2 * random.c -- A strong random number generator
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
43 * (now, with legal B.S. out of the way.....)
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
98 * Exported interfaces ---- output
99 * ===============================
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
104 * void get_random_bytes(void *buf, int nbytes);
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
122 * Exported interfaces ---- input
123 * ==============================
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
159 * Ensuring unpredictability at system startup
160 * ============================================
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/spinlock.h>
253 #include <linux/percpu.h>
254 #include <linux/cryptohash.h>
255 #include <linux/fips.h>
256 #include <linux/ptrace.h>
257 #include <linux/kmemcheck.h>
259 #ifdef CONFIG_GENERIC_HARDIRQS
260 # include <linux/irq.h>
263 #include <asm/processor.h>
264 #include <asm/uaccess.h>
266 #include <asm/irq_regs.h>
269 #define CREATE_TRACE_POINTS
270 #include <trace/events/random.h>
273 * Configuration information
275 #define INPUT_POOL_WORDS 128
276 #define OUTPUT_POOL_WORDS 32
277 #define SEC_XFER_SIZE 512
278 #define EXTRACT_SIZE 10
280 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
283 * The minimum number of bits of entropy before we wake up a read on
284 * /dev/random. Should be enough to do a significant reseed.
286 static int random_read_wakeup_thresh
= 64;
289 * If the entropy count falls under this number of bits, then we
290 * should wake up processes which are selecting or polling on write
291 * access to /dev/random.
293 static int random_write_wakeup_thresh
= 128;
296 * When the input pool goes over trickle_thresh, start dropping most
297 * samples to avoid wasting CPU time and reduce lock contention.
300 static int trickle_thresh __read_mostly
= INPUT_POOL_WORDS
* 28;
302 static DEFINE_PER_CPU(int, trickle_count
);
305 * A pool of size .poolwords is stirred with a primitive polynomial
306 * of degree .poolwords over GF(2). The taps for various sizes are
307 * defined below. They are chosen to be evenly spaced (minimum RMS
308 * distance from evenly spaced; the numbers in the comments are a
309 * scaled squared error sum) except for the last tap, which is 1 to
310 * get the twisting happening as fast as possible.
312 static struct poolinfo
{
314 int tap1
, tap2
, tap3
, tap4
, tap5
;
315 } poolinfo_table
[] = {
316 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
317 { 128, 103, 76, 51, 25, 1 },
318 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
319 { 32, 26, 20, 14, 7, 1 },
321 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
322 { 2048, 1638, 1231, 819, 411, 1 },
324 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
325 { 1024, 817, 615, 412, 204, 1 },
327 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
328 { 1024, 819, 616, 410, 207, 2 },
330 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
331 { 512, 411, 308, 208, 104, 1 },
333 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
334 { 512, 409, 307, 206, 102, 2 },
335 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
336 { 512, 409, 309, 205, 103, 2 },
338 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
339 { 256, 205, 155, 101, 52, 1 },
341 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
342 { 128, 103, 78, 51, 27, 2 },
344 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
345 { 64, 52, 39, 26, 14, 1 },
349 #define POOLBITS poolwords*32
350 #define POOLBYTES poolwords*4
353 * For the purposes of better mixing, we use the CRC-32 polynomial as
354 * well to make a twisted Generalized Feedback Shift Reigster
356 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
357 * Transactions on Modeling and Computer Simulation 2(3):179-194.
358 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
359 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
361 * Thanks to Colin Plumb for suggesting this.
363 * We have not analyzed the resultant polynomial to prove it primitive;
364 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
365 * of a random large-degree polynomial over GF(2) are more than large enough
366 * that periodicity is not a concern.
368 * The input hash is much less sensitive than the output hash. All
369 * that we want of it is that it be a good non-cryptographic hash;
370 * i.e. it not produce collisions when fed "random" data of the sort
371 * we expect to see. As long as the pool state differs for different
372 * inputs, we have preserved the input entropy and done a good job.
373 * The fact that an intelligent attacker can construct inputs that
374 * will produce controlled alterations to the pool's state is not
375 * important because we don't consider such inputs to contribute any
376 * randomness. The only property we need with respect to them is that
377 * the attacker can't increase his/her knowledge of the pool's state.
378 * Since all additions are reversible (knowing the final state and the
379 * input, you can reconstruct the initial state), if an attacker has
380 * any uncertainty about the initial state, he/she can only shuffle
381 * that uncertainty about, but never cause any collisions (which would
382 * decrease the uncertainty).
