Linux 3.2.65
[linux/fpc-iii.git] / fs / btrfs / extent_io.c
blob05937a8edfde282e6007c20fe05ce9f0e5ca18a5
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
22 static struct kmem_cache *extent_state_cache;
23 static struct kmem_cache *extent_buffer_cache;
25 static LIST_HEAD(buffers);
26 static LIST_HEAD(states);
28 #define LEAK_DEBUG 0
29 #if LEAK_DEBUG
30 static DEFINE_SPINLOCK(leak_lock);
31 #endif
33 #define BUFFER_LRU_MAX 64
35 struct tree_entry {
36 u64 start;
37 u64 end;
38 struct rb_node rb_node;
41 struct extent_page_data {
42 struct bio *bio;
43 struct extent_io_tree *tree;
44 get_extent_t *get_extent;
46 /* tells writepage not to lock the state bits for this range
47 * it still does the unlocking
49 unsigned int extent_locked:1;
51 /* tells the submit_bio code to use a WRITE_SYNC */
52 unsigned int sync_io:1;
55 int __init extent_io_init(void)
57 extent_state_cache = kmem_cache_create("extent_state",
58 sizeof(struct extent_state), 0,
59 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
60 if (!extent_state_cache)
61 return -ENOMEM;
63 extent_buffer_cache = kmem_cache_create("extent_buffers",
64 sizeof(struct extent_buffer), 0,
65 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
66 if (!extent_buffer_cache)
67 goto free_state_cache;
68 return 0;
70 free_state_cache:
71 kmem_cache_destroy(extent_state_cache);
72 return -ENOMEM;
75 void extent_io_exit(void)
77 struct extent_state *state;
78 struct extent_buffer *eb;
80 while (!list_empty(&states)) {
81 state = list_entry(states.next, struct extent_state, leak_list);
82 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
83 "state %lu in tree %p refs %d\n",
84 (unsigned long long)state->start,
85 (unsigned long long)state->end,
86 state->state, state->tree, atomic_read(&state->refs));
87 list_del(&state->leak_list);
88 kmem_cache_free(extent_state_cache, state);
92 while (!list_empty(&buffers)) {
93 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
94 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
95 "refs %d\n", (unsigned long long)eb->start,
96 eb->len, atomic_read(&eb->refs));
97 list_del(&eb->leak_list);
98 kmem_cache_free(extent_buffer_cache, eb);
100 if (extent_state_cache)
101 kmem_cache_destroy(extent_state_cache);
102 if (extent_buffer_cache)
103 kmem_cache_destroy(extent_buffer_cache);
106 void extent_io_tree_init(struct extent_io_tree *tree,
107 struct address_space *mapping)
109 tree->state = RB_ROOT;
110 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
111 tree->ops = NULL;
112 tree->dirty_bytes = 0;
113 spin_lock_init(&tree->lock);
114 spin_lock_init(&tree->buffer_lock);
115 tree->mapping = mapping;
118 static struct extent_state *alloc_extent_state(gfp_t mask)
120 struct extent_state *state;
121 #if LEAK_DEBUG
122 unsigned long flags;
123 #endif
125 state = kmem_cache_alloc(extent_state_cache, mask);
126 if (!state)
127 return state;
128 state->state = 0;
129 state->private = 0;
130 state->tree = NULL;
131 #if LEAK_DEBUG
132 spin_lock_irqsave(&leak_lock, flags);
133 list_add(&state->leak_list, &states);
134 spin_unlock_irqrestore(&leak_lock, flags);
135 #endif
136 atomic_set(&state->refs, 1);
137 init_waitqueue_head(&state->wq);
138 return state;
141 void free_extent_state(struct extent_state *state)
143 if (!state)
144 return;
145 if (atomic_dec_and_test(&state->refs)) {
146 #if LEAK_DEBUG
147 unsigned long flags;
148 #endif
149 WARN_ON(state->tree);
150 #if LEAK_DEBUG
151 spin_lock_irqsave(&leak_lock, flags);
152 list_del(&state->leak_list);
153 spin_unlock_irqrestore(&leak_lock, flags);
154 #endif
155 kmem_cache_free(extent_state_cache, state);
159 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
160 struct rb_node *node)
162 struct rb_node **p = &root->rb_node;
163 struct rb_node *parent = NULL;
164 struct tree_entry *entry;
166 while (*p) {
167 parent = *p;
168 entry = rb_entry(parent, struct tree_entry, rb_node);
170 if (offset < entry->start)
171 p = &(*p)->rb_left;
172 else if (offset > entry->end)
173 p = &(*p)->rb_right;
174 else
175 return parent;
178 entry = rb_entry(node, struct tree_entry, rb_node);
179 rb_link_node(node, parent, p);
180 rb_insert_color(node, root);
181 return NULL;
184 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
185 struct rb_node **prev_ret,
186 struct rb_node **next_ret)
188 struct rb_root *root = &tree->state;
189 struct rb_node *n = root->rb_node;
190 struct rb_node *prev = NULL;
191 struct rb_node *orig_prev = NULL;
192 struct tree_entry *entry;
193 struct tree_entry *prev_entry = NULL;
195 while (n) {
196 entry = rb_entry(n, struct tree_entry, rb_node);
197 prev = n;
198 prev_entry = entry;
200 if (offset < entry->start)
201 n = n->rb_left;
202 else if (offset > entry->end)
203 n = n->rb_right;
204 else
205 return n;
208 if (prev_ret) {
209 orig_prev = prev;
210 while (prev && offset > prev_entry->end) {
211 prev = rb_next(prev);
212 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
214 *prev_ret = prev;
215 prev = orig_prev;
218 if (next_ret) {
219 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
220 while (prev && offset < prev_entry->start) {
221 prev = rb_prev(prev);
222 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
224 *next_ret = prev;
226 return NULL;
229 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
230 u64 offset)
232 struct rb_node *prev = NULL;
233 struct rb_node *ret;
235 ret = __etree_search(tree, offset, &prev, NULL);
236 if (!ret)
237 return prev;
238 return ret;
241 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
242 struct extent_state *other)
244 if (tree->ops && tree->ops->merge_extent_hook)
245 tree->ops->merge_extent_hook(tree->mapping->host, new,
246 other);
250 * utility function to look for merge candidates inside a given range.
251 * Any extents with matching state are merged together into a single
252 * extent in the tree. Extents with EXTENT_IO in their state field
253 * are not merged because the end_io handlers need to be able to do
254 * operations on them without sleeping (or doing allocations/splits).
256 * This should be called with the tree lock held.
258 static void merge_state(struct extent_io_tree *tree,
259 struct extent_state *state)
261 struct extent_state *other;
262 struct rb_node *other_node;
264 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
265 return;
267 other_node = rb_prev(&state->rb_node);
268 if (other_node) {
269 other = rb_entry(other_node, struct extent_state, rb_node);
270 if (other->end == state->start - 1 &&
271 other->state == state->state) {
272 merge_cb(tree, state, other);
273 state->start = other->start;
274 other->tree = NULL;
275 rb_erase(&other->rb_node, &tree->state);
276 free_extent_state(other);
279 other_node = rb_next(&state->rb_node);
280 if (other_node) {
281 other = rb_entry(other_node, struct extent_state, rb_node);
282 if (other->start == state->end + 1 &&
283 other->state == state->state) {
284 merge_cb(tree, state, other);
285 state->end = other->end;
286 other->tree = NULL;
287 rb_erase(&other->rb_node, &tree->state);
288 free_extent_state(other);
293 static void set_state_cb(struct extent_io_tree *tree,
294 struct extent_state *state, int *bits)
296 if (tree->ops && tree->ops->set_bit_hook)
297 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
300 static void clear_state_cb(struct extent_io_tree *tree,
301 struct extent_state *state, int *bits)
303 if (tree->ops && tree->ops->clear_bit_hook)
304 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
307 static void set_state_bits(struct extent_io_tree *tree,
308 struct extent_state *state, int *bits);
311 * insert an extent_state struct into the tree. 'bits' are set on the
312 * struct before it is inserted.
314 * This may return -EEXIST if the extent is already there, in which case the
315 * state struct is freed.
317 * The tree lock is not taken internally. This is a utility function and
318 * probably isn't what you want to call (see set/clear_extent_bit).
320 static int insert_state(struct extent_io_tree *tree,
321 struct extent_state *state, u64 start, u64 end,
322 int *bits)
324 struct rb_node *node;
326 if (end < start) {
327 printk(KERN_ERR "btrfs end < start %llu %llu\n",
328 (unsigned long long)end,
329 (unsigned long long)start);
330 WARN_ON(1);
332 state->start = start;
333 state->end = end;
335 set_state_bits(tree, state, bits);
337 node = tree_insert(&tree->state, end, &state->rb_node);
338 if (node) {
339 struct extent_state *found;
340 found = rb_entry(node, struct extent_state, rb_node);
341 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
342 "%llu %llu\n", (unsigned long long)found->start,
343 (unsigned long long)found->end,
344 (unsigned long long)start, (unsigned long long)end);
345 return -EEXIST;
347 state->tree = tree;
348 merge_state(tree, state);
349 return 0;
352 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
353 u64 split)
355 if (tree->ops && tree->ops->split_extent_hook)
356 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
360 * split a given extent state struct in two, inserting the preallocated
361 * struct 'prealloc' as the newly created second half. 'split' indicates an
362 * offset inside 'orig' where it should be split.
364 * Before calling,
365 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
366 * are two extent state structs in the tree:
367 * prealloc: [orig->start, split - 1]
368 * orig: [ split, orig->end ]
370 * The tree locks are not taken by this function. They need to be held
371 * by the caller.
373 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
374 struct extent_state *prealloc, u64 split)
376 struct rb_node *node;
378 split_cb(tree, orig, split);
380 prealloc->start = orig->start;
381 prealloc->end = split - 1;
382 prealloc->state = orig->state;
383 orig->start = split;
385 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
386 if (node) {
387 free_extent_state(prealloc);
388 return -EEXIST;
390 prealloc->tree = tree;
391 return 0;
395 * utility function to clear some bits in an extent state struct.
396 * it will optionally wake up any one waiting on this state (wake == 1), or
397 * forcibly remove the state from the tree (delete == 1).
399 * If no bits are set on the state struct after clearing things, the
400 * struct is freed and removed from the tree
402 static int clear_state_bit(struct extent_io_tree *tree,
403 struct extent_state *state,
404 int *bits, int wake)
406 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
407 int ret = state->state & bits_to_clear;
409 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
410 u64 range = state->end - state->start + 1;
411 WARN_ON(range > tree->dirty_bytes);
412 tree->dirty_bytes -= range;
414 clear_state_cb(tree, state, bits);
415 state->state &= ~bits_to_clear;
416 if (wake)
417 wake_up(&state->wq);
418 if (state->state == 0) {
419 if (state->tree) {
420 rb_erase(&state->rb_node, &tree->state);
421 state->tree = NULL;
422 free_extent_state(state);
423 } else {
424 WARN_ON(1);
426 } else {
427 merge_state(tree, state);
429 return ret;
432 static struct extent_state *
433 alloc_extent_state_atomic(struct extent_state *prealloc)
435 if (!prealloc)
436 prealloc = alloc_extent_state(GFP_ATOMIC);
438 return prealloc;
442 * clear some bits on a range in the tree. This may require splitting
443 * or inserting elements in the tree, so the gfp mask is used to
444 * indicate which allocations or sleeping are allowed.
446 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
447 * the given range from the tree regardless of state (ie for truncate).
449 * the range [start, end] is inclusive.
451 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
452 * bits were already set, or zero if none of the bits were already set.
454 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
455 int bits, int wake, int delete,
456 struct extent_state **cached_state,
457 gfp_t mask)
459 struct extent_state *state;
460 struct extent_state *cached;
461 struct extent_state *prealloc = NULL;
462 struct rb_node *next_node;
463 struct rb_node *node;
464 u64 last_end;
465 int err;
466 int set = 0;
467 int clear = 0;
469 if (delete)
470 bits |= ~EXTENT_CTLBITS;
471 bits |= EXTENT_FIRST_DELALLOC;
473 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
474 clear = 1;
475 again:
476 if (!prealloc && (mask & __GFP_WAIT)) {
477 prealloc = alloc_extent_state(mask);
478 if (!prealloc)
479 return -ENOMEM;
482 spin_lock(&tree->lock);
483 if (cached_state) {
484 cached = *cached_state;
486 if (clear) {
487 *cached_state = NULL;
488 cached_state = NULL;
491 if (cached && cached->tree && cached->start <= start &&
492 cached->end > start) {
493 if (clear)
494 atomic_dec(&cached->refs);
495 state = cached;
496 goto hit_next;
498 if (clear)
499 free_extent_state(cached);
502 * this search will find the extents that end after
503 * our range starts
505 node = tree_search(tree, start);
506 if (!node)
507 goto out;
508 state = rb_entry(node, struct extent_state, rb_node);
509 hit_next:
510 if (state->start > end)
511 goto out;
512 WARN_ON(state->end < start);
513 last_end = state->end;
516 * | ---- desired range ---- |
517 * | state | or
518 * | ------------- state -------------- |
520 * We need to split the extent we found, and may flip
521 * bits on second half.
523 * If the extent we found extends past our range, we
524 * just split and search again. It'll get split again
525 * the next time though.
527 * If the extent we found is inside our range, we clear
528 * the desired bit on it.
