1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/seq_buf.h>
66 #include <linux/uaccess.h>
68 #include <trace/events/vmscan.h>
70 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
71 EXPORT_SYMBOL(memory_cgrp_subsys
);
73 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
75 #define MEM_CGROUP_RECLAIM_RETRIES 5
77 /* Socket memory accounting disabled? */
78 static bool cgroup_memory_nosocket
;
80 /* Kernel memory accounting disabled? */
81 static bool cgroup_memory_nokmem
;
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly
;
87 #define do_swap_account 0
90 /* Whether legacy memory+swap accounting is active */
91 static bool do_memsw_account(void)
93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
96 static const char *const mem_cgroup_lru_names
[] = {
104 #define THRESHOLDS_EVENTS_TARGET 128
105 #define SOFTLIMIT_EVENTS_TARGET 1024
106 #define NUMAINFO_EVENTS_TARGET 1024
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
113 struct mem_cgroup_tree_per_node
{
114 struct rb_root rb_root
;
115 struct rb_node
*rb_rightmost
;
119 struct mem_cgroup_tree
{
120 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
126 struct mem_cgroup_eventfd_list
{
127 struct list_head list
;
128 struct eventfd_ctx
*eventfd
;
132 * cgroup_event represents events which userspace want to receive.
134 struct mem_cgroup_event
{
136 * memcg which the event belongs to.
138 struct mem_cgroup
*memcg
;
140 * eventfd to signal userspace about the event.
142 struct eventfd_ctx
*eventfd
;
144 * Each of these stored in a list by the cgroup.
146 struct list_head list
;
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
152 int (*register_event
)(struct mem_cgroup
*memcg
,
153 struct eventfd_ctx
*eventfd
, const char *args
);
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
159 void (*unregister_event
)(struct mem_cgroup
*memcg
,
160 struct eventfd_ctx
*eventfd
);
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
166 wait_queue_head_t
*wqh
;
167 wait_queue_entry_t wait
;
168 struct work_struct remove
;
171 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
172 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
174 /* Stuffs for move charges at task migration. */
176 * Types of charges to be moved.
178 #define MOVE_ANON 0x1U
179 #define MOVE_FILE 0x2U
180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct
{
184 spinlock_t lock
; /* for from, to */
185 struct mm_struct
*mm
;
186 struct mem_cgroup
*from
;
187 struct mem_cgroup
*to
;
189 unsigned long precharge
;
190 unsigned long moved_charge
;
191 unsigned long moved_swap
;
192 struct task_struct
*moving_task
; /* a task moving charges */
193 wait_queue_head_t waitq
; /* a waitq for other context */
195 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
196 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
207 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
208 MEM_CGROUP_CHARGE_TYPE_ANON
,
209 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
210 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
214 /* for encoding cft->private value on file */
223 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
224 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
225 #define MEMFILE_ATTR(val) ((val) & 0xffff)
226 /* Used for OOM nofiier */
227 #define OOM_CONTROL (0)
230 * Iteration constructs for visiting all cgroups (under a tree). If
231 * loops are exited prematurely (break), mem_cgroup_iter_break() must
232 * be used for reference counting.
234 #define for_each_mem_cgroup_tree(iter, root) \
235 for (iter = mem_cgroup_iter(root, NULL, NULL); \
237 iter = mem_cgroup_iter(root, iter, NULL))
239 #define for_each_mem_cgroup(iter) \
240 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
242 iter = mem_cgroup_iter(NULL, iter, NULL))
244 static inline bool should_force_charge(void)
246 return tsk_is_oom_victim(current
) || fatal_signal_pending(current
) ||
247 (current
->flags
& PF_EXITING
);
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
254 memcg
= root_mem_cgroup
;
255 return &memcg
->vmpressure
;
258 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
260 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
263 #ifdef CONFIG_MEMCG_KMEM
265 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
266 * The main reason for not using cgroup id for this:
267 * this works better in sparse environments, where we have a lot of memcgs,
268 * but only a few kmem-limited. Or also, if we have, for instance, 200
269 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
270 * 200 entry array for that.
272 * The current size of the caches array is stored in memcg_nr_cache_ids. It
273 * will double each time we have to increase it.
275 static DEFINE_IDA(memcg_cache_ida
);
276 int memcg_nr_cache_ids
;
278 /* Protects memcg_nr_cache_ids */
279 static DECLARE_RWSEM(memcg_cache_ids_sem
);
281 void memcg_get_cache_ids(void)
283 down_read(&memcg_cache_ids_sem
);
286 void memcg_put_cache_ids(void)
288 up_read(&memcg_cache_ids_sem
);
292 * MIN_SIZE is different than 1, because we would like to avoid going through
293 * the alloc/free process all the time. In a small machine, 4 kmem-limited
294 * cgroups is a reasonable guess. In the future, it could be a parameter or
295 * tunable, but that is strictly not necessary.
297 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
298 * this constant directly from cgroup, but it is understandable that this is
299 * better kept as an internal representation in cgroup.c. In any case, the
300 * cgrp_id space is not getting any smaller, and we don't have to necessarily
301 * increase ours as well if it increases.
303 #define MEMCG_CACHES_MIN_SIZE 4
304 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
307 * A lot of the calls to the cache allocation functions are expected to be
308 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
309 * conditional to this static branch, we'll have to allow modules that does
310 * kmem_cache_alloc and the such to see this symbol as well
312 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
313 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
315 struct workqueue_struct
*memcg_kmem_cache_wq
;
317 static int memcg_shrinker_map_size
;
318 static DEFINE_MUTEX(memcg_shrinker_map_mutex
);
320 static void memcg_free_shrinker_map_rcu(struct rcu_head
*head
)
322 kvfree(container_of(head
, struct memcg_shrinker_map
, rcu
));
325 static int memcg_expand_one_shrinker_map(struct mem_cgroup
*memcg
,
326 int size
, int old_size
)
328 struct memcg_shrinker_map
*new, *old
;
331 lockdep_assert_held(&memcg_shrinker_map_mutex
);
334 old
= rcu_dereference_protected(
335 mem_cgroup_nodeinfo(memcg
, nid
)->shrinker_map
, true);
336 /* Not yet online memcg */
340 new = kvmalloc(sizeof(*new) + size
, GFP_KERNEL
);
344 /* Set all old bits, clear all new bits */
345 memset(new->map
, (int)0xff, old_size
);
346 memset((void *)new->map
+ old_size
, 0, size
- old_size
);
348 rcu_assign_pointer(memcg
->nodeinfo
[nid
]->shrinker_map
, new);
349 call_rcu(&old
->rcu
, memcg_free_shrinker_map_rcu
);
355 static void memcg_free_shrinker_maps(struct mem_cgroup
*memcg
)
357 struct mem_cgroup_per_node
*pn
;
358 struct memcg_shrinker_map
*map
;
361 if (mem_cgroup_is_root(memcg
))
365 pn
= mem_cgroup_nodeinfo(memcg
, nid
);
366 map
= rcu_dereference_protected(pn
->shrinker_map
, true);
369 rcu_assign_pointer(pn
->shrinker_map
, NULL
);
373 static int memcg_alloc_shrinker_maps(struct mem_cgroup
*memcg
)
375 struct memcg_shrinker_map
*map
;
376 int nid
, size
, ret
= 0;
378 if (mem_cgroup_is_root(memcg
))
381 mutex_lock(&memcg_shrinker_map_mutex
);
382 size
= memcg_shrinker_map_size
;
384 map
= kvzalloc(sizeof(*map
) + size
, GFP_KERNEL
);
386 memcg_free_shrinker_maps(memcg
);
390 rcu_assign_pointer(memcg
->nodeinfo
[nid
]->shrinker_map
, map
);
392 mutex_unlock(&memcg_shrinker_map_mutex
);
397 int memcg_expand_shrinker_maps(int new_id
)
399 int size
, old_size
, ret
= 0;
400 struct mem_cgroup
*memcg
;
402 size
= DIV_ROUND_UP(new_id
+ 1, BITS_PER_LONG
) * sizeof(unsigned long);
403 old_size
= memcg_shrinker_map_size
;
404 if (size
<= old_size
)
407 mutex_lock(&memcg_shrinker_map_mutex
);
408 if (!root_mem_cgroup
)
411 for_each_mem_cgroup(memcg
) {
412 if (mem_cgroup_is_root(memcg
))
414 ret
= memcg_expand_one_shrinker_map(memcg
, size
, old_size
);
420 memcg_shrinker_map_size
= size
;
421 mutex_unlock(&memcg_shrinker_map_mutex
);
425 void memcg_set_shrinker_bit(struct mem_cgroup
*memcg
, int nid
, int shrinker_id
)
427 if (shrinker_id
>= 0 && memcg
&& !mem_cgroup_is_root(memcg
)) {
428 struct memcg_shrinker_map
*map
;
431 map
= rcu_dereference(memcg
->nodeinfo
[nid
]->shrinker_map
);
432 /* Pairs with smp mb in shrink_slab() */
433 smp_mb__before_atomic();
434 set_bit(shrinker_id
, map
->map
);
439 #else /* CONFIG_MEMCG_KMEM */
440 static int memcg_alloc_shrinker_maps(struct mem_cgroup
*memcg
)
444 static void memcg_free_shrinker_maps(struct mem_cgroup
*memcg
) { }
445 #endif /* CONFIG_MEMCG_KMEM */
448 * mem_cgroup_css_from_page - css of the memcg associated with a page
449 * @page: page of interest
451 * If memcg is bound to the default hierarchy, css of the memcg associated
452 * with @page is returned. The returned css remains associated with @page
453 * until it is released.
455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
458 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
460 struct mem_cgroup
*memcg
;
462 memcg
= page
->mem_cgroup
;
464 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
465 memcg
= root_mem_cgroup
;
471 * page_cgroup_ino - return inode number of the memcg a page is charged to
474 * Look up the closest online ancestor of the memory cgroup @page is charged to
475 * and return its inode number or 0 if @page is not charged to any cgroup. It
476 * is safe to call this function without holding a reference to @page.
478 * Note, this function is inherently racy, because there is nothing to prevent
479 * the cgroup inode from getting torn down and potentially reallocated a moment
480 * after page_cgroup_ino() returns, so it only should be used by callers that
481 * do not care (such as procfs interfaces).
483 ino_t
page_cgroup_ino(struct page
*page
)
485 struct mem_cgroup
*memcg
;
486 unsigned long ino
= 0;
489 if (PageHead(page
) && PageSlab(page
))
490 memcg
= memcg_from_slab_page(page
);
492 memcg
= READ_ONCE(page
->mem_cgroup
);
493 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
494 memcg
= parent_mem_cgroup(memcg
);
496 ino
= cgroup_ino(memcg
->css
.cgroup
);
501 static struct mem_cgroup_per_node
*
502 mem_cgroup_page_nodeinfo(struct mem_cgroup
*memcg
, struct page
*page
)
504 int nid
= page_to_nid(page
);
506 return memcg
->nodeinfo
[nid
];
509 static struct mem_cgroup_tree_per_node
*
510 soft_limit_tree_node(int nid
)
512 return soft_limit_tree
.rb_tree_per_node
[nid
];
515 static struct mem_cgroup_tree_per_node
*
516 soft_limit_tree_from_page(struct page
*page
)
518 int nid
= page_to_nid(page
);
520 return soft_limit_tree
.rb_tree_per_node
[nid
];
523 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node
*mz
,
524 struct mem_cgroup_tree_per_node
*mctz
,
525 unsigned long new_usage_in_excess
)
527 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
528 struct rb_node
*parent
= NULL
;
529 struct mem_cgroup_per_node
*mz_node
;
530 bool rightmost
= true;
535 mz
->usage_in_excess
= new_usage_in_excess
;
536 if (!mz
->usage_in_excess
)
540 mz_node
= rb_entry(parent
, struct mem_cgroup_per_node
,
542 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
) {
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
551 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
556 mctz
->rb_rightmost
= &mz
->tree_node
;
558 rb_link_node(&mz
->tree_node
, parent
, p
);
559 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
563 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
564 struct mem_cgroup_tree_per_node
*mctz
)
569 if (&mz
->tree_node
== mctz
->rb_rightmost
)
570 mctz
->rb_rightmost
= rb_prev(&mz
->tree_node
);
572 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
576 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
577 struct mem_cgroup_tree_per_node
*mctz
)
581 spin_lock_irqsave(&mctz
->lock
, flags
);
582 __mem_cgroup_remove_exceeded(mz
, mctz
);
583 spin_unlock_irqrestore(&mctz
->lock
, flags
);
586 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
588 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
589 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
590 unsigned long excess
= 0;
592 if (nr_pages
> soft_limit
)
593 excess
= nr_pages
- soft_limit
;
598 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
600 unsigned long excess
;
601 struct mem_cgroup_per_node
*mz
;
602 struct mem_cgroup_tree_per_node
*mctz
;
604 mctz
= soft_limit_tree_from_page(page
);
608 * Necessary to update all ancestors when hierarchy is used.
609 * because their event counter is not touched.
611 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
612 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
613 excess
= soft_limit_excess(memcg
);
615 * We have to update the tree if mz is on RB-tree or
616 * mem is over its softlimit.
618 if (excess
|| mz
->on_tree
) {
621 spin_lock_irqsave(&mctz
->lock
, flags
);
622 /* if on-tree, remove it */
624 __mem_cgroup_remove_exceeded(mz
, mctz
);
626 * Insert again. mz->usage_in_excess will be updated.
627 * If excess is 0, no tree ops.
629 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
630 spin_unlock_irqrestore(&mctz
->lock
, flags
);
635 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
637 struct mem_cgroup_tree_per_node
*mctz
;
638 struct mem_cgroup_per_node
*mz
;
642 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
643 mctz
= soft_limit_tree_node(nid
);
645 mem_cgroup_remove_exceeded(mz
, mctz
);
649 static struct mem_cgroup_per_node
*
650 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
652 struct mem_cgroup_per_node
*mz
;
656 if (!mctz
->rb_rightmost
)
657 goto done
; /* Nothing to reclaim from */
659 mz
= rb_entry(mctz
->rb_rightmost
,
660 struct mem_cgroup_per_node
, tree_node
);
662 * Remove the node now but someone else can add it back,
663 * we will to add it back at the end of reclaim to its correct
664 * position in the tree.
666 __mem_cgroup_remove_exceeded(mz
, mctz
);
667 if (!soft_limit_excess(mz
->memcg
) ||
668 !css_tryget_online(&mz
->memcg
->css
))
674 static struct mem_cgroup_per_node
*
675 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
677 struct mem_cgroup_per_node
*mz
;
679 spin_lock_irq(&mctz
->lock
);
680 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
681 spin_unlock_irq(&mctz
->lock
);
686 * __mod_memcg_state - update cgroup memory statistics
687 * @memcg: the memory cgroup
688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689 * @val: delta to add to the counter, can be negative
691 void __mod_memcg_state(struct mem_cgroup
*memcg
, int idx
, int val
)
695 if (mem_cgroup_disabled())
698 x
= val
+ __this_cpu_read(memcg
->vmstats_percpu
->stat
[idx
]);
699 if (unlikely(abs(x
) > MEMCG_CHARGE_BATCH
)) {
700 struct mem_cgroup
*mi
;
703 * Batch local counters to keep them in sync with
704 * the hierarchical ones.
706 __this_cpu_add(memcg
->vmstats_local
->stat
[idx
], x
);
707 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
708 atomic_long_add(x
, &mi
->vmstats
[idx
]);
711 __this_cpu_write(memcg
->vmstats_percpu
->stat
[idx
], x
);
714 static struct mem_cgroup_per_node
*
715 parent_nodeinfo(struct mem_cgroup_per_node
*pn
, int nid
)
717 struct mem_cgroup
*parent
;
719 parent
= parent_mem_cgroup(pn
->memcg
);
722 return mem_cgroup_nodeinfo(parent
, nid
);
726 * __mod_lruvec_state - update lruvec memory statistics
727 * @lruvec: the lruvec
728 * @idx: the stat item
729 * @val: delta to add to the counter, can be negative
731 * The lruvec is the intersection of the NUMA node and a cgroup. This
732 * function updates the all three counters that are affected by a
733 * change of state at this level: per-node, per-cgroup, per-lruvec.
735 void __mod_lruvec_state(struct lruvec
*lruvec
, enum node_stat_item idx
,
738 pg_data_t
*pgdat
= lruvec_pgdat(lruvec
);
739 struct mem_cgroup_per_node
*pn
;
740 struct mem_cgroup
*memcg
;
744 __mod_node_page_state(pgdat
, idx
, val
);
746 if (mem_cgroup_disabled())
749 pn
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
753 __mod_memcg_state(memcg
, idx
, val
);
755 x
= val
+ __this_cpu_read(pn
->lruvec_stat_cpu
->count
[idx
]);
756 if (unlikely(abs(x
) > MEMCG_CHARGE_BATCH
)) {
757 struct mem_cgroup_per_node
*pi
;
760 * Batch local counters to keep them in sync with
761 * the hierarchical ones.
763 __this_cpu_add(pn
->lruvec_stat_local
->count
[idx
], x
);
764 for (pi
= pn
; pi
; pi
= parent_nodeinfo(pi
, pgdat
->node_id
))
765 atomic_long_add(x
, &pi
->lruvec_stat
[idx
]);
768 __this_cpu_write(pn
->lruvec_stat_cpu
->count
[idx
], x
);
771 void __mod_lruvec_slab_state(void *p
, enum node_stat_item idx
, int val
)
773 struct page
*page
= virt_to_head_page(p
);
774 pg_data_t
*pgdat
= page_pgdat(page
);
775 struct mem_cgroup
*memcg
;
776 struct lruvec
*lruvec
;
779 memcg
= memcg_from_slab_page(page
);
781 /* Untracked pages have no memcg, no lruvec. Update only the node */
782 if (!memcg
|| memcg
== root_mem_cgroup
) {
783 __mod_node_page_state(pgdat
, idx
, val
);
785 lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
786 __mod_lruvec_state(lruvec
, idx
, val
);
792 * __count_memcg_events - account VM events in a cgroup
793 * @memcg: the memory cgroup
794 * @idx: the event item
795 * @count: the number of events that occured
797 void __count_memcg_events(struct mem_cgroup
*memcg
, enum vm_event_item idx
,
802 if (mem_cgroup_disabled())
805 x
= count
+ __this_cpu_read(memcg
->vmstats_percpu
->events
[idx
]);
806 if (unlikely(x
> MEMCG_CHARGE_BATCH
)) {
807 struct mem_cgroup
*mi
;
810 * Batch local counters to keep them in sync with
811 * the hierarchical ones.
813 __this_cpu_add(memcg
->vmstats_local
->events
[idx
], x
);
814 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
815 atomic_long_add(x
, &mi
->vmevents
[idx
]);
818 __this_cpu_write(memcg
->vmstats_percpu
->events
[idx
], x
);
821 static unsigned long memcg_events(struct mem_cgroup
*memcg
, int event
)
823 return atomic_long_read(&memcg
->vmevents
[event
]);
826 static unsigned long memcg_events_local(struct mem_cgroup
*memcg
, int event
)
831 for_each_possible_cpu(cpu
)
832 x
+= per_cpu(memcg
->vmstats_local
->events
[event
], cpu
);
836 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
838 bool compound
, int nr_pages
)
841 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
842 * counted as CACHE even if it's on ANON LRU.
845 __mod_memcg_state(memcg
, MEMCG_RSS
, nr_pages
);
847 __mod_memcg_state(memcg
, MEMCG_CACHE
, nr_pages
);
848 if (PageSwapBacked(page
))
849 __mod_memcg_state(memcg
, NR_SHMEM
, nr_pages
);
853 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
854 __mod_memcg_state(memcg
, MEMCG_RSS_HUGE
, nr_pages
);
857 /* pagein of a big page is an event. So, ignore page size */
859 __count_memcg_events(memcg
, PGPGIN
, 1);
861 __count_memcg_events(memcg
, PGPGOUT
, 1);
862 nr_pages
= -nr_pages
; /* for event */
865 __this_cpu_add(memcg
->vmstats_percpu
->nr_page_events
, nr_pages
);
868 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
869 enum mem_cgroup_events_target target
)
871 unsigned long val
, next
;
873 val
= __this_cpu_read(memcg
->vmstats_percpu
->nr_page_events
);
874 next
= __this_cpu_read(memcg
->vmstats_percpu
->targets
[target
]);
875 /* from time_after() in jiffies.h */
876 if ((long)(next
- val
) < 0) {
878 case MEM_CGROUP_TARGET_THRESH
:
879 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
881 case MEM_CGROUP_TARGET_SOFTLIMIT
:
882 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
884 case MEM_CGROUP_TARGET_NUMAINFO
:
885 next
= val
+ NUMAINFO_EVENTS_TARGET
;
890 __this_cpu_write(memcg
->vmstats_percpu
->targets
[target
], next
);
897 * Check events in order.
