavor(rsp
)
3924 rcu_migrate_callbacks(cpu
, rsp
);
3929 * On non-huge systems, use expedited RCU grace periods to make suspend
3930 * and hibernation run faster.
3932 static int rcu_pm_notify(struct notifier_block
*self
,
3933 unsigned long action
, void *hcpu
)
3936 case PM_HIBERNATION_PREPARE
:
3937 case PM_SUSPEND_PREPARE
:
3938 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3941 case PM_POST_HIBERNATION
:
3942 case PM_POST_SUSPEND
:
3943 if (nr_cpu_ids
<= 256) /* Expediting bad for large systems. */
3944 rcu_unexpedite_gp();
3953 * Spawn the kthreads that handle each RCU flavor's grace periods.
3955 static int __init
rcu_spawn_gp_kthread(void)
3957 unsigned long flags
;
3958 int kthread_prio_in
= kthread_prio
;
3959 struct rcu_node
*rnp
;
3960 struct rcu_state
*rsp
;
3961 struct sched_param sp
;
3962 struct task_struct
*t
;
3964 /* Force priority into range. */
3965 if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 1)
3967 else if (kthread_prio
< 0)
3969 else if (kthread_prio
> 99)
3971 if (kthread_prio
!= kthread_prio_in
)
3972 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3973 kthread_prio
, kthread_prio_in
);
3975 rcu_scheduler_fully_active
= 1;
3976 for_each_rcu_flavor(rsp
) {
3977 t
= kthread_create(rcu_gp_kthread
, rsp
, "%s", rsp
->name
);
3979 rnp
= rcu_get_root(rsp
);
3980 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3981 rsp
->gp_kthread
= t
;
3983 sp
.sched_priority
= kthread_prio
;
3984 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
3986 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3989 rcu_spawn_nocb_kthreads();
3990 rcu_spawn_boost_kthreads();
3993 early_initcall(rcu_spawn_gp_kthread
);
3996 * This function is invoked towards the end of the scheduler's
3997 * initialization process. Before this is called, the idle task might
3998 * contain synchronous grace-period primitives (during which time, this idle
3999 * task is booting the system, and such primitives are no-ops). After this
4000 * function is called, any synchronous grace-period primitives are run as
4001 * expedited, with the requesting task driving the grace period forward.
4002 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4003 * runtime RCU functionality.
4005 void rcu_scheduler_starting(void)
4007 WARN_ON(num_online_cpus() != 1);
4008 WARN_ON(nr_context_switches() > 0);
4009 rcu_test_sync_prims();
4010 rcu_scheduler_active
= RCU_SCHEDULER_INIT
;
4011 rcu_test_sync_prims();
4015 * Helper function for rcu_init() that initializes one rcu_state structure.
4017 static void __init
rcu_init_one(struct rcu_state
*rsp
)
4019 static const char * const buf
[] = RCU_NODE_NAME_INIT
;
4020 static const char * const fqs
[] = RCU_FQS_NAME_INIT
;
4021 static struct lock_class_key rcu_node_class
[RCU_NUM_LVLS
];
4022 static struct lock_class_key rcu_fqs_class
[RCU_NUM_LVLS
];
4024 int levelspread
[RCU_NUM_LVLS
]; /* kids/node in each level. */
4028 struct rcu_node
*rnp
;
4030 BUILD_BUG_ON(RCU_NUM_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
4032 /* Silence gcc 4.8 false positive about array index out of range. */
4033 if (rcu_num_lvls
<= 0 || rcu_num_lvls
> RCU_NUM_LVLS
)
4034 panic("rcu_init_one: rcu_num_lvls out of range");
4036 /* Initialize the level-tracking arrays. */
4038 for (i
= 1; i
< rcu_num_lvls
; i
++)
4039 rsp
->level
[i
] = rsp
->level
[i
- 1] + num_rcu_lvl
[i
- 1];
4040 rcu_init_levelspread(levelspread
, num_rcu_lvl
);
4042 /* Initialize the elements themselves, starting from the leaves. */
4044 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4045 cpustride
*= levelspread
[i
];
4046 rnp
= rsp
->level
[i
];
4047 for (j
= 0; j
< num_rcu_lvl
[i
]; j
++, rnp
++) {
4048 raw_spin_lock_init(&ACCESS_PRIVATE(rnp
, lock
));
4049 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp
, lock
),
4050 &rcu_node_class
[i
], buf
[i
]);
4051 raw_spin_lock_init(&rnp
->fqslock
);
4052 lockdep_set_class_and_name(&rnp
->fqslock
,
4053 &rcu_fqs_class
[i
], fqs
[i
]);
4054 rnp
->gpnum
= rsp
->gpnum
;
4055 rnp
->completed
= rsp
->completed
;
4057 rnp
->qsmaskinit
= 0;
4058 rnp
->grplo
= j
* cpustride
;
4059 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
4060 if (rnp
->grphi
>= nr_cpu_ids
)
4061 rnp
->grphi
= nr_cpu_ids
- 1;
4067 rnp
->grpnum
= j
% levelspread
[i
- 1];
4068 rnp
->grpmask
= 1UL << rnp
->grpnum
;
4069 rnp
->parent
= rsp
->level
[i
- 1] +
4070 j
/ levelspread
[i
- 1];
4073 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
4074 rcu_init_one_nocb(rnp
);
4075 init_waitqueue_head(&rnp
->exp_wq
[0]);
4076 init_waitqueue_head(&rnp
->exp_wq
[1]);
4077 init_waitqueue_head(&rnp
->exp_wq
[2]);
4078 init_waitqueue_head(&rnp
->exp_wq
[3]);
4079 spin_lock_init(&rnp
->exp_lock
);
4083 init_swait_queue_head(&rsp
->gp_wq
);
4084 init_swait_queue_head(&rsp
->expedited_wq
);
4085 rnp
= rsp
->level
[rcu_num_lvls
- 1];
4086 for_each_possible_cpu(i
) {
4087 while (i
> rnp
->grphi
)
4089 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
4090 rcu_boot_init_percpu_data(i
, rsp
);
4092 list_add(&rsp
->flavors
, &rcu_struct_flavors
);
4096 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4097 * replace the definitions in tree.h because those are needed to size
4098 * the ->node array in the rcu_state structure.
