1 /* SPDX-License-Identifier: GPL-2.0 */
5 * Internal slab definitions
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
21 unsigned int object_size
;/* The original size of the object */
22 unsigned int size
; /* The aligned/padded/added on size */
23 unsigned int align
; /* Alignment as calculated */
24 slab_flags_t flags
; /* Active flags on the slab */
25 unsigned int useroffset
;/* Usercopy region offset */
26 unsigned int usersize
; /* Usercopy region size */
27 const char *name
; /* Slab name for sysfs */
28 int refcount
; /* Use counter */
29 void (*ctor
)(void *); /* Called on object slot creation */
30 struct list_head list
; /* List of all slab caches on the system */
33 #endif /* CONFIG_SLOB */
36 #include <linux/slab_def.h>
40 #include <linux/slub_def.h>
43 #include <linux/memcontrol.h>
44 #include <linux/fault-inject.h>
45 #include <linux/kasan.h>
46 #include <linux/kmemleak.h>
47 #include <linux/random.h>
48 #include <linux/sched/mm.h>
51 * State of the slab allocator.
53 * This is used to describe the states of the allocator during bootup.
54 * Allocators use this to gradually bootstrap themselves. Most allocators
55 * have the problem that the structures used for managing slab caches are
56 * allocated from slab caches themselves.
59 DOWN
, /* No slab functionality yet */
60 PARTIAL
, /* SLUB: kmem_cache_node available */
61 PARTIAL_NODE
, /* SLAB: kmalloc size for node struct available */
62 UP
, /* Slab caches usable but not all extras yet */
63 FULL
/* Everything is working */
66 extern enum slab_state slab_state
;
68 /* The slab cache mutex protects the management structures during changes */
69 extern struct mutex slab_mutex
;
71 /* The list of all slab caches on the system */
72 extern struct list_head slab_caches
;
74 /* The slab cache that manages slab cache information */
75 extern struct kmem_cache
*kmem_cache
;
77 /* A table of kmalloc cache names and sizes */
78 extern const struct kmalloc_info_struct
{
84 /* Kmalloc array related functions */
85 void setup_kmalloc_cache_index_table(void);
86 void create_kmalloc_caches(slab_flags_t
);
88 /* Find the kmalloc slab corresponding for a certain size */
89 struct kmem_cache
*kmalloc_slab(size_t, gfp_t
);
93 /* Functions provided by the slab allocators */
94 int __kmem_cache_create(struct kmem_cache
*, slab_flags_t flags
);
96 struct kmem_cache
*create_kmalloc_cache(const char *name
, unsigned int size
,
97 slab_flags_t flags
, unsigned int useroffset
,
98 unsigned int usersize
);
99 extern void create_boot_cache(struct kmem_cache
*, const char *name
,
100 unsigned int size
, slab_flags_t flags
,
101 unsigned int useroffset
, unsigned int usersize
);
103 int slab_unmergeable(struct kmem_cache
*s
);
104 struct kmem_cache
*find_mergeable(unsigned size
, unsigned align
,
105 slab_flags_t flags
, const char *name
, void (*ctor
)(void *));
108 __kmem_cache_alias(const char *name
, unsigned int size
, unsigned int align
,
109 slab_flags_t flags
, void (*ctor
)(void *));
111 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
112 slab_flags_t flags
, const char *name
,
113 void (*ctor
)(void *));
115 static inline struct kmem_cache
*
116 __kmem_cache_alias(const char *name
, unsigned int size
, unsigned int align
,
117 slab_flags_t flags
, void (*ctor
)(void *))
120 static inline slab_flags_t
kmem_cache_flags(unsigned int object_size
,
121 slab_flags_t flags
, const char *name
,
122 void (*ctor
)(void *))
129 /* Legal flag mask for kmem_cache_create(), for various configurations */
130 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
131 SLAB_CACHE_DMA32 | SLAB_PANIC | \
132 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
134 #if defined(CONFIG_DEBUG_SLAB)
135 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
136 #elif defined(CONFIG_SLUB_DEBUG)
137 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
138 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
140 #define SLAB_DEBUG_FLAGS (0)
143 #if defined(CONFIG_SLAB)
144 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
145 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
147 #elif defined(CONFIG_SLUB)
148 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
149 SLAB_TEMPORARY | SLAB_ACCOUNT)
151 #define SLAB_CACHE_FLAGS (0)
154 /* Common flags available with current configuration */
155 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
157 /* Common flags permitted for kmem_cache_create */
158 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
163 SLAB_CONSISTENCY_CHECKS | \
166 SLAB_RECLAIM_ACCOUNT | \
170 bool __kmem_cache_empty(struct kmem_cache
*);
171 int __kmem_cache_shutdown(struct kmem_cache
*);
172 void __kmem_cache_release(struct kmem_cache
*);
173 int __kmem_cache_shrink(struct kmem_cache
*);
174 void __kmemcg_cache_deactivate(struct kmem_cache
*s
);
175 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache
*s
);
176 void slab_kmem_cache_release(struct kmem_cache
*);
182 unsigned long active_objs
;
183 unsigned long num_objs
;
184 unsigned long active_slabs
;
185 unsigned long num_slabs
;
186 unsigned long shared_avail
;
188 unsigned int batchcount
;
190 unsigned int objects_per_slab
;
191 unsigned int cache_order
;
194 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
);
195 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
);
196 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
197 size_t count
, loff_t
*ppos
);
200 * Generic implementation of bulk operations
201 * These are useful for situations in which the allocator cannot
202 * perform optimizations. In that case segments of the object listed
203 * may be allocated or freed using these operations.