531 if (state->start < start) {
532 prealloc = alloc_extent_state_atomic(prealloc);
533 BUG_ON(!prealloc);
534 err = split_state(tree, state, prealloc, start);
535 BUG_ON(err == -EEXIST);
536 prealloc = NULL;
537 if (err)
538 goto out;
539 if (state->end <= end) {
540 set |= clear_state_bit(tree, state, &bits, wake);
541 if (last_end == (u64)-1)
542 goto out;
543 start = last_end + 1;
545 goto search_again;
548 * | ---- desired range ---- |
549 * | state |
550 * We need to split the extent, and clear the bit
551 * on the first half
553 if (state->start <= end && state->end > end) {
554 prealloc = alloc_extent_state_atomic(prealloc);
555 BUG_ON(!prealloc);
556 err = split_state(tree, state, prealloc, end + 1);
557 BUG_ON(err == -EEXIST);
558 if (wake)
559 wake_up(&state->wq);
561 set |= clear_state_bit(tree, prealloc, &bits, wake);
563 prealloc = NULL;
564 goto out;
567 if (state->end < end && prealloc && !need_resched())
568 next_node = rb_next(&state->rb_node);
569 else
570 next_node = NULL;
572 set |= clear_state_bit(tree, state, &bits, wake);
573 if (last_end == (u64)-1)
574 goto out;
575 start = last_end + 1;
576 if (start <= end && next_node) {
577 state = rb_entry(next_node, struct extent_state,
578 rb_node);
579 if (state->start == start)
580 goto hit_next;
582 goto search_again;
584 out:
585 spin_unlock(&tree->lock);
586 if (prealloc)
587 free_extent_state(prealloc);
589 return set;
591 search_again:
592 if (start > end)
593 goto out;
594 spin_unlock(&tree->lock);
595 if (mask & __GFP_WAIT)
596 cond_resched();
597 goto again;
600 static int wait_on_state(struct extent_io_tree *tree,
601 struct extent_state *state)
602 __releases(tree->lock)
603 __acquires(tree->lock)
605 DEFINE_WAIT(wait);
606 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&tree->lock);
608 schedule();
609 spin_lock(&tree->lock);
610 finish_wait(&state->wq, &wait);
611 return 0;
615 * waits for one or more bits to clear on a range in the state tree.
616 * The range [start, end] is inclusive.
617 * The tree lock is taken by this function
619 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
621 struct extent_state *state;
622 struct rb_node *node;
624 spin_lock(&tree->lock);
625 again:
626 while (1) {
628 * this search will find all the extents that end after
629 * our range starts
631 node = tree_search(tree, start);
632 if (!node)
633 break;
635 state = rb_entry(node, struct extent_state, rb_node);
637 if (state->start > end)
638 goto out;
640 if (state->state & bits) {
641 start = state->start;
642 atomic_inc(&state->refs);
643 wait_on_state(tree, state);
644 free_extent_state(state);
645 goto again;
647 start = state->end + 1;
649 if (start > end)
650 break;
652 cond_resched_lock(&tree->lock);
654 out:
655 spin_unlock(&tree->lock);
656 return 0;
659 static void set_state_bits(struct extent_io_tree *tree,
660 struct extent_state *state,
661 int *bits)
663 int bits_to_set = *bits & ~EXTENT_CTLBITS;
665 set_state_cb(tree, state, bits);
666 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
667 u64 range = state->end - state->start + 1;
668 tree->dirty_bytes += range;
670 state->state |= bits_to_set;
673 static void cache_state(struct extent_state *state,
674 struct extent_state **cached_ptr)
676 if (cached_ptr && !(*cached_ptr)) {
677 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
678 *cached_ptr = state;
679 atomic_inc(&state->refs);
684 static void uncache_state(struct extent_state **cached_ptr)
686 if (cached_ptr && (*cached_ptr)) {
687 struct extent_state *state = *cached_ptr;
688 *cached_ptr = NULL;
689 free_extent_state(state);
694 * set some bits on a range in the tree. This may require allocations or
695 * sleeping, so the gfp mask is used to indicate what is allowed.
697 * If any of the exclusive bits are set, this will fail with -EEXIST if some
698 * part of the range already has the desired bits set. The start of the
699 * existing range is returned in failed_start in this case.
701 * [start, end] is inclusive This takes the tree lock.
704 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
705 int bits, int exclusive_bits, u64 *failed_start,
706 struct extent_state **cached_state, gfp_t mask)
708 struct extent_state *state;
709 struct extent_state *prealloc = NULL;
710 struct rb_node *node;
711 int err = 0;
712 u64 last_start;
713 u64 last_end;
715 bits |= EXTENT_FIRST_DELALLOC;
716 again:
717 if (!prealloc && (mask & __GFP_WAIT)) {
718 prealloc = alloc_extent_state(mask);
719 BUG_ON(!prealloc);
722 spin_lock(&tree->lock);
723 if (cached_state && *cached_state) {
724 state = *cached_state;
725 if (state->start <= start && state->end > start &&
726 state->tree) {
727 node = &state->rb_node;
728 goto hit_next;
732 * this search will find all the extents that end after
733 * our range starts.
735 node = tree_search(tree, start);
736 if (!node) {
737 prealloc = alloc_extent_state_atomic(prealloc);
738 BUG_ON(!prealloc);
739 err = insert_state(tree, prealloc, start, end, &bits);
740 prealloc = NULL;
741 BUG_ON(err == -EEXIST);
742 goto out;
744 state = rb_entry(node, struct extent_state, rb_node);
745 hit_next:
746 last_start = state->start;
747 last_end = state->end;
750 * | ---- desired range ---- |
751 * | state |
753 * Just lock what we found and keep going
755 if (state->start == start && state->end <= end) {
756 struct rb_node *next_node;
757 if (state->state & exclusive_bits) {
758 *failed_start = state->start;
759 err = -EEXIST;
760 goto out;
763 set_state_bits(tree, state, &bits);
765 cache_state(state, cached_state);
766 merge_state(tree, state);
767 if (last_end == (u64)-1)
768 goto out;
770 start = last_end + 1;
771 next_node = rb_next(&state->rb_node);
772 if (next_node && start < end && prealloc && !need_resched()) {
773 state = rb_entry(next_node, struct extent_state,
774 rb_node);
775 if (state->start == start)
776 goto hit_next;
778 goto search_again;
782 * | ---- desired range ---- |
783 * | state |
784 * or
785 * | ------------- state -------------- |
787 * We need to split the extent we found, and may flip bits on
788 * second half.
790 * If the extent we found extends past our
791 * range, we just split and search again. It'll get split
792 * again the next time though.
794 * If the extent we found is inside our range, we set the
795 * desired bit on it.
797 if (state->start < start) {
798 if (state->state & exclusive_bits) {
799 *failed_start = start;
800 err = -EEXIST;
801 goto out;
804 prealloc = alloc_extent_state_atomic(prealloc);
805 BUG_ON(!prealloc);
806 err = split_state(tree, state, prealloc, start);
807 BUG_ON(err == -EEXIST);
808 prealloc = NULL;
809 if (err)
810 goto out;
811 if (state->end <= end) {
812 set_state_bits(tree, state, &bits);
813 cache_state(state, cached_state);
814 merge_state(tree, state);
815 if (last_end == (u64)-1)
816 goto out;
817 start = last_end + 1;
819 goto search_again;
822 * | ---- desired range ---- |
823 * | state | or | state |
825 * There's a hole, we need to insert something in it and
826 * ignore the extent we found.
828 if (state->start > start) {
829 u64 this_end;
830 if (end < last_start)
831 this_end = end;
832 else
833 this_end = last_start - 1;
835 prealloc = alloc_extent_state_atomic(prealloc);
836 BUG_ON(!prealloc);
839 * Avoid to free 'prealloc' if it can be merged with
840 * the later extent.
842 err = insert_state(tree, prealloc, start, this_end,
843 &bits);
844 BUG_ON(err == -EEXIST);
845 if (err) {
846 free_extent_state(prealloc);
847 prealloc = NULL;
848 goto out;
850 cache_state(prealloc, cached_state);
851 prealloc = NULL;
852 start = this_end + 1;
853 goto search_again;
856 * | ---- desired range ---- |
857 * | state |
858 * We need to split the extent, and set the bit
859 * on the first half
861 if (state->start <= end && state->end > end) {
862 if (state->state & exclusive_bits) {
863 *failed_start = start;
864 err = -EEXIST;
865 goto out;
868 prealloc = alloc_extent_state_atomic(prealloc);
869 BUG_ON(!prealloc);
870 err = split_state(tree, state, prealloc, end + 1);
871 BUG_ON(err == -EEXIST);
873 set_state_bits(tree, prealloc, &bits);
874 cache_state(prealloc, cached_state);
875 merge_state(tree, prealloc);
876 prealloc = NULL;
877 goto out;
880 goto search_again;
882 out:
883 spin_unlock(&tree->lock);
884 if (prealloc)
885 free_extent_state(prealloc);
887 return err;
889 search_again:
890 if (start > end)
891 goto out;
892 spin_unlock(&tree->lock);
893 if (mask & __GFP_WAIT)
894 cond_resched();
895 goto again;
899 * convert_extent - convert all bits in a given range from one bit to another
900 * @tree: the io tree to search
901 * @start: the start offset in bytes
902 * @end: the end offset in bytes (inclusive)
903 * @bits: the bits to set in this range
904 * @clear_bits: the bits to clear in this range
905 * @mask: the allocation mask
907 * This will go through and set bits for the given range. If any states exist
908 * already in this range they are set with the given bit and cleared of the
909 * clear_bits. This is only meant to be used by things that are mergeable, ie
910 * converting from say DELALLOC to DIRTY. This is not meant to be used with
911 * boundary bits like LOCK.
913 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
914 int bits, int clear_bits, gfp_t mask)
916 struct extent_state *state;
917 struct extent_state *prealloc = NULL;
918 struct rb_node *node;
919 int err = 0;
920 u64 last_start;
921 u64 last_end;
923 again:
924 if (!prealloc && (mask & __GFP_WAIT)) {
925 prealloc = alloc_extent_state(mask);
926 if (!prealloc)
927 return -ENOMEM;
930 spin_lock(&tree->lock);
932 * this search will find all the extents that end after
933 * our range starts.
935 node = tree_search(tree, start);
936 if (!node) {
937 prealloc = alloc_extent_state_atomic(prealloc);
938 if (!prealloc) {
939 err = -ENOMEM;
940 goto out;
942 err = insert_state(tree, prealloc, start, end, &bits);
943 prealloc = NULL;
944 BUG_ON(err == -EEXIST);
945 goto out;
947 state = rb_entry(node, struct extent_state, rb_node);
948 hit_next:
949 last_start = state->start;
950 last_end = state->end;
953 * | ---- desired range ---- |
954 * | state |
956 * Just lock what we found and keep going
958 if (state->start == start && state->end <= end) {
959 struct rb_node *next_node;
961 set_state_bits(tree, state, &bits);
962 clear_state_bit(tree, state, &clear_bits, 0);
964 merge_state(tree, state);
965 if (last_end == (u64)-1)
966 goto out;
968 start = last_end + 1;
969 next_node = rb_next(&state->rb_node);
970 if (next_node && start < end && prealloc && !need_resched()) {
971 state = rb_entry(next_node, struct extent_state,
972 rb_node);
973 if (state->start == start)
974 goto hit_next;
976 goto search_again;
980 * | ---- desired range ---- |
981 * | state |
982 * or
983 * | ------------- state -------------- |
985 * We need to split the extent we found, and may flip bits on
986 * second half.
988 * If the extent we found extends past our
989 * range, we just split and search again. It'll get split
990 * again the next time though.
992 * If the extent we found is inside our range, we set the
993 * desired bit on it.
995 if (state->start < start) {
996 prealloc = alloc_extent_state_atomic(prealloc);
997 if (!prealloc) {
998 err = -ENOMEM;
999 goto out;
1001 err = split_state(tree, state, prealloc, start);
1002 BUG_ON(err == -EEXIST);
1003 prealloc = NULL;
1004 if (err)
1005 goto out;
1006 if (state->end <= end) {
1007 set_state_bits(tree, state, &bits);
1008 clear_state_bit(tree, state, &clear_bits, 0);
1009 merge_state(tree, state);
1010 if (last_end == (u64)-1)
1011 goto out;
1012 start = last_end + 1;
1014 goto search_again;
1017 * | ---- desired range ---- |
1018 * | state | or | state |
1020 * There's a hole, we need to insert something in it and
1021 * ignore the extent we found.
1023 if (state->start > start) {
1024 u64 this_end;
1025 if (end < last_start)
1026 this_end = end;
1027 else
1028 this_end = last_start - 1;
1030 prealloc = alloc_extent_state_atomic(prealloc);
1031 if (!prealloc) {
1032 err = -ENOMEM;
1033 goto out;
1037 * Avoid to free 'prealloc' if it can be merged with
1038 * the later extent.
1040 err = insert_state(tree, prealloc, start, this_end,
1041 &bits);
1042 BUG_ON(err == -EEXIST);
1043 if (err) {
1044 free_extent_state(prealloc);
1045 prealloc = NULL;
1046 goto out;
1048 prealloc = NULL;
1049 start = this_end + 1;
1050 goto search_again;
1053 * | ---- desired range ---- |
1054 * | state |
1055 * We need to split the extent, and set the bit
1056 * on the first half
1058 if (state->start <= end && state->end > end) {
1059 prealloc = alloc_extent_state_atomic(prealloc);
1060 if (!prealloc) {
1061 err = -ENOMEM;
1062 goto out;
1065 err = split_state(tree, state, prealloc, end + 1);
1066 BUG_ON(err == -EEXIST);
1068 set_state_bits(tree, prealloc, &bits);
1069 clear_state_bit(tree, prealloc, &clear_bits, 0);
1071 merge_state(tree, prealloc);
1072 prealloc = NULL;
1073 goto out;
1076 goto search_again;
1078 out:
1079 spin_unlock(&tree->lock);
1080 if (prealloc)
1081 free_extent_state(prealloc);
1083 return err;
1085 search_again:
1086 if (start > end)
1087 goto out;
1088 spin_unlock(&tree->lock);
1089 if (mask & __GFP_WAIT)
1090 cond_resched();
1091 goto again;
1094 /* wrappers around set/clear extent bit */
1095 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1096 gfp_t mask)
1098 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
1099 NULL, mask);
1102 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1103 int bits, gfp_t mask)
1105 return set_extent_bit(tree, start, end, bits, 0, NULL,
1106 NULL, mask);
1109 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1110 int bits, gfp_t mask)
1112 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1115 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1116 struct extent_state **cached_state, gfp_t mask)
1118 return set_extent_bit(tree, start, end,
1119 EXTENT_DELALLOC | EXTENT_UPTODATE,
1120 0, NULL, cached_state, mask);
1123 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1124 gfp_t mask)
1126 return clear_extent_bit(tree, start, end,
1127 EXTENT_DIRTY | EXTENT_DELALLOC |
1128 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1131 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1132 gfp_t mask)
1134 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
1135 NULL, mask);
1138 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1139 struct extent_state **cached_state, gfp_t mask)
1141 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1142 NULL, cached_state, mask);
1145 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
1146 u64 end, struct extent_state **cached_state,
1147 gfp_t mask)
1149 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1150 cached_state, mask);
1154 * either insert or lock state struct between start and end use mask to tell
1155 * us if waiting is desired.
