2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/module.h>
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched.h> /* remove ASAP */
15 #include <linux/falloc.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
40 #include <asm/uaccess.h>
42 static const struct super_operations hugetlbfs_ops
;
43 static const struct address_space_operations hugetlbfs_aops
;
44 const struct file_operations hugetlbfs_file_operations
;
45 static const struct inode_operations hugetlbfs_dir_inode_operations
;
46 static const struct inode_operations hugetlbfs_inode_operations
;
48 struct hugetlbfs_config
{
54 struct hstate
*hstate
;
58 struct hugetlbfs_inode_info
{
59 struct shared_policy policy
;
60 struct inode vfs_inode
;
63 static inline struct hugetlbfs_inode_info
*HUGETLBFS_I(struct inode
*inode
)
65 return container_of(inode
, struct hugetlbfs_inode_info
, vfs_inode
);
68 int sysctl_hugetlb_shm_group
;
71 Opt_size
, Opt_nr_inodes
,
72 Opt_mode
, Opt_uid
, Opt_gid
,
73 Opt_pagesize
, Opt_min_size
,
77 static const match_table_t tokens
= {
78 {Opt_size
, "size=%s"},
79 {Opt_nr_inodes
, "nr_inodes=%s"},
80 {Opt_mode
, "mode=%o"},
83 {Opt_pagesize
, "pagesize=%s"},
84 {Opt_min_size
, "min_size=%s"},
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
90 struct inode
*inode
, pgoff_t index
)
92 vma
->vm_policy
= mpol_shared_policy_lookup(&HUGETLBFS_I(inode
)->policy
,
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
98 mpol_cond_put(vma
->vm_policy
);
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
102 struct inode
*inode
, pgoff_t index
)
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
111 static void huge_pagevec_release(struct pagevec
*pvec
)
115 for (i
= 0; i
< pagevec_count(pvec
); ++i
)
116 put_page(pvec
->pages
[i
]);
118 pagevec_reinit(pvec
);
121 static int hugetlbfs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
123 struct inode
*inode
= file_inode(file
);
126 struct hstate
*h
= hstate_file(file
);
129 * vma address alignment (but not the pgoff alignment) has
130 * already been checked by prepare_hugepage_range. If you add
131 * any error returns here, do so after setting VM_HUGETLB, so
132 * is_vm_hugetlb_page tests below unmap_region go the right
133 * way when do_mmap_pgoff unwinds (may be important on powerpc
136 vma
->vm_flags
|= VM_HUGETLB
| VM_DONTEXPAND
;
137 vma
->vm_ops
= &hugetlb_vm_ops
;
139 if (vma
->vm_pgoff
& (~huge_page_mask(h
) >> PAGE_SHIFT
))
142 vma_len
= (loff_t
)(vma
->vm_end
- vma
->vm_start
);
144 mutex_lock(&inode
->i_mutex
);
148 len
= vma_len
+ ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
150 if (hugetlb_reserve_pages(inode
,
151 vma
->vm_pgoff
>> huge_page_order(h
),
152 len
>> huge_page_shift(h
), vma
,
157 if (vma
->vm_flags
& VM_WRITE
&& inode
->i_size
< len
)
160 mutex_unlock(&inode
->i_mutex
);
166 * Called under down_write(mmap_sem).
169 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
171 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
172 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
174 struct mm_struct
*mm
= current
->mm
;
175 struct vm_area_struct
*vma
;
176 struct hstate
*h
= hstate_file(file
);
177 struct vm_unmapped_area_info info
;
179 if (len
& ~huge_page_mask(h
))
184 if (flags
& MAP_FIXED
) {
185 if (prepare_hugepage_range(file
, addr
, len
))
191 addr
= ALIGN(addr
, huge_page_size(h
));
192 vma
= find_vma(mm
, addr
);
193 if (TASK_SIZE
- len
>= addr
&&
194 (!vma
|| addr
+ len
<= vma
->vm_start
))
200 info
.low_limit
= TASK_UNMAPPED_BASE
;
201 info
.high_limit
= TASK_SIZE
;
202 info
.align_mask
= PAGE_MASK
& ~huge_page_mask(h
);
203 info
.align_offset
= 0;
204 return vm_unmapped_area(&info
);
209 hugetlbfs_read_actor(struct page
*page
, unsigned long offset
,
210 struct iov_iter
*to
, unsigned long size
)
215 /* Find which 4k chunk and offset with in that chunk */
216 i
= offset
>> PAGE_CACHE_SHIFT
;
217 offset
= offset
& ~PAGE_CACHE_MASK
;
221 chunksize
= PAGE_CACHE_SIZE
;
224 if (chunksize
> size
)
226 n
= copy_page_to_iter(&page
[i
], offset
, chunksize
, to
);
238 * Support for read() - Find the page attached to f_mapping and copy out the
239 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
240 * since it has PAGE_CACHE_SIZE assumptions.