900 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
902 /* threshold event is triggered in finer grain than soft limit */
903 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
904 MEM_CGROUP_TARGET_THRESH
))) {
906 bool do_numainfo __maybe_unused
;
908 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
909 MEM_CGROUP_TARGET_SOFTLIMIT
);
911 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
912 MEM_CGROUP_TARGET_NUMAINFO
);
914 mem_cgroup_threshold(memcg
);
915 if (unlikely(do_softlimit
))
916 mem_cgroup_update_tree(memcg
, page
);
918 if (unlikely(do_numainfo
))
919 atomic_inc(&memcg
->numainfo_events
);
924 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
927 * mm_update_next_owner() may clear mm->owner to NULL
928 * if it races with swapoff, page migration, etc.
929 * So this can be called with p == NULL.
934 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
936 EXPORT_SYMBOL(mem_cgroup_from_task
);
939 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
940 * @mm: mm from which memcg should be extracted. It can be NULL.
942 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
943 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
946 struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
948 struct mem_cgroup
*memcg
;
950 if (mem_cgroup_disabled())
956 * Page cache insertions can happen withou an
957 * actual mm context, e.g. during disk probing
958 * on boot, loopback IO, acct() writes etc.
961 memcg
= root_mem_cgroup
;
963 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
964 if (unlikely(!memcg
))
965 memcg
= root_mem_cgroup
;
967 } while (!css_tryget_online(&memcg
->css
));
971 EXPORT_SYMBOL(get_mem_cgroup_from_mm
);
974 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
975 * @page: page from which memcg should be extracted.
977 * Obtain a reference on page->memcg and returns it if successful. Otherwise
978 * root_mem_cgroup is returned.
980 struct mem_cgroup
*get_mem_cgroup_from_page(struct page
*page
)
982 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
984 if (mem_cgroup_disabled())
988 if (!memcg
|| !css_tryget_online(&memcg
->css
))
989 memcg
= root_mem_cgroup
;
993 EXPORT_SYMBOL(get_mem_cgroup_from_page
);
996 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
998 static __always_inline
struct mem_cgroup
*get_mem_cgroup_from_current(void)
1000 if (unlikely(current
->active_memcg
)) {
1001 struct mem_cgroup
*memcg
= root_mem_cgroup
;
1004 if (css_tryget_online(¤t
->active_memcg
->css
))
1005 memcg
= current
->active_memcg
;
1009 return get_mem_cgroup_from_mm(current
->mm
);
1013 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1014 * @root: hierarchy root
1015 * @prev: previously returned memcg, NULL on first invocation
1016 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1018 * Returns references to children of the hierarchy below @root, or
1019 * @root itself, or %NULL after a full round-trip.
1021 * Caller must pass the return value in @prev on subsequent
1022 * invocations for reference counting, or use mem_cgroup_iter_break()
1023 * to cancel a hierarchy walk before the round-trip is complete.
1025 * Reclaimers can specify a node and a priority level in @reclaim to
1026 * divide up the memcgs in the hierarchy among all concurrent
1027 * reclaimers operating on the same node and priority.
1029 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
1030 struct mem_cgroup
*prev
,
1031 struct mem_cgroup_reclaim_cookie
*reclaim
)
1033 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
1034 struct cgroup_subsys_state
*css
= NULL
;
1035 struct mem_cgroup
*memcg
= NULL
;
1036 struct mem_cgroup
*pos
= NULL
;
1038 if (mem_cgroup_disabled())
1042 root
= root_mem_cgroup
;
1044 if (prev
&& !reclaim
)
1047 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
1056 struct mem_cgroup_per_node
*mz
;
1058 mz
= mem_cgroup_nodeinfo(root
, reclaim
->pgdat
->node_id
);
1059 iter
= &mz
->iter
[reclaim
->priority
];
1061 if (prev
&& reclaim
->generation
!= iter
->generation
)
1065 pos
= READ_ONCE(iter
->position
);
1066 if (!pos
|| css_tryget(&pos
->css
))
1069 * css reference reached zero, so iter->position will
1070 * be cleared by ->css_released. However, we should not
1071 * rely on this happening soon, because ->css_released
1072 * is called from a work queue, and by busy-waiting we
1073 * might block it. So we clear iter->position right
1076 (void)cmpxchg(&iter
->position
, pos
, NULL
);
1084 css
= css_next_descendant_pre(css
, &root
->css
);
1087 * Reclaimers share the hierarchy walk, and a
1088 * new one might jump in right at the end of
1089 * the hierarchy - make sure they see at least
1090 * one group and restart from the beginning.
1098 * Verify the css and acquire a reference. The root
1099 * is provided by the caller, so we know it's alive
1100 * and kicking, and don't take an extra reference.
1102 memcg
= mem_cgroup_from_css(css
);
1104 if (css
== &root
->css
)
1107 if (css_tryget(css
))
1115 * The position could have already been updated by a competing
1116 * thread, so check that the value hasn't changed since we read
1117 * it to avoid reclaiming from the same cgroup twice.
1119 (void)cmpxchg(&iter
->position
, pos
, memcg
);
1127 reclaim
->generation
= iter
->generation
;
1133 if (prev
&& prev
!= root
)
1134 css_put(&prev
->css
);
1140 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1141 * @root: hierarchy root
1142 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1144 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
1145 struct mem_cgroup
*prev
)
1148 root
= root_mem_cgroup
;
1149 if (prev
&& prev
!= root
)
1150 css_put(&prev
->css
);
1153 static void __invalidate_reclaim_iterators(struct mem_cgroup
*from
,
1154 struct mem_cgroup
*dead_memcg
)
1156 struct mem_cgroup_reclaim_iter
*iter
;
1157 struct mem_cgroup_per_node
*mz
;
1161 for_each_node(nid
) {
1162 mz
= mem_cgroup_nodeinfo(from
, nid
);
1163 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
1164 iter
= &mz
->iter
[i
];
1165 cmpxchg(&iter
->position
,
1171 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
1173 struct mem_cgroup
*memcg
= dead_memcg
;
1174 struct mem_cgroup
*last
;
1177 __invalidate_reclaim_iterators(memcg
, dead_memcg
);
1179 } while ((memcg
= parent_mem_cgroup(memcg
)));
1182 * When cgruop1 non-hierarchy mode is used,
1183 * parent_mem_cgroup() does not walk all the way up to the
1184 * cgroup root (root_mem_cgroup). So we have to handle
1185 * dead_memcg from cgroup root separately.
1187 if (last
!= root_mem_cgroup
)
1188 __invalidate_reclaim_iterators(root_mem_cgroup
,
1193 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1194 * @memcg: hierarchy root
1195 * @fn: function to call for each task
1196 * @arg: argument passed to @fn
1198 * This function iterates over tasks attached to @memcg or to any of its
1199 * descendants and calls @fn for each task. If @fn returns a non-zero
1200 * value, the function breaks the iteration loop and returns the value.
1201 * Otherwise, it will iterate over all tasks and return 0.
1203 * This function must not be called for the root memory cgroup.
1205 int mem_cgroup_scan_tasks(struct mem_cgroup
*memcg
,
1206 int (*fn
)(struct task_struct
*, void *), void *arg
)
1208 struct mem_cgroup
*iter
;
1211 BUG_ON(memcg
== root_mem_cgroup
);
1213 for_each_mem_cgroup_tree(iter
, memcg
) {
1214 struct css_task_iter it
;
1215 struct task_struct
*task
;
1217 css_task_iter_start(&iter
->css
, CSS_TASK_ITER_PROCS
, &it
);
1218 while (!ret
&& (task
= css_task_iter_next(&it
)))
1219 ret
= fn(task
, arg
);
1220 css_task_iter_end(&it
);
1222 mem_cgroup_iter_break(memcg
, iter
);
1230 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1232 * @pgdat: pgdat of the page
1234 * This function is only safe when following the LRU page isolation
1235 * and putback protocol: the LRU lock must be held, and the page must
1236 * either be PageLRU() or the caller must have isolated/allocated it.
1238 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct pglist_data
*pgdat
)
1240 struct mem_cgroup_per_node
*mz
;
1241 struct mem_cgroup
*memcg
;
1242 struct lruvec
*lruvec
;
1244 if (mem_cgroup_disabled()) {
1245 lruvec
= &pgdat
->lruvec
;
1249 memcg
= page
->mem_cgroup
;
1251 * Swapcache readahead pages are added to the LRU - and
1252 * possibly migrated - before they are charged.
1255 memcg
= root_mem_cgroup
;
1257 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
1258 lruvec
= &mz
->lruvec
;
1261 * Since a node can be onlined after the mem_cgroup was created,
1262 * we have to be prepared to initialize lruvec->zone here;
1263 * and if offlined then reonlined, we need to reinitialize it.
1265 if (unlikely(lruvec
->pgdat
!= pgdat
))
1266 lruvec
->pgdat
= pgdat
;
1271 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1272 * @lruvec: mem_cgroup per zone lru vector
1273 * @lru: index of lru list the page is sitting on
1274 * @zid: zone id of the accounted pages
1275 * @nr_pages: positive when adding or negative when removing
1277 * This function must be called under lru_lock, just before a page is added
1278 * to or just after a page is removed from an lru list (that ordering being
1279 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1281 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1282 int zid
, int nr_pages
)
1284 struct mem_cgroup_per_node
*mz
;
1285 unsigned long *lru_size
;
1288 if (mem_cgroup_disabled())
1291 mz
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
1292 lru_size
= &mz
->lru_zone_size
[zid
][lru
];
1295 *lru_size
+= nr_pages
;
1298 if (WARN_ONCE(size
< 0,
1299 "%s(%p, %d, %d): lru_size %ld\n",
1300 __func__
, lruvec
, lru
, nr_pages
, size
)) {
1306 *lru_size
+= nr_pages
;
1310 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1311 * @memcg: the memory cgroup
1313 * Returns the maximum amount of memory @mem can be charged with, in
1316 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1318 unsigned long margin
= 0;
1319 unsigned long count
;
1320 unsigned long limit
;
1322 count
= page_counter_read(&memcg
->memory
);
1323 limit
= READ_ONCE(memcg
->memory
.max
);
1325 margin
= limit
- count
;
1327 if (do_memsw_account()) {
1328 count
= page_counter_read(&memcg
->memsw
);
1329 limit
= READ_ONCE(memcg
->memsw
.max
);
1331 margin
= min(margin
, limit
- count
);
1340 * A routine for checking "mem" is under move_account() or not.
1342 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1343 * moving cgroups. This is for waiting at high-memory pressure
1346 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1348 struct mem_cgroup
*from
;
1349 struct mem_cgroup
*to
;
1352 * Unlike task_move routines, we access mc.to, mc.from not under
1353 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1355 spin_lock(&mc
.lock
);
1361 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1362 mem_cgroup_is_descendant(to
, memcg
);
1364 spin_unlock(&mc
.lock
);
1368 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1370 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1371 if (mem_cgroup_under_move(memcg
)) {
1373 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1374 /* moving charge context might have finished. */
1377 finish_wait(&mc
.waitq
, &wait
);
1384 static char *memory_stat_format(struct mem_cgroup
*memcg
)
1389 seq_buf_init(&s
, kmalloc(PAGE_SIZE
, GFP_KERNEL
), PAGE_SIZE
);
1394 * Provide statistics on the state of the memory subsystem as
1395 * well as cumulative event counters that show past behavior.
1397 * This list is ordered following a combination of these gradients:
1398 * 1) generic big picture -> specifics and details
1399 * 2) reflecting userspace activity -> reflecting kernel heuristics
1401 * Current memory state:
1404 seq_buf_printf(&s
, "anon %llu\n",
1405 (u64
)memcg_page_state(memcg
, MEMCG_RSS
) *
1407 seq_buf_printf(&s
, "file %llu\n",
1408 (u64
)memcg_page_state(memcg
, MEMCG_CACHE
) *
1410 seq_buf_printf(&s
, "kernel_stack %llu\n",
1411 (u64
)memcg_page_state(memcg
, MEMCG_KERNEL_STACK_KB
) *
1413 seq_buf_printf(&s
, "slab %llu\n",
1414 (u64
)(memcg_page_state(memcg
, NR_SLAB_RECLAIMABLE
) +
1415 memcg_page_state(memcg
, NR_SLAB_UNRECLAIMABLE
)) *
1417 seq_buf_printf(&s
, "sock %llu\n",
1418 (u64
)memcg_page_state(memcg
, MEMCG_SOCK
) *
1421 seq_buf_printf(&s
, "shmem %llu\n",
1422 (u64
)memcg_page_state(memcg
, NR_SHMEM
) *
1424 seq_buf_printf(&s
, "file_mapped %llu\n",
1425 (u64
)memcg_page_state(memcg
, NR_FILE_MAPPED
) *
1427 seq_buf_printf(&s
, "file_dirty %llu\n",
1428 (u64
)memcg_page_state(memcg
, NR_FILE_DIRTY
) *
1430 seq_buf_printf(&s
, "file_writeback %llu\n",
1431 (u64
)memcg_page_state(memcg
, NR_WRITEBACK
) *
1435 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1436 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1437 * arse because it requires migrating the work out of rmap to a place
1438 * where the page->mem_cgroup is set up and stable.
1440 seq_buf_printf(&s
, "anon_thp %llu\n",
1441 (u64
)memcg_page_state(memcg
, MEMCG_RSS_HUGE
) *
1444 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1445 seq_buf_printf(&s
, "%s %llu\n", mem_cgroup_lru_names
[i
],
1446 (u64
)memcg_page_state(memcg
, NR_LRU_BASE
+ i
) *
1449 seq_buf_printf(&s
, "slab_reclaimable %llu\n",
1450 (u64
)memcg_page_state(memcg
, NR_SLAB_RECLAIMABLE
) *
1452 seq_buf_printf(&s
, "slab_unreclaimable %llu\n",
1453 (u64
)memcg_page_state(memcg
, NR_SLAB_UNRECLAIMABLE
) *
1456 /* Accumulated memory events */
1458 seq_buf_printf(&s
, "pgfault %lu\n", memcg_events(memcg
, PGFAULT
));
1459 seq_buf_printf(&s
, "pgmajfault %lu\n", memcg_events(memcg
, PGMAJFAULT
));
1461 seq_buf_printf(&s
, "workingset_refault %lu\n",
1462 memcg_page_state(memcg
, WORKINGSET_REFAULT
));
1463 seq_buf_printf(&s
, "workingset_activate %lu\n",
1464 memcg_page_state(memcg
, WORKINGSET_ACTIVATE
));
1465 seq_buf_printf(&s
, "workingset_nodereclaim %lu\n",
1466 memcg_page_state(memcg
, WORKINGSET_NODERECLAIM
));
1468 seq_buf_printf(&s
, "pgrefill %lu\n", memcg_events(memcg
, PGREFILL
));
1469 seq_buf_printf(&s
, "pgscan %lu\n",
1470 memcg_events(memcg
, PGSCAN_KSWAPD
) +
1471 memcg_events(memcg
, PGSCAN_DIRECT
));
1472 seq_buf_printf(&s
, "pgsteal %lu\n",
1473 memcg_events(memcg
, PGSTEAL_KSWAPD
) +
1474 memcg_events(memcg
, PGSTEAL_DIRECT
));
1475 seq_buf_printf(&s
, "pgactivate %lu\n", memcg_events(memcg
, PGACTIVATE
));
1476 seq_buf_printf(&s
, "pgdeactivate %lu\n", memcg_events(memcg
, PGDEACTIVATE
));
1477 seq_buf_printf(&s
, "pglazyfree %lu\n", memcg_events(memcg
, PGLAZYFREE
));
1478 seq_buf_printf(&s
, "pglazyfreed %lu\n", memcg_events(memcg
, PGLAZYFREED
));
1480 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1481 seq_buf_printf(&s
, "thp_fault_alloc %lu\n",
1482 memcg_events(memcg
, THP_FAULT_ALLOC
));
1483 seq_buf_printf(&s
, "thp_collapse_alloc %lu\n",
1484 memcg_events(memcg
, THP_COLLAPSE_ALLOC
));
1485 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1487 /* The above should easily fit into one page */
1488 WARN_ON_ONCE(seq_buf_has_overflowed(&s
));
1493 #define K(x) ((x) << (PAGE_SHIFT-10))
1495 * mem_cgroup_print_oom_context: Print OOM information relevant to
1496 * memory controller.
1497 * @memcg: The memory cgroup that went over limit
1498 * @p: Task that is going to be killed
1500 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1503 void mem_cgroup_print_oom_context(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1508 pr_cont(",oom_memcg=");
1509 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1511 pr_cont(",global_oom");
1513 pr_cont(",task_memcg=");
1514 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1520 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1521 * memory controller.
1522 * @memcg: The memory cgroup that went over limit
1524 void mem_cgroup_print_oom_meminfo(struct mem_cgroup
*memcg
)
1528 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1529 K((u64
)page_counter_read(&memcg
->memory
)),
1530 K((u64
)memcg
->memory
.max
), memcg
->memory
.failcnt
);
1531 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
1532 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 K((u64
)page_counter_read(&memcg
->swap
)),
1534 K((u64
)memcg
->swap
.max
), memcg
->swap
.failcnt
);
1536 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1537 K((u64
)page_counter_read(&memcg
->memsw
)),
1538 K((u64
)memcg
->memsw
.max
), memcg
->memsw
.failcnt
);
1539 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1540 K((u64
)page_counter_read(&memcg
->kmem
)),
1541 K((u64
)memcg
->kmem
.max
), memcg
->kmem
.failcnt
);
1544 pr_info("Memory cgroup stats for ");
1545 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1547 buf
= memory_stat_format(memcg
);
1555 * Return the memory (and swap, if configured) limit for a memcg.
1557 unsigned long mem_cgroup_get_max(struct mem_cgroup
*memcg
)
1561 max
= memcg
->memory
.max
;
1562 if (mem_cgroup_swappiness(memcg
)) {
1563 unsigned long memsw_max
;
1564 unsigned long swap_max
;
1566 memsw_max
= memcg
->memsw
.max
;
1567 swap_max
= memcg
->swap
.max
;
1568 swap_max
= min(swap_max
, (unsigned long)total_swap_pages
);
1569 max
= min(max
+ swap_max
, memsw_max
);
1574 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1577 struct oom_control oc
= {
1581 .gfp_mask
= gfp_mask
,
1586 if (mutex_lock_killable(&oom_lock
))
1589 * A few threads which were not waiting at mutex_lock_killable() can
1590 * fail to bail out. Therefore, check again after holding oom_lock.
1592 ret
= should_force_charge() || out_of_memory(&oc
);
1593 mutex_unlock(&oom_lock
);
1597 #if MAX_NUMNODES > 1
1600 * test_mem_cgroup_node_reclaimable
1601 * @memcg: the target memcg
1602 * @nid: the node ID to be checked.
1603 * @noswap : specify true here if the user wants flle only information.
1605 * This function returns whether the specified memcg contains any
1606 * reclaimable pages on a node. Returns true if there are any reclaimable
1607 * pages in the node.
1609 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1610 int nid
, bool noswap
)
1612 struct lruvec
*lruvec
= mem_cgroup_lruvec(NODE_DATA(nid
), memcg
);
1614 if (lruvec_page_state(lruvec
, NR_INACTIVE_FILE
) ||
1615 lruvec_page_state(lruvec
, NR_ACTIVE_FILE
))
1617 if (noswap
|| !total_swap_pages
)
1619 if (lruvec_page_state(lruvec
, NR_INACTIVE_ANON
) ||
1620 lruvec_page_state(lruvec
, NR_ACTIVE_ANON
))
1627 * Always updating the nodemask is not very good - even if we have an empty
1628 * list or the wrong list here, we can start from some node and traverse all
1629 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1632 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1636 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1637 * pagein/pageout changes since the last update.
1639 if (!atomic_read(&memcg
->numainfo_events
))
1641 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1644 /* make a nodemask where this memcg uses memory from */
1645 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1647 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1649 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1650 node_clear(nid
, memcg
->scan_nodes
);
1653 atomic_set(&memcg
->numainfo_events
, 0);
1654 atomic_set(&memcg
->numainfo_updating
, 0);
1658 * Selecting a node where we start reclaim from. Because what we need is just
1659 * reducing usage counter, start from anywhere is O,K. Considering
1660 * memory reclaim from current node, there are pros. and cons.
1662 * Freeing memory from current node means freeing memory from a node which
1663 * we'll use or we've used. So, it may make LRU bad. And if several threads
1664 * hit limits, it will see a contention on a node. But freeing from remote
1665 * node means more costs for memory reclaim because of memory latency.
1667 * Now, we use round-robin. Better algorithm is welcomed.
1669 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1673 mem_cgroup_may_update_nodemask(memcg
);
1674 node
= memcg
->last_scanned_node
;
1676 node
= next_node_in(node
, memcg
->scan_nodes
);
1678 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1679 * last time it really checked all the LRUs due to rate limiting.
1680 * Fallback to the current node in that case for simplicity.
1682 if (unlikely(node
== MAX_NUMNODES
))
1683 node
= numa_node_id();
1685 memcg
->last_scanned_node
= node
;
1689 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1695 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1698 unsigned long *total_scanned
)
1700 struct mem_cgroup
*victim
= NULL
;
1703 unsigned long excess
;
1704 unsigned long nr_scanned
;
1705 struct mem_cgroup_reclaim_cookie reclaim
= {
1710 excess
= soft_limit_excess(root_memcg
);
1713 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1718 * If we have not been able to reclaim
1719 * anything, it might because there are
1720 * no reclaimable pages under this hierarchy
1725 * We want to do more targeted reclaim.