1157 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1158 int bits, struct extent_state **cached_state, gfp_t mask)
1160 int err;
1161 u64 failed_start;
1162 while (1) {
1163 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1164 EXTENT_LOCKED, &failed_start,
1165 cached_state, mask);
1166 if (err == -EEXIST && (mask & __GFP_WAIT)) {
1167 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1168 start = failed_start;
1169 } else {
1170 break;
1172 WARN_ON(start > end);
1174 return err;
1177 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1179 return lock_extent_bits(tree, start, end, 0, NULL, mask);
1182 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1183 gfp_t mask)
1185 int err;
1186 u64 failed_start;
1188 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1189 &failed_start, NULL, mask);
1190 if (err == -EEXIST) {
1191 if (failed_start > start)
1192 clear_extent_bit(tree, start, failed_start - 1,
1193 EXTENT_LOCKED, 1, 0, NULL, mask);
1194 return 0;
1196 return 1;
1199 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1200 struct extent_state **cached, gfp_t mask)
1202 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1203 mask);
1206 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1208 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1209 mask);
1212 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1214 unsigned long index = start >> PAGE_CACHE_SHIFT;
1215 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1216 struct page *page;
1218 while (index <= end_index) {
1219 page = find_get_page(inode->i_mapping, index);
1220 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1221 clear_page_dirty_for_io(page);
1222 page_cache_release(page);
1223 index++;
1225 return 0;
1228 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1230 unsigned long index = start >> PAGE_CACHE_SHIFT;
1231 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1232 struct page *page;
1234 while (index <= end_index) {
1235 page = find_get_page(inode->i_mapping, index);
1236 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1237 account_page_redirty(page);
1238 __set_page_dirty_nobuffers(page);
1239 page_cache_release(page);
1240 index++;
1242 return 0;
1246 * helper function to set both pages and extents in the tree writeback
1248 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1250 unsigned long index = start >> PAGE_CACHE_SHIFT;
1251 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1252 struct page *page;
1254 while (index <= end_index) {
1255 page = find_get_page(tree->mapping, index);
1256 BUG_ON(!page);
1257 set_page_writeback(page);
1258 page_cache_release(page);
1259 index++;
1261 return 0;
1264 /* find the first state struct with 'bits' set after 'start', and
1265 * return it. tree->lock must be held. NULL will returned if
1266 * nothing was found after 'start'
1268 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1269 u64 start, int bits)
1271 struct rb_node *node;
1272 struct extent_state *state;
1275 * this search will find all the extents that end after
1276 * our range starts.
1278 node = tree_search(tree, start);
1279 if (!node)
1280 goto out;
1282 while (1) {
1283 state = rb_entry(node, struct extent_state, rb_node);
1284 if (state->end >= start && (state->state & bits))
1285 return state;
1287 node = rb_next(node);
1288 if (!node)
1289 break;
1291 out:
1292 return NULL;
1296 * find the first offset in the io tree with 'bits' set. zero is
1297 * returned if we find something, and *start_ret and *end_ret are
1298 * set to reflect the state struct that was found.
1300 * If nothing was found, 1 is returned, < 0 on error
1302 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1303 u64 *start_ret, u64 *end_ret, int bits)
1305 struct extent_state *state;
1306 int ret = 1;
1308 spin_lock(&tree->lock);
1309 state = find_first_extent_bit_state(tree, start, bits);
1310 if (state) {
1311 *start_ret = state->start;
1312 *end_ret = state->end;
1313 ret = 0;
1315 spin_unlock(&tree->lock);
1316 return ret;
1320 * find a contiguous range of bytes in the file marked as delalloc, not
1321 * more than 'max_bytes'. start and end are used to return the range,
1323 * 1 is returned if we find something, 0 if nothing was in the tree
1325 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1326 u64 *start, u64 *end, u64 max_bytes,
1327 struct extent_state **cached_state)
1329 struct rb_node *node;
1330 struct extent_state *state;
1331 u64 cur_start = *start;
1332 u64 found = 0;
1333 u64 total_bytes = 0;
1335 spin_lock(&tree->lock);
1338 * this search will find all the extents that end after
1339 * our range starts.
1341 node = tree_search(tree, cur_start);
1342 if (!node) {
1343 if (!found)
1344 *end = (u64)-1;
1345 goto out;
1348 while (1) {
1349 state = rb_entry(node, struct extent_state, rb_node);
1350 if (found && (state->start != cur_start ||
1351 (state->state & EXTENT_BOUNDARY))) {
1352 goto out;
1354 if (!(state->state & EXTENT_DELALLOC)) {
1355 if (!found)
1356 *end = state->end;
1357 goto out;
1359 if (!found) {
1360 *start = state->start;
1361 *cached_state = state;
1362 atomic_inc(&state->refs);
1364 found++;
1365 *end = state->end;
1366 cur_start = state->end + 1;
1367 node = rb_next(node);
1368 if (!node)
1369 break;
1370 total_bytes += state->end - state->start + 1;
1371 if (total_bytes >= max_bytes)
1372 break;
1374 out:
1375 spin_unlock(&tree->lock);
1376 return found;
1379 static noinline int __unlock_for_delalloc(struct inode *inode,
1380 struct page *locked_page,
1381 u64 start, u64 end)
1383 int ret;
1384 struct page *pages[16];
1385 unsigned long index = start >> PAGE_CACHE_SHIFT;
1386 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1387 unsigned long nr_pages = end_index - index + 1;
1388 int i;
1390 if (index == locked_page->index && end_index == index)
1391 return 0;
1393 while (nr_pages > 0) {
1394 ret = find_get_pages_contig(inode->i_mapping, index,
1395 min_t(unsigned long, nr_pages,
1396 ARRAY_SIZE(pages)), pages);
1397 for (i = 0; i < ret; i++) {
1398 if (pages[i] != locked_page)
1399 unlock_page(pages[i]);
1400 page_cache_release(pages[i]);
1402 nr_pages -= ret;
1403 index += ret;
1404 cond_resched();
1406 return 0;
1409 static noinline int lock_delalloc_pages(struct inode *inode,
1410 struct page *locked_page,
1411 u64 delalloc_start,
1412 u64 delalloc_end)
1414 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1415 unsigned long start_index = index;
1416 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1417 unsigned long pages_locked = 0;
1418 struct page *pages[16];
1419 unsigned long nrpages;
1420 int ret;
1421 int i;
1423 /* the caller is responsible for locking the start index */
1424 if (index == locked_page->index && index == end_index)
1425 return 0;
1427 /* skip the page at the start index */
1428 nrpages = end_index - index + 1;
1429 while (nrpages > 0) {
1430 ret = find_get_pages_contig(inode->i_mapping, index,
1431 min_t(unsigned long,
1432 nrpages, ARRAY_SIZE(pages)), pages);
1433 if (ret == 0) {
1434 ret = -EAGAIN;
1435 goto done;
1437 /* now we have an array of pages, lock them all */
1438 for (i = 0; i < ret; i++) {
1440 * the caller is taking responsibility for
1441 * locked_page
1443 if (pages[i] != locked_page) {
1444 lock_page(pages[i]);
1445 if (!PageDirty(pages[i]) ||
1446 pages[i]->mapping != inode->i_mapping) {
1447 ret = -EAGAIN;
1448 unlock_page(pages[i]);
1449 page_cache_release(pages[i]);
1450 goto done;
1453 page_cache_release(pages[i]);
1454 pages_locked++;
1456 nrpages -= ret;
1457 index += ret;
1458 cond_resched();
1460 ret = 0;
1461 done:
1462 if (ret && pages_locked) {
1463 __unlock_for_delalloc(inode, locked_page,
1464 delalloc_start,
1465 ((u64)(start_index + pages_locked - 1)) <<
1466 PAGE_CACHE_SHIFT);
1468 return ret;
1472 * find a contiguous range of bytes in the file marked as delalloc, not
1473 * more than 'max_bytes'. start and end are used to return the range,
1475 * 1 is returned if we find something, 0 if nothing was in the tree
1477 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1478 struct extent_io_tree *tree,
1479 struct page *locked_page,
1480 u64 *start, u64 *end,
1481 u64 max_bytes)
1483 u64 delalloc_start;
1484 u64 delalloc_end;
1485 u64 found;
1486 struct extent_state *cached_state = NULL;
1487 int ret;
1488 int loops = 0;
1490 again:
1491 /* step one, find a bunch of delalloc bytes starting at start */
1492 delalloc_start = *start;
1493 delalloc_end = 0;
1494 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1495 max_bytes, &cached_state);
1496 if (!found || delalloc_end <= *start) {
1497 *start = delalloc_start;
1498 *end = delalloc_end;
1499 free_extent_state(cached_state);
1500 return found;
1504 * start comes from the offset of locked_page. We have to lock
1505 * pages in order, so we can't process delalloc bytes before
1506 * locked_page
1508 if (delalloc_start < *start)
1509 delalloc_start = *start;
1512 * make sure to limit the number of pages we try to lock down
1513 * if we're looping.
1515 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1516 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1518 /* step two, lock all the pages after the page that has start */
1519 ret = lock_delalloc_pages(inode, locked_page,
1520 delalloc_start, delalloc_end);
1521 if (ret == -EAGAIN) {
1522 /* some of the pages are gone, lets avoid looping by
1523 * shortening the size of the delalloc range we're searching
1525 free_extent_state(cached_state);
1526 cached_state = NULL;
1527 if (!loops) {
1528 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1529 max_bytes = PAGE_CACHE_SIZE - offset;
1530 loops = 1;
1531 goto again;
1532 } else {
1533 found = 0;
1534 goto out_failed;
1537 BUG_ON(ret);
1539 /* step three, lock the state bits for the whole range */
1540 lock_extent_bits(tree, delalloc_start, delalloc_end,
1541 0, &cached_state, GFP_NOFS);
1543 /* then test to make sure it is all still delalloc */
1544 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1545 EXTENT_DELALLOC, 1, cached_state);
1546 if (!ret) {
1547 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1548 &cached_state, GFP_NOFS);
1549 __unlock_for_delalloc(inode, locked_page,
1550 delalloc_start, delalloc_end);
1551 cond_resched();
1552 goto again;
1554 free_extent_state(cached_state);
1555 *start = delalloc_start;
1556 *end = delalloc_end;
1557 out_failed:
1558 return found;
1561 int extent_clear_unlock_delalloc(struct inode *inode,
1562 struct extent_io_tree *tree,
1563 u64 start, u64 end, struct page *locked_page,
1564 unsigned long op)
1566 int ret;
1567 struct page *pages[16];
1568 unsigned long index = start >> PAGE_CACHE_SHIFT;
1569 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1570 unsigned long nr_pages = end_index - index + 1;
1571 int i;
1572 int clear_bits = 0;
1574 if (op & EXTENT_CLEAR_UNLOCK)
1575 clear_bits |= EXTENT_LOCKED;
1576 if (op & EXTENT_CLEAR_DIRTY)
1577 clear_bits |= EXTENT_DIRTY;
1579 if (op & EXTENT_CLEAR_DELALLOC)
1580 clear_bits |= EXTENT_DELALLOC;
1582 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1583 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1584 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1585 EXTENT_SET_PRIVATE2)))
1586 return 0;
1588 while (nr_pages > 0) {
1589 ret = find_get_pages_contig(inode->i_mapping, index,
1590 min_t(unsigned long,
1591 nr_pages, ARRAY_SIZE(pages)), pages);
1592 for (i = 0; i < ret; i++) {
1594 if (op & EXTENT_SET_PRIVATE2)
1595 SetPagePrivate2(pages[i]);
1597 if (pages[i] == locked_page) {
1598 page_cache_release(pages[i]);
1599 continue;
1601 if (op & EXTENT_CLEAR_DIRTY)
1602 clear_page_dirty_for_io(pages[i]);
1603 if (op & EXTENT_SET_WRITEBACK)
1604 set_page_writeback(pages[i]);
1605 if (op & EXTENT_END_WRITEBACK)
1606 end_page_writeback(pages[i]);
1607 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1608 unlock_page(pages[i]);
1609 page_cache_release(pages[i]);
1611 nr_pages -= ret;
1612 index += ret;
1613 cond_resched();
1615 return 0;
1619 * count the number of bytes in the tree that have a given bit(s)
1620 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1621 * cached. The total number found is returned.
1623 u64 count_range_bits(struct extent_io_tree *tree,
1624 u64 *start, u64 search_end, u64 max_bytes,
1625 unsigned long bits, int contig)
1627 struct rb_node *node;
1628 struct extent_state *state;
1629 u64 cur_start = *start;
1630 u64 total_bytes = 0;
1631 u64 last = 0;
1632 int found = 0;
1634 if (search_end <= cur_start) {
1635 WARN_ON(1);
1636 return 0;
1639 spin_lock(&tree->lock);
1640 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1641 total_bytes = tree->dirty_bytes;
1642 goto out;
1645 * this search will find all the extents that end after
1646 * our range starts.
1648 node = tree_search(tree, cur_start);
1649 if (!node)
1650 goto out;
1652 while (1) {
1653 state = rb_entry(node, struct extent_state, rb_node);
1654 if (state->start > search_end)
1655 break;
1656 if (contig && found && state->start > last + 1)
1657 break;
1658 if (state->end >= cur_start && (state->state & bits) == bits) {
1659 total_bytes += min(search_end, state->end) + 1 -
1660 max(cur_start, state->start);
1661 if (total_bytes >= max_bytes)
1662 break;
1663 if (!found) {
1664 *start = max(cur_start, state->start);
1665 found = 1;
1667 last = state->end;
1668 } else if (contig && found) {
1669 break;
1671 node = rb_next(node);
1672 if (!node)
1673 break;
1675 out:
1676 spin_unlock(&tree->lock);
1677 return total_bytes;
1681 * set the private field for a given byte offset in the tree. If there isn't
1682 * an extent_state there already, this does nothing.