242 static ssize_t
hugetlbfs_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
244 struct file
*file
= iocb
->ki_filp
;
245 struct hstate
*h
= hstate_file(file
);
246 struct address_space
*mapping
= file
->f_mapping
;
247 struct inode
*inode
= mapping
->host
;
248 unsigned long index
= iocb
->ki_pos
>> huge_page_shift(h
);
249 unsigned long offset
= iocb
->ki_pos
& ~huge_page_mask(h
);
250 unsigned long end_index
;
254 while (iov_iter_count(to
)) {
258 /* nr is the maximum number of bytes to copy from this page */
259 nr
= huge_page_size(h
);
260 isize
= i_size_read(inode
);
263 end_index
= (isize
- 1) >> huge_page_shift(h
);
264 if (index
> end_index
)
266 if (index
== end_index
) {
267 nr
= ((isize
- 1) & ~huge_page_mask(h
)) + 1;
274 page
= find_lock_page(mapping
, index
);
275 if (unlikely(page
== NULL
)) {
277 * We have a HOLE, zero out the user-buffer for the
278 * length of the hole or request.
280 copied
= iov_iter_zero(nr
, to
);
285 * We have the page, copy it to user space buffer.
287 copied
= hugetlbfs_read_actor(page
, offset
, to
, nr
);
288 page_cache_release(page
);
292 if (copied
!= nr
&& iov_iter_count(to
)) {
297 index
+= offset
>> huge_page_shift(h
);
298 offset
&= ~huge_page_mask(h
);
300 iocb
->ki_pos
= ((loff_t
)index
<< huge_page_shift(h
)) + offset
;
304 static int hugetlbfs_write_begin(struct file
*file
,
305 struct address_space
*mapping
,
306 loff_t pos
, unsigned len
, unsigned flags
,
307 struct page
**pagep
, void **fsdata
)
312 static int hugetlbfs_write_end(struct file
*file
, struct address_space
*mapping
,
313 loff_t pos
, unsigned len
, unsigned copied
,
314 struct page
*page
, void *fsdata
)
320 static void remove_huge_page(struct page
*page
)
322 ClearPageDirty(page
);
323 ClearPageUptodate(page
);
324 delete_from_page_cache(page
);
329 * remove_inode_hugepages handles two distinct cases: truncation and hole
330 * punch. There are subtle differences in operation for each case.
332 * truncation is indicated by end of range being LLONG_MAX
333 * In this case, we first scan the range and release found pages.
334 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
335 * maps and global counts.
336 * hole punch is indicated if end is not LLONG_MAX
337 * In the hole punch case we scan the range and release found pages.
338 * Only when releasing a page is the associated region/reserv map
339 * deleted. The region/reserv map for ranges without associated
340 * pages are not modified.
341 * Note: If the passed end of range value is beyond the end of file, but
342 * not LLONG_MAX this routine still performs a hole punch operation.
344 static void remove_inode_hugepages(struct inode
*inode
, loff_t lstart
,
347 struct hstate
*h
= hstate_inode(inode
);
348 struct address_space
*mapping
= &inode
->i_data
;
349 const pgoff_t start
= lstart
>> huge_page_shift(h
);
350 const pgoff_t end
= lend
>> huge_page_shift(h
);
351 struct vm_area_struct pseudo_vma
;
355 long lookup_nr
= PAGEVEC_SIZE
;
356 bool truncate_op
= (lend
== LLONG_MAX
);
358 memset(&pseudo_vma
, 0, sizeof(struct vm_area_struct
));
359 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
360 pagevec_init(&pvec
, 0);
364 * Make sure to never grab more pages that we
365 * might possibly need.
367 if (end
- next
< lookup_nr
)
368 lookup_nr
= end
- next
;
371 * This pagevec_lookup() may return pages past 'end',
372 * so we must check for page->index > end.
374 if (!pagevec_lookup(&pvec
, mapping
, next
, lookup_nr
)) {
381 for (i
= 0; i
< pagevec_count(&pvec
); ++i
) {
382 struct page
*page
= pvec
.pages
[i
];
385 hash
= hugetlb_fault_mutex_hash(h
, current
->mm
,
388 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
391 if (page
->index
>= end
) {
393 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
394 next
= end
; /* we are done */
399 * If page is mapped, it was faulted in after being
400 * unmapped. Do nothing in this race case. In the
401 * normal case page is not mapped.