384 * The chosen system lets the state of the pool be (essentially) the input
385 * modulo the generator polymnomial. Now, for random primitive polynomials,
386 * this is a universal class of hash functions, meaning that the chance
387 * of a collision is limited by the attacker's knowledge of the generator
388 * polynomail, so if it is chosen at random, an attacker can never force
389 * a collision. Here, we use a fixed polynomial, but we *can* assume that
390 * ###--> it is unknown to the processes generating the input entropy. <-###
391 * Because of this important property, this is a good, collision-resistant
392 * hash; hash collisions will occur no more often than chance.
396 * Static global variables
398 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait
);
399 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait
);
400 static struct fasync_struct
*fasync
;
404 module_param(debug
, bool, 0644);
405 #define DEBUG_ENT(fmt, arg...) do { \
407 printk(KERN_DEBUG "random %04d %04d %04d: " \
409 input_pool.entropy_count,\
410 blocking_pool.entropy_count,\
411 nonblocking_pool.entropy_count,\
414 #define DEBUG_ENT(fmt, arg...) do {} while (0)
417 /**********************************************************************
419 * OS independent entropy store. Here are the functions which handle
420 * storing entropy in an entropy pool.
422 **********************************************************************/
424 struct entropy_store
;
425 struct entropy_store
{
426 /* read-only data: */
427 struct poolinfo
*poolinfo
;
430 struct entropy_store
*pull
;
433 /* read-write data: */
436 unsigned input_rotate
;
439 unsigned int initialized
:1;
440 __u8 last_data
[EXTRACT_SIZE
];
443 static __u32 input_pool_data
[INPUT_POOL_WORDS
];
444 static __u32 blocking_pool_data
[OUTPUT_POOL_WORDS
];
445 static __u32 nonblocking_pool_data
[OUTPUT_POOL_WORDS
];
447 static struct entropy_store input_pool
= {
448 .poolinfo
= &poolinfo_table
[0],
451 .lock
= __SPIN_LOCK_UNLOCKED(&input_pool
.lock
),
452 .pool
= input_pool_data
455 static struct entropy_store blocking_pool
= {
456 .poolinfo
= &poolinfo_table
[1],
460 .lock
= __SPIN_LOCK_UNLOCKED(&blocking_pool
.lock
),
461 .pool
= blocking_pool_data
464 static struct entropy_store nonblocking_pool
= {
465 .poolinfo
= &poolinfo_table
[1],
466 .name
= "nonblocking",
468 .lock
= __SPIN_LOCK_UNLOCKED(&nonblocking_pool
.lock
),
469 .pool
= nonblocking_pool_data
472 static __u32
const twist_table
[8] = {
473 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
474 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
477 * This function adds bytes into the entropy "pool". It does not
478 * update the entropy estimate. The caller should call
479 * credit_entropy_bits if this is appropriate.
481 * The pool is stirred with a primitive polynomial of the appropriate
482 * degree, and then twisted. We twist by three bits at a time because
483 * it's cheap to do so and helps slightly in the expected case where
484 * the entropy is concentrated in the low-order bits.
486 static void _mix_pool_bytes(struct entropy_store
*r
, const void *in
,
487 int nbytes
, __u8 out
[64])
489 unsigned long i
, j
, tap1
, tap2
, tap3
, tap4
, tap5
;
491 int wordmask
= r
->poolinfo
->poolwords
- 1;
492 const char *bytes
= in
;
495 tap1
= r
->poolinfo
->tap1
;
496 tap2
= r
->poolinfo
->tap2
;
497 tap3
= r
->poolinfo
->tap3
;
498 tap4
= r
->poolinfo
->tap4
;
499 tap5
= r
->poolinfo
->tap5
;
502 input_rotate
= ACCESS_ONCE(r
->input_rotate
);
503 i
= ACCESS_ONCE(r
->add_ptr
);
505 /* mix one byte at a time to simplify size handling and churn faster */
507 w
= rol32(*bytes
++, input_rotate
& 31);
508 i
= (i
- 1) & wordmask
;
510 /* XOR in the various taps */
512 w
^= r
->pool
[(i
+ tap1
) & wordmask
];
513 w
^= r
->pool
[(i
+ tap2
) & wordmask
];
514 w
^= r
->pool
[(i
+ tap3
) & wordmask
];
515 w
^= r
->pool
[(i
+ tap4
) & wordmask
];
516 w
^= r
->pool
[(i
+ tap5
) & wordmask
];
518 /* Mix the result back in with a twist */
519 r
->pool
[i
] = (w
>> 3) ^ twist_table
[w
& 7];
522 * Normally, we add 7 bits of rotation to the pool.
523 * At the beginning of the pool, add an extra 7 bits
524 * rotation, so that successive passes spread the
525 * input bits across the pool evenly.