1684 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1686 struct rb_node *node;
1687 struct extent_state *state;
1688 int ret = 0;
1690 spin_lock(&tree->lock);
1692 * this search will find all the extents that end after
1693 * our range starts.
1695 node = tree_search(tree, start);
1696 if (!node) {
1697 ret = -ENOENT;
1698 goto out;
1700 state = rb_entry(node, struct extent_state, rb_node);
1701 if (state->start != start) {
1702 ret = -ENOENT;
1703 goto out;
1705 state->private = private;
1706 out:
1707 spin_unlock(&tree->lock);
1708 return ret;
1711 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1713 struct rb_node *node;
1714 struct extent_state *state;
1715 int ret = 0;
1717 spin_lock(&tree->lock);
1719 * this search will find all the extents that end after
1720 * our range starts.
1722 node = tree_search(tree, start);
1723 if (!node) {
1724 ret = -ENOENT;
1725 goto out;
1727 state = rb_entry(node, struct extent_state, rb_node);
1728 if (state->start != start) {
1729 ret = -ENOENT;
1730 goto out;
1732 *private = state->private;
1733 out:
1734 spin_unlock(&tree->lock);
1735 return ret;
1739 * searches a range in the state tree for a given mask.
1740 * If 'filled' == 1, this returns 1 only if every extent in the tree
1741 * has the bits set. Otherwise, 1 is returned if any bit in the
1742 * range is found set.
1744 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1745 int bits, int filled, struct extent_state *cached)
1747 struct extent_state *state = NULL;
1748 struct rb_node *node;
1749 int bitset = 0;
1751 spin_lock(&tree->lock);
1752 if (cached && cached->tree && cached->start <= start &&
1753 cached->end > start)
1754 node = &cached->rb_node;
1755 else
1756 node = tree_search(tree, start);
1757 while (node && start <= end) {
1758 state = rb_entry(node, struct extent_state, rb_node);
1760 if (filled && state->start > start) {
1761 bitset = 0;
1762 break;
1765 if (state->start > end)
1766 break;
1768 if (state->state & bits) {
1769 bitset = 1;
1770 if (!filled)
1771 break;
1772 } else if (filled) {
1773 bitset = 0;
1774 break;
1777 if (state->end == (u64)-1)
1778 break;
1780 start = state->end + 1;
1781 if (start > end)
1782 break;
1783 node = rb_next(node);
1784 if (!node) {
1785 if (filled)
1786 bitset = 0;
1787 break;
1790 spin_unlock(&tree->lock);
1791 return bitset;
1795 * helper function to set a given page up to date if all the
1796 * extents in the tree for that page are up to date
1798 static int check_page_uptodate(struct extent_io_tree *tree,
1799 struct page *page)
1801 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1802 u64 end = start + PAGE_CACHE_SIZE - 1;
1803 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1804 SetPageUptodate(page);
1805 return 0;
1809 * helper function to unlock a page if all the extents in the tree
1810 * for that page are unlocked
1812 static int check_page_locked(struct extent_io_tree *tree,
1813 struct page *page)
1815 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1816 u64 end = start + PAGE_CACHE_SIZE - 1;
1817 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1818 unlock_page(page);
1819 return 0;
1823 * helper function to end page writeback if all the extents
1824 * in the tree for that page are done with writeback
1826 static int check_page_writeback(struct extent_io_tree *tree,
1827 struct page *page)
1829 end_page_writeback(page);
1830 return 0;
1834 * When IO fails, either with EIO or csum verification fails, we
1835 * try other mirrors that might have a good copy of the data. This
1836 * io_failure_record is used to record state as we go through all the
1837 * mirrors. If another mirror has good data, the page is set up to date
1838 * and things continue. If a good mirror can't be found, the original
1839 * bio end_io callback is called to indicate things have failed.
1841 struct io_failure_record {
1842 struct page *page;
1843 u64 start;
1844 u64 len;
1845 u64 logical;
1846 unsigned long bio_flags;
1847 int this_mirror;
1848 int failed_mirror;
1849 int in_validation;
1852 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1853 int did_repair)
1855 int ret;
1856 int err = 0;
1857 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1859 set_state_private(failure_tree, rec->start, 0);
1860 ret = clear_extent_bits(failure_tree, rec->start,
1861 rec->start + rec->len - 1,
1862 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1863 if (ret)
1864 err = ret;
1866 if (did_repair) {
1867 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1868 rec->start + rec->len - 1,
1869 EXTENT_DAMAGED, GFP_NOFS);
1870 if (ret && !err)
1871 err = ret;
1874 kfree(rec);
1875 return err;
1878 static void repair_io_failure_callback(struct bio *bio, int err)
1880 complete(bio->bi_private);
1884 * this bypasses the standard btrfs submit functions deliberately, as
1885 * the standard behavior is to write all copies in a raid setup. here we only
1886 * want to write the one bad copy. so we do the mapping for ourselves and issue
1887 * submit_bio directly.
1888 * to avoid any synchonization issues, wait for the data after writing, which
1889 * actually prevents the read that triggered the error from finishing.
1890 * currently, there can be no more than two copies of every data bit. thus,
1891 * exactly one rewrite is required.
1893 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1894 u64 length, u64 logical, struct page *page,
1895 int mirror_num)
1897 struct bio *bio;
1898 struct btrfs_device *dev;
1899 DECLARE_COMPLETION_ONSTACK(compl);
1900 u64 map_length = 0;
1901 u64 sector;
1902 struct btrfs_bio *bbio = NULL;
1903 int ret;
1905 BUG_ON(!mirror_num);
1907 bio = bio_alloc(GFP_NOFS, 1);
1908 if (!bio)
1909 return -EIO;
1910 bio->bi_private = &compl;
1911 bio->bi_end_io = repair_io_failure_callback;
1912 bio->bi_size = 0;
1913 map_length = length;
1915 ret = btrfs_map_block(map_tree, WRITE, logical,
1916 &map_length, &bbio, mirror_num);
1917 if (ret) {
1918 bio_put(bio);
1919 return -EIO;
1921 BUG_ON(mirror_num != bbio->mirror_num);
1922 sector = bbio->stripes[mirror_num-1].physical >> 9;
1923 bio->bi_sector = sector;
1924 dev = bbio->stripes[mirror_num-1].dev;
1925 kfree(bbio);
1926 if (!dev || !dev->bdev || !dev->writeable) {
1927 bio_put(bio);
1928 return -EIO;
1930 bio->bi_bdev = dev->bdev;
1931 bio_add_page(bio, page, length, start-page_offset(page));
1932 submit_bio(WRITE_SYNC, bio);
1933 wait_for_completion(&compl);
1935 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1936 /* try to remap that extent elsewhere? */
1937 bio_put(bio);
1938 return -EIO;
1941 printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1942 "sector %llu)\n", page->mapping->host->i_ino, start,
1943 dev->name, sector);
1945 bio_put(bio);
1946 return 0;
1950 * each time an IO finishes, we do a fast check in the IO failure tree
1951 * to see if we need to process or clean up an io_failure_record
1953 static int clean_io_failure(u64 start, struct page *page)
1955 u64 private;
1956 u64 private_failure;
1957 struct io_failure_record *failrec;
1958 struct btrfs_mapping_tree *map_tree;
1959 struct extent_state *state;
1960 int num_copies;
1961 int did_repair = 0;
1962 int ret;
1963 struct inode *inode = page->mapping->host;
1965 private = 0;
1966 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1967 (u64)-1, 1, EXTENT_DIRTY, 0);
1968 if (!ret)
1969 return 0;
1971 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1972 &private_failure);
1973 if (ret)
1974 return 0;
1976 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1977 BUG_ON(!failrec->this_mirror);
1979 if (failrec->in_validation) {
1980 /* there was no real error, just free the record */
1981 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1982 failrec->start);
1983 did_repair = 1;
1984 goto out;
1987 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1988 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1989 failrec->start,
1990 EXTENT_LOCKED);
1991 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1993 if (state && state->start == failrec->start) {
1994 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1995 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1996 failrec->len);
1997 if (num_copies > 1) {
1998 ret = repair_io_failure(map_tree, start, failrec->len,
1999 failrec->logical, page,
2000 failrec->failed_mirror);
2001 did_repair = !ret;
2005 out:
2006 if (!ret)
2007 ret = free_io_failure(inode, failrec, did_repair);
2009 return ret;
2013 * this is a generic handler for readpage errors (default
2014 * readpage_io_failed_hook). if other copies exist, read those and write back
2015 * good data to the failed position. does not investigate in remapping the
2016 * failed extent elsewhere, hoping the device will be smart enough to do this as
2017 * needed
2020 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2021 u64 start, u64 end, int failed_mirror,
2022 struct extent_state *state)
2024 struct io_failure_record *failrec = NULL;
2025 u64 private;
2026 struct extent_map *em;
2027 struct inode *inode = page->mapping->host;
2028 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2029 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2030 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2031 struct bio *bio;
2032 int num_copies;
2033 int ret;
2034 int read_mode;
2035 u64 logical;
2037 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2039 ret = get_state_private(failure_tree, start, &private);
2040 if (ret) {
2041 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2042 if (!failrec)
2043 return -ENOMEM;
2044 failrec->start = start;
2045 failrec->len = end - start + 1;
2046 failrec->this_mirror = 0;
2047 failrec->bio_flags = 0;
2048 failrec->in_validation = 0;
2050 read_lock(&em_tree->lock);
2051 em = lookup_extent_mapping(em_tree, start, failrec->len);
2052 if (!em) {
2053 read_unlock(&em_tree->lock);
2054 kfree(failrec);
2055 return -EIO;
2058 if (em->start > start || em->start + em->len < start) {
2059 free_extent_map(em);
2060 em = NULL;
2062 read_unlock(&em_tree->lock);
2064 if (!em || IS_ERR(em)) {
2065 kfree(failrec);
2066 return -EIO;
2068 logical = start - em->start;
2069 logical = em->block_start + logical;
2070 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2071 logical = em->block_start;
2072 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2073 extent_set_compress_type(&failrec->bio_flags,
2074 em->compress_type);
2076 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2077 "len=%llu\n", logical, start, failrec->len);
2078 failrec->logical = logical;
2079 free_extent_map(em);
2081 /* set the bits in the private failure tree */
2082 ret = set_extent_bits(failure_tree, start, end,
2083 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2084 if (ret >= 0)
2085 ret = set_state_private(failure_tree, start,
2086 (u64)(unsigned long)failrec);
2087 /* set the bits in the inode's tree */
2088 if (ret >= 0)
2089 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2090 GFP_NOFS);
2091 if (ret < 0) {
2092 kfree(failrec);
2093 return ret;
2095 } else {
2096 failrec = (struct io_failure_record *)(unsigned long)private;
2097 pr_debug("bio_readpage_error: (found) logical=%llu, "
2098 "start=%llu, len=%llu, validation=%d\n",
2099 failrec->logical, failrec->start, failrec->len,
2100 failrec->in_validation);
2102 * when data can be on disk more than twice, add to failrec here
2103 * (e.g. with a list for failed_mirror) to make
2104 * clean_io_failure() clean all those errors at once.
2107 num_copies = btrfs_num_copies(
2108 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2109 failrec->logical, failrec->len);
2110 if (num_copies == 1) {
2112 * we only have a single copy of the data, so don't bother with
2113 * all the retry and error correction code that follows. no
2114 * matter what the error is, it is very likely to persist.
2116 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2117 "state=%p, num_copies=%d, next_mirror %d, "
2118 "failed_mirror %d\n", state, num_copies,
2119 failrec->this_mirror, failed_mirror);
2120 free_io_failure(inode, failrec, 0);
2121 return -EIO;
2124 if (!state) {
2125 spin_lock(&tree->lock);
2126 state = find_first_extent_bit_state(tree, failrec->start,
2127 EXTENT_LOCKED);
2128 if (state && state->start != failrec->start)
2129 state = NULL;
2130 spin_unlock(&tree->lock);
2134 * there are two premises:
2135 * a) deliver good data to the caller
2136 * b) correct the bad sectors on disk
2138 if (failed_bio->bi_vcnt > 1) {
2140 * to fulfill b), we need to know the exact failing sectors, as
2141 * we don't want to rewrite any more than the failed ones. thus,
2142 * we need separate read requests for the failed bio
2144 * if the following BUG_ON triggers, our validation request got
2145 * merged. we need separate requests for our algorithm to work.
2147 BUG_ON(failrec->in_validation);
2148 failrec->in_validation = 1;
2149 failrec->this_mirror = failed_mirror;
2150 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2151 } else {
2153 * we're ready to fulfill a) and b) alongside. get a good copy
2154 * of the failed sector and if we succeed, we have setup
2155 * everything for repair_io_failure to do the rest for us.
2157 if (failrec->in_validation) {
2158 BUG_ON(failrec->this_mirror != failed_mirror);
2159 failrec->in_validation = 0;
2160 failrec->this_mirror = 0;
2162 failrec->failed_mirror = failed_mirror;
2163 failrec->this_mirror++;
2164 if (failrec->this_mirror == failed_mirror)
2165 failrec->this_mirror++;
2166 read_mode = READ_SYNC;
2169 if (!state || failrec->this_mirror > num_copies) {
2170 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2171 "next_mirror %d, failed_mirror %d\n", state,
2172 num_copies, failrec->this_mirror, failed_mirror);
2173 free_io_failure(inode, failrec, 0);
2174 return -EIO;
2177 bio = bio_alloc(GFP_NOFS, 1);
2178 bio->bi_private = state;
2179 bio->bi_end_io = failed_bio->bi_end_io;
2180 bio->bi_sector = failrec->logical >> 9;
2181 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2182 bio->bi_size = 0;
2184 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2186 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2187 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2188 failrec->this_mirror, num_copies, failrec->in_validation);
2190 tree->ops->submit_bio_hook(inode, read_mode, bio, failrec->this_mirror,
2191 failrec->bio_flags, 0);
2192 return 0;
2195 /* lots and lots of room for performance fixes in the end_bio funcs */
2198 * after a writepage IO is done, we need to:
2199 * clear the uptodate bits on error
2200 * clear the writeback bits in the extent tree for this IO
2201 * end_page_writeback if the page has no more pending IO
2203 * Scheduling is not allowed, so the extent state tree is expected
2204 * to have one and only one object corresponding to this IO.