403 if (!page_mapped(page
)) {
404 bool rsv_on_error
= !PagePrivate(page
);
406 * We must free the huge page and remove
407 * from page cache (remove_huge_page) BEFORE
408 * removing the region/reserve map
409 * (hugetlb_unreserve_pages). In rare out
410 * of memory conditions, removal of the
411 * region/reserve map could fail. Before
412 * free'ing the page, note PagePrivate which
413 * is used in case of error.
415 remove_huge_page(page
);
418 if (unlikely(hugetlb_unreserve_pages(
421 hugetlb_fix_reserve_counts(
422 inode
, rsv_on_error
);
426 if (page
->index
> next
)
432 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
434 huge_pagevec_release(&pvec
);
438 (void)hugetlb_unreserve_pages(inode
, start
, LONG_MAX
, freed
);
441 static void hugetlbfs_evict_inode(struct inode
*inode
)
443 struct resv_map
*resv_map
;
445 remove_inode_hugepages(inode
, 0, LLONG_MAX
);
446 resv_map
= (struct resv_map
*)inode
->i_mapping
->private_data
;
447 /* root inode doesn't have the resv_map, so we should check it */
449 resv_map_release(&resv_map
->refs
);
454 hugetlb_vmdelete_list(struct rb_root
*root
, pgoff_t start
, pgoff_t end
)
456 struct vm_area_struct
*vma
;
459 * end == 0 indicates that the entire range after
460 * start should be unmapped.
462 vma_interval_tree_foreach(vma
, root
, start
, end
? end
: ULONG_MAX
) {
463 unsigned long v_offset
;
466 * Can the expression below overflow on 32-bit arches?
467 * No, because the interval tree returns us only those vmas
468 * which overlap the truncated area starting at pgoff,
469 * and no vma on a 32-bit arch can span beyond the 4GB.
471 if (vma
->vm_pgoff
< start
)
472 v_offset
= (start
- vma
->vm_pgoff
) << PAGE_SHIFT
;
477 end
= ((end
- start
) << PAGE_SHIFT
) +
478 vma
->vm_start
+ v_offset
;
479 if (end
> vma
->vm_end
)
484 unmap_hugepage_range(vma
, vma
->vm_start
+ v_offset
, end
, NULL
);
488 static int hugetlb_vmtruncate(struct inode
*inode
, loff_t offset
)
491 struct address_space
*mapping
= inode
->i_mapping
;
492 struct hstate
*h
= hstate_inode(inode
);
494 BUG_ON(offset
& ~huge_page_mask(h
));
495 pgoff
= offset
>> PAGE_SHIFT
;
497 i_size_write(inode
, offset
);
498 i_mmap_lock_write(mapping
);
499 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
))
500 hugetlb_vmdelete_list(&mapping
->i_mmap
, pgoff
, 0);
501 i_mmap_unlock_write(mapping
);
502 remove_inode_hugepages(inode
, offset
, LLONG_MAX
);
506 static long hugetlbfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
508 struct hstate
*h
= hstate_inode(inode
);
509 loff_t hpage_size
= huge_page_size(h
);
510 loff_t hole_start
, hole_end
;
513 * For hole punch round up the beginning offset of the hole and
514 * round down the end.
516 hole_start
= round_up(offset
, hpage_size
);
517 hole_end
= round_down(offset
+ len
, hpage_size
);
519 if (hole_end
> hole_start
) {
520 struct address_space
*mapping
= inode
->i_mapping
;
522 mutex_lock(&inode
->i_mutex
);
523 i_mmap_lock_write(mapping
);
524 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
))
525 hugetlb_vmdelete_list(&mapping
->i_mmap
,
526 hole_start
>> PAGE_SHIFT
,
527 hole_end
>> PAGE_SHIFT
);
528 i_mmap_unlock_write(mapping
);
529 remove_inode_hugepages(inode
, hole_start
, hole_end
);
530 mutex_unlock(&inode
->i_mutex
);
536 static long hugetlbfs_fallocate(struct file
*file
, int mode
, loff_t offset
,
539 struct inode
*inode
= file_inode(file
);
540 struct address_space
*mapping
= inode
->i_mapping
;
541 struct hstate
*h
= hstate_inode(inode
);
542 struct vm_area_struct pseudo_vma
;
543 struct mm_struct
*mm
= current
->mm
;
544 loff_t hpage_size
= huge_page_size(h
);
545 unsigned long hpage_shift
= huge_page_shift(h
);
546 pgoff_t start
, index
, end
;
550 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
553 if (mode
& FALLOC_FL_PUNCH_HOLE
)
554 return hugetlbfs_punch_hole(inode
, offset
, len
);
557 * Default preallocate case.