1726 * excess >> 2 is not to excessive so as to
1727 * reclaim too much, nor too less that we keep
1728 * coming back to reclaim from this cgroup
1730 if (total
>= (excess
>> 2) ||
1731 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1736 total
+= mem_cgroup_shrink_node(victim
, gfp_mask
, false,
1737 pgdat
, &nr_scanned
);
1738 *total_scanned
+= nr_scanned
;
1739 if (!soft_limit_excess(root_memcg
))
1742 mem_cgroup_iter_break(root_memcg
, victim
);
1746 #ifdef CONFIG_LOCKDEP
1747 static struct lockdep_map memcg_oom_lock_dep_map
= {
1748 .name
= "memcg_oom_lock",
1752 static DEFINE_SPINLOCK(memcg_oom_lock
);
1755 * Check OOM-Killer is already running under our hierarchy.
1756 * If someone is running, return false.
1758 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1760 struct mem_cgroup
*iter
, *failed
= NULL
;
1762 spin_lock(&memcg_oom_lock
);
1764 for_each_mem_cgroup_tree(iter
, memcg
) {
1765 if (iter
->oom_lock
) {
1767 * this subtree of our hierarchy is already locked
1768 * so we cannot give a lock.
1771 mem_cgroup_iter_break(memcg
, iter
);
1774 iter
->oom_lock
= true;
1779 * OK, we failed to lock the whole subtree so we have
1780 * to clean up what we set up to the failing subtree
1782 for_each_mem_cgroup_tree(iter
, memcg
) {
1783 if (iter
== failed
) {
1784 mem_cgroup_iter_break(memcg
, iter
);
1787 iter
->oom_lock
= false;
1790 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1792 spin_unlock(&memcg_oom_lock
);
1797 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1799 struct mem_cgroup
*iter
;
1801 spin_lock(&memcg_oom_lock
);
1802 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1803 for_each_mem_cgroup_tree(iter
, memcg
)
1804 iter
->oom_lock
= false;
1805 spin_unlock(&memcg_oom_lock
);
1808 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1810 struct mem_cgroup
*iter
;
1812 spin_lock(&memcg_oom_lock
);
1813 for_each_mem_cgroup_tree(iter
, memcg
)
1815 spin_unlock(&memcg_oom_lock
);
1818 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1820 struct mem_cgroup
*iter
;
1823 * When a new child is created while the hierarchy is under oom,
1824 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1826 spin_lock(&memcg_oom_lock
);
1827 for_each_mem_cgroup_tree(iter
, memcg
)
1828 if (iter
->under_oom
> 0)
1830 spin_unlock(&memcg_oom_lock
);
1833 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1835 struct oom_wait_info
{
1836 struct mem_cgroup
*memcg
;
1837 wait_queue_entry_t wait
;
1840 static int memcg_oom_wake_function(wait_queue_entry_t
*wait
,
1841 unsigned mode
, int sync
, void *arg
)
1843 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1844 struct mem_cgroup
*oom_wait_memcg
;
1845 struct oom_wait_info
*oom_wait_info
;
1847 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1848 oom_wait_memcg
= oom_wait_info
->memcg
;
1850 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1851 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1853 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1856 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1859 * For the following lockless ->under_oom test, the only required
1860 * guarantee is that it must see the state asserted by an OOM when
1861 * this function is called as a result of userland actions
1862 * triggered by the notification of the OOM. This is trivially
1863 * achieved by invoking mem_cgroup_mark_under_oom() before
1864 * triggering notification.
1866 if (memcg
&& memcg
->under_oom
)
1867 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1877 static enum oom_status
mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1879 enum oom_status ret
;
1882 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1885 memcg_memory_event(memcg
, MEMCG_OOM
);
1888 * We are in the middle of the charge context here, so we
1889 * don't want to block when potentially sitting on a callstack
1890 * that holds all kinds of filesystem and mm locks.
1892 * cgroup1 allows disabling the OOM killer and waiting for outside
1893 * handling until the charge can succeed; remember the context and put
1894 * the task to sleep at the end of the page fault when all locks are
1897 * On the other hand, in-kernel OOM killer allows for an async victim
1898 * memory reclaim (oom_reaper) and that means that we are not solely
1899 * relying on the oom victim to make a forward progress and we can
1900 * invoke the oom killer here.
1902 * Please note that mem_cgroup_out_of_memory might fail to find a
1903 * victim and then we have to bail out from the charge path.
1905 if (memcg
->oom_kill_disable
) {
1906 if (!current
->in_user_fault
)
1908 css_get(&memcg
->css
);
1909 current
->memcg_in_oom
= memcg
;
1910 current
->memcg_oom_gfp_mask
= mask
;
1911 current
->memcg_oom_order
= order
;
1916 mem_cgroup_mark_under_oom(memcg
);
1918 locked
= mem_cgroup_oom_trylock(memcg
);
1921 mem_cgroup_oom_notify(memcg
);
1923 mem_cgroup_unmark_under_oom(memcg
);
1924 if (mem_cgroup_out_of_memory(memcg
, mask
, order
))
1930 mem_cgroup_oom_unlock(memcg
);
1936 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1937 * @handle: actually kill/wait or just clean up the OOM state
1939 * This has to be called at the end of a page fault if the memcg OOM
1940 * handler was enabled.
1942 * Memcg supports userspace OOM handling where failed allocations must
1943 * sleep on a waitqueue until the userspace task resolves the
1944 * situation. Sleeping directly in the charge context with all kinds
1945 * of locks held is not a good idea, instead we remember an OOM state
1946 * in the task and mem_cgroup_oom_synchronize() has to be called at
1947 * the end of the page fault to complete the OOM handling.
1949 * Returns %true if an ongoing memcg OOM situation was detected and
1950 * completed, %false otherwise.
1952 bool mem_cgroup_oom_synchronize(bool handle
)
1954 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1955 struct oom_wait_info owait
;
1958 /* OOM is global, do not handle */
1965 owait
.memcg
= memcg
;
1966 owait
.wait
.flags
= 0;
1967 owait
.wait
.func
= memcg_oom_wake_function
;
1968 owait
.wait
.private = current
;
1969 INIT_LIST_HEAD(&owait
.wait
.entry
);
1971 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1972 mem_cgroup_mark_under_oom(memcg
);
1974 locked
= mem_cgroup_oom_trylock(memcg
);
1977 mem_cgroup_oom_notify(memcg
);
1979 if (locked
&& !memcg
->oom_kill_disable
) {
1980 mem_cgroup_unmark_under_oom(memcg
);
1981 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1982 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1983 current
->memcg_oom_order
);
1986 mem_cgroup_unmark_under_oom(memcg
);
1987 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1991 mem_cgroup_oom_unlock(memcg
);
1993 * There is no guarantee that an OOM-lock contender
1994 * sees the wakeups triggered by the OOM kill
1995 * uncharges. Wake any sleepers explicitely.
1997 memcg_oom_recover(memcg
);
2000 current
->memcg_in_oom
= NULL
;
2001 css_put(&memcg
->css
);
2006 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2007 * @victim: task to be killed by the OOM killer
2008 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2010 * Returns a pointer to a memory cgroup, which has to be cleaned up
2011 * by killing all belonging OOM-killable tasks.
2013 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2015 struct mem_cgroup
*mem_cgroup_get_oom_group(struct task_struct
*victim
,
2016 struct mem_cgroup
*oom_domain
)
2018 struct mem_cgroup
*oom_group
= NULL
;
2019 struct mem_cgroup
*memcg
;
2021 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2025 oom_domain
= root_mem_cgroup
;
2029 memcg
= mem_cgroup_from_task(victim
);
2030 if (memcg
== root_mem_cgroup
)
2034 * Traverse the memory cgroup hierarchy from the victim task's
2035 * cgroup up to the OOMing cgroup (or root) to find the
2036 * highest-level memory cgroup with oom.group set.
2038 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
2039 if (memcg
->oom_group
)
2042 if (memcg
== oom_domain
)
2047 css_get(&oom_group
->css
);
2054 void mem_cgroup_print_oom_group(struct mem_cgroup
*memcg
)
2056 pr_info("Tasks in ");
2057 pr_cont_cgroup_path(memcg
->css
.cgroup
);
2058 pr_cont(" are going to be killed due to memory.oom.group set\n");
2062 * lock_page_memcg - lock a page->mem_cgroup binding
2065 * This function protects unlocked LRU pages from being moved to
2068 * It ensures lifetime of the returned memcg. Caller is responsible
2069 * for the lifetime of the page; __unlock_page_memcg() is available
2070 * when @page might get freed inside the locked section.
2072 struct mem_cgroup
*lock_page_memcg(struct page
*page
)
2074 struct mem_cgroup
*memcg
;
2075 unsigned long flags
;
2078 * The RCU lock is held throughout the transaction. The fast
2079 * path can get away without acquiring the memcg->move_lock
2080 * because page moving starts with an RCU grace period.
2082 * The RCU lock also protects the memcg from being freed when
2083 * the page state that is going to change is the only thing
2084 * preventing the page itself from being freed. E.g. writeback
2085 * doesn't hold a page reference and relies on PG_writeback to
2086 * keep off truncation, migration and so forth.
2090 if (mem_cgroup_disabled())
2093 memcg
= page
->mem_cgroup
;
2094 if (unlikely(!memcg
))
2097 if (atomic_read(&memcg
->moving_account
) <= 0)
2100 spin_lock_irqsave(&memcg
->move_lock
, flags
);
2101 if (memcg
!= page
->mem_cgroup
) {
2102 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
2107 * When charge migration first begins, we can have locked and
2108 * unlocked page stat updates happening concurrently. Track
2109 * the task who has the lock for unlock_page_memcg().
2111 memcg
->move_lock_task
= current
;
2112 memcg
->move_lock_flags
= flags
;
2116 EXPORT_SYMBOL(lock_page_memcg
);
2119 * __unlock_page_memcg - unlock and unpin a memcg
2122 * Unlock and unpin a memcg returned by lock_page_memcg().
2124 void __unlock_page_memcg(struct mem_cgroup
*memcg
)
2126 if (memcg
&& memcg
->move_lock_task
== current
) {
2127 unsigned long flags
= memcg
->move_lock_flags
;
2129 memcg
->move_lock_task
= NULL
;
2130 memcg
->move_lock_flags
= 0;
2132 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
2139 * unlock_page_memcg - unlock a page->mem_cgroup binding
2142 void unlock_page_memcg(struct page
*page
)
2144 __unlock_page_memcg(page
->mem_cgroup
);
2146 EXPORT_SYMBOL(unlock_page_memcg
);
2148 struct memcg_stock_pcp
{
2149 struct mem_cgroup
*cached
; /* this never be root cgroup */
2150 unsigned int nr_pages
;
2151 struct work_struct work
;
2152 unsigned long flags
;
2153 #define FLUSHING_CACHED_CHARGE 0
2155 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2156 static DEFINE_MUTEX(percpu_charge_mutex
);
2159 * consume_stock: Try to consume stocked charge on this cpu.
2160 * @memcg: memcg to consume from.
2161 * @nr_pages: how many pages to charge.
2163 * The charges will only happen if @memcg matches the current cpu's memcg
2164 * stock, and at least @nr_pages are available in that stock. Failure to
2165 * service an allocation will refill the stock.
2167 * returns true if successful, false otherwise.
2169 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2171 struct memcg_stock_pcp
*stock
;
2172 unsigned long flags
;
2175 if (nr_pages
> MEMCG_CHARGE_BATCH
)
2178 local_irq_save(flags
);
2180 stock
= this_cpu_ptr(&memcg_stock
);
2181 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
2182 stock
->nr_pages
-= nr_pages
;
2186 local_irq_restore(flags
);
2192 * Returns stocks cached in percpu and reset cached information.
2194 static void drain_stock(struct memcg_stock_pcp
*stock
)
2196 struct mem_cgroup
*old
= stock
->cached
;
2198 if (stock
->nr_pages
) {
2199 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
2200 if (do_memsw_account())
2201 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
2202 css_put_many(&old
->css
, stock
->nr_pages
);
2203 stock
->nr_pages
= 0;
2205 stock
->cached
= NULL
;
2208 static void drain_local_stock(struct work_struct
*dummy
)
2210 struct memcg_stock_pcp
*stock
;
2211 unsigned long flags
;
2214 * The only protection from memory hotplug vs. drain_stock races is
2215 * that we always operate on local CPU stock here with IRQ disabled
2217 local_irq_save(flags
);
2219 stock
= this_cpu_ptr(&memcg_stock
);
2221 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2223 local_irq_restore(flags
);
2227 * Cache charges(val) to local per_cpu area.
2228 * This will be consumed by consume_stock() function, later.
2230 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2232 struct memcg_stock_pcp
*stock
;
2233 unsigned long flags
;
2235 local_irq_save(flags
);
2237 stock
= this_cpu_ptr(&memcg_stock
);
2238 if (stock
->cached
!= memcg
) { /* reset if necessary */
2240 stock
->cached
= memcg
;
2242 stock
->nr_pages
+= nr_pages
;
2244 if (stock
->nr_pages
> MEMCG_CHARGE_BATCH
)
2247 local_irq_restore(flags
);
2251 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2252 * of the hierarchy under it.
2254 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
2258 /* If someone's already draining, avoid adding running more workers. */
2259 if (!mutex_trylock(&percpu_charge_mutex
))
2262 * Notify other cpus that system-wide "drain" is running
2263 * We do not care about races with the cpu hotplug because cpu down
2264 * as well as workers from this path always operate on the local
2265 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2268 for_each_online_cpu(cpu
) {
2269 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2270 struct mem_cgroup
*memcg
;
2272 memcg
= stock
->cached
;
2273 if (!memcg
|| !stock
->nr_pages
|| !css_tryget(&memcg
->css
))
2275 if (!mem_cgroup_is_descendant(memcg
, root_memcg
)) {
2276 css_put(&memcg
->css
);
2279 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2281 drain_local_stock(&stock
->work
);
2283 schedule_work_on(cpu
, &stock
->work
);
2285 css_put(&memcg
->css
);
2288 mutex_unlock(&percpu_charge_mutex
);
2291 static int memcg_hotplug_cpu_dead(unsigned int cpu
)
2293 struct memcg_stock_pcp
*stock
;
2294 struct mem_cgroup
*memcg
, *mi
;
2296 stock
= &per_cpu(memcg_stock
, cpu
);
2299 for_each_mem_cgroup(memcg
) {
2302 for (i
= 0; i
< MEMCG_NR_STAT
; i
++) {
2306 x
= this_cpu_xchg(memcg
->vmstats_percpu
->stat
[i
], 0);
2308 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
2309 atomic_long_add(x
, &memcg
->vmstats
[i
]);
2311 if (i
>= NR_VM_NODE_STAT_ITEMS
)
2314 for_each_node(nid
) {
2315 struct mem_cgroup_per_node
*pn
;
2317 pn
= mem_cgroup_nodeinfo(memcg
, nid
);
2318 x
= this_cpu_xchg(pn
->lruvec_stat_cpu
->count
[i
], 0);
2321 atomic_long_add(x
, &pn
->lruvec_stat
[i
]);
2322 } while ((pn
= parent_nodeinfo(pn
, nid
)));
2326 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
2329 x
= this_cpu_xchg(memcg
->vmstats_percpu
->events
[i
], 0);
2331 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
2332 atomic_long_add(x
, &memcg
->vmevents
[i
]);
2339 static void reclaim_high(struct mem_cgroup
*memcg
,
2340 unsigned int nr_pages
,
2344 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
2346 memcg_memory_event(memcg
, MEMCG_HIGH
);
2347 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
2348 } while ((memcg
= parent_mem_cgroup(memcg
)));
2351 static void high_work_func(struct work_struct
*work
)
2353 struct mem_cgroup
*memcg
;
2355 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
2356 reclaim_high(memcg
, MEMCG_CHARGE_BATCH
, GFP_KERNEL
);
2360 * Scheduled by try_charge() to be executed from the userland return path
2361 * and reclaims memory over the high limit.
2363 void mem_cgroup_handle_over_high(void)
2365 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
2366 struct mem_cgroup
*memcg
;
2368 if (likely(!nr_pages
))
2371 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2372 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
2373 css_put(&memcg
->css
);
2374 current
->memcg_nr_pages_over_high
= 0;
2377 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2378 unsigned int nr_pages
)
2380 unsigned int batch
= max(MEMCG_CHARGE_BATCH
, nr_pages
);
2381 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2382 struct mem_cgroup
*mem_over_limit
;
2383 struct page_counter
*counter
;
2384 unsigned long nr_reclaimed
;
2385 bool may_swap
= true;
2386 bool drained
= false;
2387 enum oom_status oom_status
;
2389 if (mem_cgroup_is_root(memcg
))
2392 if (consume_stock(memcg
, nr_pages
))
2395 if (!do_memsw_account() ||
2396 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
2397 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
2399 if (do_memsw_account())
2400 page_counter_uncharge(&memcg
->memsw
, batch
);
2401 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
2403 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
2407 if (batch
> nr_pages
) {
2413 * Unlike in global OOM situations, memcg is not in a physical
2414 * memory shortage. Allow dying and OOM-killed tasks to
2415 * bypass the last charges so that they can exit quickly and
2416 * free their memory.
2418 if (unlikely(should_force_charge()))
2422 * Prevent unbounded recursion when reclaim operations need to
2423 * allocate memory. This might exceed the limits temporarily,
2424 * but we prefer facilitating memory reclaim and getting back
2425 * under the limit over triggering OOM kills in these cases.
2427 if (unlikely(current
->flags
& PF_MEMALLOC
))
2430 if (unlikely(task_in_memcg_oom(current
)))
2433 if (!gfpflags_allow_blocking(gfp_mask
))
2436 memcg_memory_event(mem_over_limit
, MEMCG_MAX
);
2438 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
2439 gfp_mask
, may_swap
);
2441 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2445 drain_all_stock(mem_over_limit
);
2450 if (gfp_mask
& __GFP_NORETRY
)
2453 * Even though the limit is exceeded at this point, reclaim
2454 * may have been able to free some pages. Retry the charge
2455 * before killing the task.
2457 * Only for regular pages, though: huge pages are rather
2458 * unlikely to succeed so close to the limit, and we fall back
2459 * to regular pages anyway in case of failure.
2461 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
2464 * At task move, charge accounts can be doubly counted. So, it's
2465 * better to wait until the end of task_move if something is going on.
2467 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2473 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
2476 if (gfp_mask
& __GFP_NOFAIL
)
2479 if (fatal_signal_pending(current
))
2483 * keep retrying as long as the memcg oom killer is able to make
2484 * a forward progress or bypass the charge if the oom killer
2485 * couldn't make any progress.
2487 oom_status
= mem_cgroup_oom(mem_over_limit
, gfp_mask
,
2488 get_order(nr_pages
* PAGE_SIZE
));
2489 switch (oom_status
) {
2491 nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2499 if (!(gfp_mask
& __GFP_NOFAIL
))
2503 * The allocation either can't fail or will lead to more memory
2504 * being freed very soon. Allow memory usage go over the limit
2505 * temporarily by force charging it.
2507 page_counter_charge(&memcg
->memory
, nr_pages
);
2508 if (do_memsw_account())
2509 page_counter_charge(&memcg
->memsw
, nr_pages
);
2510 css_get_many(&memcg
->css
, nr_pages
);
2515 css_get_many(&memcg
->css
, batch
);
2516 if (batch
> nr_pages
)
2517 refill_stock(memcg
, batch
- nr_pages
);
2520 * If the hierarchy is above the normal consumption range, schedule
2521 * reclaim on returning to userland. We can perform reclaim here
2522 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2523 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2524 * not recorded as it most likely matches current's and won't
2525 * change in the meantime. As high limit is checked again before
2526 * reclaim, the cost of mismatch is negligible.
2529 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2530 /* Don't bother a random interrupted task */
2531 if (in_interrupt()) {
2532 schedule_work(&memcg
->high_work
);
2535 current
->memcg_nr_pages_over_high
+= batch
;
2536 set_notify_resume(current
);
2539 } while ((memcg
= parent_mem_cgroup(memcg
)));
2544 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2546 if (mem_cgroup_is_root(memcg
))
2549 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2550 if (do_memsw_account())
2551 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2553 css_put_many(&memcg
->css
, nr_pages
);
2556 static void lock_page_lru(struct page
*page
, int *isolated
)
2558 pg_data_t
*pgdat
= page_pgdat(page
);
2560 spin_lock_irq(&pgdat
->lru_lock
);
2561 if (PageLRU(page
)) {
2562 struct lruvec
*lruvec
;
2564 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
2566 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2572 static void unlock_page_lru(struct page
*page
, int isolated
)
2574 pg_data_t
*pgdat
= page_pgdat(page
);
2577 struct lruvec
*lruvec
;
2579 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
2580 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2582 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2584 spin_unlock_irq(&pgdat
->lru_lock
);
2587 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2592 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2595 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2596 * may already be on some other mem_cgroup's LRU. Take care of it.