2206 static void end_bio_extent_writepage(struct bio *bio, int err)
2208 int uptodate = err == 0;
2209 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2210 struct extent_io_tree *tree;
2211 u64 start;
2212 u64 end;
2213 int whole_page;
2214 int ret;
2216 do {
2217 struct page *page = bvec->bv_page;
2218 tree = &BTRFS_I(page->mapping->host)->io_tree;
2220 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2221 bvec->bv_offset;
2222 end = start + bvec->bv_len - 1;
2224 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2225 whole_page = 1;
2226 else
2227 whole_page = 0;
2229 if (--bvec >= bio->bi_io_vec)
2230 prefetchw(&bvec->bv_page->flags);
2231 if (tree->ops && tree->ops->writepage_end_io_hook) {
2232 ret = tree->ops->writepage_end_io_hook(page, start,
2233 end, NULL, uptodate);
2234 if (ret)
2235 uptodate = 0;
2238 if (!uptodate && tree->ops &&
2239 tree->ops->writepage_io_failed_hook) {
2240 ret = tree->ops->writepage_io_failed_hook(bio, page,
2241 start, end, NULL);
2242 if (ret == 0) {
2243 uptodate = (err == 0);
2244 continue;
2248 if (!uptodate) {
2249 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2250 ClearPageUptodate(page);
2251 SetPageError(page);
2254 if (whole_page)
2255 end_page_writeback(page);
2256 else
2257 check_page_writeback(tree, page);
2258 } while (bvec >= bio->bi_io_vec);
2260 bio_put(bio);
2264 * after a readpage IO is done, we need to:
2265 * clear the uptodate bits on error
2266 * set the uptodate bits if things worked
2267 * set the page up to date if all extents in the tree are uptodate
2268 * clear the lock bit in the extent tree
2269 * unlock the page if there are no other extents locked for it
2271 * Scheduling is not allowed, so the extent state tree is expected
2272 * to have one and only one object corresponding to this IO.
2274 static void end_bio_extent_readpage(struct bio *bio, int err)
2276 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2277 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2278 struct bio_vec *bvec = bio->bi_io_vec;
2279 struct extent_io_tree *tree;
2280 u64 start;
2281 u64 end;
2282 int whole_page;
2283 int ret;
2285 if (err)
2286 uptodate = 0;
2288 do {
2289 struct page *page = bvec->bv_page;
2290 struct extent_state *cached = NULL;
2291 struct extent_state *state;
2293 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2294 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2295 (long int)bio->bi_bdev);
2296 tree = &BTRFS_I(page->mapping->host)->io_tree;
2298 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2299 bvec->bv_offset;
2300 end = start + bvec->bv_len - 1;
2302 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2303 whole_page = 1;
2304 else
2305 whole_page = 0;
2307 if (++bvec <= bvec_end)
2308 prefetchw(&bvec->bv_page->flags);
2310 spin_lock(&tree->lock);
2311 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2312 if (state && state->start == start) {
2314 * take a reference on the state, unlock will drop
2315 * the ref
2317 cache_state(state, &cached);
2319 spin_unlock(&tree->lock);
2321 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2322 ret = tree->ops->readpage_end_io_hook(page, start, end,
2323 state);
2324 if (ret)
2325 uptodate = 0;
2326 else
2327 clean_io_failure(start, page);
2329 if (!uptodate) {
2330 int failed_mirror;
2331 failed_mirror = (int)(unsigned long)bio->bi_bdev;
2333 * The generic bio_readpage_error handles errors the
2334 * following way: If possible, new read requests are
2335 * created and submitted and will end up in
2336 * end_bio_extent_readpage as well (if we're lucky, not
2337 * in the !uptodate case). In that case it returns 0 and
2338 * we just go on with the next page in our bio. If it
2339 * can't handle the error it will return -EIO and we
2340 * remain responsible for that page.
2342 ret = bio_readpage_error(bio, page, start, end,
2343 failed_mirror, NULL);
2344 if (ret == 0) {
2345 error_handled:
2346 uptodate =
2347 test_bit(BIO_UPTODATE, &bio->bi_flags);
2348 if (err)
2349 uptodate = 0;
2350 uncache_state(&cached);
2351 continue;
2353 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2354 ret = tree->ops->readpage_io_failed_hook(
2355 bio, page, start, end,
2356 failed_mirror, state);
2357 if (ret == 0)
2358 goto error_handled;
2362 if (uptodate) {
2363 set_extent_uptodate(tree, start, end, &cached,
2364 GFP_ATOMIC);
2366 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2368 if (whole_page) {
2369 if (uptodate) {
2370 SetPageUptodate(page);
2371 } else {
2372 ClearPageUptodate(page);
2373 SetPageError(page);
2375 unlock_page(page);
2376 } else {
2377 if (uptodate) {
2378 check_page_uptodate(tree, page);
2379 } else {
2380 ClearPageUptodate(page);
2381 SetPageError(page);
2383 check_page_locked(tree, page);
2385 } while (bvec <= bvec_end);
2387 bio_put(bio);
2390 struct bio *
2391 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2392 gfp_t gfp_flags)
2394 struct bio *bio;
2396 bio = bio_alloc(gfp_flags, nr_vecs);
2398 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2399 while (!bio && (nr_vecs /= 2))
2400 bio = bio_alloc(gfp_flags, nr_vecs);
2403 if (bio) {
2404 bio->bi_size = 0;
2405 bio->bi_bdev = bdev;
2406 bio->bi_sector = first_sector;
2408 return bio;
2411 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
2412 unsigned long bio_flags)
2414 int ret = 0;
2415 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2416 struct page *page = bvec->bv_page;
2417 struct extent_io_tree *tree = bio->bi_private;
2418 u64 start;
2420 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2422 bio->bi_private = NULL;
2424 bio_get(bio);
2426 if (tree->ops && tree->ops->submit_bio_hook)
2427 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2428 mirror_num, bio_flags, start);
2429 else
2430 submit_bio(rw, bio);
2432 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2433 ret = -EOPNOTSUPP;
2434 bio_put(bio);
2435 return ret;
2438 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2439 struct page *page, sector_t sector,
2440 size_t size, unsigned long offset,
2441 struct block_device *bdev,
2442 struct bio **bio_ret,
2443 unsigned long max_pages,
2444 bio_end_io_t end_io_func,
2445 int mirror_num,
2446 unsigned long prev_bio_flags,
2447 unsigned long bio_flags)
2449 int ret = 0;
2450 struct bio *bio;
2451 int nr;
2452 int contig = 0;
2453 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2454 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2455 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2457 if (bio_ret && *bio_ret) {
2458 bio = *bio_ret;
2459 if (old_compressed)
2460 contig = bio->bi_sector == sector;
2461 else
2462 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2463 sector;
2465 if (prev_bio_flags != bio_flags || !contig ||
2466 (tree->ops && tree->ops->merge_bio_hook &&
2467 tree->ops->merge_bio_hook(page, offset, page_size, bio,
2468 bio_flags)) ||
2469 bio_add_page(bio, page, page_size, offset) < page_size) {
2470 ret = submit_one_bio(rw, bio, mirror_num,
2471 prev_bio_flags);
2472 bio = NULL;
2473 } else {
2474 return 0;
2477 if (this_compressed)
2478 nr = BIO_MAX_PAGES;
2479 else
2480 nr = bio_get_nr_vecs(bdev);
2482 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2483 if (!bio)
2484 return -ENOMEM;
2486 bio_add_page(bio, page, page_size, offset);
2487 bio->bi_end_io = end_io_func;
2488 bio->bi_private = tree;
2490 if (bio_ret)
2491 *bio_ret = bio;
2492 else
2493 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2495 return ret;
2498 void set_page_extent_mapped(struct page *page)
2500 if (!PagePrivate(page)) {
2501 SetPagePrivate(page);
2502 page_cache_get(page);
2503 set_page_private(page, EXTENT_PAGE_PRIVATE);
2507 static void set_page_extent_head(struct page *page, unsigned long len)
2509 WARN_ON(!PagePrivate(page));
2510 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
2514 * basic readpage implementation. Locked extent state structs are inserted
2515 * into the tree that are removed when the IO is done (by the end_io
2516 * handlers)
2518 static int __extent_read_full_page(struct extent_io_tree *tree,
2519 struct page *page,
2520 get_extent_t *get_extent,
2521 struct bio **bio, int mirror_num,
2522 unsigned long *bio_flags)
2524 struct inode *inode = page->mapping->host;
2525 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2526 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2527 u64 end;
2528 u64 cur = start;
2529 u64 extent_offset;
2530 u64 last_byte = i_size_read(inode);
2531 u64 block_start;
2532 u64 cur_end;
2533 sector_t sector;
2534 struct extent_map *em;
2535 struct block_device *bdev;
2536 struct btrfs_ordered_extent *ordered;
2537 int ret;
2538 int nr = 0;
2539 size_t pg_offset = 0;
2540 size_t iosize;
2541 size_t disk_io_size;
2542 size_t blocksize = inode->i_sb->s_blocksize;
2543 unsigned long this_bio_flag = 0;
2545 set_page_extent_mapped(page);
2547 if (!PageUptodate(page)) {
2548 if (cleancache_get_page(page) == 0) {
2549 BUG_ON(blocksize != PAGE_SIZE);
2550 goto out;
2554 end = page_end;
2555 while (1) {
2556 lock_extent(tree, start, end, GFP_NOFS);
2557 ordered = btrfs_lookup_ordered_extent(inode, start);
2558 if (!ordered)
2559 break;
2560 unlock_extent(tree, start, end, GFP_NOFS);
2561 btrfs_start_ordered_extent(inode, ordered, 1);
2562 btrfs_put_ordered_extent(ordered);
2565 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2566 char *userpage;
2567 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2569 if (zero_offset) {
2570 iosize = PAGE_CACHE_SIZE - zero_offset;
2571 userpage = kmap_atomic(page, KM_USER0);
2572 memset(userpage + zero_offset, 0, iosize);
2573 flush_dcache_page(page);
2574 kunmap_atomic(userpage, KM_USER0);
2577 while (cur <= end) {
2578 if (cur >= last_byte) {
2579 char *userpage;
2580 struct extent_state *cached = NULL;
2582 iosize = PAGE_CACHE_SIZE - pg_offset;
2583 userpage = kmap_atomic(page, KM_USER0);
2584 memset(userpage + pg_offset, 0, iosize);
2585 flush_dcache_page(page);
2586 kunmap_atomic(userpage, KM_USER0);
2587 set_extent_uptodate(tree, cur, cur + iosize - 1,
2588 &cached, GFP_NOFS);
2589 unlock_extent_cached(tree, cur, cur + iosize - 1,
2590 &cached, GFP_NOFS);
2591 break;
2593 em = get_extent(inode, page, pg_offset, cur,
2594 end - cur + 1, 0);
2595 if (IS_ERR_OR_NULL(em)) {
2596 SetPageError(page);
2597 unlock_extent(tree, cur, end, GFP_NOFS);
2598 break;
2600 extent_offset = cur - em->start;
2601 BUG_ON(extent_map_end(em) <= cur);
2602 BUG_ON(end < cur);
2604 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2605 this_bio_flag = EXTENT_BIO_COMPRESSED;
2606 extent_set_compress_type(&this_bio_flag,
2607 em->compress_type);
2610 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2611 cur_end = min(extent_map_end(em) - 1, end);
2612 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2613 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2614 disk_io_size = em->block_len;
2615 sector = em->block_start >> 9;
2616 } else {
2617 sector = (em->block_start + extent_offset) >> 9;
2618 disk_io_size = iosize;
2620 bdev = em->bdev;
2621 block_start = em->block_start;
2622 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2623 block_start = EXTENT_MAP_HOLE;
2624 free_extent_map(em);
2625 em = NULL;
2627 /* we've found a hole, just zero and go on */
2628 if (block_start == EXTENT_MAP_HOLE) {
2629 char *userpage;
2630 struct extent_state *cached = NULL;
2632 userpage = kmap_atomic(page, KM_USER0);
2633 memset(userpage + pg_offset, 0, iosize);
2634 flush_dcache_page(page);
2635 kunmap_atomic(userpage, KM_USER0);
2637 set_extent_uptodate(tree, cur, cur + iosize - 1,
2638 &cached, GFP_NOFS);
2639 unlock_extent_cached(tree, cur, cur + iosize - 1,
2640 &cached, GFP_NOFS);
2641 cur = cur + iosize;
2642 pg_offset += iosize;
2643 continue;
2645 /* the get_extent function already copied into the page */
2646 if (test_range_bit(tree, cur, cur_end,
2647 EXTENT_UPTODATE, 1, NULL)) {
2648 check_page_uptodate(tree, page);
2649 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2650 cur = cur + iosize;
2651 pg_offset += iosize;
2652 continue;
2654 /* we have an inline extent but it didn't get marked up
2655 * to date. Error out
2657 if (block_start == EXTENT_MAP_INLINE) {
2658 SetPageError(page);
2659 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2660 cur = cur + iosize;
2661 pg_offset += iosize;
2662 continue;
2665 ret = 0;
2666 if (tree->ops && tree->ops->readpage_io_hook) {
2667 ret = tree->ops->readpage_io_hook(page, cur,
2668 cur + iosize - 1);
2670 if (!ret) {
2671 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2672 pnr -= page->index;
2673 ret = submit_extent_page(READ, tree, page,
2674 sector, disk_io_size, pg_offset,
2675 bdev, bio, pnr,
2676 end_bio_extent_readpage, mirror_num,
2677 *bio_flags,
2678 this_bio_flag);
2679 nr++;
2680 *bio_flags = this_bio_flag;
2682 if (ret)
2683 SetPageError(page);
2684 cur = cur + iosize;
2685 pg_offset += iosize;
2687 out:
2688 if (!nr) {
2689 if (!PageError(page))
2690 SetPageUptodate(page);
2691 unlock_page(page);
2693 return 0;
2696 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2697 get_extent_t *get_extent, int mirror_num)
2699 struct bio *bio = NULL;
2700 unsigned long bio_flags = 0;
2701 int ret;
2703 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2704 &bio_flags);
2705 if (bio)
2706 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2707 return ret;
2710 static noinline void update_nr_written(struct page *page,
2711 struct writeback_control *wbc,
2712 unsigned long nr_written)
2714 wbc->nr_to_write -= nr_written;
2715 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2716 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2717 page->mapping->writeback_index = page->index + nr_written;
2721 * the writepage semantics are similar to regular writepage. extent
2722 * records are inserted to lock ranges in the tree, and as dirty areas
2723 * are found, they are marked writeback. Then the lock bits are removed
2724 * and the end_io handler clears the writeback ranges
2726 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2727 void *data)
2729 struct inode *inode = page->mapping->host;
2730 struct extent_page_data *epd = data;
2731 struct extent_io_tree *tree = epd->tree;
2732 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2733 u64 delalloc_start;
2734 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2735 u64 end;
2736 u64 cur = start;
2737 u64 extent_offset;
2738 u64 last_byte = i_size_read(inode);
2739 u64 block_start;
2740 u64 iosize;
2741 sector_t sector;
2742 struct extent_state *cached_state = NULL;
2743 struct extent_map *em;
2744 struct block_device *bdev;
2745 int ret;
2746 int nr = 0;
2747 size_t pg_offset = 0;
2748 size_t blocksize;
2749 loff_t i_size = i_size_read(inode);
2750 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2751 u64 nr_delalloc;
2752 u64 delalloc_end;
2753 int page_started;
2754 int compressed;
2755 int write_flags;
2756 unsigned long nr_written = 0;
2757 bool fill_delalloc = true;
2759 if (wbc->sync_mode == WB_SYNC_ALL)
2760 write_flags = WRITE_SYNC;
2761 else
2762 write_flags = WRITE;
2764 trace___extent_writepage(page, inode, wbc);
2766 WARN_ON(!PageLocked(page));
2768 ClearPageError(page);
2770 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2771 if (page->index > end_index ||
2772 (page->index == end_index && !pg_offset)) {
2773 page->mapping->a_ops->invalidatepage(page, 0);
2774 unlock_page(page);
2775 return 0;
2778 if (page->index == end_index) {
2779 char *userpage;
2781 userpage = kmap_atomic(page, KM_USER0);
2782 memset(userpage + pg_offset, 0,
2783 PAGE_CACHE_SIZE - pg_offset);
2784 kunmap_atomic(userpage, KM_USER0);
2785 flush_dcache_page(page);
2787 pg_offset = 0;
2789 set_page_extent_mapped(page);
2791 if (!tree->ops || !tree->ops->fill_delalloc)
2792 fill_delalloc = false;
2794 delalloc_start = start;
2795 delalloc_end = 0;
2796 page_started = 0;
2797 if (!epd->extent_locked && fill_delalloc) {
2798 u64 delalloc_to_write = 0;
2800 * make sure the wbc mapping index is at least updated
2801 * to this page.