558 * For this range, start is rounded down and end is rounded up
559 * as well as being converted to page offsets.
561 start
= offset
>> hpage_shift
;
562 end
= (offset
+ len
+ hpage_size
- 1) >> hpage_shift
;
564 mutex_lock(&inode
->i_mutex
);
566 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
567 error
= inode_newsize_ok(inode
, offset
+ len
);
572 * Initialize a pseudo vma as this is required by the huge page
573 * allocation routines. If NUMA is configured, use page index
574 * as input to create an allocation policy.
576 memset(&pseudo_vma
, 0, sizeof(struct vm_area_struct
));
577 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
578 pseudo_vma
.vm_file
= file
;
580 for (index
= start
; index
< end
; index
++) {
582 * This is supposed to be the vaddr where the page is being
583 * faulted in, but we have no vaddr here.
587 int avoid_reserve
= 0;
592 * fallocate(2) manpage permits EINTR; we may have been
593 * interrupted because we are using up too much memory.
595 if (signal_pending(current
)) {
600 /* Set numa allocation policy based on index */
601 hugetlb_set_vma_policy(&pseudo_vma
, inode
, index
);
603 /* addr is the offset within the file (zero based) */
604 addr
= index
* hpage_size
;
606 /* mutex taken here, fault path and hole punch */
607 hash
= hugetlb_fault_mutex_hash(h
, mm
, &pseudo_vma
, mapping
,
609 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
611 /* See if already present in mapping to avoid alloc/free */
612 page
= find_get_page(mapping
, index
);
615 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
616 hugetlb_drop_vma_policy(&pseudo_vma
);
620 /* Allocate page and add to page cache */
621 page
= alloc_huge_page(&pseudo_vma
, addr
, avoid_reserve
);
622 hugetlb_drop_vma_policy(&pseudo_vma
);
624 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
625 error
= PTR_ERR(page
);
628 clear_huge_page(page
, addr
, pages_per_huge_page(h
));
629 __SetPageUptodate(page
);
630 error
= huge_add_to_page_cache(page
, mapping
, index
);
631 if (unlikely(error
)) {
633 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
637 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
640 * page_put due to reference from alloc_huge_page()
641 * unlock_page because locked by add_to_page_cache()
647 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
648 i_size_write(inode
, offset
+ len
);
649 inode
->i_ctime
= CURRENT_TIME
;
650 spin_lock(&inode
->i_lock
);
651 inode
->i_private
= NULL
;
652 spin_unlock(&inode
->i_lock
);
654 mutex_unlock(&inode
->i_mutex
);
658 static int hugetlbfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
660 struct inode
*inode
= d_inode(dentry
);
661 struct hstate
*h
= hstate_inode(inode
);
663 unsigned int ia_valid
= attr
->ia_valid
;
667 error
= inode_change_ok(inode
, attr
);
671 if (ia_valid
& ATTR_SIZE
) {
673 if (attr
->ia_size
& ~huge_page_mask(h
))
675 error
= hugetlb_vmtruncate(inode
, attr
->ia_size
);
680 setattr_copy(inode
, attr
);
681 mark_inode_dirty(inode
);
685 static struct inode
*hugetlbfs_get_root(struct super_block
*sb
,
686 struct hugetlbfs_config
*config
)
690 inode
= new_inode(sb
);
692 struct hugetlbfs_inode_info
*info
;
693 inode
->i_ino
= get_next_ino();
694 inode
->i_mode
= S_IFDIR
| config
->mode
;
695 inode
->i_uid
= config
->uid
;
696 inode
->i_gid
= config
->gid
;
697 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
698 info
= HUGETLBFS_I(inode
);
699 mpol_shared_policy_init(&info
->policy
, NULL
);
700 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
701 inode
->i_fop
= &simple_dir_operations
;
702 /* directory inodes start off with i_nlink == 2 (for "." entry) */
704 lockdep_annotate_inode_mutex_key(inode
);
710 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
711 * be taken from reclaim -- unlike regular filesystems. This needs an
712 * annotation because huge_pmd_share() does an allocation under
715 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key
;
717 static struct inode
*hugetlbfs_get_inode(struct super_block
*sb
,
719 umode_t mode
, dev_t dev
)
722 struct resv_map
*resv_map
;
724 resv_map
= resv_map_alloc();
728 inode
= new_inode(sb
);
730 struct hugetlbfs_inode_info
*info
;
731 inode
->i_ino
= get_next_ino();
732 inode_init_owner(inode
, dir
, mode
);
733 lockdep_set_class(&inode
->i_mapping
->i_mmap_rwsem
,
734 &hugetlbfs_i_mmap_rwsem_key
);
735 inode
->i_mapping
->a_ops
= &hugetlbfs_aops
;
736 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
737 inode
->i_mapping
->private_data
= resv_map
;
738 info
= HUGETLBFS_I(inode
);
740 * The policy is initialized here even if we are creating a
741 * private inode because initialization simply creates an
742 * an empty rb tree and calls spin_lock_init(), later when we
743 * call mpol_free_shared_policy() it will just return because
744 * the rb tree will still be empty.