205 void __kmem_cache_free_bulk(struct kmem_cache
*, size_t, void **);
206 int __kmem_cache_alloc_bulk(struct kmem_cache
*, gfp_t
, size_t, void **);
208 static inline int cache_vmstat_idx(struct kmem_cache
*s
)
210 return (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
211 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
;
214 #ifdef CONFIG_MEMCG_KMEM
216 /* List of all root caches. */
217 extern struct list_head slab_root_caches
;
218 #define root_caches_node memcg_params.__root_caches_node
221 * Iterate over all memcg caches of the given root cache. The caller must hold
224 #define for_each_memcg_cache(iter, root) \
225 list_for_each_entry(iter, &(root)->memcg_params.children, \
226 memcg_params.children_node)
228 static inline bool is_root_cache(struct kmem_cache
*s
)
230 return !s
->memcg_params
.root_cache
;
233 static inline bool slab_equal_or_root(struct kmem_cache
*s
,
234 struct kmem_cache
*p
)
236 return p
== s
|| p
== s
->memcg_params
.root_cache
;
240 * We use suffixes to the name in memcg because we can't have caches
241 * created in the system with the same name. But when we print them
242 * locally, better refer to them with the base name
244 static inline const char *cache_name(struct kmem_cache
*s
)
246 if (!is_root_cache(s
))
247 s
= s
->memcg_params
.root_cache
;
251 static inline struct kmem_cache
*memcg_root_cache(struct kmem_cache
*s
)
253 if (is_root_cache(s
))
255 return s
->memcg_params
.root_cache
;
259 * Expects a pointer to a slab page. Please note, that PageSlab() check
260 * isn't sufficient, as it returns true also for tail compound slab pages,
261 * which do not have slab_cache pointer set.
262 * So this function assumes that the page can pass PageHead() and PageSlab()
265 * The kmem_cache can be reparented asynchronously. The caller must ensure
266 * the memcg lifetime, e.g. by taking rcu_read_lock() or cgroup_mutex.
268 static inline struct mem_cgroup
*memcg_from_slab_page(struct page
*page
)
270 struct kmem_cache
*s
;
272 s
= READ_ONCE(page
->slab_cache
);
273 if (s
&& !is_root_cache(s
))
274 return READ_ONCE(s
->memcg_params
.memcg
);
280 * Charge the slab page belonging to the non-root kmem_cache.
281 * Can be called for non-root kmem_caches only.
283 static __always_inline
int memcg_charge_slab(struct page
*page
,
284 gfp_t gfp
, int order
,
285 struct kmem_cache
*s
)
287 struct mem_cgroup
*memcg
;
288 struct lruvec
*lruvec
;
292 memcg
= READ_ONCE(s
->memcg_params
.memcg
);
293 while (memcg
&& !css_tryget_online(&memcg
->css
))
294 memcg
= parent_mem_cgroup(memcg
);
297 if (unlikely(!memcg
|| mem_cgroup_is_root(memcg
))) {
298 mod_node_page_state(page_pgdat(page
), cache_vmstat_idx(s
),
300 percpu_ref_get_many(&s
->memcg_params
.refcnt
, 1 << order
);
304 ret
= memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
308 lruvec
= mem_cgroup_lruvec(page_pgdat(page
), memcg
);
309 mod_lruvec_state(lruvec
, cache_vmstat_idx(s
), 1 << order
);
311 /* transer try_charge() page references to kmem_cache */
312 percpu_ref_get_many(&s
->memcg_params
.refcnt
, 1 << order
);
313 css_put_many(&memcg
->css
, 1 << order
);
315 css_put(&memcg
->css
);
320 * Uncharge a slab page belonging to a non-root kmem_cache.