2803 update_nr_written(page, wbc, 0);
2805 while (delalloc_end < page_end) {
2806 nr_delalloc = find_lock_delalloc_range(inode, tree,
2807 page,
2808 &delalloc_start,
2809 &delalloc_end,
2810 128 * 1024 * 1024);
2811 if (nr_delalloc == 0) {
2812 delalloc_start = delalloc_end + 1;
2813 continue;
2815 tree->ops->fill_delalloc(inode, page, delalloc_start,
2816 delalloc_end, &page_started,
2817 &nr_written);
2819 * delalloc_end is already one less than the total
2820 * length, so we don't subtract one from
2821 * PAGE_CACHE_SIZE
2823 delalloc_to_write += (delalloc_end - delalloc_start +
2824 PAGE_CACHE_SIZE) >>
2825 PAGE_CACHE_SHIFT;
2826 delalloc_start = delalloc_end + 1;
2828 if (wbc->nr_to_write < delalloc_to_write) {
2829 int thresh = 8192;
2831 if (delalloc_to_write < thresh * 2)
2832 thresh = delalloc_to_write;
2833 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2834 thresh);
2837 /* did the fill delalloc function already unlock and start
2838 * the IO?
2840 if (page_started) {
2841 ret = 0;
2843 * we've unlocked the page, so we can't update
2844 * the mapping's writeback index, just update
2845 * nr_to_write.
2847 wbc->nr_to_write -= nr_written;
2848 goto done_unlocked;
2851 if (tree->ops && tree->ops->writepage_start_hook) {
2852 ret = tree->ops->writepage_start_hook(page, start,
2853 page_end);
2854 if (ret == -EAGAIN) {
2855 redirty_page_for_writepage(wbc, page);
2856 update_nr_written(page, wbc, nr_written);
2857 unlock_page(page);
2858 ret = 0;
2859 goto done_unlocked;
2864 * we don't want to touch the inode after unlocking the page,
2865 * so we update the mapping writeback index now
2867 update_nr_written(page, wbc, nr_written + 1);
2869 end = page_end;
2870 if (last_byte <= start) {
2871 if (tree->ops && tree->ops->writepage_end_io_hook)
2872 tree->ops->writepage_end_io_hook(page, start,
2873 page_end, NULL, 1);
2874 goto done;
2877 blocksize = inode->i_sb->s_blocksize;
2879 while (cur <= end) {
2880 if (cur >= last_byte) {
2881 if (tree->ops && tree->ops->writepage_end_io_hook)
2882 tree->ops->writepage_end_io_hook(page, cur,
2883 page_end, NULL, 1);
2884 break;
2886 em = epd->get_extent(inode, page, pg_offset, cur,
2887 end - cur + 1, 1);
2888 if (IS_ERR_OR_NULL(em)) {
2889 SetPageError(page);
2890 break;
2893 extent_offset = cur - em->start;
2894 BUG_ON(extent_map_end(em) <= cur);
2895 BUG_ON(end < cur);
2896 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2897 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2898 sector = (em->block_start + extent_offset) >> 9;
2899 bdev = em->bdev;
2900 block_start = em->block_start;
2901 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2902 free_extent_map(em);
2903 em = NULL;
2906 * compressed and inline extents are written through other
2907 * paths in the FS
2909 if (compressed || block_start == EXTENT_MAP_HOLE ||
2910 block_start == EXTENT_MAP_INLINE) {
2912 * end_io notification does not happen here for
2913 * compressed extents
2915 if (!compressed && tree->ops &&
2916 tree->ops->writepage_end_io_hook)
2917 tree->ops->writepage_end_io_hook(page, cur,
2918 cur + iosize - 1,
2919 NULL, 1);
2920 else if (compressed) {
2921 /* we don't want to end_page_writeback on
2922 * a compressed extent. this happens
2923 * elsewhere
2925 nr++;
2928 cur += iosize;
2929 pg_offset += iosize;
2930 continue;
2932 /* leave this out until we have a page_mkwrite call */
2933 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2934 EXTENT_DIRTY, 0, NULL)) {
2935 cur = cur + iosize;
2936 pg_offset += iosize;
2937 continue;
2940 if (tree->ops && tree->ops->writepage_io_hook) {
2941 ret = tree->ops->writepage_io_hook(page, cur,
2942 cur + iosize - 1);
2943 } else {
2944 ret = 0;
2946 if (ret) {
2947 SetPageError(page);
2948 } else {
2949 unsigned long max_nr = end_index + 1;
2951 set_range_writeback(tree, cur, cur + iosize - 1);
2952 if (!PageWriteback(page)) {
2953 printk(KERN_ERR "btrfs warning page %lu not "
2954 "writeback, cur %llu end %llu\n",
2955 page->index, (unsigned long long)cur,
2956 (unsigned long long)end);
2959 ret = submit_extent_page(write_flags, tree, page,
2960 sector, iosize, pg_offset,
2961 bdev, &epd->bio, max_nr,
2962 end_bio_extent_writepage,
2963 0, 0, 0);
2964 if (ret)
2965 SetPageError(page);
2967 cur = cur + iosize;
2968 pg_offset += iosize;
2969 nr++;
2971 done:
2972 if (nr == 0) {
2973 /* make sure the mapping tag for page dirty gets cleared */
2974 set_page_writeback(page);
2975 end_page_writeback(page);
2977 unlock_page(page);
2979 done_unlocked:
2981 /* drop our reference on any cached states */
2982 free_extent_state(cached_state);
2983 return 0;
2987 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2988 * @mapping: address space structure to write
2989 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2990 * @writepage: function called for each page
2991 * @data: data passed to writepage function
2993 * If a page is already under I/O, write_cache_pages() skips it, even
2994 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2995 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2996 * and msync() need to guarantee that all the data which was dirty at the time
2997 * the call was made get new I/O started against them. If wbc->sync_mode is
2998 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2999 * existing IO to complete.
3001 static int extent_write_cache_pages(struct extent_io_tree *tree,
3002 struct address_space *mapping,
3003 struct writeback_control *wbc,
3004 writepage_t writepage, void *data,
3005 void (*flush_fn)(void *))
3007 int ret = 0;
3008 int done = 0;
3009 int nr_to_write_done = 0;
3010 struct pagevec pvec;
3011 int nr_pages;
3012 pgoff_t index;
3013 pgoff_t end; /* Inclusive */
3014 int scanned = 0;
3015 int tag;
3017 pagevec_init(&pvec, 0);
3018 if (wbc->range_cyclic) {
3019 index = mapping->writeback_index; /* Start from prev offset */
3020 end = -1;
3021 } else {
3022 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3023 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3024 scanned = 1;
3026 if (wbc->sync_mode == WB_SYNC_ALL)
3027 tag = PAGECACHE_TAG_TOWRITE;
3028 else
3029 tag = PAGECACHE_TAG_DIRTY;
3030 retry:
3031 if (wbc->sync_mode == WB_SYNC_ALL)
3032 tag_pages_for_writeback(mapping, index, end);
3033 while (!done && !nr_to_write_done && (index <= end) &&
3034 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3035 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3036 unsigned i;
3038 scanned = 1;
3039 for (i = 0; i < nr_pages; i++) {
3040 struct page *page = pvec.pages[i];
3043 * At this point we hold neither mapping->tree_lock nor
3044 * lock on the page itself: the page may be truncated or
3045 * invalidated (changing page->mapping to NULL), or even
3046 * swizzled back from swapper_space to tmpfs file
3047 * mapping
3049 if (tree->ops &&
3050 tree->ops->write_cache_pages_lock_hook) {
3051 tree->ops->write_cache_pages_lock_hook(page,
3052 data, flush_fn);
3053 } else {
3054 if (!trylock_page(page)) {
3055 flush_fn(data);
3056 lock_page(page);
3060 if (unlikely(page->mapping != mapping)) {
3061 unlock_page(page);
3062 continue;
3065 if (!wbc->range_cyclic && page->index > end) {
3066 done = 1;
3067 unlock_page(page);
3068 continue;
3071 if (wbc->sync_mode != WB_SYNC_NONE) {
3072 if (PageWriteback(page))
3073 flush_fn(data);
3074 wait_on_page_writeback(page);
3077 if (PageWriteback(page) ||
3078 !clear_page_dirty_for_io(page)) {
3079 unlock_page(page);
3080 continue;
3083 ret = (*writepage)(page, wbc, data);
3085 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3086 unlock_page(page);
3087 ret = 0;
3089 if (ret)
3090 done = 1;
3093 * the filesystem may choose to bump up nr_to_write.