746 mpol_shared_policy_init(&info
->policy
, NULL
);
747 switch (mode
& S_IFMT
) {
749 init_special_inode(inode
, mode
, dev
);
752 inode
->i_op
= &hugetlbfs_inode_operations
;
753 inode
->i_fop
= &hugetlbfs_file_operations
;
756 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
757 inode
->i_fop
= &simple_dir_operations
;
759 /* directory inodes start off with i_nlink == 2 (for "." entry) */
763 inode
->i_op
= &page_symlink_inode_operations
;
766 lockdep_annotate_inode_mutex_key(inode
);
768 kref_put(&resv_map
->refs
, resv_map_release
);
774 * File creation. Allocate an inode, and we're done..
776 static int hugetlbfs_mknod(struct inode
*dir
,
777 struct dentry
*dentry
, umode_t mode
, dev_t dev
)
782 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, mode
, dev
);
784 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
785 d_instantiate(dentry
, inode
);
786 dget(dentry
); /* Extra count - pin the dentry in core */
792 static int hugetlbfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
794 int retval
= hugetlbfs_mknod(dir
, dentry
, mode
| S_IFDIR
, 0);
800 static int hugetlbfs_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, bool excl
)
802 return hugetlbfs_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
805 static int hugetlbfs_symlink(struct inode
*dir
,
806 struct dentry
*dentry
, const char *symname
)
811 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0);
813 int l
= strlen(symname
)+1;
814 error
= page_symlink(inode
, symname
, l
);
816 d_instantiate(dentry
, inode
);
821 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
827 * mark the head page dirty
829 static int hugetlbfs_set_page_dirty(struct page
*page
)
831 struct page
*head
= compound_head(page
);
837 static int hugetlbfs_migrate_page(struct address_space
*mapping
,
838 struct page
*newpage
, struct page
*page
,
839 enum migrate_mode mode
)
843 rc
= migrate_huge_page_move_mapping(mapping
, newpage
, page
);
844 if (rc
!= MIGRATEPAGE_SUCCESS
)
846 migrate_page_copy(newpage
, page
);
848 return MIGRATEPAGE_SUCCESS
;
851 static int hugetlbfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
853 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(dentry
->d_sb
);
854 struct hstate
*h
= hstate_inode(d_inode(dentry
));
856 buf
->f_type
= HUGETLBFS_MAGIC
;
857 buf
->f_bsize
= huge_page_size(h
);
859 spin_lock(&sbinfo
->stat_lock
);
860 /* If no limits set, just report 0 for max/free/used
861 * blocks, like simple_statfs() */
865 spin_lock(&sbinfo
->spool
->lock
);
866 buf
->f_blocks
= sbinfo
->spool
->max_hpages
;
867 free_pages
= sbinfo
->spool
->max_hpages
868 - sbinfo
->spool
->used_hpages
;
869 buf
->f_bavail
= buf
->f_bfree
= free_pages
;
870 spin_unlock(&sbinfo
->spool
->lock
);
871 buf
->f_files
= sbinfo
->max_inodes
;
872 buf
->f_ffree
= sbinfo
->free_inodes
;
874 spin_unlock(&sbinfo
->stat_lock
);
876 buf
->f_namelen
= NAME_MAX
;
880 static void hugetlbfs_put_super(struct super_block
*sb
)
882 struct hugetlbfs_sb_info
*sbi
= HUGETLBFS_SB(sb
);
885 sb
->s_fs_info
= NULL
;
888 hugepage_put_subpool(sbi
->spool
);
894 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
896 if (sbinfo
->free_inodes
>= 0) {
897 spin_lock(&sbinfo
->stat_lock
);
898 if (unlikely(!sbinfo
->free_inodes
)) {
899 spin_unlock(&sbinfo
->stat_lock
);
902 sbinfo
->free_inodes
--;
903 spin_unlock(&sbinfo
->stat_lock
);
909 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
911 if (sbinfo
->free_inodes
>= 0) {
912 spin_lock(&sbinfo
->stat_lock
);
913 sbinfo
->free_inodes
++;
914 spin_unlock(&sbinfo
->stat_lock
);
919 static struct kmem_cache
*hugetlbfs_inode_cachep
;
921 static struct inode
*hugetlbfs_alloc_inode(struct super_block
*sb
)
923 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(sb
);
924 struct hugetlbfs_inode_info
*p
;
926 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo
)))
928 p
= kmem_cache_alloc(hugetlbfs_inode_cachep
, GFP_KERNEL
);
930 hugetlbfs_inc_free_inodes(sbinfo
);
933 return &p
->vfs_inode
;
936 static void hugetlbfs_i_callback(struct rcu_head