527 input_rotate
+= i
? 7 : 14;
530 ACCESS_ONCE(r
->input_rotate
) = input_rotate
;
531 ACCESS_ONCE(r
->add_ptr
) = i
;
535 for (j
= 0; j
< 16; j
++)
536 ((__u32
*)out
)[j
] = r
->pool
[(i
- j
) & wordmask
];
539 static void __mix_pool_bytes(struct entropy_store
*r
, const void *in
,
540 int nbytes
, __u8 out
[64])
542 trace_mix_pool_bytes_nolock(r
->name
, nbytes
, _RET_IP_
);
543 _mix_pool_bytes(r
, in
, nbytes
, out
);
546 static void mix_pool_bytes(struct entropy_store
*r
, const void *in
,
547 int nbytes
, __u8 out
[64])
551 trace_mix_pool_bytes(r
->name
, nbytes
, _RET_IP_
);
552 spin_lock_irqsave(&r
->lock
, flags
);
553 _mix_pool_bytes(r
, in
, nbytes
, out
);
554 spin_unlock_irqrestore(&r
->lock
, flags
);
560 unsigned short count
;
561 unsigned char rotate
;
562 unsigned char last_timer_intr
;
566 * This is a fast mixing routine used by the interrupt randomness
567 * collector. It's hardcoded for an 128 bit pool and assumes that any
568 * locks that might be needed are taken by the caller.
570 static void fast_mix(struct fast_pool
*f
, const void *in
, int nbytes
)
572 const char *bytes
= in
;
574 unsigned i
= f
->count
;
575 unsigned input_rotate
= f
->rotate
;
578 w
= rol32(*bytes
++, input_rotate
& 31) ^ f
->pool
[i
& 3] ^
579 f
->pool
[(i
+ 1) & 3];
580 f
->pool
[i
& 3] = (w
>> 3) ^ twist_table
[w
& 7];
581 input_rotate
+= (i
++ & 3) ? 7 : 14;
584 f
->rotate
= input_rotate
;
588 * Credit (or debit) the entropy store with n bits of entropy
590 static void credit_entropy_bits(struct entropy_store
*r
, int nbits
)
592 int entropy_count
, orig
;
597 DEBUG_ENT("added %d entropy credits to %s\n", nbits
, r
->name
);
599 entropy_count
= orig
= ACCESS_ONCE(r
->entropy_count
);
600 entropy_count
+= nbits
;
602 if (entropy_count
< 0) {
603 DEBUG_ENT("negative entropy/overflow\n");
605 } else if (entropy_count
> r
->poolinfo
->POOLBITS
)
606 entropy_count
= r
->poolinfo
->POOLBITS
;
607 if (cmpxchg(&r
->entropy_count
, orig
, entropy_count
) != orig
)
610 if (!r
->initialized
&& nbits
> 0) {
611 r
->entropy_total
+= nbits
;
612 if (r
->entropy_total
> 128)
616 trace_credit_entropy_bits(r
->name
, nbits
, entropy_count
,
617 r
->entropy_total
, _RET_IP_
);
619 /* should we wake readers? */
620 if (r
== &input_pool
&& entropy_count
>= random_read_wakeup_thresh
) {
621 wake_up_interruptible(&random_read_wait
);
622 kill_fasync(&fasync
, SIGIO
, POLL_IN
);
626 /*********************************************************************
628 * Entropy input management
630 *********************************************************************/
632 /* There is one of these per entropy source */
633 struct timer_rand_state
{
635 long last_delta
, last_delta2
;
636 unsigned dont_count_entropy
:1;
640 * Add device- or boot-specific data to the input and nonblocking
641 * pools to help initialize them to unique values.
643 * None of this adds any entropy, it is meant to avoid the
644 * problem of the nonblocking pool having similar initial state
645 * across largely identical devices.
647 void add_device_randomness(const void *buf
, unsigned int size
)
649 unsigned long time
= get_cycles() ^ jiffies
;
651 mix_pool_bytes(&input_pool
, buf
, size
, NULL
);
652 mix_pool_bytes(&input_pool
, &time
, sizeof(time
), NULL
);
653 mix_pool_bytes(&nonblocking_pool
, buf
, size
, NULL
);
654 mix_pool_bytes(&nonblocking_pool
, &time
, sizeof(time
), NULL
);
656 EXPORT_SYMBOL(add_device_randomness
);
658 static struct timer_rand_state input_timer_state
;
661 * This function adds entropy to the entropy "pool" by using timing
662 * delays. It uses the timer_rand_state structure to make an estimate
663 * of how many bits of entropy this call has added to the pool.