321 * Can be called for non-root kmem_caches only.
323 static __always_inline
void memcg_uncharge_slab(struct page
*page
, int order
,
324 struct kmem_cache
*s
)
326 struct mem_cgroup
*memcg
;
327 struct lruvec
*lruvec
;
330 memcg
= READ_ONCE(s
->memcg_params
.memcg
);
331 if (likely(!mem_cgroup_is_root(memcg
))) {
332 lruvec
= mem_cgroup_lruvec(page_pgdat(page
), memcg
);
333 mod_lruvec_state(lruvec
, cache_vmstat_idx(s
), -(1 << order
));
334 memcg_kmem_uncharge_memcg(page
, order
, memcg
);
336 mod_node_page_state(page_pgdat(page
), cache_vmstat_idx(s
),
341 percpu_ref_put_many(&s
->memcg_params
.refcnt
, 1 << order
);
344 extern void slab_init_memcg_params(struct kmem_cache
*);
345 extern void memcg_link_cache(struct kmem_cache
*s
, struct mem_cgroup
*memcg
);
347 #else /* CONFIG_MEMCG_KMEM */
349 /* If !memcg, all caches are root. */
350 #define slab_root_caches slab_caches
351 #define root_caches_node list
353 #define for_each_memcg_cache(iter, root) \
354 for ((void)(iter), (void)(root); 0; )
356 static inline bool is_root_cache(struct kmem_cache
*s
)
361 static inline bool slab_equal_or_root(struct kmem_cache
*s
,
362 struct kmem_cache
*p
)
367 static inline const char *cache_name(struct kmem_cache
*s
)
372 static inline struct kmem_cache
*memcg_root_cache(struct kmem_cache
*s
)
377 static inline struct mem_cgroup
*memcg_from_slab_page(struct page
*page
)
382 static inline int memcg_charge_slab(struct page
*page
, gfp_t gfp
, int order
,
383 struct kmem_cache
*s
)
388 static inline void memcg_uncharge_slab(struct page
*page
, int order
,
389 struct kmem_cache
*s
)
393 static inline void slab_init_memcg_params(struct kmem_cache
*s
)
397 static inline void memcg_link_cache(struct kmem_cache
*s
,
398 struct mem_cgroup
*memcg
)
402 #endif /* CONFIG_MEMCG_KMEM */
404 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
408 page
= virt_to_head_page(obj
);
409 if (WARN_ONCE(!PageSlab(page
), "%s: Object is not a Slab page!\n",
412 return page
->slab_cache
;
415 static __always_inline
int charge_slab_page(struct page
*page
,
416 gfp_t gfp
, int order
,
417 struct kmem_cache
*s
)
419 if (is_root_cache(s
)) {
420 mod_node_page_state(page_pgdat(page
), cache_vmstat_idx(s
),
425 return memcg_charge_slab(page
, gfp
, order
, s
);
428 static __always_inline
void uncharge_slab_page(struct page
*page
, int order
,
429 struct kmem_cache
*s
)
431 if (is_root_cache(s
)) {
432 mod_node_page_state(page_pgdat(page
), cache_vmstat_idx(s
),
437 memcg_uncharge_slab(page
, order
, s
);
440 static inline struct kmem_cache
*cache_from_obj(struct kmem_cache
*s
, void *x
)
442 struct kmem_cache
*cachep
;
445 * When kmemcg is not being used, both assignments should return the
446 * same value. but we don't want to pay the assignment price in that
447 * case. If it is not compiled in, the compiler should be smart enough
448 * to not do even the assignment. In that case, slab_equal_or_root
449 * will also be a constant.
451 if (!memcg_kmem_enabled() &&
452 !IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED
) &&
453 !unlikely(s
->flags
& SLAB_CONSISTENCY_CHECKS
))
456 cachep
= virt_to_cache(x
);
457 WARN_ONCE(cachep
&& !slab_equal_or_root(cachep
, s
),
458 "%s: Wrong slab cache. %s but object is from %s\n",
459 __func__
, s
->name
, cachep
->name
);
463 static inline size_t slab_ksize(const struct kmem_cache
*s
)
466 return s
->object_size
;
468 #else /* CONFIG_SLUB */
469 # ifdef CONFIG_SLUB_DEBUG
471 * Debugging requires use of the padding between object
472 * and whatever may come after it.