*head
)
938 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
939 kmem_cache_free(hugetlbfs_inode_cachep
, HUGETLBFS_I(inode
));
942 static void hugetlbfs_destroy_inode(struct inode
*inode
)
944 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode
->i_sb
));
945 mpol_free_shared_policy(&HUGETLBFS_I(inode
)->policy
);
946 call_rcu(&inode
->i_rcu
, hugetlbfs_i_callback
);
949 static const struct address_space_operations hugetlbfs_aops
= {
950 .write_begin
= hugetlbfs_write_begin
,
951 .write_end
= hugetlbfs_write_end
,
952 .set_page_dirty
= hugetlbfs_set_page_dirty
,
953 .migratepage
= hugetlbfs_migrate_page
,
957 static void init_once(void *foo
)
959 struct hugetlbfs_inode_info
*ei
= (struct hugetlbfs_inode_info
*)foo
;
961 inode_init_once(&ei
->vfs_inode
);
964 const struct file_operations hugetlbfs_file_operations
= {
965 .read_iter
= hugetlbfs_read_iter
,
966 .mmap
= hugetlbfs_file_mmap
,
968 .get_unmapped_area
= hugetlb_get_unmapped_area
,
969 .llseek
= default_llseek
,
970 .fallocate
= hugetlbfs_fallocate
,
973 static const struct inode_operations hugetlbfs_dir_inode_operations
= {
974 .create
= hugetlbfs_create
,
975 .lookup
= simple_lookup
,
977 .unlink
= simple_unlink
,
978 .symlink
= hugetlbfs_symlink
,
979 .mkdir
= hugetlbfs_mkdir
,
980 .rmdir
= simple_rmdir
,
981 .mknod
= hugetlbfs_mknod
,
982 .rename
= simple_rename
,
983 .setattr
= hugetlbfs_setattr
,
986 static const struct inode_operations hugetlbfs_inode_operations
= {
987 .setattr
= hugetlbfs_setattr
,
990 static const struct super_operations hugetlbfs_ops
= {
991 .alloc_inode
= hugetlbfs_alloc_inode
,
992 .destroy_inode
= hugetlbfs_destroy_inode
,
993 .evict_inode
= hugetlbfs_evict_inode
,
994 .statfs
= hugetlbfs_statfs
,
995 .put_super
= hugetlbfs_put_super
,
996 .show_options
= generic_show_options
,
999 enum { NO_SIZE
, SIZE_STD
, SIZE_PERCENT
};
1002 * Convert size option passed from command line to number of huge pages
1003 * in the pool specified by hstate. Size option could be in bytes
1004 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1007 hugetlbfs_size_to_hpages(struct hstate
*h
, unsigned long long size_opt
,
1010 if (val_type
== NO_SIZE
)
1013 if (val_type
== SIZE_PERCENT
) {
1014 size_opt
<<= huge_page_shift(h
);
1015 size_opt
*= h
->max_huge_pages
;
1016 do_div(size_opt
, 100);
1019 size_opt
>>= huge_page_shift(h
);
1024 hugetlbfs_parse_options(char *options
, struct hugetlbfs_config
*pconfig
)
1027 substring_t args
[MAX_OPT_ARGS
];
1029 unsigned long long max_size_opt
= 0, min_size_opt
= 0;
1030 int max_val_type
= NO_SIZE
, min_val_type
= NO_SIZE
;
1035 while ((p
= strsep(&options
, ",")) != NULL
) {
1040 token
= match_token(p
, tokens
, args
);
1043 if (match_int(&args
[0], &option
))
1045 pconfig
->uid
= make_kuid(current_user_ns(), option
);
1046 if (!uid_valid(pconfig
->uid
))
1051 if (match_int(&args
[0], &option
))
1053 pconfig
->gid
= make_kgid(current_user_ns(), option
);
1054 if (!gid_valid(pconfig
->gid
))
1059 if (match_octal(&args
[0], &option
))
1061 pconfig
->mode
= option
& 01777U;
1065 /* memparse() will accept a K/M/G without a digit */
1066 if (!isdigit(*args
[0].from
))
1068 max_size_opt
= memparse(args
[0].from
, &rest
);
1069 max_val_type
= SIZE_STD
;
1071 max_val_type
= SIZE_PERCENT
;
1076 /* memparse() will accept a K/M/G without a digit */
1077 if (!isdigit(*args
[0].from
))
1079 pconfig
->nr_inodes
= memparse(args
[0].from
, &rest
);
1082 case Opt_pagesize
: {
1084 ps
= memparse(args
[0].from
, &rest
);
1085 pconfig
->hstate
= size_to_hstate(ps
);
1086 if (!pconfig
->hstate
) {
1087 pr_err("Unsupported page size %lu MB\n",
1094 case Opt_min_size
: {
1095 /* memparse() will accept a K/M/G without a digit */
1096 if (!isdigit(*args
[0].from
))
1098 min_size_opt
= memparse(args
[0].from
, &rest
);
1099 min_val_type
= SIZE_STD
;
1101 min_val_type
= SIZE_PERCENT
;
1106 pr_err("Bad mount option: \"%s\"\n", p
);
1113 * Use huge page pool size (in hstate) to convert the size
1114 * options to number of huge pages. If NO_SIZE, -1 is returned.