665 * The number "num" is also added to the pool - it should somehow describe
666 * the type of event which just happened. This is currently 0-255 for
667 * keyboard scan codes, and 256 upwards for interrupts.
670 static void add_timer_randomness(struct timer_rand_state
*state
, unsigned num
)
677 long delta
, delta2
, delta3
;
680 /* if over the trickle threshold, use only 1 in 4096 samples */
681 if (input_pool
.entropy_count
> trickle_thresh
&&
682 ((__this_cpu_inc_return(trickle_count
) - 1) & 0xfff))
685 sample
.jiffies
= jiffies
;
686 sample
.cycles
= get_cycles();
688 mix_pool_bytes(&input_pool
, &sample
, sizeof(sample
), NULL
);
691 * Calculate number of bits of randomness we probably added.
692 * We take into account the first, second and third-order deltas
693 * in order to make our estimate.
696 if (!state
->dont_count_entropy
) {
697 delta
= sample
.jiffies
- state
->last_time
;
698 state
->last_time
= sample
.jiffies
;
700 delta2
= delta
- state
->last_delta
;
701 state
->last_delta
= delta
;
703 delta3
= delta2
- state
->last_delta2
;
704 state
->last_delta2
= delta2
;
718 * delta is now minimum absolute delta.
719 * Round down by 1 bit on general principles,
720 * and limit entropy entimate to 12 bits.
722 credit_entropy_bits(&input_pool
,
723 min_t(int, fls(delta
>>1), 11));
729 void add_input_randomness(unsigned int type
, unsigned int code
,
732 static unsigned char last_value
;
734 /* ignore autorepeat and the like */
735 if (value
== last_value
)
738 DEBUG_ENT("input event\n");
740 add_timer_randomness(&input_timer_state
,
741 (type
<< 4) ^ code
^ (code
>> 4) ^ value
);
743 EXPORT_SYMBOL_GPL(add_input_randomness
);
745 static DEFINE_PER_CPU(struct fast_pool
, irq_randomness
);
747 void add_interrupt_randomness(int irq
, int irq_flags
)
749 struct entropy_store
*r
;
750 struct fast_pool
*fast_pool
= &__get_cpu_var(irq_randomness
);
751 struct pt_regs
*regs
= get_irq_regs();
752 unsigned long now
= jiffies
;
753 __u32 input
[4], cycles
= get_cycles();
755 input
[0] = cycles
^ jiffies
;
758 __u64 ip
= instruction_pointer(regs
);
763 fast_mix(fast_pool
, input
, sizeof(input
));
765 if ((fast_pool
->count
& 1023) &&
766 !time_after(now
, fast_pool
->last
+ HZ
))
769 fast_pool
->last
= now
;
771 r
= nonblocking_pool
.initialized
? &input_pool
: &nonblocking_pool
;
772 __mix_pool_bytes(r
, &fast_pool
->pool
, sizeof(fast_pool
->pool
), NULL
);
774 * If we don't have a valid cycle counter, and we see
775 * back-to-back timer interrupts, then skip giving credit for
779 if (irq_flags
& __IRQF_TIMER
) {
780 if (fast_pool
->last_timer_intr
)
782 fast_pool
->last_timer_intr
= 1;
784 fast_pool
->last_timer_intr
= 0;
786 credit_entropy_bits(r
, 1);
790 void add_disk_randomness(struct gendisk
*disk
)
792 if (!disk
|| !disk
->random
)
794 /* first major is 1, so we get >= 0x200 here */
795 DEBUG_ENT("disk event %d:%d\n",
796 MAJOR(disk_devt(disk
)), MINOR(disk_devt(disk
)));
798 add_timer_randomness(disk
->random
, 0x100 + disk_devt(disk
));
802 /*********************************************************************
804 * Entropy extraction routines
806 *********************************************************************/
808 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
809 size_t nbytes
, int min
, int rsvd
);
812 * This utility inline function is responsible for transferring entropy
813 * from the primary pool to the secondary extraction pool. We make
814 * sure we pull enough for a 'catastrophic reseed'.