2599 lock_page_lru(page
, &isolated
);
2602 * Nobody should be changing or seriously looking at
2603 * page->mem_cgroup at this point:
2605 * - the page is uncharged
2607 * - the page is off-LRU
2609 * - an anonymous fault has exclusive page access, except for
2610 * a locked page table
2612 * - a page cache insertion, a swapin fault, or a migration
2613 * have the page locked
2615 page
->mem_cgroup
= memcg
;
2618 unlock_page_lru(page
, isolated
);
2621 #ifdef CONFIG_MEMCG_KMEM
2622 static int memcg_alloc_cache_id(void)
2627 id
= ida_simple_get(&memcg_cache_ida
,
2628 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2632 if (id
< memcg_nr_cache_ids
)
2636 * There's no space for the new id in memcg_caches arrays,
2637 * so we have to grow them.
2639 down_write(&memcg_cache_ids_sem
);
2641 size
= 2 * (id
+ 1);
2642 if (size
< MEMCG_CACHES_MIN_SIZE
)
2643 size
= MEMCG_CACHES_MIN_SIZE
;
2644 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2645 size
= MEMCG_CACHES_MAX_SIZE
;
2647 err
= memcg_update_all_caches(size
);
2649 err
= memcg_update_all_list_lrus(size
);
2651 memcg_nr_cache_ids
= size
;
2653 up_write(&memcg_cache_ids_sem
);
2656 ida_simple_remove(&memcg_cache_ida
, id
);
2662 static void memcg_free_cache_id(int id
)
2664 ida_simple_remove(&memcg_cache_ida
, id
);
2667 struct memcg_kmem_cache_create_work
{
2668 struct mem_cgroup
*memcg
;
2669 struct kmem_cache
*cachep
;
2670 struct work_struct work
;
2673 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2675 struct memcg_kmem_cache_create_work
*cw
=
2676 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2677 struct mem_cgroup
*memcg
= cw
->memcg
;
2678 struct kmem_cache
*cachep
= cw
->cachep
;
2680 memcg_create_kmem_cache(memcg
, cachep
);
2682 css_put(&memcg
->css
);
2687 * Enqueue the creation of a per-memcg kmem_cache.
2689 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2690 struct kmem_cache
*cachep
)
2692 struct memcg_kmem_cache_create_work
*cw
;
2694 if (!css_tryget_online(&memcg
->css
))
2697 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
| __GFP_NOWARN
);
2702 cw
->cachep
= cachep
;
2703 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2705 queue_work(memcg_kmem_cache_wq
, &cw
->work
);
2708 static inline bool memcg_kmem_bypass(void)
2710 if (in_interrupt() || !current
->mm
|| (current
->flags
& PF_KTHREAD
))
2716 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2717 * @cachep: the original global kmem cache
2719 * Return the kmem_cache we're supposed to use for a slab allocation.
2720 * We try to use the current memcg's version of the cache.
2722 * If the cache does not exist yet, if we are the first user of it, we
2723 * create it asynchronously in a workqueue and let the current allocation
2724 * go through with the original cache.
2726 * This function takes a reference to the cache it returns to assure it
2727 * won't get destroyed while we are working with it. Once the caller is
2728 * done with it, memcg_kmem_put_cache() must be called to release the
2731 struct kmem_cache
*memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2733 struct mem_cgroup
*memcg
;
2734 struct kmem_cache
*memcg_cachep
;
2735 struct memcg_cache_array
*arr
;
2738 VM_BUG_ON(!is_root_cache(cachep
));
2740 if (memcg_kmem_bypass())
2745 if (unlikely(current
->active_memcg
))
2746 memcg
= current
->active_memcg
;
2748 memcg
= mem_cgroup_from_task(current
);
2750 if (!memcg
|| memcg
== root_mem_cgroup
)
2753 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2757 arr
= rcu_dereference(cachep
->memcg_params
.memcg_caches
);
2760 * Make sure we will access the up-to-date value. The code updating
2761 * memcg_caches issues a write barrier to match the data dependency
2762 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2764 memcg_cachep
= READ_ONCE(arr
->entries
[kmemcg_id
]);
2767 * If we are in a safe context (can wait, and not in interrupt
2768 * context), we could be be predictable and return right away.
2769 * This would guarantee that the allocation being performed
2770 * already belongs in the new cache.
2772 * However, there are some clashes that can arrive from locking.
2773 * For instance, because we acquire the slab_mutex while doing
2774 * memcg_create_kmem_cache, this means no further allocation
2775 * could happen with the slab_mutex held. So it's better to
2778 * If the memcg is dying or memcg_cache is about to be released,
2779 * don't bother creating new kmem_caches. Because memcg_cachep
2780 * is ZEROed as the fist step of kmem offlining, we don't need
2781 * percpu_ref_tryget_live() here. css_tryget_online() check in
2782 * memcg_schedule_kmem_cache_create() will prevent us from
2783 * creation of a new kmem_cache.
2785 if (unlikely(!memcg_cachep
))
2786 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2787 else if (percpu_ref_tryget(&memcg_cachep
->memcg_params
.refcnt
))
2788 cachep
= memcg_cachep
;
2795 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2796 * @cachep: the cache returned by memcg_kmem_get_cache
2798 void memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2800 if (!is_root_cache(cachep
))
2801 percpu_ref_put(&cachep
->memcg_params
.refcnt
);
2805 * __memcg_kmem_charge_memcg: charge a kmem page
2806 * @page: page to charge
2807 * @gfp: reclaim mode
2808 * @order: allocation order
2809 * @memcg: memory cgroup to charge
2811 * Returns 0 on success, an error code on failure.
2813 int __memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2814 struct mem_cgroup
*memcg
)
2816 unsigned int nr_pages
= 1 << order
;
2817 struct page_counter
*counter
;
2820 ret
= try_charge(memcg
, gfp
, nr_pages
);
2824 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2825 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2826 cancel_charge(memcg
, nr_pages
);
2833 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2834 * @page: page to charge
2835 * @gfp: reclaim mode
2836 * @order: allocation order
2838 * Returns 0 on success, an error code on failure.
2840 int __memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2842 struct mem_cgroup
*memcg
;
2845 if (memcg_kmem_bypass())
2848 memcg
= get_mem_cgroup_from_current();
2849 if (!mem_cgroup_is_root(memcg
)) {
2850 ret
= __memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2852 page
->mem_cgroup
= memcg
;
2853 __SetPageKmemcg(page
);
2856 css_put(&memcg
->css
);
2861 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2862 * @memcg: memcg to uncharge
2863 * @nr_pages: number of pages to uncharge
2865 void __memcg_kmem_uncharge_memcg(struct mem_cgroup
*memcg
,
2866 unsigned int nr_pages
)
2868 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2869 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2871 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2872 if (do_memsw_account())
2873 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2876 * __memcg_kmem_uncharge: uncharge a kmem page
2877 * @page: page to uncharge
2878 * @order: allocation order
2880 void __memcg_kmem_uncharge(struct page
*page
, int order
)
2882 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2883 unsigned int nr_pages
= 1 << order
;
2888 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2889 __memcg_kmem_uncharge_memcg(memcg
, nr_pages
);
2890 page
->mem_cgroup
= NULL
;
2892 /* slab pages do not have PageKmemcg flag set */
2893 if (PageKmemcg(page
))
2894 __ClearPageKmemcg(page
);
2896 css_put_many(&memcg
->css
, nr_pages
);
2898 #endif /* CONFIG_MEMCG_KMEM */
2900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2903 * Because tail pages are not marked as "used", set it. We're under
2904 * pgdat->lru_lock and migration entries setup in all page mappings.
2906 void mem_cgroup_split_huge_fixup(struct page
*head
)
2910 if (mem_cgroup_disabled())
2913 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2914 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2916 __mod_memcg_state(head
->mem_cgroup
, MEMCG_RSS_HUGE
, -HPAGE_PMD_NR
);
2918 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2920 #ifdef CONFIG_MEMCG_SWAP
2922 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2923 * @entry: swap entry to be moved
2924 * @from: mem_cgroup which the entry is moved from
2925 * @to: mem_cgroup which the entry is moved to
2927 * It succeeds only when the swap_cgroup's record for this entry is the same
2928 * as the mem_cgroup's id of @from.
2930 * Returns 0 on success, -EINVAL on failure.
2932 * The caller must have charged to @to, IOW, called page_counter_charge() about
2933 * both res and memsw, and called css_get().
2935 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2936 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2938 unsigned short old_id
, new_id
;
2940 old_id
= mem_cgroup_id(from
);
2941 new_id
= mem_cgroup_id(to
);
2943 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2944 mod_memcg_state(from
, MEMCG_SWAP
, -1);
2945 mod_memcg_state(to
, MEMCG_SWAP
, 1);
2951 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2952 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2958 static DEFINE_MUTEX(memcg_max_mutex
);
2960 static int mem_cgroup_resize_max(struct mem_cgroup
*memcg
,
2961 unsigned long max
, bool memsw
)
2963 bool enlarge
= false;
2964 bool drained
= false;
2966 bool limits_invariant
;
2967 struct page_counter
*counter
= memsw
? &memcg
->memsw
: &memcg
->memory
;
2970 if (signal_pending(current
)) {
2975 mutex_lock(&memcg_max_mutex
);
2977 * Make sure that the new limit (memsw or memory limit) doesn't
2978 * break our basic invariant rule memory.max <= memsw.max.
2980 limits_invariant
= memsw
? max
>= memcg
->memory
.max
:
2981 max
<= memcg
->memsw
.max
;
2982 if (!limits_invariant
) {
2983 mutex_unlock(&memcg_max_mutex
);
2987 if (max
> counter
->max
)
2989 ret
= page_counter_set_max(counter
, max
);
2990 mutex_unlock(&memcg_max_mutex
);
2996 drain_all_stock(memcg
);
3001 if (!try_to_free_mem_cgroup_pages(memcg
, 1,
3002 GFP_KERNEL
, !memsw
)) {
3008 if (!ret
&& enlarge
)
3009 memcg_oom_recover(memcg
);
3014 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t
*pgdat
, int order
,
3016 unsigned long *total_scanned
)
3018 unsigned long nr_reclaimed
= 0;
3019 struct mem_cgroup_per_node
*mz
, *next_mz
= NULL
;
3020 unsigned long reclaimed
;
3022 struct mem_cgroup_tree_per_node
*mctz
;
3023 unsigned long excess
;
3024 unsigned long nr_scanned
;
3029 mctz
= soft_limit_tree_node(pgdat
->node_id
);
3032 * Do not even bother to check the largest node if the root
3033 * is empty. Do it lockless to prevent lock bouncing. Races
3034 * are acceptable as soft limit is best effort anyway.
3036 if (!mctz
|| RB_EMPTY_ROOT(&mctz
->rb_root
))
3040 * This loop can run a while, specially if mem_cgroup's continuously
3041 * keep exceeding their soft limit and putting the system under
3048 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3053 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, pgdat
,
3054 gfp_mask
, &nr_scanned
);
3055 nr_reclaimed
+= reclaimed
;
3056 *total_scanned
+= nr_scanned
;
3057 spin_lock_irq(&mctz
->lock
);
3058 __mem_cgroup_remove_exceeded(mz
, mctz
);
3061 * If we failed to reclaim anything from this memory cgroup
3062 * it is time to move on to the next cgroup
3066 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
3068 excess
= soft_limit_excess(mz
->memcg
);
3070 * One school of thought says that we should not add
3071 * back the node to the tree if reclaim returns 0.
3072 * But our reclaim could return 0, simply because due
3073 * to priority we are exposing a smaller subset of
3074 * memory to reclaim from. Consider this as a longer
3077 /* If excess == 0, no tree ops */
3078 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
3079 spin_unlock_irq(&mctz
->lock
);
3080 css_put(&mz
->memcg
->css
);
3083 * Could not reclaim anything and there are no more
3084 * mem cgroups to try or we seem to be looping without
3085 * reclaiming anything.
3087 if (!nr_reclaimed
&&
3089 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3091 } while (!nr_reclaimed
);
3093 css_put(&next_mz
->memcg
->css
);
3094 return nr_reclaimed
;
3098 * Test whether @memcg has children, dead or alive. Note that this
3099 * function doesn't care whether @memcg has use_hierarchy enabled and
3100 * returns %true if there are child csses according to the cgroup
3101 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3103 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
3108 ret
= css_next_child(NULL
, &memcg
->css
);
3114 * Reclaims as many pages from the given memcg as possible.
3116 * Caller is responsible for holding css reference for memcg.
3118 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
3120 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3122 /* we call try-to-free pages for make this cgroup empty */
3123 lru_add_drain_all();
3125 drain_all_stock(memcg
);
3127 /* try to free all pages in this cgroup */
3128 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
3131 if (signal_pending(current
))
3134 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
3138 /* maybe some writeback is necessary */
3139 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3147 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
3148 char *buf
, size_t nbytes
,
3151 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3153 if (mem_cgroup_is_root(memcg
))
3155 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
3158 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
3161 return mem_cgroup_from_css(css
)->use_hierarchy
;
3164 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
3165 struct cftype
*cft
, u64 val
)
3168 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3169 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
3171 if (memcg
->use_hierarchy
== val
)
3175 * If parent's use_hierarchy is set, we can't make any modifications
3176 * in the child subtrees. If it is unset, then the change can
3177 * occur, provided the current cgroup has no children.
3179 * For the root cgroup, parent_mem is NULL, we allow value to be
3180 * set if there are no children.
3182 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
3183 (val
== 1 || val
== 0)) {
3184 if (!memcg_has_children(memcg
))
3185 memcg
->use_hierarchy
= val
;
3194 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
3198 if (mem_cgroup_is_root(memcg
)) {
3199 val
= memcg_page_state(memcg
, MEMCG_CACHE
) +
3200 memcg_page_state(memcg
, MEMCG_RSS
);
3202 val
+= memcg_page_state(memcg
, MEMCG_SWAP
);
3205 val
= page_counter_read(&memcg
->memory
);
3207 val
= page_counter_read(&memcg
->memsw
);
3220 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
3223 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3224 struct page_counter
*counter
;
3226 switch (MEMFILE_TYPE(cft
->private)) {
3228 counter
= &memcg
->memory
;
3231 counter
= &memcg
->memsw
;
3234 counter
= &memcg
->kmem
;
3237 counter
= &memcg
->tcpmem
;
3243 switch (MEMFILE_ATTR(cft
->private)) {
3245 if (counter
== &memcg
->memory
)
3246 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
3247 if (counter
== &memcg
->memsw
)
3248 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
3249 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
3251 return (u64
)counter
->max
* PAGE_SIZE
;
3253 return (u64
)counter
->watermark
* PAGE_SIZE
;
3255 return counter
->failcnt
;
3256 case RES_SOFT_LIMIT
:
3257 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
3263 static void memcg_flush_percpu_vmstats(struct mem_cgroup
*memcg
)
3265 unsigned long stat
[MEMCG_NR_STAT
];
3266 struct mem_cgroup
*mi
;
3269 for (i
= 0; i
< MEMCG_NR_STAT
; i
++)
3272 for_each_online_cpu(cpu
)
3273 for (i
= 0; i
< MEMCG_NR_STAT
; i
++)
3274 stat
[i
] += raw_cpu_read(memcg
->vmstats_percpu
->stat
[i
]);
3276 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
3277 for (i
= 0; i
< MEMCG_NR_STAT
; i
++)
3278 atomic_long_add(stat
[i
], &mi
->vmstats
[i
]);
3280 for_each_node(node
) {
3281 struct mem_cgroup_per_node
*pn
= memcg
->nodeinfo
[node
];
3282 struct mem_cgroup_per_node
*pi
;
3284 for (i
= 0; i
< NR_VM_NODE_STAT_ITEMS
; i
++)
3287 for_each_online_cpu(cpu
)
3288 for (i
= 0; i
< NR_VM_NODE_STAT_ITEMS
; i
++)
3289 stat
[i
] += raw_cpu_read(
3290 pn
->lruvec_stat_cpu
->count
[i
]);
3292 for (pi
= pn
; pi
; pi
= parent_nodeinfo(pi
, node
))
3293 for (i
= 0; i
< NR_VM_NODE_STAT_ITEMS
; i
++)
3294 atomic_long_add(stat
[i
], &pi
->lruvec_stat
[i
]);
3298 static void memcg_flush_percpu_vmevents(struct mem_cgroup
*memcg
)
3300 unsigned long events
[NR_VM_EVENT_ITEMS
];
3301 struct mem_cgroup
*mi
;
3304 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
3307 for_each_online_cpu(cpu
)
3308 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
3309 events
[i
] += raw_cpu_read(
3310 memcg
->vmstats_percpu
->events
[i
]);
3312 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
))
3313 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
3314 atomic_long_add(events
[i
], &mi
->vmevents
[i
]);
3317 #ifdef CONFIG_MEMCG_KMEM
3318 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
3322 if (cgroup_memory_nokmem
)
3325 BUG_ON(memcg
->kmemcg_id
>= 0);
3326 BUG_ON(memcg
->kmem_state
);
3328 memcg_id
= memcg_alloc_cache_id();
3332 static_branch_inc(&memcg_kmem_enabled_key
);
3334 * A memory cgroup is considered kmem-online as soon as it gets
3335 * kmemcg_id. Setting the id after enabling static branching will
3336 * guarantee no one starts accounting before all call sites are
3339 memcg
->kmemcg_id
= memcg_id
;
3340 memcg
->kmem_state
= KMEM_ONLINE
;
3341 INIT_LIST_HEAD(&memcg
->kmem_caches
);
3346 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
3348 struct cgroup_subsys_state
*css
;
3349 struct mem_cgroup
*parent
, *child
;
3352 if (memcg
->kmem_state
!= KMEM_ONLINE
)
3355 * Clear the online state before clearing memcg_caches array
3356 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3357 * guarantees that no cache will be created for this cgroup
3358 * after we are done (see memcg_create_kmem_cache()).
3360 memcg
->kmem_state
= KMEM_ALLOCATED
;
3362 parent
= parent_mem_cgroup(memcg
);
3364 parent
= root_mem_cgroup
;
3366 memcg_deactivate_kmem_caches(memcg
, parent
);
3368 kmemcg_id
= memcg
->kmemcg_id
;
3369 BUG_ON(kmemcg_id
< 0);
3372 * Change kmemcg_id of this cgroup and all its descendants to the
3373 * parent's id, and then move all entries from this cgroup's list_lrus
3374 * to ones of the parent. After we have finished, all list_lrus
3375 * corresponding to this cgroup are guaranteed to remain empty. The
3376 * ordering is imposed by list_lru_node->lock taken by
3377 * memcg_drain_all_list_lrus().
3379 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3380 css_for_each_descendant_pre(css
, &memcg
->css
) {
3381 child
= mem_cgroup_from_css(css
);
3382 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
3383 child
->kmemcg_id
= parent
->kmemcg_id
;
3384 if (!memcg
->use_hierarchy
)
3389 memcg_drain_all_list_lrus(kmemcg_id
, parent
);
3391 memcg_free_cache_id(kmemcg_id
);
3394 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
3396 /* css_alloc() failed, offlining didn't happen */
3397 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
3398 memcg_offline_kmem(memcg
);
3400 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
3401 WARN_ON(!list_empty(&memcg
->kmem_caches
));
3402 static_branch_dec(&memcg_kmem_enabled_key
);
3406 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
3410 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
3413 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
3416 #endif /* CONFIG_MEMCG_KMEM */
3418 static int memcg_update_kmem_max(struct mem_cgroup
*memcg
,
3423 mutex_lock(&memcg_max_mutex
);
3424 ret
= page_counter_set_max(&memcg
->kmem
, max
);
3425 mutex_unlock(&memcg_max_mutex
);
3429 static int memcg_update_tcp_max(struct mem_cgroup
*memcg
, unsigned long max
)
3433 mutex_lock(&memcg_max_mutex
);
3435 ret
= page_counter_set_max(&memcg
->tcpmem
, max
);
3439 if (!memcg
->tcpmem_active
) {
3441 * The active flag needs to be written after the static_key
3442 * update. This is what guarantees that the socket activation
3443 * function is the last one to run. See mem_cgroup_sk_alloc()
3444 * for details, and note that we don't mark any socket as
3445 * belonging to this memcg until that flag is up.
3447 * We need to do this, because static_keys will span multiple
3448 * sites, but we can't control their order. If we mark a socket
3449 * as accounted, but the accounting functions are not patched in
3450 * yet, we'll lose accounting.
3452 * We never race with the readers in mem_cgroup_sk_alloc(),
3453 * because when this value change, the code to process it is not
3456 static_branch_inc(&memcg_sockets_enabled_key
);
3457 memcg
->tcpmem_active
= true;
3460 mutex_unlock(&memcg_max_mutex
);
3465 * The user of this function is...