1116 pconfig
->max_hpages
= hugetlbfs_size_to_hpages(pconfig
->hstate
,
1117 max_size_opt
, max_val_type
);
1118 pconfig
->min_hpages
= hugetlbfs_size_to_hpages(pconfig
->hstate
,
1119 min_size_opt
, min_val_type
);
1122 * If max_size was specified, then min_size must be smaller
1124 if (max_val_type
> NO_SIZE
&&
1125 pconfig
->min_hpages
> pconfig
->max_hpages
) {
1126 pr_err("minimum size can not be greater than maximum size\n");
1133 pr_err("Bad value '%s' for mount option '%s'\n", args
[0].from
, p
);
1138 hugetlbfs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1141 struct hugetlbfs_config config
;
1142 struct hugetlbfs_sb_info
*sbinfo
;
1144 save_mount_options(sb
, data
);
1146 config
.max_hpages
= -1; /* No limit on size by default */
1147 config
.nr_inodes
= -1; /* No limit on number of inodes by default */
1148 config
.uid
= current_fsuid();
1149 config
.gid
= current_fsgid();
1151 config
.hstate
= &default_hstate
;
1152 config
.min_hpages
= -1; /* No default minimum size */
1153 ret
= hugetlbfs_parse_options(data
, &config
);
1157 sbinfo
= kmalloc(sizeof(struct hugetlbfs_sb_info
), GFP_KERNEL
);
1160 sb
->s_fs_info
= sbinfo
;
1161 sbinfo
->hstate
= config
.hstate
;
1162 spin_lock_init(&sbinfo
->stat_lock
);
1163 sbinfo
->max_inodes
= config
.nr_inodes
;
1164 sbinfo
->free_inodes
= config
.nr_inodes
;
1165 sbinfo
->spool
= NULL
;
1167 * Allocate and initialize subpool if maximum or minimum size is
1168 * specified. Any needed reservations (for minimim size) are taken
1169 * taken when the subpool is created.
1171 if (config
.max_hpages
!= -1 || config
.min_hpages
!= -1) {
1172 sbinfo
->spool
= hugepage_new_subpool(config
.hstate
,
1178 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1179 sb
->s_blocksize
= huge_page_size(config
.hstate
);
1180 sb
->s_blocksize_bits
= huge_page_shift(config
.hstate
);
1181 sb
->s_magic
= HUGETLBFS_MAGIC
;
1182 sb
->s_op
= &hugetlbfs_ops
;
1183 sb
->s_time_gran
= 1;
1184 sb
->s_root
= d_make_root(hugetlbfs_get_root(sb
, &config
));
1189 kfree(sbinfo
->spool
);
1194 static struct dentry
*hugetlbfs_mount(struct file_system_type
*fs_type
,
1195 int flags
, const char *dev_name
, void *data
)
1197 return mount_nodev(fs_type
, flags
, data
, hugetlbfs_fill_super
);
1200 static struct file_system_type hugetlbfs_fs_type
= {
1201 .name
= "hugetlbfs",
1202 .mount
= hugetlbfs_mount
,
1203 .kill_sb
= kill_litter_super
,
1205 MODULE_ALIAS_FS("hugetlbfs");
1207 static struct vfsmount
*hugetlbfs_vfsmount
[HUGE_MAX_HSTATE
];
1209 static int can_do_hugetlb_shm(void)
1212 shm_group
= make_kgid(&init_user_ns
, sysctl_hugetlb_shm_group
);
1213 return capable(CAP_IPC_LOCK
) || in_group_p(shm_group
);
1216 static int get_hstate_idx(int page_size_log
)
1218 struct hstate
*h
= hstate_sizelog(page_size_log
);
1225 static const struct dentry_operations anon_ops
= {
1226 .d_dname
= simple_dname
1230 * Note that size should be aligned to proper hugepage size in caller side,
1231 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1233 struct file