816 static void xfer_secondary_pool(struct entropy_store
*r
, size_t nbytes
)
818 __u32 tmp
[OUTPUT_POOL_WORDS
];
820 if (r
->pull
&& r
->entropy_count
< nbytes
* 8 &&
821 r
->entropy_count
< r
->poolinfo
->POOLBITS
) {
822 /* If we're limited, always leave two wakeup worth's BITS */
823 int rsvd
= r
->limit
? 0 : random_read_wakeup_thresh
/4;
826 /* pull at least as many as BYTES as wakeup BITS */
827 bytes
= max_t(int, bytes
, random_read_wakeup_thresh
/ 8);
828 /* but never more than the buffer size */
829 bytes
= min_t(int, bytes
, sizeof(tmp
));
831 DEBUG_ENT("going to reseed %s with %d bits "
832 "(%d of %d requested)\n",
833 r
->name
, bytes
* 8, nbytes
* 8, r
->entropy_count
);
835 bytes
= extract_entropy(r
->pull
, tmp
, bytes
,
836 random_read_wakeup_thresh
/ 8, rsvd
);
837 mix_pool_bytes(r
, tmp
, bytes
, NULL
);
838 credit_entropy_bits(r
, bytes
*8);
843 * These functions extracts randomness from the "entropy pool", and
844 * returns it in a buffer.
846 * The min parameter specifies the minimum amount we can pull before
847 * failing to avoid races that defeat catastrophic reseeding while the
848 * reserved parameter indicates how much entropy we must leave in the
849 * pool after each pull to avoid starving other readers.
851 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
854 static size_t account(struct entropy_store
*r
, size_t nbytes
, int min
,
859 /* Hold lock while accounting */
860 spin_lock_irqsave(&r
->lock
, flags
);
862 BUG_ON(r
->entropy_count
> r
->poolinfo
->POOLBITS
);
863 DEBUG_ENT("trying to extract %d bits from %s\n",
864 nbytes
* 8, r
->name
);
866 /* Can we pull enough? */
867 if (r
->entropy_count
/ 8 < min
+ reserved
) {
870 /* If limited, never pull more than available */
871 if (r
->limit
&& nbytes
+ reserved
>= r
->entropy_count
/ 8)
872 nbytes
= r
->entropy_count
/8 - reserved
;
874 if (r
->entropy_count
/ 8 >= nbytes
+ reserved
)
875 r
->entropy_count
-= nbytes
*8;
877 r
->entropy_count
= reserved
;
879 if (r
->entropy_count
< random_write_wakeup_thresh
) {
880 wake_up_interruptible(&random_write_wait
);
881 kill_fasync(&fasync
, SIGIO
, POLL_OUT
);
885 DEBUG_ENT("debiting %d entropy credits from %s%s\n",
886 nbytes
* 8, r
->name
, r
->limit
? "" : " (unlimited)");
888 spin_unlock_irqrestore(&r
->lock
, flags
);
893 static void extract_buf(struct entropy_store
*r
, __u8
*out
)
898 unsigned long l
[LONGS(EXTRACT_SIZE
)];
900 __u32 workspace
[SHA_WORKSPACE_WORDS
];
904 /* Generate a hash across the pool, 16 words (512 bits) at a time */
906 spin_lock_irqsave(&r
->lock
, flags
);
907 for (i
= 0; i
< r
->poolinfo
->poolwords
; i
+= 16)
908 sha_transform(hash
.w
, (__u8
*)(r
->pool
+ i
), workspace
);
911 * We mix the hash back into the pool to prevent backtracking
912 * attacks (where the attacker knows the state of the pool
913 * plus the current outputs, and attempts to find previous
914 * ouputs), unless the hash function can be inverted. By
915 * mixing at least a SHA1 worth of hash data back, we make
916 * brute-forcing the feedback as hard as brute-forcing the
919 __mix_pool_bytes(r
, hash
.w
, sizeof(hash
.w
), extract
);
920 spin_unlock_irqrestore(&r
->lock
, flags
);
923 * To avoid duplicates, we atomically extract a portion of the
924 * pool while mixing, and hash one final time.
926 sha_transform(hash
.w
, extract
, workspace
);
927 memset(extract
, 0, sizeof(extract
));
928 memset(workspace
, 0, sizeof(workspace
));
931 * In case the hash function has some recognizable output
932 * pattern, we fold it in half. Thus, we always feed back
933 * twice as much data as we output.
935 hash
.w
[0] ^= hash
.w
[3];
936 hash
.w
[1] ^= hash
.w
[4];
937 hash
.w
[2] ^= rol32(hash
.w
[2], 16);
940 * If we have a architectural hardware random number
941 * generator, mix that in, too.