3094 * We have to make sure to honor the new nr_to_write
3095 * at any time
3097 nr_to_write_done = wbc->nr_to_write <= 0;
3099 pagevec_release(&pvec);
3100 cond_resched();
3102 if (!scanned && !done) {
3104 * We hit the last page and there is more work to be done: wrap
3105 * back to the start of the file
3107 scanned = 1;
3108 index = 0;
3109 goto retry;
3111 return ret;
3114 static void flush_epd_write_bio(struct extent_page_data *epd)
3116 if (epd->bio) {
3117 if (epd->sync_io)
3118 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
3119 else
3120 submit_one_bio(WRITE, epd->bio, 0, 0);
3121 epd->bio = NULL;
3125 static noinline void flush_write_bio(void *data)
3127 struct extent_page_data *epd = data;
3128 flush_epd_write_bio(epd);
3131 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3132 get_extent_t *get_extent,
3133 struct writeback_control *wbc)
3135 int ret;
3136 struct extent_page_data epd = {
3137 .bio = NULL,
3138 .tree = tree,
3139 .get_extent = get_extent,
3140 .extent_locked = 0,
3141 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3144 ret = __extent_writepage(page, wbc, &epd);
3146 flush_epd_write_bio(&epd);
3147 return ret;
3150 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3151 u64 start, u64 end, get_extent_t *get_extent,
3152 int mode)
3154 int ret = 0;
3155 struct address_space *mapping = inode->i_mapping;
3156 struct page *page;
3157 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3158 PAGE_CACHE_SHIFT;
3160 struct extent_page_data epd = {
3161 .bio = NULL,
3162 .tree = tree,
3163 .get_extent = get_extent,
3164 .extent_locked = 1,
3165 .sync_io = mode == WB_SYNC_ALL,
3167 struct writeback_control wbc_writepages = {
3168 .sync_mode = mode,
3169 .nr_to_write = nr_pages * 2,
3170 .range_start = start,
3171 .range_end = end + 1,
3174 while (start <= end) {
3175 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3176 if (clear_page_dirty_for_io(page))
3177 ret = __extent_writepage(page, &wbc_writepages, &epd);
3178 else {
3179 if (tree->ops && tree->ops->writepage_end_io_hook)
3180 tree->ops->writepage_end_io_hook(page, start,
3181 start + PAGE_CACHE_SIZE - 1,
3182 NULL, 1);
3183 unlock_page(page);
3185 page_cache_release(page);
3186 start += PAGE_CACHE_SIZE;
3189 flush_epd_write_bio(&epd);
3190 return ret;
3193 int extent_writepages(struct extent_io_tree *tree,
3194 struct address_space *mapping,
3195 get_extent_t *get_extent,
3196 struct writeback_control *wbc)
3198 int ret = 0;
3199 struct extent_page_data epd = {
3200 .bio = NULL,
3201 .tree = tree,
3202 .get_extent = get_extent,
3203 .extent_locked = 0,
3204 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3207 ret = extent_write_cache_pages(tree, mapping, wbc,
3208 __extent_writepage, &epd,
3209 flush_write_bio);
3210 flush_epd_write_bio(&epd);
3211 return ret;
3214 int extent_readpages(struct extent_io_tree *tree,
3215 struct address_space *mapping,
3216 struct list_head *pages, unsigned nr_pages,
3217 get_extent_t get_extent)
3219 struct bio *bio = NULL;
3220 unsigned page_idx;
3221 unsigned long bio_flags = 0;
3223 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3224 struct page *page = list_entry(pages->prev, struct page, lru);
3226 prefetchw(&page->flags);
3227 list_del(&page->lru);
3228 if (!add_to_page_cache_lru(page, mapping,
3229 page->index, GFP_NOFS)) {
3230 __extent_read_full_page(tree, page, get_extent,
3231 &bio, 0, &bio_flags);
3233 page_cache_release(page);
3235 BUG_ON(!list_empty(pages));
3236 if (bio)
3237 submit_one_bio(READ, bio, 0, bio_flags);
3238 return 0;
3242 * basic invalidatepage code, this waits on any locked or writeback
3243 * ranges corresponding to the page, and then deletes any extent state
3244 * records from the tree
3246 int extent_invalidatepage(struct extent_io_tree *tree,
3247 struct page *page, unsigned long offset)
3249 struct extent_state *cached_state = NULL;
3250 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3251 u64 end = start + PAGE_CACHE_SIZE - 1;
3252 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3254 start += (offset + blocksize - 1) & ~(blocksize - 1);
3255 if (start > end)
3256 return 0;
3258 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
3259 wait_on_page_writeback(page);
3260 clear_extent_bit(tree, start, end,
3261 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3262 EXTENT_DO_ACCOUNTING,
3263 1, 1, &cached_state, GFP_NOFS);
3264 return 0;
3268 * a helper for releasepage, this tests for areas of the page that
3269 * are locked or under IO and drops the related state bits if it is safe
3270 * to drop the page.
3272 int try_release_extent_state(struct extent_map_tree *map,
3273 struct extent_io_tree *tree, struct page *page,
3274 gfp_t mask)
3276 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3277 u64 end = start + PAGE_CACHE_SIZE - 1;
3278 int ret = 1;
3280 if (test_range_bit(tree, start, end,
3281 EXTENT_IOBITS, 0, NULL))
3282 ret = 0;
3283 else {
3284 if ((mask & GFP_NOFS) == GFP_NOFS)
3285 mask = GFP_NOFS;
3287 * at this point we can safely clear everything except the
3288 * locked bit and the nodatasum bit
3290 ret = clear_extent_bit(tree, start, end,
3291 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3292 0, 0, NULL, mask);
3294 /* if clear_extent_bit failed for enomem reasons,
3295 * we can't allow the release to continue.
3297 if (ret < 0)
3298 ret = 0;
3299 else
3300 ret = 1;
3302 return ret;
3306 * a helper for releasepage. As long as there are no locked extents
3307 * in the range corresponding to the page, both state records and extent
3308 * map records are removed
3310 int try_release_extent_mapping(struct extent_map_tree *map,
3311 struct extent_io_tree *tree, struct page *page,
3312 gfp_t mask)
3314 struct extent_map *em;
3315 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3316 u64 end = start + PAGE_CACHE_SIZE - 1;
3318 if ((mask & __GFP_WAIT) &&
3319 page->mapping->host->i_size > 16 * 1024 * 1024) {
3320 u64 len;
3321 while (start <= end) {
3322 len = end - start + 1;
3323 write_lock(&map->lock);
3324 em = lookup_extent_mapping(map, start, len);
3325 if (IS_ERR_OR_NULL(em)) {
3326 write_unlock(&map->lock);
3327 break;
3329 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3330 em->start != start) {
3331 write_unlock(&map->lock);
3332 free_extent_map(em);
3333 break;
3335 if (!test_range_bit(tree, em->start,
3336 extent_map_end(em) - 1,
3337 EXTENT_LOCKED | EXTENT_WRITEBACK,
3338 0, NULL)) {
3339 remove_extent_mapping(map, em);
3340 /* once for the rb tree */
3341 free_extent_map(em);
3343 start = extent_map_end(em);
3344 write_unlock(&map->lock);
3346 /* once for us */
3347 free_extent_map(em);
3350 return try_release_extent_state(map, tree, page, mask);
3354 * helper function for fiemap, which doesn't want to see any holes.
3355 * This maps until we find something past 'last'
3357 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3358 u64 offset,
3359 u64 last,
3360 get_extent_t *get_extent)
3362 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3363 struct extent_map *em;
3364 u64 len;
3366 if (offset >= last)
3367 return NULL;
3369 while(1) {
3370 len = last - offset;
3371 if (len == 0)
3372 break;
3373 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3374 em = get_extent(inode, NULL, 0, offset, len, 0);
3375 if (IS_ERR_OR_NULL(em))
3376 return em;
3378 /* if this isn't a hole return it */
3379 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3380 em->block_start != EXTENT_MAP_HOLE) {
3381 return em;
3384 /* this is a hole, advance to the next extent */
3385 offset = extent_map_end(em);
3386 free_extent_map(em);
3387 if (offset >= last)
3388 break;
3390 return NULL;
3393 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3394 __u64 start, __u64 len, get_extent_t *get_extent)
3396 int ret = 0;
3397 u64 off = start;
3398 u64 max = start + len;
3399 u32 flags = 0;
3400 u32 found_type;
3401 u64 last;
3402 u64 last_for_get_extent = 0;
3403 u64 disko = 0;
3404 u64 isize = i_size_read(inode);
3405 struct btrfs_key found_key;
3406 struct extent_map *em = NULL;
3407 struct extent_state *cached_state = NULL;
3408 struct btrfs_path *path;
3409 struct btrfs_file_extent_item *item;
3410 int end = 0;
3411 u64 em_start = 0;
3412 u64 em_len = 0;
3413 u64 em_end = 0;
3414 unsigned long emflags;
3416 if (len == 0)
3417 return -EINVAL;
3419 path = btrfs_alloc_path();
3420 if (!path)
3421 return -ENOMEM;
3422 path->leave_spinning = 1;
3424 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3425 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3428 * lookup the last file extent. We're not using i_size here
3429 * because there might be preallocation past i_size
3431 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3432 path, btrfs_ino(inode), -1, 0);
3433 if (ret < 0) {
3434 btrfs_free_path(path);
3435 return ret;
3437 WARN_ON(!ret);
3438 path->slots[0]--;
3439 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3440 struct btrfs_file_extent_item);
3441 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3442 found_type = btrfs_key_type(&found_key);
3444 /* No extents, but there might be delalloc bits */
3445 if (found_key.objectid != btrfs_ino(inode) ||
3446 found_type != BTRFS_EXTENT_DATA_KEY) {
3447 /* have to trust i_size as the end */
3448 last = (u64)-1;
3449 last_for_get_extent = isize;
3450 } else {
3452 * remember the start of the last extent. There are a
3453 * bunch of different factors that go into the length of the
3454 * extent, so its much less complex to remember where it started
3456 last = found_key.offset;
3457 last_for_get_extent = last + 1;
3459 btrfs_free_path(path);
3462 * we might have some extents allocated but more delalloc past those
3463 * extents. so, we trust isize unless the start of the last extent is
3464 * beyond isize
3466 if (last < isize) {
3467 last = (u64)-1;
3468 last_for_get_extent = isize;
3471 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3472 &cached_state, GFP_NOFS);
3474 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3475 get_extent);
3476 if (!em)
3477 goto out;
3478 if (IS_ERR(em)) {
3479 ret = PTR_ERR(em);
3480 goto out;
3483 while (!end) {
3484 u64 offset_in_extent;
3486 /* break if the extent we found is outside the range */
3487 if (em->start >= max || extent_map_end(em) < off)
3488 break;
3491 * get_extent may return an extent that starts before our
3492 * requested range. We have to make sure the ranges
3493 * we return to fiemap always move forward and don't
3494 * overlap, so adjust the offsets here
3496 em_start = max(em->start, off);
3499 * record the offset from the start of the extent
3500 * for adjusting the disk offset below
3502 offset_in_extent = em_start - em->start;
3503 em_end = extent_map_end(em);
3504 em_len = em_end - em_start;
3505 emflags = em->flags;
3506 disko = 0;
3507 flags = 0;
3510 * bump off for our next call to get_extent
3512 off = extent_map_end(em);
3513 if (off >= max)
3514 end = 1;
3516 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3517 end = 1;
3518 flags |= FIEMAP_EXTENT_LAST;
3519 } else if (em->block_start == EXTENT_MAP_INLINE) {
3520 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3521 FIEMAP_EXTENT_NOT_ALIGNED);
3522 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3523 flags |= (FIEMAP_EXTENT_DELALLOC |
3524 FIEMAP_EXTENT_UNKNOWN);
3525 } else {
3526 disko = em->block_start + offset_in_extent;
3528 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3529 flags |= FIEMAP_EXTENT_ENCODED;
3531 free_extent_map(em);
3532 em = NULL;
3533 if ((em_start >= last) || em_len == (u64)-1 ||
3534 (last == (u64)-1 && isize <= em_end)) {
3535 flags |= FIEMAP_EXTENT_LAST;
3536 end = 1;
3539 /* now scan forward to see if this is really the last extent. */
3540 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3541 get_extent);
3542 if (IS_ERR(em)) {
3543 ret = PTR_ERR(em);
3544 goto out;
3546 if (!em) {
3547 flags |= FIEMAP_EXTENT_LAST;
3548 end = 1;
3550 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3551 em_len, flags);
3552 if (ret)
3553 goto out_free;
3555 out_free:
3556 free_extent_map(em);
3557 out:
3558 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3559 &cached_state, GFP_NOFS);
3560 return ret;
3563 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3564 unsigned long i)
3566 struct page *p;
3567 struct address_space *mapping;
3569 if (i == 0)
3570 return eb->first_page;
3571 i += eb->start >> PAGE_CACHE_SHIFT;
3572 mapping = eb->first_page->mapping;
3573 if (!mapping)
3574 return NULL;
3577 * extent_buffer_page is only called after pinning the page
3578 * by increasing the reference count. So we know the page must
3579 * be in the radix tree.
3581 rcu_read_lock();
3582 p = radix_tree_lookup(&mapping->page_tree, i);
3583 rcu_read_unlock();
3585 return p;
3588 inline unsigned long num_extent_pages(u64 start, u64 len)
3590 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3591 (start >> PAGE_CACHE_SHIFT);
3594 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3595 u64 start,
3596 unsigned long len,
3597 gfp_t mask)
3599 struct extent_buffer *eb = NULL;
3600 #if LEAK_DEBUG
3601 unsigned long flags;
3602 #endif
3604 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3605 if (eb == NULL)
3606 return NULL;
3607 eb->start = start;
3608 eb->len = len;
3609 rwlock_init(&eb->lock);
3610 atomic_set(&eb->write_locks, 0);
3611 atomic_set(&eb->read_locks, 0);
3612 atomic_set(&eb->blocking_readers, 0);
3613 atomic_set(&eb->blocking_writers, 0);
3614 atomic_set(&eb->spinning_readers, 0);
3615 atomic_set(&eb->spinning_writers, 0);
3616 init_waitqueue_head(&eb->write_lock_wq);
3617 init_waitqueue_head(&eb->read_lock_wq);
3619 #if LEAK_DEBUG
3620 spin_lock_irqsave(&leak_lock, flags);
3621 list_add(&eb->leak_list, &buffers);
3622 spin_unlock_irqrestore(&leak_lock, flags);
3623 #endif
3624 atomic_set(&eb->refs, 1);
3626 return eb;
3629 static void __free_extent_buffer(struct extent_buffer *eb)
3631 #if LEAK_DEBUG
3632 unsigned long flags;
3633 spin_lock_irqsave(&leak_lock, flags);
3634 list_del(&eb->leak_list);
3635 spin_unlock_irqrestore(&leak_lock, flags);
3636 #endif
3637 kmem_cache_free(extent_buffer_cache, eb);
3641 * Helper for releasing extent buffer page.
3643 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3644 unsigned long start_idx)
3646 unsigned long index;
3647 struct page *page;
3649 if (!eb->first_page)
3650 return;
3652 index = num_extent_pages(eb->start, eb->len);
3653 if (start_idx >= index)
3654 return;
3656 do {
3657 index--;
3658 page = extent_buffer_page(eb, index);
3659 if (page)
3660 page_cache_release(page);
3661 } while (index != start_idx);
3665 * Helper for releasing the extent buffer.