3468 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
3469 char *buf
, size_t nbytes
, loff_t off
)
3471 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3472 unsigned long nr_pages
;
3475 buf
= strstrip(buf
);
3476 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
3480 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3482 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3486 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3488 ret
= mem_cgroup_resize_max(memcg
, nr_pages
, false);
3491 ret
= mem_cgroup_resize_max(memcg
, nr_pages
, true);
3494 ret
= memcg_update_kmem_max(memcg
, nr_pages
);
3497 ret
= memcg_update_tcp_max(memcg
, nr_pages
);
3501 case RES_SOFT_LIMIT
:
3502 memcg
->soft_limit
= nr_pages
;
3506 return ret
?: nbytes
;
3509 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3510 size_t nbytes
, loff_t off
)
3512 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3513 struct page_counter
*counter
;
3515 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3517 counter
= &memcg
->memory
;
3520 counter
= &memcg
->memsw
;
3523 counter
= &memcg
->kmem
;
3526 counter
= &memcg
->tcpmem
;
3532 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3534 page_counter_reset_watermark(counter
);
3537 counter
->failcnt
= 0;
3546 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3549 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3553 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3554 struct cftype
*cft
, u64 val
)
3556 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3558 if (val
& ~MOVE_MASK
)
3562 * No kind of locking is needed in here, because ->can_attach() will
3563 * check this value once in the beginning of the process, and then carry
3564 * on with stale data. This means that changes to this value will only
3565 * affect task migrations starting after the change.
3567 memcg
->move_charge_at_immigrate
= val
;
3571 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3572 struct cftype
*cft
, u64 val
)
3580 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3581 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3582 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3584 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
3585 int nid
, unsigned int lru_mask
)
3587 struct lruvec
*lruvec
= mem_cgroup_lruvec(NODE_DATA(nid
), memcg
);
3588 unsigned long nr
= 0;
3591 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
3594 if (!(BIT(lru
) & lru_mask
))
3596 nr
+= lruvec_page_state_local(lruvec
, NR_LRU_BASE
+ lru
);
3601 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
3602 unsigned int lru_mask
)
3604 unsigned long nr
= 0;
3608 if (!(BIT(lru
) & lru_mask
))
3610 nr
+= memcg_page_state_local(memcg
, NR_LRU_BASE
+ lru
);
3615 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3619 unsigned int lru_mask
;
3622 static const struct numa_stat stats
[] = {
3623 { "total", LRU_ALL
},
3624 { "file", LRU_ALL_FILE
},
3625 { "anon", LRU_ALL_ANON
},
3626 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3628 const struct numa_stat
*stat
;
3631 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
3633 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3634 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3635 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3636 for_each_node_state(nid
, N_MEMORY
) {
3637 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3639 seq_printf(m
, " N%d=%lu", nid
, nr
);
3644 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3645 struct mem_cgroup
*iter
;
3648 for_each_mem_cgroup_tree(iter
, memcg
)
3649 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3650 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3651 for_each_node_state(nid
, N_MEMORY
) {
3653 for_each_mem_cgroup_tree(iter
, memcg
)
3654 nr
+= mem_cgroup_node_nr_lru_pages(
3655 iter
, nid
, stat
->lru_mask
);
3656 seq_printf(m
, " N%d=%lu", nid
, nr
);
3663 #endif /* CONFIG_NUMA */
3665 static const unsigned int memcg1_stats
[] = {
3676 static const char *const memcg1_stat_names
[] = {
3687 /* Universal VM events cgroup1 shows, original sort order */
3688 static const unsigned int memcg1_events
[] = {
3695 static const char *const memcg1_event_names
[] = {
3702 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3704 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
3705 unsigned long memory
, memsw
;
3706 struct mem_cgroup
*mi
;
3709 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names
) != ARRAY_SIZE(memcg1_stats
));
3710 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3712 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3713 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3715 seq_printf(m
, "%s %lu\n", memcg1_stat_names
[i
],
3716 memcg_page_state_local(memcg
, memcg1_stats
[i
]) *
3720 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++)
3721 seq_printf(m
, "%s %lu\n", memcg1_event_names
[i
],
3722 memcg_events_local(memcg
, memcg1_events
[i
]));
3724 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3725 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3726 memcg_page_state_local(memcg
, NR_LRU_BASE
+ i
) *
3729 /* Hierarchical information */
3730 memory
= memsw
= PAGE_COUNTER_MAX
;
3731 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3732 memory
= min(memory
, mi
->memory
.max
);
3733 memsw
= min(memsw
, mi
->memsw
.max
);
3735 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3736 (u64
)memory
* PAGE_SIZE
);
3737 if (do_memsw_account())
3738 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3739 (u64
)memsw
* PAGE_SIZE
);
3741 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3742 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3744 seq_printf(m
, "total_%s %llu\n", memcg1_stat_names
[i
],
3745 (u64
)memcg_page_state(memcg
, memcg1_stats
[i
]) *
3749 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++)
3750 seq_printf(m
, "total_%s %llu\n", memcg1_event_names
[i
],
3751 (u64
)memcg_events(memcg
, memcg1_events
[i
]));
3753 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3754 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
],
3755 (u64
)memcg_page_state(memcg
, NR_LRU_BASE
+ i
) *
3758 #ifdef CONFIG_DEBUG_VM
3761 struct mem_cgroup_per_node
*mz
;
3762 struct zone_reclaim_stat
*rstat
;
3763 unsigned long recent_rotated
[2] = {0, 0};
3764 unsigned long recent_scanned
[2] = {0, 0};
3766 for_each_online_pgdat(pgdat
) {
3767 mz
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
3768 rstat
= &mz
->lruvec
.reclaim_stat
;
3770 recent_rotated
[0] += rstat
->recent_rotated
[0];
3771 recent_rotated
[1] += rstat
->recent_rotated
[1];
3772 recent_scanned
[0] += rstat
->recent_scanned
[0];
3773 recent_scanned
[1] += rstat
->recent_scanned
[1];
3775 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3776 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3777 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3778 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3785 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3788 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3790 return mem_cgroup_swappiness(memcg
);
3793 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3794 struct cftype
*cft
, u64 val
)
3796 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3802 memcg
->swappiness
= val
;
3804 vm_swappiness
= val
;
3809 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3811 struct mem_cgroup_threshold_ary
*t
;
3812 unsigned long usage
;
3817 t
= rcu_dereference(memcg
->thresholds
.primary
);
3819 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3824 usage
= mem_cgroup_usage(memcg
, swap
);
3827 * current_threshold points to threshold just below or equal to usage.
3828 * If it's not true, a threshold was crossed after last
3829 * call of __mem_cgroup_threshold().
3831 i
= t
->current_threshold
;
3834 * Iterate backward over array of thresholds starting from
3835 * current_threshold and check if a threshold is crossed.
3836 * If none of thresholds below usage is crossed, we read
3837 * only one element of the array here.
3839 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3840 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3842 /* i = current_threshold + 1 */
3846 * Iterate forward over array of thresholds starting from
3847 * current_threshold+1 and check if a threshold is crossed.
3848 * If none of thresholds above usage is crossed, we read
3849 * only one element of the array here.
3851 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3852 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3854 /* Update current_threshold */
3855 t
->current_threshold
= i
- 1;
3860 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3863 __mem_cgroup_threshold(memcg
, false);
3864 if (do_memsw_account())
3865 __mem_cgroup_threshold(memcg
, true);
3867 memcg
= parent_mem_cgroup(memcg
);
3871 static int compare_thresholds(const void *a
, const void *b
)
3873 const struct mem_cgroup_threshold
*_a
= a
;
3874 const struct mem_cgroup_threshold
*_b
= b
;
3876 if (_a
->threshold
> _b
->threshold
)
3879 if (_a
->threshold
< _b
->threshold
)
3885 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3887 struct mem_cgroup_eventfd_list
*ev
;
3889 spin_lock(&memcg_oom_lock
);
3891 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3892 eventfd_signal(ev
->eventfd
, 1);
3894 spin_unlock(&memcg_oom_lock
);
3898 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3900 struct mem_cgroup
*iter
;
3902 for_each_mem_cgroup_tree(iter
, memcg
)
3903 mem_cgroup_oom_notify_cb(iter
);
3906 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3907 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3909 struct mem_cgroup_thresholds
*thresholds
;
3910 struct mem_cgroup_threshold_ary
*new;
3911 unsigned long threshold
;
3912 unsigned long usage
;
3915 ret
= page_counter_memparse(args
, "-1", &threshold
);
3919 mutex_lock(&memcg
->thresholds_lock
);
3922 thresholds
= &memcg
->thresholds
;
3923 usage
= mem_cgroup_usage(memcg
, false);
3924 } else if (type
== _MEMSWAP
) {
3925 thresholds
= &memcg
->memsw_thresholds
;
3926 usage
= mem_cgroup_usage(memcg
, true);
3930 /* Check if a threshold crossed before adding a new one */
3931 if (thresholds
->primary
)
3932 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3934 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3936 /* Allocate memory for new array of thresholds */
3937 new = kmalloc(struct_size(new, entries
, size
), GFP_KERNEL
);
3944 /* Copy thresholds (if any) to new array */
3945 if (thresholds
->primary
) {
3946 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3947 sizeof(struct mem_cgroup_threshold
));
3950 /* Add new threshold */
3951 new->entries
[size
- 1].eventfd
= eventfd
;
3952 new->entries
[size
- 1].threshold
= threshold
;
3954 /* Sort thresholds. Registering of new threshold isn't time-critical */
3955 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3956 compare_thresholds
, NULL
);
3958 /* Find current threshold */
3959 new->current_threshold
= -1;
3960 for (i
= 0; i
< size
; i
++) {
3961 if (new->entries
[i
].threshold
<= usage
) {
3963 * new->current_threshold will not be used until
3964 * rcu_assign_pointer(), so it's safe to increment
3967 ++new->current_threshold
;
3972 /* Free old spare buffer and save old primary buffer as spare */
3973 kfree(thresholds
->spare
);
3974 thresholds
->spare
= thresholds
->primary
;
3976 rcu_assign_pointer(thresholds
->primary
, new);
3978 /* To be sure that nobody uses thresholds */
3982 mutex_unlock(&memcg
->thresholds_lock
);
3987 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3988 struct eventfd_ctx
*eventfd
, const char *args
)
3990 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3993 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3994 struct eventfd_ctx
*eventfd
, const char *args
)
3996 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3999 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4000 struct eventfd_ctx
*eventfd
, enum res_type type
)
4002 struct mem_cgroup_thresholds
*thresholds
;
4003 struct mem_cgroup_threshold_ary
*new;
4004 unsigned long usage
;
4007 mutex_lock(&memcg
->thresholds_lock
);
4010 thresholds
= &memcg
->thresholds
;
4011 usage
= mem_cgroup_usage(memcg
, false);
4012 } else if (type
== _MEMSWAP
) {
4013 thresholds
= &memcg
->memsw_thresholds
;
4014 usage
= mem_cgroup_usage(memcg
, true);
4018 if (!thresholds
->primary
)
4021 /* Check if a threshold crossed before removing */
4022 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4024 /* Calculate new number of threshold */
4026 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4027 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4031 new = thresholds
->spare
;
4033 /* Set thresholds array to NULL if we don't have thresholds */
4042 /* Copy thresholds and find current threshold */
4043 new->current_threshold
= -1;
4044 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4045 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4048 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4049 if (new->entries
[j
].threshold
<= usage
) {
4051 * new->current_threshold will not be used
4052 * until rcu_assign_pointer(), so it's safe to increment
4055 ++new->current_threshold
;
4061 /* Swap primary and spare array */
4062 thresholds
->spare
= thresholds
->primary
;
4064 rcu_assign_pointer(thresholds
->primary
, new);
4066 /* To be sure that nobody uses thresholds */
4069 /* If all events are unregistered, free the spare array */
4071 kfree(thresholds
->spare
);
4072 thresholds
->spare
= NULL
;
4075 mutex_unlock(&memcg
->thresholds_lock
);
4078 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4079 struct eventfd_ctx
*eventfd
)
4081 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
4084 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
4085 struct eventfd_ctx
*eventfd
)
4087 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
4090 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
4091 struct eventfd_ctx
*eventfd
, const char *args
)
4093 struct mem_cgroup_eventfd_list
*event
;
4095 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4099 spin_lock(&memcg_oom_lock
);
4101 event
->eventfd
= eventfd
;
4102 list_add(&event
->list
, &memcg
->oom_notify
);
4104 /* already in OOM ? */
4105 if (memcg
->under_oom
)
4106 eventfd_signal(eventfd
, 1);
4107 spin_unlock(&memcg_oom_lock
);
4112 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
4113 struct eventfd_ctx
*eventfd
)
4115 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4117 spin_lock(&memcg_oom_lock
);
4119 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
4120 if (ev
->eventfd
== eventfd
) {
4121 list_del(&ev
->list
);
4126 spin_unlock(&memcg_oom_lock
);
4129 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
4131 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(sf
);
4133 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
4134 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
4135 seq_printf(sf
, "oom_kill %lu\n",
4136 atomic_long_read(&memcg
->memory_events
[MEMCG_OOM_KILL
]));
4140 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
4141 struct cftype
*cft
, u64 val
)
4143 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4145 /* cannot set to root cgroup and only 0 and 1 are allowed */
4146 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
4149 memcg
->oom_kill_disable
= val
;
4151 memcg_oom_recover(memcg
);
4156 #ifdef CONFIG_CGROUP_WRITEBACK
4158 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
4160 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
4163 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
4165 wb_domain_exit(&memcg
->cgwb_domain
);
4168 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
4170 wb_domain_size_changed(&memcg
->cgwb_domain
);
4173 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
4175 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
4177 if (!memcg
->css
.parent
)
4180 return &memcg
->cgwb_domain
;
4184 * idx can be of type enum memcg_stat_item or node_stat_item.
4185 * Keep in sync with memcg_exact_page().
4187 static unsigned long memcg_exact_page_state(struct mem_cgroup
*memcg
, int idx
)
4189 long x
= atomic_long_read(&memcg
->vmstats
[idx
]);
4192 for_each_online_cpu(cpu
)
4193 x
+= per_cpu_ptr(memcg
->vmstats_percpu
, cpu
)->stat
[idx
];
4200 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4201 * @wb: bdi_writeback in question
4202 * @pfilepages: out parameter for number of file pages
4203 * @pheadroom: out parameter for number of allocatable pages according to memcg
4204 * @pdirty: out parameter for number of dirty pages
4205 * @pwriteback: out parameter for number of pages under writeback
4207 * Determine the numbers of file, headroom, dirty, and writeback pages in
4208 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4209 * is a bit more involved.
4211 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4212 * headroom is calculated as the lowest headroom of itself and the
4213 * ancestors. Note that this doesn't consider the actual amount of
4214 * available memory in the system. The caller should further cap
4215 * *@pheadroom accordingly.
4217 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
4218 unsigned long *pheadroom
, unsigned long *pdirty
,
4219 unsigned long *pwriteback
)
4221 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
4222 struct mem_cgroup
*parent
;
4224 *pdirty
= memcg_exact_page_state(memcg
, NR_FILE_DIRTY
);
4226 /* this should eventually include NR_UNSTABLE_NFS */
4227 *pwriteback
= memcg_exact_page_state(memcg
, NR_WRITEBACK
);
4228 *pfilepages
= memcg_exact_page_state(memcg
, NR_INACTIVE_FILE
) +
4229 memcg_exact_page_state(memcg
, NR_ACTIVE_FILE
);
4230 *pheadroom
= PAGE_COUNTER_MAX
;
4232 while ((parent
= parent_mem_cgroup(memcg
))) {
4233 unsigned long ceiling
= min(memcg
->memory
.max
, memcg
->high
);
4234 unsigned long used
= page_counter_read(&memcg
->memory
);
4236 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
4241 #else /* CONFIG_CGROUP_WRITEBACK */
4243 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
4248 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
4252 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
4256 #endif /* CONFIG_CGROUP_WRITEBACK */
4259 * DO NOT USE IN NEW FILES.
4261 * "cgroup.event_control" implementation.
4263 * This is way over-engineered. It tries to support fully configurable
4264 * events for each user. Such level of flexibility is completely
4265 * unnecessary especially in the light of the planned unified hierarchy.
4267 * Please deprecate this and replace with something simpler if at all
4272 * Unregister event and free resources.
4274 * Gets called from workqueue.
4276 static void memcg_event_remove(struct work_struct
*work
)
4278 struct mem_cgroup_event
*event
=
4279 container_of(work
, struct mem_cgroup_event
, remove
);
4280 struct mem_cgroup
*memcg
= event
->memcg
;
4282 remove_wait_queue(event
->wqh
, &event
->wait
);
4284 event
->unregister_event(memcg
, event
->eventfd
);
4286 /* Notify userspace the event is going away. */
4287 eventfd_signal(event
->eventfd
, 1);
4289 eventfd_ctx_put(event
->eventfd
);
4291 css_put(&memcg
->css
);
4295 * Gets called on EPOLLHUP on eventfd when user closes it.
4297 * Called with wqh->lock held and interrupts disabled.
4299 static int memcg_event_wake(wait_queue_entry_t
*wait
, unsigned mode
,
4300 int sync
, void *key
)
4302 struct mem_cgroup_event
*event
=
4303 container_of(wait
, struct mem_cgroup_event
, wait
);
4304 struct mem_cgroup
*memcg
= event
->memcg
;
4305 __poll_t flags
= key_to_poll(key
);
4307 if (flags
& EPOLLHUP
) {
4309 * If the event has been detached at cgroup removal, we
4310 * can simply return knowing the other side will cleanup
4313 * We can't race against event freeing since the other
4314 * side will require wqh->lock via remove_wait_queue(),
4317 spin_lock(&memcg
->event_list_lock
);
4318 if (!list_empty(&event
->list
)) {
4319 list_del_init(&event
->list
);
4321 * We are in atomic context, but cgroup_event_remove()
4322 * may sleep, so we have to call it in workqueue.
4324 schedule_work(&event
->remove
);
4326 spin_unlock(&memcg
->event_list_lock
);
4332 static void memcg_event_ptable_queue_proc(struct file
*file
,
4333 wait_queue_head_t
*wqh
, poll_table
*pt
)
4335 struct mem_cgroup_event
*event
=
4336 container_of(pt
, struct mem_cgroup_event
, pt
);
4339 add_wait_queue(wqh
, &event
->wait
);
4343 * DO NOT USE IN NEW FILES.
4345 * Parse input and register new cgroup event handler.
4347 * Input must be in format '<event_fd> <control_fd> <args>'.
4348 * Interpretation of args is defined by control file implementation.
4350 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
4351 char *buf
, size_t nbytes
, loff_t off
)
4353 struct cgroup_subsys_state
*css
= of_css(of
);
4354 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4355 struct mem_cgroup_event
*event
;
4356 struct cgroup_subsys_state
*cfile_css
;
4357 unsigned int efd
, cfd
;
4364 buf
= strstrip(buf
);
4366 efd
= simple_strtoul(buf
, &endp
, 10);
4371 cfd
= simple_strtoul(buf
, &endp
, 10);
4372 if ((*endp
!= ' ') && (*endp
!= '\0'))
4376 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
4380 event
->memcg
= memcg
;
4381 INIT_LIST_HEAD(&event
->list
);
4382 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
4383 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
4384 INIT_WORK(&event
->remove
, memcg_event_remove
);
4392 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
4393 if (IS_ERR(event
->eventfd
)) {
4394 ret
= PTR_ERR(event
->eventfd
);
4401 goto out_put_eventfd
;
4404 /* the process need read permission on control file */
4405 /* AV: shouldn't we check that it's been opened for read instead? */
4406 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
4411 * Determine the event callbacks and set them in @event. This used
4412 * to be done via struct cftype but cgroup core no longer knows
4413 * about these events. The following is crude but the whole thing
4414 * is for compatibility anyway.
4416 * DO NOT ADD NEW FILES.
4418 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
4420 if (!strcmp(name
, "memory.usage_in_bytes")) {
4421 event
->register_event
= mem_cgroup_usage_register_event
;
4422 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
4423 } else if (!strcmp(name
, "memory.oom_control")) {
4424 event
->register_event
= mem_cgroup_oom_register_event
;
4425 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
4426 } else if (!strcmp(name
, "memory.pressure_level")) {
4427 event
->register_event
= vmpressure_register_event
;
4428 event
->unregister_event
= vmpressure_unregister_event
;
4429 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
4430 event
->register_event
= memsw_cgroup_usage_register_event
;
4431 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
4438 * Verify @cfile should belong to @css. Also, remaining events are
4439 * automatically removed on cgroup destruction but the removal is
4440 * asynchronous, so take an extra ref on @css.