*hugetlb_file_setup(const char *name
, size_t size
,
1234 vm_flags_t acctflag
, struct user_struct
**user
,
1235 int creat_flags
, int page_size_log
)
1237 struct file
*file
= ERR_PTR(-ENOMEM
);
1238 struct inode
*inode
;
1240 struct super_block
*sb
;
1241 struct qstr quick_string
;
1244 hstate_idx
= get_hstate_idx(page_size_log
);
1246 return ERR_PTR(-ENODEV
);
1249 if (!hugetlbfs_vfsmount
[hstate_idx
])
1250 return ERR_PTR(-ENOENT
);
1252 if (creat_flags
== HUGETLB_SHMFS_INODE
&& !can_do_hugetlb_shm()) {
1253 *user
= current_user();
1254 if (user_shm_lock(size
, *user
)) {
1256 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1257 current
->comm
, current
->pid
);
1258 task_unlock(current
);
1261 return ERR_PTR(-EPERM
);
1265 sb
= hugetlbfs_vfsmount
[hstate_idx
]->mnt_sb
;
1266 quick_string
.name
= name
;
1267 quick_string
.len
= strlen(quick_string
.name
);
1268 quick_string
.hash
= 0;
1269 path
.dentry
= d_alloc_pseudo(sb
, &quick_string
);
1271 goto out_shm_unlock
;
1273 d_set_d_op(path
.dentry
, &anon_ops
);
1274 path
.mnt
= mntget(hugetlbfs_vfsmount
[hstate_idx
]);
1275 file
= ERR_PTR(-ENOSPC
);
1276 inode
= hugetlbfs_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0);
1279 if (creat_flags
== HUGETLB_SHMFS_INODE
)
1280 inode
->i_flags
|= S_PRIVATE
;
1282 file
= ERR_PTR(-ENOMEM
);
1283 if (hugetlb_reserve_pages(inode
, 0,
1284 size
>> huge_page_shift(hstate_inode(inode
)), NULL
,
1288 d_instantiate(path
.dentry
, inode
);
1289 inode
->i_size
= size
;
1292 file
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
1293 &hugetlbfs_file_operations
);
1295 goto out_dentry
; /* inode is already attached */
1305 user_shm_unlock(size
, *user
);
1311 static int __init
init_hugetlbfs_fs(void)
1317 if (!hugepages_supported()) {
1318 pr_info("disabling because there are no supported hugepage sizes\n");
1323 hugetlbfs_inode_cachep
= kmem_cache_create("hugetlbfs_inode_cache",
1324 sizeof(struct hugetlbfs_inode_info
),
1326 if (hugetlbfs_inode_cachep
== NULL
)
1329 error
= register_filesystem(&hugetlbfs_fs_type
);
1334 for_each_hstate(h
) {
1336 unsigned ps_kb
= 1U << (h
->order
+ PAGE_SHIFT
- 10);
1338 snprintf(buf
, sizeof(buf
), "pagesize=%uK", ps_kb
);
1339 hugetlbfs_vfsmount
[i
] = kern_mount_data(&hugetlbfs_fs_type
,
1342 if (IS_ERR(hugetlbfs_vfsmount
[i
])) {
1343 pr_err("Cannot mount internal hugetlbfs for "
1344 "page size %uK", ps_kb
);
1345 error
= PTR_ERR(hugetlbfs_vfsmount
[i
]);
1346 hugetlbfs_vfsmount
[i
] = NULL
;
1350 /* Non default hstates are optional */
1351 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount
[default_hstate_idx
]))
1355 kmem_cache_destroy(hugetlbfs_inode_cachep
);
1360 static void __exit
exit_hugetlbfs_fs(void)
1367 * Make sure all delayed rcu free inodes are flushed before we
1371 kmem_cache_destroy(hugetlbfs_inode_cachep
);
1374 kern_unmount(hugetlbfs_vfsmount
[i
++]);
1375 unregister_filesystem(&hugetlbfs_fs_type
);
1378 module_init(init_hugetlbfs_fs
)
1379 module_exit(exit_hugetlbfs_fs
)
1381 MODULE_LICENSE("GPL");