474 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
475 return s
->object_size
;
477 if (s
->flags
& SLAB_KASAN
)
478 return s
->object_size
;
480 * If we have the need to store the freelist pointer
481 * back there or track user information then we can
482 * only use the space before that information.
484 if (s
->flags
& (SLAB_TYPESAFE_BY_RCU
| SLAB_STORE_USER
))
487 * Else we can use all the padding etc for the allocation
493 static inline struct kmem_cache
*slab_pre_alloc_hook(struct kmem_cache
*s
,
496 flags
&= gfp_allowed_mask
;
498 fs_reclaim_acquire(flags
);
499 fs_reclaim_release(flags
);
501 might_sleep_if(gfpflags_allow_blocking(flags
));
503 if (should_failslab(s
, flags
))
506 if (memcg_kmem_enabled() &&
507 ((flags
& __GFP_ACCOUNT
) || (s
->flags
& SLAB_ACCOUNT
)))
508 return memcg_kmem_get_cache(s
);
513 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
514 size_t size
, void **p
)
518 flags
&= gfp_allowed_mask
;
519 for (i
= 0; i
< size
; i
++) {
520 p
[i
] = kasan_slab_alloc(s
, p
[i
], flags
);
521 /* As p[i] might get tagged, call kmemleak hook after KASAN. */
522 kmemleak_alloc_recursive(p
[i
], s
->object_size
, 1,
526 if (memcg_kmem_enabled())
527 memcg_kmem_put_cache(s
);
532 * The slab lists for all objects.
534 struct kmem_cache_node
{
535 spinlock_t list_lock
;
538 struct list_head slabs_partial
; /* partial list first, better asm code */
539 struct list_head slabs_full
;
540 struct list_head slabs_free
;
541 unsigned long total_slabs
; /* length of all slab lists */
542 unsigned long free_slabs
; /* length of free slab list only */
543 unsigned long free_objects
;
544 unsigned int free_limit
;
545 unsigned int colour_next
; /* Per-node cache coloring */
546 struct array_cache
*shared
; /* shared per node */
547 struct alien_cache
**alien
; /* on other nodes */
548 unsigned long next_reap
; /* updated without locking */
549 int free_touched
; /* updated without locking */
553 unsigned long nr_partial
;
554 struct list_head partial
;
555 #ifdef CONFIG_SLUB_DEBUG
556 atomic_long_t nr_slabs
;
557 atomic_long_t total_objects
;
558 struct list_head full
;
564 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
566 return s
->node
[node
];
570 * Iterator over all nodes. The body will be executed for each node that has
571 * a kmem_cache_node structure allocated (which is true for all online nodes)
573 #define for_each_kmem_cache_node(__s, __node, __n) \
574 for (__node = 0; __node < nr_node_ids; __node++) \
575 if ((__n = get_node(__s, __node)))
579 void *slab_start(struct seq_file
*m
, loff_t
*pos
);
580 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
);
581 void slab_stop(struct seq_file
*m
, void *p
);
582 void *memcg_slab_start(struct seq_file
*m
, loff_t
*pos
);
583 void *memcg_slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
);
584 void memcg_slab_stop(struct seq_file
*m
, void *p
);
585 int memcg_slab_show(struct seq_file
*m
, void *p
);
587 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
588 void dump_unreclaimable_slab(void);
590 static inline void dump_unreclaimable_slab(void)
595 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
);
597 #ifdef CONFIG_SLAB_FREELIST_RANDOM
598 int cache_random_seq_create(struct kmem_cache
*cachep
, unsigned int count
,
600 void cache_random_seq_destroy(struct kmem_cache
*cachep
);
602 static inline int cache_random_seq_create(struct kmem_cache
*cachep
,
603 unsigned int count
, gfp_t gfp
)
607 static inline void cache_random_seq_destroy(struct kmem_cache
*cachep
) { }
608 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
610 static inline bool slab_want_init_on_alloc(gfp_t flags
, struct kmem_cache
*c
)
612 if (static_branch_unlikely(&init_on_alloc
)) {
615 if (c
->flags
& (SLAB_TYPESAFE_BY_RCU
| SLAB_POISON
))
616 return flags
& __GFP_ZERO
;
619 return flags
& __GFP_ZERO
;
622 static inline bool slab_want_init_on_free(struct kmem_cache
*c
)
624 if (static_branch_unlikely(&init_on_free
))
626 (c
->flags
& (SLAB_TYPESAFE_BY_RCU
| SLAB_POISON
)));
630 #endif /* MM_SLAB_H */