4442 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
4443 &memory_cgrp_subsys
);
4445 if (IS_ERR(cfile_css
))
4447 if (cfile_css
!= css
) {
4452 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
4456 vfs_poll(efile
.file
, &event
->pt
);
4458 spin_lock(&memcg
->event_list_lock
);
4459 list_add(&event
->list
, &memcg
->event_list
);
4460 spin_unlock(&memcg
->event_list_lock
);
4472 eventfd_ctx_put(event
->eventfd
);
4481 static struct cftype mem_cgroup_legacy_files
[] = {
4483 .name
= "usage_in_bytes",
4484 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4485 .read_u64
= mem_cgroup_read_u64
,
4488 .name
= "max_usage_in_bytes",
4489 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4490 .write
= mem_cgroup_reset
,
4491 .read_u64
= mem_cgroup_read_u64
,
4494 .name
= "limit_in_bytes",
4495 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4496 .write
= mem_cgroup_write
,
4497 .read_u64
= mem_cgroup_read_u64
,
4500 .name
= "soft_limit_in_bytes",
4501 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4502 .write
= mem_cgroup_write
,
4503 .read_u64
= mem_cgroup_read_u64
,
4507 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4508 .write
= mem_cgroup_reset
,
4509 .read_u64
= mem_cgroup_read_u64
,
4513 .seq_show
= memcg_stat_show
,
4516 .name
= "force_empty",
4517 .write
= mem_cgroup_force_empty_write
,
4520 .name
= "use_hierarchy",
4521 .write_u64
= mem_cgroup_hierarchy_write
,
4522 .read_u64
= mem_cgroup_hierarchy_read
,
4525 .name
= "cgroup.event_control", /* XXX: for compat */
4526 .write
= memcg_write_event_control
,
4527 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
4530 .name
= "swappiness",
4531 .read_u64
= mem_cgroup_swappiness_read
,
4532 .write_u64
= mem_cgroup_swappiness_write
,
4535 .name
= "move_charge_at_immigrate",
4536 .read_u64
= mem_cgroup_move_charge_read
,
4537 .write_u64
= mem_cgroup_move_charge_write
,
4540 .name
= "oom_control",
4541 .seq_show
= mem_cgroup_oom_control_read
,
4542 .write_u64
= mem_cgroup_oom_control_write
,
4543 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4546 .name
= "pressure_level",
4550 .name
= "numa_stat",
4551 .seq_show
= memcg_numa_stat_show
,
4555 .name
= "kmem.limit_in_bytes",
4556 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
4557 .write
= mem_cgroup_write
,
4558 .read_u64
= mem_cgroup_read_u64
,
4561 .name
= "kmem.usage_in_bytes",
4562 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4563 .read_u64
= mem_cgroup_read_u64
,
4566 .name
= "kmem.failcnt",
4567 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4568 .write
= mem_cgroup_reset
,
4569 .read_u64
= mem_cgroup_read_u64
,
4572 .name
= "kmem.max_usage_in_bytes",
4573 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4574 .write
= mem_cgroup_reset
,
4575 .read_u64
= mem_cgroup_read_u64
,
4577 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4579 .name
= "kmem.slabinfo",
4580 .seq_start
= memcg_slab_start
,
4581 .seq_next
= memcg_slab_next
,
4582 .seq_stop
= memcg_slab_stop
,
4583 .seq_show
= memcg_slab_show
,
4587 .name
= "kmem.tcp.limit_in_bytes",
4588 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4589 .write
= mem_cgroup_write
,
4590 .read_u64
= mem_cgroup_read_u64
,
4593 .name
= "kmem.tcp.usage_in_bytes",
4594 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4595 .read_u64
= mem_cgroup_read_u64
,
4598 .name
= "kmem.tcp.failcnt",
4599 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4600 .write
= mem_cgroup_reset
,
4601 .read_u64
= mem_cgroup_read_u64
,
4604 .name
= "kmem.tcp.max_usage_in_bytes",
4605 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4606 .write
= mem_cgroup_reset
,
4607 .read_u64
= mem_cgroup_read_u64
,
4609 { }, /* terminate */
4613 * Private memory cgroup IDR
4615 * Swap-out records and page cache shadow entries need to store memcg
4616 * references in constrained space, so we maintain an ID space that is
4617 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4618 * memory-controlled cgroups to 64k.
4620 * However, there usually are many references to the oflline CSS after
4621 * the cgroup has been destroyed, such as page cache or reclaimable
4622 * slab objects, that don't need to hang on to the ID. We want to keep
4623 * those dead CSS from occupying IDs, or we might quickly exhaust the
4624 * relatively small ID space and prevent the creation of new cgroups
4625 * even when there are much fewer than 64k cgroups - possibly none.
4627 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4628 * be freed and recycled when it's no longer needed, which is usually
4629 * when the CSS is offlined.
4631 * The only exception to that are records of swapped out tmpfs/shmem
4632 * pages that need to be attributed to live ancestors on swapin. But
4633 * those references are manageable from userspace.
4636 static DEFINE_IDR(mem_cgroup_idr
);
4638 static void mem_cgroup_id_remove(struct mem_cgroup
*memcg
)
4640 if (memcg
->id
.id
> 0) {
4641 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4646 static void mem_cgroup_id_get_many(struct mem_cgroup
*memcg
, unsigned int n
)
4648 refcount_add(n
, &memcg
->id
.ref
);
4651 static void mem_cgroup_id_put_many(struct mem_cgroup
*memcg
, unsigned int n
)
4653 if (refcount_sub_and_test(n
, &memcg
->id
.ref
)) {
4654 mem_cgroup_id_remove(memcg
);
4656 /* Memcg ID pins CSS */
4657 css_put(&memcg
->css
);
4661 static inline void mem_cgroup_id_get(struct mem_cgroup
*memcg
)
4663 mem_cgroup_id_get_many(memcg
, 1);
4666 static inline void mem_cgroup_id_put(struct mem_cgroup
*memcg
)
4668 mem_cgroup_id_put_many(memcg
, 1);
4672 * mem_cgroup_from_id - look up a memcg from a memcg id
4673 * @id: the memcg id to look up
4675 * Caller must hold rcu_read_lock().
4677 struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
4679 WARN_ON_ONCE(!rcu_read_lock_held());
4680 return idr_find(&mem_cgroup_idr
, id
);
4683 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4685 struct mem_cgroup_per_node
*pn
;
4688 * This routine is called against possible nodes.
4689 * But it's BUG to call kmalloc() against offline node.
4691 * TODO: this routine can waste much memory for nodes which will
4692 * never be onlined. It's better to use memory hotplug callback
4695 if (!node_state(node
, N_NORMAL_MEMORY
))
4697 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4701 pn
->lruvec_stat_local
= alloc_percpu(struct lruvec_stat
);
4702 if (!pn
->lruvec_stat_local
) {
4707 pn
->lruvec_stat_cpu
= alloc_percpu(struct lruvec_stat
);
4708 if (!pn
->lruvec_stat_cpu
) {
4709 free_percpu(pn
->lruvec_stat_local
);
4714 lruvec_init(&pn
->lruvec
);
4715 pn
->usage_in_excess
= 0;
4716 pn
->on_tree
= false;
4719 memcg
->nodeinfo
[node
] = pn
;
4723 static void free_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4725 struct mem_cgroup_per_node
*pn
= memcg
->nodeinfo
[node
];
4730 free_percpu(pn
->lruvec_stat_cpu
);
4731 free_percpu(pn
->lruvec_stat_local
);
4735 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4740 * Flush percpu vmstats and vmevents to guarantee the value correctness
4741 * on parent's and all ancestor levels.
4743 memcg_flush_percpu_vmstats(memcg
);
4744 memcg_flush_percpu_vmevents(memcg
);
4746 free_mem_cgroup_per_node_info(memcg
, node
);
4747 free_percpu(memcg
->vmstats_percpu
);
4748 free_percpu(memcg
->vmstats_local
);
4752 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4754 memcg_wb_domain_exit(memcg
);
4755 __mem_cgroup_free(memcg
);
4758 static struct mem_cgroup
*mem_cgroup_alloc(void)
4760 struct mem_cgroup
*memcg
;
4764 size
= sizeof(struct mem_cgroup
);
4765 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4767 memcg
= kzalloc(size
, GFP_KERNEL
);
4771 memcg
->id
.id
= idr_alloc(&mem_cgroup_idr
, NULL
,
4772 1, MEM_CGROUP_ID_MAX
,
4774 if (memcg
->id
.id
< 0)
4777 memcg
->vmstats_local
= alloc_percpu(struct memcg_vmstats_percpu
);
4778 if (!memcg
->vmstats_local
)
4781 memcg
->vmstats_percpu
= alloc_percpu(struct memcg_vmstats_percpu
);
4782 if (!memcg
->vmstats_percpu
)
4786 if (alloc_mem_cgroup_per_node_info(memcg
, node
))
4789 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4792 INIT_WORK(&memcg
->high_work
, high_work_func
);
4793 memcg
->last_scanned_node
= MAX_NUMNODES
;
4794 INIT_LIST_HEAD(&memcg
->oom_notify
);
4795 mutex_init(&memcg
->thresholds_lock
);
4796 spin_lock_init(&memcg
->move_lock
);
4797 vmpressure_init(&memcg
->vmpressure
);
4798 INIT_LIST_HEAD(&memcg
->event_list
);
4799 spin_lock_init(&memcg
->event_list_lock
);
4800 memcg
->socket_pressure
= jiffies
;
4801 #ifdef CONFIG_MEMCG_KMEM
4802 memcg
->kmemcg_id
= -1;
4804 #ifdef CONFIG_CGROUP_WRITEBACK
4805 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4807 idr_replace(&mem_cgroup_idr
, memcg
, memcg
->id
.id
);
4810 mem_cgroup_id_remove(memcg
);
4811 __mem_cgroup_free(memcg
);
4815 static struct cgroup_subsys_state
* __ref
4816 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4818 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4819 struct mem_cgroup
*memcg
;
4820 long error
= -ENOMEM
;
4822 memcg
= mem_cgroup_alloc();
4824 return ERR_PTR(error
);
4826 memcg
->high
= PAGE_COUNTER_MAX
;
4827 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4829 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4830 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4832 if (parent
&& parent
->use_hierarchy
) {
4833 memcg
->use_hierarchy
= true;
4834 page_counter_init(&memcg
->memory
, &parent
->memory
);
4835 page_counter_init(&memcg
->swap
, &parent
->swap
);
4836 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4837 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4838 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4840 page_counter_init(&memcg
->memory
, NULL
);
4841 page_counter_init(&memcg
->swap
, NULL
);
4842 page_counter_init(&memcg
->memsw
, NULL
);
4843 page_counter_init(&memcg
->kmem
, NULL
);
4844 page_counter_init(&memcg
->tcpmem
, NULL
);
4846 * Deeper hierachy with use_hierarchy == false doesn't make
4847 * much sense so let cgroup subsystem know about this
4848 * unfortunate state in our controller.
4850 if (parent
!= root_mem_cgroup
)
4851 memory_cgrp_subsys
.broken_hierarchy
= true;
4854 /* The following stuff does not apply to the root */
4856 #ifdef CONFIG_MEMCG_KMEM
4857 INIT_LIST_HEAD(&memcg
->kmem_caches
);
4859 root_mem_cgroup
= memcg
;
4863 error
= memcg_online_kmem(memcg
);
4867 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4868 static_branch_inc(&memcg_sockets_enabled_key
);
4872 mem_cgroup_id_remove(memcg
);
4873 mem_cgroup_free(memcg
);
4874 return ERR_PTR(-ENOMEM
);
4877 static int mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4879 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4882 * A memcg must be visible for memcg_expand_shrinker_maps()
4883 * by the time the maps are allocated. So, we allocate maps
4884 * here, when for_each_mem_cgroup() can't skip it.
4886 if (memcg_alloc_shrinker_maps(memcg
)) {
4887 mem_cgroup_id_remove(memcg
);
4891 /* Online state pins memcg ID, memcg ID pins CSS */
4892 refcount_set(&memcg
->id
.ref
, 1);
4897 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4899 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4900 struct mem_cgroup_event
*event
, *tmp
;
4903 * Unregister events and notify userspace.
4904 * Notify userspace about cgroup removing only after rmdir of cgroup
4905 * directory to avoid race between userspace and kernelspace.
4907 spin_lock(&memcg
->event_list_lock
);
4908 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4909 list_del_init(&event
->list
);
4910 schedule_work(&event
->remove
);
4912 spin_unlock(&memcg
->event_list_lock
);
4914 page_counter_set_min(&memcg
->memory
, 0);
4915 page_counter_set_low(&memcg
->memory
, 0);
4917 memcg_offline_kmem(memcg
);
4918 wb_memcg_offline(memcg
);
4920 drain_all_stock(memcg
);
4922 mem_cgroup_id_put(memcg
);
4925 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4927 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4929 invalidate_reclaim_iterators(memcg
);
4932 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4934 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4936 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4937 static_branch_dec(&memcg_sockets_enabled_key
);
4939 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
4940 static_branch_dec(&memcg_sockets_enabled_key
);
4942 vmpressure_cleanup(&memcg
->vmpressure
);
4943 cancel_work_sync(&memcg
->high_work
);
4944 mem_cgroup_remove_from_trees(memcg
);
4945 memcg_free_shrinker_maps(memcg
);
4946 memcg_free_kmem(memcg
);
4947 mem_cgroup_free(memcg
);
4951 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4952 * @css: the target css
4954 * Reset the states of the mem_cgroup associated with @css. This is
4955 * invoked when the userland requests disabling on the default hierarchy
4956 * but the memcg is pinned through dependency. The memcg should stop
4957 * applying policies and should revert to the vanilla state as it may be
4958 * made visible again.
4960 * The current implementation only resets the essential configurations.
4961 * This needs to be expanded to cover all the visible parts.
4963 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4965 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4967 page_counter_set_max(&memcg
->memory
, PAGE_COUNTER_MAX
);
4968 page_counter_set_max(&memcg
->swap
, PAGE_COUNTER_MAX
);
4969 page_counter_set_max(&memcg
->memsw
, PAGE_COUNTER_MAX
);
4970 page_counter_set_max(&memcg
->kmem
, PAGE_COUNTER_MAX
);
4971 page_counter_set_max(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
4972 page_counter_set_min(&memcg
->memory
, 0);
4973 page_counter_set_low(&memcg
->memory
, 0);
4974 memcg
->high
= PAGE_COUNTER_MAX
;
4975 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4976 memcg_wb_domain_size_changed(memcg
);
4980 /* Handlers for move charge at task migration. */
4981 static int mem_cgroup_do_precharge(unsigned long count
)
4985 /* Try a single bulk charge without reclaim first, kswapd may wake */
4986 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4988 mc
.precharge
+= count
;
4992 /* Try charges one by one with reclaim, but do not retry */
4994 ret
= try_charge(mc
.to
, GFP_KERNEL
| __GFP_NORETRY
, 1);
5008 enum mc_target_type
{
5015 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5016 unsigned long addr
, pte_t ptent
)
5018 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5020 if (!page
|| !page_mapped(page
))
5022 if (PageAnon(page
)) {
5023 if (!(mc
.flags
& MOVE_ANON
))
5026 if (!(mc
.flags
& MOVE_FILE
))
5029 if (!get_page_unless_zero(page
))
5035 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5036 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5037 pte_t ptent
, swp_entry_t
*entry
)
5039 struct page
*page
= NULL
;
5040 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5042 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
5046 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5047 * a device and because they are not accessible by CPU they are store
5048 * as special swap entry in the CPU page table.
5050 if (is_device_private_entry(ent
)) {
5051 page
= device_private_entry_to_page(ent
);
5053 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5054 * a refcount of 1 when free (unlike normal page)
5056 if (!page_ref_add_unless(page
, 1, 1))
5062 * Because lookup_swap_cache() updates some statistics counter,
5063 * we call find_get_page() with swapper_space directly.
5065 page
= find_get_page(swap_address_space(ent
), swp_offset(ent
));
5066 if (do_memsw_account())
5067 entry
->val
= ent
.val
;
5072 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5073 pte_t ptent
, swp_entry_t
*entry
)
5079 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5080 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5082 struct page
*page
= NULL
;
5083 struct address_space
*mapping
;
5086 if (!vma
->vm_file
) /* anonymous vma */
5088 if (!(mc
.flags
& MOVE_FILE
))
5091 mapping
= vma
->vm_file
->f_mapping
;
5092 pgoff
= linear_page_index(vma
, addr
);
5094 /* page is moved even if it's not RSS of this task(page-faulted). */
5096 /* shmem/tmpfs may report page out on swap: account for that too. */
5097 if (shmem_mapping(mapping
)) {
5098 page
= find_get_entry(mapping
, pgoff
);
5099 if (xa_is_value(page
)) {
5100 swp_entry_t swp
= radix_to_swp_entry(page
);
5101 if (do_memsw_account())
5103 page
= find_get_page(swap_address_space(swp
),
5107 page
= find_get_page(mapping
, pgoff
);
5109 page
= find_get_page(mapping
, pgoff
);
5115 * mem_cgroup_move_account - move account of the page
5117 * @compound: charge the page as compound or small page
5118 * @from: mem_cgroup which the page is moved from.
5119 * @to: mem_cgroup which the page is moved to. @from != @to.
5121 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5123 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5126 static int mem_cgroup_move_account(struct page
*page
,
5128 struct mem_cgroup
*from
,
5129 struct mem_cgroup
*to
)
5131 unsigned long flags
;
5132 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5136 VM_BUG_ON(from
== to
);
5137 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5138 VM_BUG_ON(compound
&& !PageTransHuge(page
));
5141 * Prevent mem_cgroup_migrate() from looking at
5142 * page->mem_cgroup of its source page while we change it.
5145 if (!trylock_page(page
))
5149 if (page
->mem_cgroup
!= from
)
5152 anon
= PageAnon(page
);
5154 spin_lock_irqsave(&from
->move_lock
, flags
);
5156 if (!anon
&& page_mapped(page
)) {
5157 __mod_memcg_state(from
, NR_FILE_MAPPED
, -nr_pages
);
5158 __mod_memcg_state(to
, NR_FILE_MAPPED
, nr_pages
);
5162 * move_lock grabbed above and caller set from->moving_account, so
5163 * mod_memcg_page_state will serialize updates to PageDirty.
5164 * So mapping should be stable for dirty pages.
5166 if (!anon
&& PageDirty(page
)) {
5167 struct address_space
*mapping
= page_mapping(page
);
5169 if (mapping_cap_account_dirty(mapping
)) {
5170 __mod_memcg_state(from
, NR_FILE_DIRTY
, -nr_pages
);
5171 __mod_memcg_state(to
, NR_FILE_DIRTY
, nr_pages
);
5175 if (PageWriteback(page
)) {
5176 __mod_memcg_state(from
, NR_WRITEBACK
, -nr_pages
);
5177 __mod_memcg_state(to
, NR_WRITEBACK
, nr_pages
);
5181 * It is safe to change page->mem_cgroup here because the page
5182 * is referenced, charged, and isolated - we can't race with
5183 * uncharging, charging, migration, or LRU putback.
5186 /* caller should have done css_get */
5187 page
->mem_cgroup
= to
;
5188 spin_unlock_irqrestore(&from
->move_lock
, flags
);
5192 local_irq_disable();
5193 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
5194 memcg_check_events(to
, page
);
5195 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
5196 memcg_check_events(from
, page
);
5205 * get_mctgt_type - get target type of moving charge
5206 * @vma: the vma the pte to be checked belongs
5207 * @addr: the address corresponding to the pte to be checked
5208 * @ptent: the pte to be checked
5209 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5212 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5213 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5214 * move charge. if @target is not NULL, the page is stored in target->page
5215 * with extra refcnt got(Callers should handle it).
5216 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5217 * target for charge migration. if @target is not NULL, the entry is stored
5219 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5220 * (so ZONE_DEVICE page and thus not on the lru).
5221 * For now we such page is charge like a regular page would be as for all
5222 * intent and purposes it is just special memory taking the place of a
5225 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5227 * Called with pte lock held.
5230 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
5231 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5233 struct page
*page
= NULL
;
5234 enum mc_target_type ret
= MC_TARGET_NONE
;
5235 swp_entry_t ent
= { .val
= 0 };
5237 if (pte_present(ptent
))
5238 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5239 else if (is_swap_pte(ptent
))
5240 page
= mc_handle_swap_pte(vma
, ptent
, &ent
);
5241 else if (pte_none(ptent
))
5242 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5244 if (!page
&& !ent
.val
)
5248 * Do only loose check w/o serialization.
5249 * mem_cgroup_move_account() checks the page is valid or
5250 * not under LRU exclusion.
5252 if (page
->mem_cgroup
== mc
.from
) {
5253 ret
= MC_TARGET_PAGE
;
5254 if (is_device_private_page(page
))
5255 ret
= MC_TARGET_DEVICE
;
5257 target
->page
= page
;
5259 if (!ret
|| !target
)
5263 * There is a swap entry and a page doesn't exist or isn't charged.
5264 * But we cannot move a tail-page in a THP.
5266 if (ent
.val
&& !ret
&& (!page
|| !PageTransCompound(page
)) &&
5267 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
5268 ret
= MC_TARGET_SWAP
;
5275 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5277 * We don't consider PMD mapped swapping or file mapped pages because THP does
5278 * not support them for now.
5279 * Caller should make sure that pmd_trans_huge(pmd) is true.