943 for (i
= 0; i
< LONGS(EXTRACT_SIZE
); i
++) {
945 if (!arch_get_random_long(&v
))
950 memcpy(out
, &hash
, EXTRACT_SIZE
);
951 memset(&hash
, 0, sizeof(hash
));
954 static ssize_t
extract_entropy(struct entropy_store
*r
, void *buf
,
955 size_t nbytes
, int min
, int reserved
)
958 __u8 tmp
[EXTRACT_SIZE
];
960 trace_extract_entropy(r
->name
, nbytes
, r
->entropy_count
, _RET_IP_
);
961 xfer_secondary_pool(r
, nbytes
);
962 nbytes
= account(r
, nbytes
, min
, reserved
);
970 spin_lock_irqsave(&r
->lock
, flags
);
971 if (!memcmp(tmp
, r
->last_data
, EXTRACT_SIZE
))
972 panic("Hardware RNG duplicated output!\n");
973 memcpy(r
->last_data
, tmp
, EXTRACT_SIZE
);
974 spin_unlock_irqrestore(&r
->lock
, flags
);
976 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
983 /* Wipe data just returned from memory */
984 memset(tmp
, 0, sizeof(tmp
));
989 static ssize_t
extract_entropy_user(struct entropy_store
*r
, void __user
*buf
,
993 __u8 tmp
[EXTRACT_SIZE
];
995 trace_extract_entropy_user(r
->name
, nbytes
, r
->entropy_count
, _RET_IP_
);
996 xfer_secondary_pool(r
, nbytes
);
997 nbytes
= account(r
, nbytes
, 0, 0);
1000 if (need_resched()) {
1001 if (signal_pending(current
)) {
1009 extract_buf(r
, tmp
);
1010 i
= min_t(int, nbytes
, EXTRACT_SIZE
);
1011 if (copy_to_user(buf
, tmp
, i
)) {
1021 /* Wipe data just returned from memory */
1022 memset(tmp
, 0, sizeof(tmp
));
1028 * This function is the exported kernel interface. It returns some
1029 * number of good random numbers, suitable for key generation, seeding
1030 * TCP sequence numbers, etc. It does not use the hw random number
1031 * generator, if available; use get_random_bytes_arch() for that.
1033 void get_random_bytes(void *buf
, int nbytes
)
1035 extract_entropy(&nonblocking_pool
, buf
, nbytes
, 0, 0);
1037 EXPORT_SYMBOL(get_random_bytes
);
1040 * This function will use the architecture-specific hardware random
1041 * number generator if it is available. The arch-specific hw RNG will
1042 * almost certainly be faster than what we can do in software, but it
1043 * is impossible to verify that it is implemented securely (as
1044 * opposed, to, say, the AES encryption of a sequence number using a
1045 * key known by the NSA). So it's useful if we need the speed, but
1046 * only if we're willing to trust the hardware manufacturer not to
1047 * have put in a back door.
1049 void get_random_bytes_arch(void *buf
, int nbytes
)
1053 trace_get_random_bytes(nbytes
, _RET_IP_
);
1056 int chunk
= min(nbytes
, (int)sizeof(unsigned long));
1058 if (!arch_get_random_long(&v
))
1061 memcpy(p
, &v
, chunk
);
1067 extract_entropy(&nonblocking_pool
, p
, nbytes
, 0, 0);
1069 EXPORT_SYMBOL(get_random_bytes_arch
);
1073 * init_std_data - initialize pool with system data
1075 * @r: pool to initialize
1077 * This function clears the pool's entropy count and mixes some system
1078 * data into the pool to prepare it for use. The pool is not cleared
1079 * as that can only decrease the entropy in the pool.
1081 static void init_std_data(struct entropy_store
*r
)
1084 ktime_t now
= ktime_get_real();
1087 r
->entropy_count
= 0;
1088 r
->entropy_total
= 0;
1089 mix_pool_bytes(r
, &now
, sizeof(now
), NULL
);
1090 for (i
= r
->poolinfo
->POOLBYTES
; i
> 0; i
-= sizeof(rv
)) {
1091 if (!arch_get_random_long(&rv
))
1093 mix_pool_bytes(r
, &rv
, sizeof(rv
), NULL
);
1095 mix_pool_bytes(r
, utsname(), sizeof(*(utsname())), NULL
);
1099 * Note that setup_arch() may call add_device_randomness()
1100 * long before we get here. This allows seeding of the pools
1101 * with some platform dependent data very early in the boot
1102 * process. But it limits our options here. We must use
1103 * statically allocated structures that already have all
1104 * initializations complete at compile time. We should also
1105 * take care not to overwrite the precious per platform data
1108 static int rand_initialize(void)
1110 init_std_data(&input_pool
);
1111 init_std_data(&blocking_pool
);
1112 init_std_data(&nonblocking_pool
);
1115 module_init(rand_initialize
);
1118 void rand_initialize_disk(struct gendisk
*disk
)
1120 struct timer_rand_state
*state
;
1123 * If kzalloc returns null, we just won't use that entropy
1126 state
= kzalloc(sizeof(struct timer_rand_state
), GFP_KERNEL