4100 static void __init
rcu_init_geometry(void)
4104 int rcu_capacity
[RCU_NUM_LVLS
];
4107 * Initialize any unspecified boot parameters.
4108 * The default values of jiffies_till_first_fqs and
4109 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4110 * value, which is a function of HZ, then adding one for each
4111 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4113 d
= RCU_JIFFIES_TILL_FORCE_QS
+ nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
4114 if (jiffies_till_first_fqs
== ULONG_MAX
)
4115 jiffies_till_first_fqs
= d
;
4116 if (jiffies_till_next_fqs
== ULONG_MAX
)
4117 jiffies_till_next_fqs
= d
;
4119 /* If the compile-time values are accurate, just leave. */
4120 if (rcu_fanout_leaf
== RCU_FANOUT_LEAF
&&
4121 nr_cpu_ids
== NR_CPUS
)
4123 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4124 rcu_fanout_leaf
, nr_cpu_ids
);
4127 * The boot-time rcu_fanout_leaf parameter must be at least two
4128 * and cannot exceed the number of bits in the rcu_node masks.
4129 * Complain and fall back to the compile-time values if this
4130 * limit is exceeded.
4132 if (rcu_fanout_leaf
< 2 ||
4133 rcu_fanout_leaf
> sizeof(unsigned long) * 8) {
4134 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4140 * Compute number of nodes that can be handled an rcu_node tree
4141 * with the given number of levels.
4143 rcu_capacity
[0] = rcu_fanout_leaf
;
4144 for (i
= 1; i
< RCU_NUM_LVLS
; i
++)
4145 rcu_capacity
[i
] = rcu_capacity
[i
- 1] * RCU_FANOUT
;
4148 * The tree must be able to accommodate the configured number of CPUs.
4149 * If this limit is exceeded, fall back to the compile-time values.
4151 if (nr_cpu_ids
> rcu_capacity
[RCU_NUM_LVLS
- 1]) {
4152 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4157 /* Calculate the number of levels in the tree. */
4158 for (i
= 0; nr_cpu_ids
> rcu_capacity
[i
]; i
++) {
4160 rcu_num_lvls
= i
+ 1;
4162 /* Calculate the number of rcu_nodes at each level of the tree. */
4163 for (i
= 0; i
< rcu_num_lvls
; i
++) {
4164 int cap
= rcu_capacity
[(rcu_num_lvls
- 1) - i
];
4165 num_rcu_lvl
[i
] = DIV_ROUND_UP(nr_cpu_ids
, cap
);
4168 /* Calculate the total number of rcu_node structures. */
4170 for (i
= 0; i
< rcu_num_lvls
; i
++)
4171 rcu_num_nodes
+= num_rcu_lvl
[i
];
4175 * Dump out the structure of the rcu_node combining tree associated
4176 * with the rcu_state structure referenced by rsp.
4178 static void __init
rcu_dump_rcu_node_tree(struct rcu_state
*rsp
)
4181 struct rcu_node
*rnp
;
4183 pr_info("rcu_node tree layout dump\n");
4185 rcu_for_each_node_breadth_first(rsp
, rnp
) {
4186 if (rnp
->level
!= level
) {
4191 pr_cont("%d:%d ^%d ", rnp
->grplo
, rnp
->grphi
, rnp
->grpnum
);
4196 void __init
rcu_init(void)
4200 rcu_early_boot_tests();
4202 rcu_bootup_announce();
4203 rcu_init_geometry();
4204 rcu_init_one(&rcu_bh_state
);
4205 rcu_init_one(&rcu_sched_state
);
4207 rcu_dump_rcu_node_tree(&rcu_sched_state
);
4208 __rcu_init_preempt();
4209 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
4212 * We don't need protection against CPU-hotplug here because
4213 * this is called early in boot, before either interrupts
4214 * or the scheduler are operational.
4216 pm_notifier(rcu_pm_notify
, 0);
4217 for_each_online_cpu(cpu
) {
4218 rcutree_prepare_cpu(cpu
);
4219 rcu_cpu_starting(cpu
);
4220 rcutree_online_cpu(cpu
);
4224 #include "tree_exp.h"
4225 #include "tree_plugin.h"