5281 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5282 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5284 struct page
*page
= NULL
;
5285 enum mc_target_type ret
= MC_TARGET_NONE
;
5287 if (unlikely(is_swap_pmd(pmd
))) {
5288 VM_BUG_ON(thp_migration_supported() &&
5289 !is_pmd_migration_entry(pmd
));
5292 page
= pmd_page(pmd
);
5293 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
5294 if (!(mc
.flags
& MOVE_ANON
))
5296 if (page
->mem_cgroup
== mc
.from
) {
5297 ret
= MC_TARGET_PAGE
;
5300 target
->page
= page
;
5306 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5307 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5309 return MC_TARGET_NONE
;
5313 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5314 unsigned long addr
, unsigned long end
,
5315 struct mm_walk
*walk
)
5317 struct vm_area_struct
*vma
= walk
->vma
;
5321 ptl
= pmd_trans_huge_lock(pmd
, vma
);
5324 * Note their can not be MC_TARGET_DEVICE for now as we do not
5325 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5326 * this might change.
5328 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
5329 mc
.precharge
+= HPAGE_PMD_NR
;
5334 if (pmd_trans_unstable(pmd
))
5336 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5337 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5338 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
5339 mc
.precharge
++; /* increment precharge temporarily */
5340 pte_unmap_unlock(pte
- 1, ptl
);
5346 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5348 unsigned long precharge
;
5350 struct mm_walk mem_cgroup_count_precharge_walk
= {
5351 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5354 down_read(&mm
->mmap_sem
);
5355 walk_page_range(0, mm
->highest_vm_end
,
5356 &mem_cgroup_count_precharge_walk
);
5357 up_read(&mm
->mmap_sem
);
5359 precharge
= mc
.precharge
;
5365 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5367 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5369 VM_BUG_ON(mc
.moving_task
);
5370 mc
.moving_task
= current
;
5371 return mem_cgroup_do_precharge(precharge
);
5374 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5375 static void __mem_cgroup_clear_mc(void)
5377 struct mem_cgroup
*from
= mc
.from
;
5378 struct mem_cgroup
*to
= mc
.to
;
5380 /* we must uncharge all the leftover precharges from mc.to */
5382 cancel_charge(mc
.to
, mc
.precharge
);
5386 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5387 * we must uncharge here.
5389 if (mc
.moved_charge
) {
5390 cancel_charge(mc
.from
, mc
.moved_charge
);
5391 mc
.moved_charge
= 0;
5393 /* we must fixup refcnts and charges */
5394 if (mc
.moved_swap
) {
5395 /* uncharge swap account from the old cgroup */
5396 if (!mem_cgroup_is_root(mc
.from
))
5397 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
5399 mem_cgroup_id_put_many(mc
.from
, mc
.moved_swap
);
5402 * we charged both to->memory and to->memsw, so we
5403 * should uncharge to->memory.
5405 if (!mem_cgroup_is_root(mc
.to
))
5406 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
5408 mem_cgroup_id_get_many(mc
.to
, mc
.moved_swap
);
5409 css_put_many(&mc
.to
->css
, mc
.moved_swap
);
5413 memcg_oom_recover(from
);
5414 memcg_oom_recover(to
);
5415 wake_up_all(&mc
.waitq
);
5418 static void mem_cgroup_clear_mc(void)
5420 struct mm_struct
*mm
= mc
.mm
;
5423 * we must clear moving_task before waking up waiters at the end of
5426 mc
.moving_task
= NULL
;
5427 __mem_cgroup_clear_mc();
5428 spin_lock(&mc
.lock
);
5432 spin_unlock(&mc
.lock
);
5437 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5439 struct cgroup_subsys_state
*css
;
5440 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
5441 struct mem_cgroup
*from
;
5442 struct task_struct
*leader
, *p
;
5443 struct mm_struct
*mm
;
5444 unsigned long move_flags
;
5447 /* charge immigration isn't supported on the default hierarchy */
5448 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5452 * Multi-process migrations only happen on the default hierarchy
5453 * where charge immigration is not used. Perform charge
5454 * immigration if @tset contains a leader and whine if there are
5458 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
5461 memcg
= mem_cgroup_from_css(css
);
5467 * We are now commited to this value whatever it is. Changes in this
5468 * tunable will only affect upcoming migrations, not the current one.
5469 * So we need to save it, and keep it going.
5471 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
5475 from
= mem_cgroup_from_task(p
);
5477 VM_BUG_ON(from
== memcg
);
5479 mm
= get_task_mm(p
);
5482 /* We move charges only when we move a owner of the mm */
5483 if (mm
->owner
== p
) {
5486 VM_BUG_ON(mc
.precharge
);
5487 VM_BUG_ON(mc
.moved_charge
);
5488 VM_BUG_ON(mc
.moved_swap
);
5490 spin_lock(&mc
.lock
);
5494 mc
.flags
= move_flags
;
5495 spin_unlock(&mc
.lock
);
5496 /* We set mc.moving_task later */
5498 ret
= mem_cgroup_precharge_mc(mm
);
5500 mem_cgroup_clear_mc();
5507 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5510 mem_cgroup_clear_mc();
5513 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5514 unsigned long addr
, unsigned long end
,
5515 struct mm_walk
*walk
)
5518 struct vm_area_struct
*vma
= walk
->vma
;
5521 enum mc_target_type target_type
;
5522 union mc_target target
;
5525 ptl
= pmd_trans_huge_lock(pmd
, vma
);
5527 if (mc
.precharge
< HPAGE_PMD_NR
) {
5531 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
5532 if (target_type
== MC_TARGET_PAGE
) {
5534 if (!isolate_lru_page(page
)) {
5535 if (!mem_cgroup_move_account(page
, true,
5537 mc
.precharge
-= HPAGE_PMD_NR
;
5538 mc
.moved_charge
+= HPAGE_PMD_NR
;
5540 putback_lru_page(page
);
5543 } else if (target_type
== MC_TARGET_DEVICE
) {
5545 if (!mem_cgroup_move_account(page
, true,
5547 mc
.precharge
-= HPAGE_PMD_NR
;
5548 mc
.moved_charge
+= HPAGE_PMD_NR
;
5556 if (pmd_trans_unstable(pmd
))
5559 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5560 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5561 pte_t ptent
= *(pte
++);
5562 bool device
= false;
5568 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
5569 case MC_TARGET_DEVICE
:
5572 case MC_TARGET_PAGE
:
5575 * We can have a part of the split pmd here. Moving it
5576 * can be done but it would be too convoluted so simply
5577 * ignore such a partial THP and keep it in original
5578 * memcg. There should be somebody mapping the head.
5580 if (PageTransCompound(page
))
5582 if (!device
&& isolate_lru_page(page
))
5584 if (!mem_cgroup_move_account(page
, false,
5587 /* we uncharge from mc.from later. */
5591 putback_lru_page(page
);
5592 put
: /* get_mctgt_type() gets the page */
5595 case MC_TARGET_SWAP
:
5597 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
5599 /* we fixup refcnts and charges later. */
5607 pte_unmap_unlock(pte
- 1, ptl
);
5612 * We have consumed all precharges we got in can_attach().
5613 * We try charge one by one, but don't do any additional
5614 * charges to mc.to if we have failed in charge once in attach()
5617 ret
= mem_cgroup_do_precharge(1);
5625 static void mem_cgroup_move_charge(void)
5627 struct mm_walk mem_cgroup_move_charge_walk
= {
5628 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5632 lru_add_drain_all();
5634 * Signal lock_page_memcg() to take the memcg's move_lock
5635 * while we're moving its pages to another memcg. Then wait
5636 * for already started RCU-only updates to finish.
5638 atomic_inc(&mc
.from
->moving_account
);
5641 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
5643 * Someone who are holding the mmap_sem might be waiting in
5644 * waitq. So we cancel all extra charges, wake up all waiters,
5645 * and retry. Because we cancel precharges, we might not be able
5646 * to move enough charges, but moving charge is a best-effort
5647 * feature anyway, so it wouldn't be a big problem.
5649 __mem_cgroup_clear_mc();
5654 * When we have consumed all precharges and failed in doing
5655 * additional charge, the page walk just aborts.
5657 walk_page_range(0, mc
.mm
->highest_vm_end
, &mem_cgroup_move_charge_walk
);
5659 up_read(&mc
.mm
->mmap_sem
);
5660 atomic_dec(&mc
.from
->moving_account
);
5663 static void mem_cgroup_move_task(void)
5666 mem_cgroup_move_charge();
5667 mem_cgroup_clear_mc();
5670 #else /* !CONFIG_MMU */
5671 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5675 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5678 static void mem_cgroup_move_task(void)
5684 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5685 * to verify whether we're attached to the default hierarchy on each mount
5688 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5691 * use_hierarchy is forced on the default hierarchy. cgroup core
5692 * guarantees that @root doesn't have any children, so turning it
5693 * on for the root memcg is enough.
5695 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5696 root_mem_cgroup
->use_hierarchy
= true;
5698 root_mem_cgroup
->use_hierarchy
= false;
5701 static int seq_puts_memcg_tunable(struct seq_file
*m
, unsigned long value
)
5703 if (value
== PAGE_COUNTER_MAX
)
5704 seq_puts(m
, "max\n");
5706 seq_printf(m
, "%llu\n", (u64
)value
* PAGE_SIZE
);
5711 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5714 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5716 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5719 static int memory_min_show(struct seq_file
*m
, void *v
)
5721 return seq_puts_memcg_tunable(m
,
5722 READ_ONCE(mem_cgroup_from_seq(m
)->memory
.min
));
5725 static ssize_t
memory_min_write(struct kernfs_open_file
*of
,
5726 char *buf
, size_t nbytes
, loff_t off
)
5728 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5732 buf
= strstrip(buf
);
5733 err
= page_counter_memparse(buf
, "max", &min
);
5737 page_counter_set_min(&memcg
->memory
, min
);
5742 static int memory_low_show(struct seq_file
*m
, void *v
)
5744 return seq_puts_memcg_tunable(m
,
5745 READ_ONCE(mem_cgroup_from_seq(m
)->memory
.low
));
5748 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5749 char *buf
, size_t nbytes
, loff_t off
)
5751 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5755 buf
= strstrip(buf
);
5756 err
= page_counter_memparse(buf
, "max", &low
);
5760 page_counter_set_low(&memcg
->memory
, low
);
5765 static int memory_high_show(struct seq_file
*m
, void *v
)
5767 return seq_puts_memcg_tunable(m
, READ_ONCE(mem_cgroup_from_seq(m
)->high
));
5770 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5771 char *buf
, size_t nbytes
, loff_t off
)
5773 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5774 unsigned long nr_pages
;
5778 buf
= strstrip(buf
);
5779 err
= page_counter_memparse(buf
, "max", &high
);
5785 nr_pages
= page_counter_read(&memcg
->memory
);
5786 if (nr_pages
> high
)
5787 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5790 memcg_wb_domain_size_changed(memcg
);
5794 static int memory_max_show(struct seq_file
*m
, void *v
)
5796 return seq_puts_memcg_tunable(m
,
5797 READ_ONCE(mem_cgroup_from_seq(m
)->memory
.max
));
5800 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5801 char *buf
, size_t nbytes
, loff_t off
)
5803 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5804 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5805 bool drained
= false;
5809 buf
= strstrip(buf
);
5810 err
= page_counter_memparse(buf
, "max", &max
);
5814 xchg(&memcg
->memory
.max
, max
);
5817 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5819 if (nr_pages
<= max
)
5822 if (signal_pending(current
)) {
5828 drain_all_stock(memcg
);
5834 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5840 memcg_memory_event(memcg
, MEMCG_OOM
);
5841 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5845 memcg_wb_domain_size_changed(memcg
);
5849 static void __memory_events_show(struct seq_file
*m
, atomic_long_t
*events
)
5851 seq_printf(m
, "low %lu\n", atomic_long_read(&events
[MEMCG_LOW
]));
5852 seq_printf(m
, "high %lu\n", atomic_long_read(&events
[MEMCG_HIGH
]));
5853 seq_printf(m
, "max %lu\n", atomic_long_read(&events
[MEMCG_MAX
]));
5854 seq_printf(m
, "oom %lu\n", atomic_long_read(&events
[MEMCG_OOM
]));
5855 seq_printf(m
, "oom_kill %lu\n",
5856 atomic_long_read(&events
[MEMCG_OOM_KILL
]));
5859 static int memory_events_show(struct seq_file
*m
, void *v
)
5861 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
5863 __memory_events_show(m
, memcg
->memory_events
);
5867 static int memory_events_local_show(struct seq_file
*m
, void *v
)
5869 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
5871 __memory_events_show(m
, memcg
->memory_events_local
);
5875 static int memory_stat_show(struct seq_file
*m
, void *v
)
5877 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
5880 buf
= memory_stat_format(memcg
);
5888 static int memory_oom_group_show(struct seq_file
*m
, void *v
)
5890 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
5892 seq_printf(m
, "%d\n", memcg
->oom_group
);
5897 static ssize_t
memory_oom_group_write(struct kernfs_open_file
*of
,
5898 char *buf
, size_t nbytes
, loff_t off
)
5900 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5903 buf
= strstrip(buf
);
5907 ret
= kstrtoint(buf
, 0, &oom_group
);
5911 if (oom_group
!= 0 && oom_group
!= 1)
5914 memcg
->oom_group
= oom_group
;
5919 static struct cftype memory_files
[] = {
5922 .flags
= CFTYPE_NOT_ON_ROOT
,
5923 .read_u64
= memory_current_read
,
5927 .flags
= CFTYPE_NOT_ON_ROOT
,
5928 .seq_show
= memory_min_show
,
5929 .write
= memory_min_write
,
5933 .flags
= CFTYPE_NOT_ON_ROOT
,
5934 .seq_show
= memory_low_show
,
5935 .write
= memory_low_write
,
5939 .flags
= CFTYPE_NOT_ON_ROOT
,
5940 .seq_show
= memory_high_show
,
5941 .write
= memory_high_write
,
5945 .flags
= CFTYPE_NOT_ON_ROOT
,
5946 .seq_show
= memory_max_show
,
5947 .write
= memory_max_write
,
5951 .flags
= CFTYPE_NOT_ON_ROOT
,
5952 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5953 .seq_show
= memory_events_show
,
5956 .name
= "events.local",
5957 .flags
= CFTYPE_NOT_ON_ROOT
,
5958 .file_offset
= offsetof(struct mem_cgroup
, events_local_file
),
5959 .seq_show
= memory_events_local_show
,
5963 .flags
= CFTYPE_NOT_ON_ROOT
,
5964 .seq_show
= memory_stat_show
,
5967 .name
= "oom.group",
5968 .flags
= CFTYPE_NOT_ON_ROOT
| CFTYPE_NS_DELEGATABLE
,
5969 .seq_show
= memory_oom_group_show
,
5970 .write
= memory_oom_group_write
,
5975 struct cgroup_subsys memory_cgrp_subsys
= {
5976 .css_alloc
= mem_cgroup_css_alloc
,
5977 .css_online
= mem_cgroup_css_online
,
5978 .css_offline
= mem_cgroup_css_offline
,
5979 .css_released
= mem_cgroup_css_released
,
5980 .css_free
= mem_cgroup_css_free
,
5981 .css_reset
= mem_cgroup_css_reset
,
5982 .can_attach
= mem_cgroup_can_attach
,
5983 .cancel_attach
= mem_cgroup_cancel_attach
,
5984 .post_attach
= mem_cgroup_move_task
,
5985 .bind
= mem_cgroup_bind
,
5986 .dfl_cftypes
= memory_files
,
5987 .legacy_cftypes
= mem_cgroup_legacy_files
,
5992 * mem_cgroup_protected - check if memory consumption is in the normal range
5993 * @root: the top ancestor of the sub-tree being checked
5994 * @memcg: the memory cgroup to check
5996 * WARNING: This function is not stateless! It can only be used as part
5997 * of a top-down tree iteration, not for isolated queries.
5999 * Returns one of the following:
6000 * MEMCG_PROT_NONE: cgroup memory is not protected
6001 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6002 * an unprotected supply of reclaimable memory from other cgroups.
6003 * MEMCG_PROT_MIN: cgroup memory is protected
6005 * @root is exclusive; it is never protected when looked at directly
6007 * To provide a proper hierarchical behavior, effective memory.min/low values
6008 * are used. Below is the description of how effective memory.low is calculated.
6009 * Effective memory.min values is calculated in the same way.
6011 * Effective memory.low is always equal or less than the original memory.low.
6012 * If there is no memory.low overcommittment (which is always true for
6013 * top-level memory cgroups), these two values are equal.
6014 * Otherwise, it's a part of parent's effective memory.low,
6015 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6016 * memory.low usages, where memory.low usage is the size of actually
6020 * elow = min( memory.low, parent->elow * ------------------ ),
6021 * siblings_low_usage
6023 * | memory.current, if memory.current < memory.low
6028 * Such definition of the effective memory.low provides the expected
6029 * hierarchical behavior: parent's memory.low value is limiting
6030 * children, unprotected memory is reclaimed first and cgroups,
6031 * which are not using their guarantee do not affect actual memory
6034 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6036 * A A/memory.low = 2G, A/memory.current = 6G
6038 * BC DE B/memory.low = 3G B/memory.current = 2G
6039 * C/memory.low = 1G C/memory.current = 2G
6040 * D/memory.low = 0 D/memory.current = 2G
6041 * E/memory.low = 10G E/memory.current = 0
6043 * and the memory pressure is applied, the following memory distribution
6044 * is expected (approximately):
6046 * A/memory.current = 2G
6048 * B/memory.current = 1.3G
6049 * C/memory.current = 0.6G
6050 * D/memory.current = 0
6051 * E/memory.current = 0
6053 * These calculations require constant tracking of the actual low usages
6054 * (see propagate_protected_usage()), as well as recursive calculation of
6055 * effective memory.low values. But as we do call mem_cgroup_protected()
6056 * path for each memory cgroup top-down from the reclaim,
6057 * it's possible to optimize this part, and save calculated elow
6058 * for next usage. This part is intentionally racy, but it's ok,
6059 * as memory.low is a best-effort mechanism.
6061 enum mem_cgroup_protection
mem_cgroup_protected(struct mem_cgroup
*root
,
6062 struct mem_cgroup
*memcg
)
6064 struct mem_cgroup
*parent
;
6065 unsigned long emin
, parent_emin
;
6066 unsigned long elow
, parent_elow
;
6067 unsigned long usage
;
6069 if (mem_cgroup_disabled())
6070 return MEMCG_PROT_NONE
;
6073 root
= root_mem_cgroup
;
6075 return MEMCG_PROT_NONE
;
6077 usage
= page_counter_read(&memcg
->memory
);
6079 return MEMCG_PROT_NONE
;
6081 emin
= memcg
->memory
.min
;
6082 elow
= memcg
->memory
.low
;
6084 parent
= parent_mem_cgroup(memcg
);
6085 /* No parent means a non-hierarchical mode on v1 memcg */
6087 return MEMCG_PROT_NONE
;
6092 parent_emin
= READ_ONCE(parent
->memory
.emin
);
6093 emin
= min(emin
, parent_emin
);
6094 if (emin
&& parent_emin
) {
6095 unsigned long min_usage
, siblings_min_usage
;
6097 min_usage
= min(usage
, memcg
->memory
.min
);
6098 siblings_min_usage
= atomic_long_read(
6099 &parent
->memory
.children_min_usage
);
6101 if (min_usage
&& siblings_min_usage
)
6102 emin
= min(emin
, parent_emin
* min_usage
/
6103 siblings_min_usage
);
6106 parent_elow
= READ_ONCE(parent
->memory
.elow
);
6107 elow
= min(elow
, parent_elow
);
6108 if (elow
&& parent_elow
) {
6109 unsigned long low_usage
, siblings_low_usage
;
6111 low_usage
= min(usage
, memcg
->memory
.low
);
6112 siblings_low_usage
= atomic_long_read(
6113 &parent
->memory
.children_low_usage
);
6115 if (low_usage
&& siblings_low_usage
)
6116 elow
= min(elow
, parent_elow
* low_usage
/
6117 siblings_low_usage
);
6121 memcg
->memory
.emin
= emin
;
6122 memcg
->memory
.elow
= elow
;
6125 return MEMCG_PROT_MIN
;
6126 else if (usage
<= elow
)
6127 return MEMCG_PROT_LOW
;
6129 return MEMCG_PROT_NONE
;
6133 * mem_cgroup_try_charge - try charging a page
6134 * @page: page to charge
6135 * @mm: mm context of the victim
6136 * @gfp_mask: reclaim mode
6137 * @memcgp: charged memcg return
6138 * @compound: charge the page as compound or small page
6140 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6141 * pages according to @gfp_mask if necessary.
6143 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6144 * Otherwise, an error code is returned.
6146 * After page->mapping has been set up, the caller must finalize the
6147 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6148 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6150 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
6151 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
6154 struct mem_cgroup
*memcg
= NULL
;
6155 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
6158 if (mem_cgroup_disabled())
6161 if (PageSwapCache(page
)) {
6163 * Every swap fault against a single page tries to charge the
6164 * page, bail as early as possible. shmem_unuse() encounters
6165 * already charged pages, too. The USED bit is protected by
6166 * the page lock, which serializes swap cache removal, which
6167 * in turn serializes uncharging.