);
1128 disk
->random
= state
;
1133 random_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1135 ssize_t n
, retval
= 0, count
= 0;
1140 while (nbytes
> 0) {
1142 if (n
> SEC_XFER_SIZE
)
1145 DEBUG_ENT("reading %d bits\n", n
*8);
1147 n
= extract_entropy_user(&blocking_pool
, buf
, n
);
1149 DEBUG_ENT("read got %d bits (%d still needed)\n",
1153 if (file
->f_flags
& O_NONBLOCK
) {
1158 DEBUG_ENT("sleeping?\n");
1160 wait_event_interruptible(random_read_wait
,
1161 input_pool
.entropy_count
>=
1162 random_read_wakeup_thresh
);
1164 DEBUG_ENT("awake\n");
1166 if (signal_pending(current
)) {
1167 retval
= -ERESTARTSYS
;
1181 break; /* This break makes the device work */
1182 /* like a named pipe */
1185 return (count
? count
: retval
);
1189 urandom_read(struct file
*file
, char __user
*buf
, size_t nbytes
, loff_t
*ppos
)
1191 return extract_entropy_user(&nonblocking_pool
, buf
, nbytes
);
1195 random_poll(struct file
*file
, poll_table
* wait
)
1199 poll_wait(file
, &random_read_wait
, wait
);
1200 poll_wait(file
, &random_write_wait
, wait
);
1202 if (input_pool
.entropy_count
>= random_read_wakeup_thresh
)
1203 mask
|= POLLIN
| POLLRDNORM
;
1204 if (input_pool
.entropy_count
< random_write_wakeup_thresh
)
1205 mask
|= POLLOUT
| POLLWRNORM
;
1210 write_pool(struct entropy_store
*r
, const char __user
*buffer
, size_t count
)
1214 const char __user
*p
= buffer
;
1217 bytes
= min(count
, sizeof(buf
));
1218 if (copy_from_user(&buf
, p
, bytes
))
1224 mix_pool_bytes(r
, buf
, bytes
, NULL
);
1231 static ssize_t
random_write(struct file
*file
, const char __user
*buffer
,
1232 size_t count
, loff_t
*ppos
)
1236 ret
= write_pool(&blocking_pool
, buffer
, count
);
1239 ret
= write_pool(&nonblocking_pool
, buffer
, count
);
1243 return (ssize_t
)count
;
1246 static long random_ioctl(struct file
*f
, unsigned int cmd
, unsigned long arg
)
1248 int size
, ent_count
;
1249 int __user
*p
= (int __user
*)arg
;
1254 /* inherently racy, no point locking */
1255 if (put_user(input_pool
.entropy_count
, p
))
1258 case RNDADDTOENTCNT
:
1259 if (!capable(CAP_SYS_ADMIN
))
1261 if (get_user(ent_count
, p
))
1263 credit_entropy_bits(&input_pool
, ent_count
);
1266 if (!capable(CAP_SYS_ADMIN
))
1268 if (get_user(ent_count
, p
++))
1272 if (get_user(size
, p
++))
1274 retval
= write_pool(&input_pool
, (const char __user
*)p
,
1278 credit_entropy_bits(&input_pool
, ent_count
);
1282 /* Clear the entropy pool counters. */
1283 if (!capable(CAP_SYS_ADMIN
))
1292 static int random_fasync(int fd
, struct file
*filp
, int on
)
1294 return fasync_helper(fd
, filp
, on
, &fasync
);
1297 const struct file_operations random_fops
= {
1298 .read
= random_read
,
1299 .write
= random_write
,
1300 .poll
= random_poll
,
1301 .unlocked_ioctl
= random_ioctl
,
1302 .fasync
= random_fasync
,
1303 .llseek
= noop_llseek
,
1306 const struct file_operations urandom_fops
= {
1307 .read
= urandom_read
,
1308 .write
= random_write
,
1309 .unlocked_ioctl
= random_ioctl
,
1310 .fasync
= random_fasync
,
1311 .llseek
= noop_llseek
,
1314 /***************************************************************
1315 * Random UUID interface
1317 * Used here for a Boot ID, but can be useful for other kernel
1319 ***************************************************************/
1322 * Generate random UUID
1324 void generate_random_uuid(unsigned char uuid_out
[16])
1326 get_random_bytes(uuid_out
, 16);
1327 /* Set UUID version to 4 --- truly random generation */
1328 uuid_out
[6] = (uuid_out
[6] & 0x0F) | 0x40;
1329 /* Set the UUID variant to DCE */
1330 uuid_out
[8] = (uuid_out
[8] & 0x3F) | 0x80;
1332 EXPORT_SYMBOL(generate_random_uuid
);
1334 /********************************************************************
1338 ********************************************************************/
1340 #ifdef CONFIG_SYSCTL
1342 #include <linux/sysctl.h>
1344 static int min_read_thresh
= 8, min_write_thresh
;
1345 static int max_read_thresh
= INPUT_POOL_WORDS
* 32;
1346 static int max_write_thresh
= INPUT_POOL_WORDS
* 32;
1347 static char sysctl_bootid
[16];
1350 * These functions is used to return both the bootid UUID, and random
1351 * UUID. The difference is in whether table->data is NULL; if it is,
1352 * then a new UUID is generated and returned to the user.