6169 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
6170 if (compound_head(page
)->mem_cgroup
)
6173 if (do_swap_account
) {
6174 swp_entry_t ent
= { .val
= page_private(page
), };
6175 unsigned short id
= lookup_swap_cgroup_id(ent
);
6178 memcg
= mem_cgroup_from_id(id
);
6179 if (memcg
&& !css_tryget_online(&memcg
->css
))
6186 memcg
= get_mem_cgroup_from_mm(mm
);
6188 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
6190 css_put(&memcg
->css
);
6196 int mem_cgroup_try_charge_delay(struct page
*page
, struct mm_struct
*mm
,
6197 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
6200 struct mem_cgroup
*memcg
;
6203 ret
= mem_cgroup_try_charge(page
, mm
, gfp_mask
, memcgp
, compound
);
6205 mem_cgroup_throttle_swaprate(memcg
, page_to_nid(page
), gfp_mask
);
6210 * mem_cgroup_commit_charge - commit a page charge
6211 * @page: page to charge
6212 * @memcg: memcg to charge the page to
6213 * @lrucare: page might be on LRU already
6214 * @compound: charge the page as compound or small page
6216 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6217 * after page->mapping has been set up. This must happen atomically
6218 * as part of the page instantiation, i.e. under the page table lock
6219 * for anonymous pages, under the page lock for page and swap cache.
6221 * In addition, the page must not be on the LRU during the commit, to
6222 * prevent racing with task migration. If it might be, use @lrucare.
6224 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6226 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
6227 bool lrucare
, bool compound
)
6229 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
6231 VM_BUG_ON_PAGE(!page
->mapping
, page
);
6232 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
6234 if (mem_cgroup_disabled())
6237 * Swap faults will attempt to charge the same page multiple
6238 * times. But reuse_swap_page() might have removed the page
6239 * from swapcache already, so we can't check PageSwapCache().
6244 commit_charge(page
, memcg
, lrucare
);
6246 local_irq_disable();
6247 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
6248 memcg_check_events(memcg
, page
);
6251 if (do_memsw_account() && PageSwapCache(page
)) {
6252 swp_entry_t entry
= { .val
= page_private(page
) };
6254 * The swap entry might not get freed for a long time,
6255 * let's not wait for it. The page already received a
6256 * memory+swap charge, drop the swap entry duplicate.
6258 mem_cgroup_uncharge_swap(entry
, nr_pages
);
6263 * mem_cgroup_cancel_charge - cancel a page charge
6264 * @page: page to charge
6265 * @memcg: memcg to charge the page to
6266 * @compound: charge the page as compound or small page
6268 * Cancel a charge transaction started by mem_cgroup_try_charge().
6270 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
6273 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
6275 if (mem_cgroup_disabled())
6278 * Swap faults will attempt to charge the same page multiple
6279 * times. But reuse_swap_page() might have removed the page
6280 * from swapcache already, so we can't check PageSwapCache().
6285 cancel_charge(memcg
, nr_pages
);
6288 struct uncharge_gather
{
6289 struct mem_cgroup
*memcg
;
6290 unsigned long pgpgout
;
6291 unsigned long nr_anon
;
6292 unsigned long nr_file
;
6293 unsigned long nr_kmem
;
6294 unsigned long nr_huge
;
6295 unsigned long nr_shmem
;
6296 struct page
*dummy_page
;
6299 static inline void uncharge_gather_clear(struct uncharge_gather
*ug
)
6301 memset(ug
, 0, sizeof(*ug
));
6304 static void uncharge_batch(const struct uncharge_gather
*ug
)
6306 unsigned long nr_pages
= ug
->nr_anon
+ ug
->nr_file
+ ug
->nr_kmem
;
6307 unsigned long flags
;
6309 if (!mem_cgroup_is_root(ug
->memcg
)) {
6310 page_counter_uncharge(&ug
->memcg
->memory
, nr_pages
);
6311 if (do_memsw_account())
6312 page_counter_uncharge(&ug
->memcg
->memsw
, nr_pages
);
6313 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && ug
->nr_kmem
)
6314 page_counter_uncharge(&ug
->memcg
->kmem
, ug
->nr_kmem
);
6315 memcg_oom_recover(ug
->memcg
);
6318 local_irq_save(flags
);
6319 __mod_memcg_state(ug
->memcg
, MEMCG_RSS
, -ug
->nr_anon
);
6320 __mod_memcg_state(ug
->memcg
, MEMCG_CACHE
, -ug
->nr_file
);
6321 __mod_memcg_state(ug
->memcg
, MEMCG_RSS_HUGE
, -ug
->nr_huge
);
6322 __mod_memcg_state(ug
->memcg
, NR_SHMEM
, -ug
->nr_shmem
);
6323 __count_memcg_events(ug
->memcg
, PGPGOUT
, ug
->pgpgout
);
6324 __this_cpu_add(ug
->memcg
->vmstats_percpu
->nr_page_events
, nr_pages
);
6325 memcg_check_events(ug
->memcg
, ug
->dummy_page
);
6326 local_irq_restore(flags
);
6328 if (!mem_cgroup_is_root(ug
->memcg
))
6329 css_put_many(&ug
->memcg
->css
, nr_pages
);
6332 static void uncharge_page(struct page
*page
, struct uncharge_gather
*ug
)
6334 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6335 VM_BUG_ON_PAGE(page_count(page
) && !is_zone_device_page(page
) &&
6336 !PageHWPoison(page
) , page
);
6338 if (!page
->mem_cgroup
)
6342 * Nobody should be changing or seriously looking at
6343 * page->mem_cgroup at this point, we have fully
6344 * exclusive access to the page.
6347 if (ug
->memcg
!= page
->mem_cgroup
) {
6350 uncharge_gather_clear(ug
);
6352 ug
->memcg
= page
->mem_cgroup
;
6355 if (!PageKmemcg(page
)) {
6356 unsigned int nr_pages
= 1;
6358 if (PageTransHuge(page
)) {
6359 nr_pages
<<= compound_order(page
);
6360 ug
->nr_huge
+= nr_pages
;
6363 ug
->nr_anon
+= nr_pages
;
6365 ug
->nr_file
+= nr_pages
;
6366 if (PageSwapBacked(page
))
6367 ug
->nr_shmem
+= nr_pages
;
6371 ug
->nr_kmem
+= 1 << compound_order(page
);
6372 __ClearPageKmemcg(page
);
6375 ug
->dummy_page
= page
;
6376 page
->mem_cgroup
= NULL
;
6379 static void uncharge_list(struct list_head
*page_list
)
6381 struct uncharge_gather ug
;
6382 struct list_head
*next
;
6384 uncharge_gather_clear(&ug
);
6387 * Note that the list can be a single page->lru; hence the
6388 * do-while loop instead of a simple list_for_each_entry().
6390 next
= page_list
->next
;
6394 page
= list_entry(next
, struct page
, lru
);
6395 next
= page
->lru
.next
;
6397 uncharge_page(page
, &ug
);
6398 } while (next
!= page_list
);
6401 uncharge_batch(&ug
);
6405 * mem_cgroup_uncharge - uncharge a page
6406 * @page: page to uncharge
6408 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6409 * mem_cgroup_commit_charge().
6411 void mem_cgroup_uncharge(struct page
*page
)
6413 struct uncharge_gather ug
;
6415 if (mem_cgroup_disabled())
6418 /* Don't touch page->lru of any random page, pre-check: */
6419 if (!page
->mem_cgroup
)
6422 uncharge_gather_clear(&ug
);
6423 uncharge_page(page
, &ug
);
6424 uncharge_batch(&ug
);
6428 * mem_cgroup_uncharge_list - uncharge a list of page
6429 * @page_list: list of pages to uncharge
6431 * Uncharge a list of pages previously charged with
6432 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6434 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
6436 if (mem_cgroup_disabled())
6439 if (!list_empty(page_list
))
6440 uncharge_list(page_list
);
6444 * mem_cgroup_migrate - charge a page's replacement
6445 * @oldpage: currently circulating page
6446 * @newpage: replacement page
6448 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6449 * be uncharged upon free.
6451 * Both pages must be locked, @newpage->mapping must be set up.
6453 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
6455 struct mem_cgroup
*memcg
;
6456 unsigned int nr_pages
;
6458 unsigned long flags
;
6460 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
6461 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
6462 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
6463 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
6466 if (mem_cgroup_disabled())
6469 /* Page cache replacement: new page already charged? */
6470 if (newpage
->mem_cgroup
)
6473 /* Swapcache readahead pages can get replaced before being charged */
6474 memcg
= oldpage
->mem_cgroup
;
6478 /* Force-charge the new page. The old one will be freed soon */
6479 compound
= PageTransHuge(newpage
);
6480 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
6482 page_counter_charge(&memcg
->memory
, nr_pages
);
6483 if (do_memsw_account())
6484 page_counter_charge(&memcg
->memsw
, nr_pages
);
6485 css_get_many(&memcg
->css
, nr_pages
);
6487 commit_charge(newpage
, memcg
, false);
6489 local_irq_save(flags
);
6490 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
6491 memcg_check_events(memcg
, newpage
);
6492 local_irq_restore(flags
);
6495 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
6496 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
6498 void mem_cgroup_sk_alloc(struct sock
*sk
)
6500 struct mem_cgroup
*memcg
;
6502 if (!mem_cgroup_sockets_enabled
)
6506 * Socket cloning can throw us here with sk_memcg already
6507 * filled. It won't however, necessarily happen from
6508 * process context. So the test for root memcg given
6509 * the current task's memcg won't help us in this case.
6511 * Respecting the original socket's memcg is a better
6512 * decision in this case.
6515 css_get(&sk
->sk_memcg
->css
);
6520 memcg
= mem_cgroup_from_task(current
);
6521 if (memcg
== root_mem_cgroup
)
6523 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
6525 if (css_tryget_online(&memcg
->css
))
6526 sk
->sk_memcg
= memcg
;
6531 void mem_cgroup_sk_free(struct sock
*sk
)
6534 css_put(&sk
->sk_memcg
->css
);
6538 * mem_cgroup_charge_skmem - charge socket memory
6539 * @memcg: memcg to charge
6540 * @nr_pages: number of pages to charge
6542 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6543 * @memcg's configured limit, %false if the charge had to be forced.
6545 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
6547 gfp_t gfp_mask
= GFP_KERNEL
;
6549 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
6550 struct page_counter
*fail
;
6552 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
6553 memcg
->tcpmem_pressure
= 0;
6556 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
6557 memcg
->tcpmem_pressure
= 1;
6561 /* Don't block in the packet receive path */
6563 gfp_mask
= GFP_NOWAIT
;
6565 mod_memcg_state(memcg
, MEMCG_SOCK
, nr_pages
);
6567 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
6570 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
6575 * mem_cgroup_uncharge_skmem - uncharge socket memory
6576 * @memcg: memcg to uncharge
6577 * @nr_pages: number of pages to uncharge
6579 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
6581 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
6582 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
6586 mod_memcg_state(memcg
, MEMCG_SOCK
, -nr_pages
);
6588 refill_stock(memcg
, nr_pages
);
6591 static int __init
cgroup_memory(char *s
)
6595 while ((token
= strsep(&s
, ",")) != NULL
) {
6598 if (!strcmp(token
, "nosocket"))
6599 cgroup_memory_nosocket
= true;
6600 if (!strcmp(token
, "nokmem"))
6601 cgroup_memory_nokmem
= true;
6605 __setup("cgroup.memory=", cgroup_memory
);
6608 * subsys_initcall() for memory controller.
6610 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6611 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6612 * basically everything that doesn't depend on a specific mem_cgroup structure
6613 * should be initialized from here.
6615 static int __init
mem_cgroup_init(void)
6619 #ifdef CONFIG_MEMCG_KMEM
6621 * Kmem cache creation is mostly done with the slab_mutex held,
6622 * so use a workqueue with limited concurrency to avoid stalling
6623 * all worker threads in case lots of cgroups are created and
6624 * destroyed simultaneously.
6626 memcg_kmem_cache_wq
= alloc_workqueue("memcg_kmem_cache", 0, 1);
6627 BUG_ON(!memcg_kmem_cache_wq
);
6630 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD
, "mm/memctrl:dead", NULL
,
6631 memcg_hotplug_cpu_dead
);
6633 for_each_possible_cpu(cpu
)
6634 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
6637 for_each_node(node
) {
6638 struct mem_cgroup_tree_per_node
*rtpn
;
6640 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
6641 node_online(node
) ? node
: NUMA_NO_NODE
);
6643 rtpn
->rb_root
= RB_ROOT
;
6644 rtpn
->rb_rightmost
= NULL
;
6645 spin_lock_init(&rtpn
->lock
);
6646 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
6651 subsys_initcall(mem_cgroup_init
);
6653 #ifdef CONFIG_MEMCG_SWAP
6654 static struct mem_cgroup
*mem_cgroup_id_get_online(struct mem_cgroup
*memcg
)
6656 while (!refcount_inc_not_zero(&memcg
->id
.ref
)) {
6658 * The root cgroup cannot be destroyed, so it's refcount must
6661 if (WARN_ON_ONCE(memcg
== root_mem_cgroup
)) {
6665 memcg
= parent_mem_cgroup(memcg
);
6667 memcg
= root_mem_cgroup
;
6673 * mem_cgroup_swapout - transfer a memsw charge to swap
6674 * @page: page whose memsw charge to transfer
6675 * @entry: swap entry to move the charge to
6677 * Transfer the memsw charge of @page to @entry.
6679 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
6681 struct mem_cgroup
*memcg
, *swap_memcg
;
6682 unsigned int nr_entries
;
6683 unsigned short oldid
;
6685 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6686 VM_BUG_ON_PAGE(page_count(page
), page
);
6688 if (!do_memsw_account())
6691 memcg
= page
->mem_cgroup
;
6693 /* Readahead page, never charged */
6698 * In case the memcg owning these pages has been offlined and doesn't
6699 * have an ID allocated to it anymore, charge the closest online
6700 * ancestor for the swap instead and transfer the memory+swap charge.
6702 swap_memcg
= mem_cgroup_id_get_online(memcg
);
6703 nr_entries
= hpage_nr_pages(page
);
6704 /* Get references for the tail pages, too */
6706 mem_cgroup_id_get_many(swap_memcg
, nr_entries
- 1);
6707 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(swap_memcg
),
6709 VM_BUG_ON_PAGE(oldid
, page
);
6710 mod_memcg_state(swap_memcg
, MEMCG_SWAP
, nr_entries
);
6712 page
->mem_cgroup
= NULL
;
6714 if (!mem_cgroup_is_root(memcg
))
6715 page_counter_uncharge(&memcg
->memory
, nr_entries
);
6717 if (memcg
!= swap_memcg
) {
6718 if (!mem_cgroup_is_root(swap_memcg
))
6719 page_counter_charge(&swap_memcg
->memsw
, nr_entries
);
6720 page_counter_uncharge(&memcg
->memsw
, nr_entries
);
6724 * Interrupts should be disabled here because the caller holds the
6725 * i_pages lock which is taken with interrupts-off. It is
6726 * important here to have the interrupts disabled because it is the
6727 * only synchronisation we have for updating the per-CPU variables.
6729 VM_BUG_ON(!irqs_disabled());
6730 mem_cgroup_charge_statistics(memcg
, page
, PageTransHuge(page
),
6732 memcg_check_events(memcg
, page
);
6734 if (!mem_cgroup_is_root(memcg
))
6735 css_put_many(&memcg
->css
, nr_entries
);
6739 * mem_cgroup_try_charge_swap - try charging swap space for a page
6740 * @page: page being added to swap
6741 * @entry: swap entry to charge
6743 * Try to charge @page's memcg for the swap space at @entry.
6745 * Returns 0 on success, -ENOMEM on failure.
6747 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
6749 unsigned int nr_pages
= hpage_nr_pages(page
);
6750 struct page_counter
*counter
;
6751 struct mem_cgroup
*memcg
;
6752 unsigned short oldid
;
6754 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
6757 memcg
= page
->mem_cgroup
;
6759 /* Readahead page, never charged */
6764 memcg_memory_event(memcg
, MEMCG_SWAP_FAIL
);
6768 memcg
= mem_cgroup_id_get_online(memcg
);
6770 if (!mem_cgroup_is_root(memcg
) &&
6771 !page_counter_try_charge(&memcg
->swap
, nr_pages
, &counter
)) {
6772 memcg_memory_event(memcg
, MEMCG_SWAP_MAX
);
6773 memcg_memory_event(memcg
, MEMCG_SWAP_FAIL
);
6774 mem_cgroup_id_put(memcg
);
6778 /* Get references for the tail pages, too */
6780 mem_cgroup_id_get_many(memcg
, nr_pages
- 1);
6781 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
), nr_pages
);
6782 VM_BUG_ON_PAGE(oldid
, page
);
6783 mod_memcg_state(memcg
, MEMCG_SWAP
, nr_pages
);
6789 * mem_cgroup_uncharge_swap - uncharge swap space
6790 * @entry: swap entry to uncharge
6791 * @nr_pages: the amount of swap space to uncharge
6793 void mem_cgroup_uncharge_swap(swp_entry_t entry
, unsigned int nr_pages
)
6795 struct mem_cgroup
*memcg
;
6798 if (!do_swap_account
)
6801 id
= swap_cgroup_record(entry
, 0, nr_pages
);
6803 memcg
= mem_cgroup_from_id(id
);
6805 if (!mem_cgroup_is_root(memcg
)) {
6806 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6807 page_counter_uncharge(&memcg
->swap
, nr_pages
);
6809 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
6811 mod_memcg_state(memcg
, MEMCG_SWAP
, -nr_pages
);
6812 mem_cgroup_id_put_many(memcg
, nr_pages
);
6817 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
6819 long nr_swap_pages
= get_nr_swap_pages();
6821 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6822 return nr_swap_pages
;
6823 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6824 nr_swap_pages
= min_t(long, nr_swap_pages
,
6825 READ_ONCE(memcg
->swap
.max
) -
6826 page_counter_read(&memcg
->swap
));
6827 return nr_swap_pages
;
6830 bool mem_cgroup_swap_full(struct page
*page
)
6832 struct mem_cgroup
*memcg
;
6834 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
6838 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6841 memcg
= page
->mem_cgroup
;
6845 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6846 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.max
)
6852 /* for remember boot option*/
6853 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6854 static int really_do_swap_account __initdata
= 1;
6856 static int really_do_swap_account __initdata
;
6859 static int __init
enable_swap_account(char *s
)
6861 if (!strcmp(s
, "1"))
6862 really_do_swap_account
= 1;
6863 else if (!strcmp(s
, "0"))
6864 really_do_swap_account
= 0;
6867 __setup("swapaccount=", enable_swap_account
);
6869 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
6872 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6874 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
6877 static int swap_max_show(struct seq_file
*m
, void *v
)
6879 return seq_puts_memcg_tunable(m
,
6880 READ_ONCE(mem_cgroup_from_seq(m
)->swap
.max
));
6883 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
6884 char *buf
, size_t nbytes
, loff_t off
)
6886 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
6890 buf
= strstrip(buf
);
6891 err
= page_counter_memparse(buf
, "max", &max
);
6895 xchg(&memcg
->swap
.max
, max
);
6900 static int swap_events_show(struct seq_file
*m
, void *v
)
6902 struct mem_cgroup
*memcg
= mem_cgroup_from_seq(m
);
6904 seq_printf(m
, "max %lu\n",
6905 atomic_long_read(&memcg
->memory_events
[MEMCG_SWAP_MAX
]));
6906 seq_printf(m
, "fail %lu\n",
6907 atomic_long_read(&memcg
->memory_events
[MEMCG_SWAP_FAIL
]));
6912 static struct cftype swap_files
[] = {
6914 .name
= "swap.current",
6915 .flags
= CFTYPE_NOT_ON_ROOT
,
6916 .read_u64
= swap_current_read
,
6920 .flags
= CFTYPE_NOT_ON_ROOT
,
6921 .seq_show
= swap_max_show
,
6922 .write
= swap_max_write
,
6925 .name
= "swap.events",
6926 .flags
= CFTYPE_NOT_ON_ROOT
,
6927 .file_offset
= offsetof(struct mem_cgroup
, swap_events_file
),
6928 .seq_show
= swap_events_show
,
6933 static struct cftype memsw_cgroup_files
[] = {
6935 .name
= "memsw.usage_in_bytes",
6936 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6937 .read_u64
= mem_cgroup_read_u64
,
6940 .name
= "memsw.max_usage_in_bytes",
6941 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6942 .write
= mem_cgroup_reset
,
6943 .read_u64
= mem_cgroup_read_u64
,
6946 .name
= "memsw.limit_in_bytes",
6947 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6948 .write
= mem_cgroup_write
,
6949 .read_u64
= mem_cgroup_read_u64
,
6952 .name
= "memsw.failcnt",
6953 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6954 .write
= mem_cgroup_reset
,
6955 .read_u64
= mem_cgroup_read_u64
,
6957 { }, /* terminate */
6960 static int __init
mem_cgroup_swap_init(void)
6962 if (!mem_cgroup_disabled() && really_do_swap_account
) {
6963 do_swap_account
= 1;
6964 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
6966 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
6967 memsw_cgroup_files
));
6971 subsys_initcall(mem_cgroup_swap_init
);
6973 #endif /* CONFIG_MEMCG_SWAP */