1354 * If the user accesses this via the proc interface, it will be returned
1355 * as an ASCII string in the standard UUID format. If accesses via the
1356 * sysctl system call, it is returned as 16 bytes of binary data.
1358 static int proc_do_uuid(ctl_table
*table
, int write
,
1359 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1361 ctl_table fake_table
;
1362 unsigned char buf
[64], tmp_uuid
[16], *uuid
;
1367 generate_random_uuid(uuid
);
1369 static DEFINE_SPINLOCK(bootid_spinlock
);
1371 spin_lock(&bootid_spinlock
);
1373 generate_random_uuid(uuid
);
1374 spin_unlock(&bootid_spinlock
);
1377 sprintf(buf
, "%pU", uuid
);
1379 fake_table
.data
= buf
;
1380 fake_table
.maxlen
= sizeof(buf
);
1382 return proc_dostring(&fake_table
, write
, buffer
, lenp
, ppos
);
1385 static int sysctl_poolsize
= INPUT_POOL_WORDS
* 32;
1386 extern ctl_table random_table
[];
1387 ctl_table random_table
[] = {
1389 .procname
= "poolsize",
1390 .data
= &sysctl_poolsize
,
1391 .maxlen
= sizeof(int),
1393 .proc_handler
= proc_dointvec
,
1396 .procname
= "entropy_avail",
1397 .maxlen
= sizeof(int),
1399 .proc_handler
= proc_dointvec
,
1400 .data
= &input_pool
.entropy_count
,
1403 .procname
= "read_wakeup_threshold",
1404 .data
= &random_read_wakeup_thresh
,
1405 .maxlen
= sizeof(int),
1407 .proc_handler
= proc_dointvec_minmax
,
1408 .extra1
= &min_read_thresh
,
1409 .extra2
= &max_read_thresh
,
1412 .procname
= "write_wakeup_threshold",
1413 .data
= &random_write_wakeup_thresh
,
1414 .maxlen
= sizeof(int),
1416 .proc_handler
= proc_dointvec_minmax
,
1417 .extra1
= &min_write_thresh
,
1418 .extra2
= &max_write_thresh
,
1421 .procname
= "boot_id",
1422 .data
= &sysctl_bootid
,
1425 .proc_handler
= proc_do_uuid
,
1431 .proc_handler
= proc_do_uuid
,
1435 #endif /* CONFIG_SYSCTL */
1437 static u32 random_int_secret
[MD5_MESSAGE_BYTES
/ 4] ____cacheline_aligned
;
1439 static int __init
random_int_secret_init(void)
1441 get_random_bytes(random_int_secret
, sizeof(random_int_secret
));
1444 late_initcall(random_int_secret_init
);
1447 * Get a random word for internal kernel use only. Similar to urandom but
1448 * with the goal of minimal entropy pool depletion. As a result, the random
1449 * value is not cryptographically secure but for several uses the cost of
1450 * depleting entropy is too high
1452 static DEFINE_PER_CPU(__u32
[MD5_DIGEST_WORDS
], get_random_int_hash
);
1453 unsigned int get_random_int(void)
1458 if (arch_get_random_int(&ret
))
1461 hash
= get_cpu_var(get_random_int_hash
);
1463 hash
[0] += current
->pid
+ jiffies
+ get_cycles();
1464 md5_transform(hash
, random_int_secret
);
1466 put_cpu_var(get_random_int_hash
);
1472 * randomize_range() returns a start address such that
1474 * [...... <range> .....]
1477 * a <range> with size "len" starting at the return value is inside in the
1478 * area defined by [start, end], but is otherwise randomized.
1481 randomize_range(unsigned long start
, unsigned long end
, unsigned long len
)
1483 unsigned long range
= end
- len
- start
;
1485 if (end
<= start
+ len
)
1487 return PAGE_ALIGN(get_random_int() % range
+ start
);