3667 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3669 btrfs_release_extent_buffer_page(eb, 0);
3670 __free_extent_buffer(eb);
3673 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3674 u64 start, unsigned long len,
3675 struct page *page0)
3677 unsigned long num_pages = num_extent_pages(start, len);
3678 unsigned long i;
3679 unsigned long index = start >> PAGE_CACHE_SHIFT;
3680 struct extent_buffer *eb;
3681 struct extent_buffer *exists = NULL;
3682 struct page *p;
3683 struct address_space *mapping = tree->mapping;
3684 int uptodate = 1;
3685 int ret;
3687 rcu_read_lock();
3688 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3689 if (eb && atomic_inc_not_zero(&eb->refs)) {
3690 rcu_read_unlock();
3691 mark_page_accessed(eb->first_page);
3692 return eb;
3694 rcu_read_unlock();
3696 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
3697 if (!eb)
3698 return NULL;
3700 if (page0) {
3701 eb->first_page = page0;
3702 i = 1;
3703 index++;
3704 page_cache_get(page0);
3705 mark_page_accessed(page0);
3706 set_page_extent_mapped(page0);
3707 set_page_extent_head(page0, len);
3708 uptodate = PageUptodate(page0);
3709 } else {
3710 i = 0;
3712 for (; i < num_pages; i++, index++) {
3713 p = find_or_create_page(mapping, index, GFP_NOFS);
3714 if (!p) {
3715 WARN_ON(1);
3716 goto free_eb;
3718 set_page_extent_mapped(p);
3719 mark_page_accessed(p);
3720 if (i == 0) {
3721 eb->first_page = p;
3722 set_page_extent_head(p, len);
3723 } else {
3724 set_page_private(p, EXTENT_PAGE_PRIVATE);
3726 if (!PageUptodate(p))
3727 uptodate = 0;
3730 * see below about how we avoid a nasty race with release page
3731 * and why we unlock later
3733 if (i != 0)
3734 unlock_page(p);
3736 if (uptodate)
3737 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3739 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3740 if (ret)
3741 goto free_eb;
3743 spin_lock(&tree->buffer_lock);
3744 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3745 if (ret == -EEXIST) {
3746 exists = radix_tree_lookup(&tree->buffer,
3747 start >> PAGE_CACHE_SHIFT);
3748 /* add one reference for the caller */
3749 atomic_inc(&exists->refs);
3750 spin_unlock(&tree->buffer_lock);
3751 radix_tree_preload_end();
3752 goto free_eb;
3754 /* add one reference for the tree */
3755 atomic_inc(&eb->refs);
3756 spin_unlock(&tree->buffer_lock);
3757 radix_tree_preload_end();
3760 * there is a race where release page may have
3761 * tried to find this extent buffer in the radix
3762 * but failed. It will tell the VM it is safe to
3763 * reclaim the, and it will clear the page private bit.
3764 * We must make sure to set the page private bit properly
3765 * after the extent buffer is in the radix tree so
3766 * it doesn't get lost
3768 set_page_extent_mapped(eb->first_page);
3769 set_page_extent_head(eb->first_page, eb->len);
3770 if (!page0)
3771 unlock_page(eb->first_page);
3772 return eb;
3774 free_eb:
3775 if (eb->first_page && !page0)
3776 unlock_page(eb->first_page);
3778 if (!atomic_dec_and_test(&eb->refs))
3779 return exists;
3780 btrfs_release_extent_buffer(eb);
3781 return exists;
3784 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3785 u64 start, unsigned long len)
3787 struct extent_buffer *eb;
3789 rcu_read_lock();
3790 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3791 if (eb && atomic_inc_not_zero(&eb->refs)) {
3792 rcu_read_unlock();
3793 mark_page_accessed(eb->first_page);
3794 return eb;
3796 rcu_read_unlock();
3798 return NULL;
3801 void free_extent_buffer(struct extent_buffer *eb)
3803 if (!eb)
3804 return;
3806 if (!atomic_dec_and_test(&eb->refs))
3807 return;
3809 WARN_ON(1);
3812 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3813 struct extent_buffer *eb)
3815 unsigned long i;
3816 unsigned long num_pages;
3817 struct page *page;
3819 num_pages = num_extent_pages(eb->start, eb->len);
3821 for (i = 0; i < num_pages; i++) {
3822 page = extent_buffer_page(eb, i);
3823 if (!PageDirty(page))
3824 continue;
3826 lock_page(page);
3827 WARN_ON(!PagePrivate(page));
3829 set_page_extent_mapped(page);
3830 if (i == 0)
3831 set_page_extent_head(page, eb->len);
3833 clear_page_dirty_for_io(page);
3834 spin_lock_irq(&page->mapping->tree_lock);
3835 if (!PageDirty(page)) {
3836 radix_tree_tag_clear(&page->mapping->page_tree,
3837 page_index(page),
3838 PAGECACHE_TAG_DIRTY);
3840 spin_unlock_irq(&page->mapping->tree_lock);
3841 ClearPageError(page);
3842 unlock_page(page);
3844 return 0;
3847 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3848 struct extent_buffer *eb)
3850 unsigned long i;
3851 unsigned long num_pages;
3852 int was_dirty = 0;
3854 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3855 num_pages = num_extent_pages(eb->start, eb->len);
3856 for (i = 0; i < num_pages; i++)
3857 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3858 return was_dirty;
3861 static int __eb_straddles_pages(u64 start, u64 len)
3863 if (len < PAGE_CACHE_SIZE)
3864 return 1;
3865 if (start & (PAGE_CACHE_SIZE - 1))
3866 return 1;
3867 if ((start + len) & (PAGE_CACHE_SIZE - 1))
3868 return 1;
3869 return 0;
3872 static int eb_straddles_pages(struct extent_buffer *eb)
3874 return __eb_straddles_pages(eb->start, eb->len);
3877 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3878 struct extent_buffer *eb,
3879 struct extent_state **cached_state)
3881 unsigned long i;
3882 struct page *page;
3883 unsigned long num_pages;
3885 num_pages = num_extent_pages(eb->start, eb->len);
3886 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3888 if (eb_straddles_pages(eb)) {
3889 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3890 cached_state, GFP_NOFS);
3892 for (i = 0; i < num_pages; i++) {
3893 page = extent_buffer_page(eb, i);
3894 if (page)
3895 ClearPageUptodate(page);
3897 return 0;
3900 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3901 struct extent_buffer *eb)
3903 unsigned long i;
3904 struct page *page;
3905 unsigned long num_pages;
3907 num_pages = num_extent_pages(eb->start, eb->len);
3909 if (eb_straddles_pages(eb)) {
3910 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3911 NULL, GFP_NOFS);
3913 for (i = 0; i < num_pages; i++) {
3914 page = extent_buffer_page(eb, i);
3915 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3916 ((i == num_pages - 1) &&
3917 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3918 check_page_uptodate(tree, page);
3919 continue;
3921 SetPageUptodate(page);
3923 return 0;
3926 int extent_range_uptodate(struct extent_io_tree *tree,
3927 u64 start, u64 end)
3929 struct page *page;
3930 int ret;
3931 int pg_uptodate = 1;
3932 int uptodate;
3933 unsigned long index;
3935 if (__eb_straddles_pages(start, end - start + 1)) {
3936 ret = test_range_bit(tree, start, end,
3937 EXTENT_UPTODATE, 1, NULL);
3938 if (ret)
3939 return 1;
3941 while (start <= end) {
3942 index = start >> PAGE_CACHE_SHIFT;
3943 page = find_get_page(tree->mapping, index);
3944 uptodate = PageUptodate(page);
3945 page_cache_release(page);
3946 if (!uptodate) {
3947 pg_uptodate = 0;
3948 break;
3950 start += PAGE_CACHE_SIZE;
3952 return pg_uptodate;
3955 int extent_buffer_uptodate(struct extent_io_tree *tree,
3956 struct extent_buffer *eb,
3957 struct extent_state *cached_state)
3959 int ret = 0;
3960 unsigned long num_pages;
3961 unsigned long i;
3962 struct page *page;
3963 int pg_uptodate = 1;
3965 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3966 return 1;
3968 if (eb_straddles_pages(eb)) {
3969 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3970 EXTENT_UPTODATE, 1, cached_state);
3971 if (ret)
3972 return ret;
3975 num_pages = num_extent_pages(eb->start, eb->len);
3976 for (i = 0; i < num_pages; i++) {
3977 page = extent_buffer_page(eb, i);
3978 if (!PageUptodate(page)) {
3979 pg_uptodate = 0;
3980 break;
3983 return pg_uptodate;
3986 int read_extent_buffer_pages(struct extent_io_tree *tree,
3987 struct extent_buffer *eb, u64 start, int wait,
3988 get_extent_t *get_extent, int mirror_num)
3990 unsigned long i;
3991 unsigned long start_i;
3992 struct page *page;
3993 int err;
3994 int ret = 0;
3995 int locked_pages = 0;
3996 int all_uptodate = 1;
3997 int inc_all_pages = 0;
3998 unsigned long num_pages;
3999 struct bio *bio = NULL;
4000 unsigned long bio_flags = 0;
4002 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4003 return 0;
4005 if (eb_straddles_pages(eb)) {
4006 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
4007 EXTENT_UPTODATE, 1, NULL)) {
4008 return 0;
4012 if (start) {
4013 WARN_ON(start < eb->start);
4014 start_i = (start >> PAGE_CACHE_SHIFT) -
4015 (eb->start >> PAGE_CACHE_SHIFT);
4016 } else {
4017 start_i = 0;
4020 num_pages = num_extent_pages(eb->start, eb->len);
4021 for (i = start_i; i < num_pages; i++) {
4022 page = extent_buffer_page(eb, i);
4023 if (wait == WAIT_NONE) {
4024 if (!trylock_page(page))
4025 goto unlock_exit;
4026 } else {
4027 lock_page(page);
4029 locked_pages++;
4030 if (!PageUptodate(page))
4031 all_uptodate = 0;
4033 if (all_uptodate) {
4034 if (start_i == 0)
4035 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4036 goto unlock_exit;
4039 for (i = start_i; i < num_pages; i++) {
4040 page = extent_buffer_page(eb, i);
4042 WARN_ON(!PagePrivate(page));
4044 set_page_extent_mapped(page);
4045 if (i == 0)
4046 set_page_extent_head(page, eb->len);
4048 if (inc_all_pages)
4049 page_cache_get(page);
4050 if (!PageUptodate(page)) {
4051 if (start_i == 0)
4052 inc_all_pages = 1;
4053 ClearPageError(page);
4054 err = __extent_read_full_page(tree, page,
4055 get_extent, &bio,
4056 mirror_num, &bio_flags);
4057 if (err)
4058 ret = err;
4059 } else {
4060 unlock_page(page);
4064 if (bio)
4065 submit_one_bio(READ, bio, mirror_num, bio_flags);
4067 if (ret || wait != WAIT_COMPLETE)
4068 return ret;
4070 for (i = start_i; i < num_pages; i++) {
4071 page = extent_buffer_page(eb, i);
4072 wait_on_page_locked(page);
4073 if (!PageUptodate(page))
4074 ret = -EIO;
4077 if (!ret)
4078 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4079 return ret;
4081 unlock_exit:
4082 i = start_i;
4083 while (locked_pages > 0) {
4084 page = extent_buffer_page(eb, i);
4085 i++;
4086 unlock_page(page);
4087 locked_pages--;
4089 return ret;
4092 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4093 unsigned long start,
4094 unsigned long len)
4096 size_t cur;
4097 size_t offset;
4098 struct page *page;
4099 char *kaddr;
4100 char *dst = (char *)dstv;
4101 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4102 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4104 WARN_ON(start > eb->len);
4105 WARN_ON(start + len > eb->start + eb->len);
4107 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4109 while (len > 0) {
4110 page = extent_buffer_page(eb, i);
4112 cur = min(len, (PAGE_CACHE_SIZE - offset));
4113 kaddr = page_address(page);
4114 memcpy(dst, kaddr + offset, cur);
4116 dst += cur;
4117 len -= cur;
4118 offset = 0;
4119 i++;
4123 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4124 unsigned long min_len, char **map,
4125 unsigned long *map_start,
4126 unsigned long *map_len)
4128 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4129 char *kaddr;
4130 struct page *p;
4131 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4132 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4133 unsigned long end_i = (start_offset + start + min_len - 1) >>
4134 PAGE_CACHE_SHIFT;
4136 if (i != end_i)
4137 return -EINVAL;
4139 if (i == 0) {
4140 offset = start_offset;
4141 *map_start = 0;
4142 } else {
4143 offset = 0;
4144 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4147 if (start + min_len > eb->len) {
4148 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4149 "wanted %lu %lu\n", (unsigned long long)eb->start,
4150 eb->len, start, min_len);
4151 WARN_ON(1);
4152 return -EINVAL;
4155 p = extent_buffer_page(eb, i);
4156 kaddr = page_address(p);
4157 *map = kaddr + offset;
4158 *map_len = PAGE_CACHE_SIZE - offset;
4159 return 0;
4162 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4163 unsigned long start,
4164 unsigned long len)
4166 size_t cur;
4167 size_t offset;
4168 struct page *page;
4169 char *kaddr;
4170 char *ptr = (char *)ptrv;
4171 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4172 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4173 int ret = 0;
4175 WARN_ON(start > eb->len);
4176 WARN_ON(start + len > eb->start + eb->len);
4178 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4180 while (len > 0) {
4181 page = extent_buffer_page(eb, i);
4183 cur = min(len, (PAGE_CACHE_SIZE - offset));
4185 kaddr = page_address(page);
4186 ret = memcmp(ptr, kaddr + offset, cur);
4187 if (ret)
4188 break;
4190 ptr += cur;
4191 len -= cur;
4192 offset = 0;
4193 i++;
4195 return ret;
4198 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4199 unsigned long start, unsigned long len)
4201 size_t cur;
4202 size_t offset;
4203 struct page *page;
4204 char *kaddr;
4205 char *src = (char *)srcv;
4206 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4207 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4209 WARN_ON(start > eb->len);
4210 WARN_ON(start + len > eb->start + eb->len);
4212 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4214 while (len > 0) {
4215 page = extent_buffer_page(eb, i);
4216 WARN_ON(!PageUptodate(page));
4218 cur = min(len, PAGE_CACHE_SIZE - offset);
4219 kaddr = page_address(page);
4220 memcpy(kaddr + offset, src, cur);
4222 src += cur;
4223 len -= cur;
4224 offset = 0;
4225 i++;
4229 void memset_extent_buffer(struct extent_buffer *eb, char c,
4230 unsigned long start, unsigned long len)
4232 size_t cur;
4233 size_t offset;
4234 struct page *page;
4235 char *kaddr;
4236 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4237 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4239 WARN_ON(start > eb->len);
4240 WARN_ON(start + len > eb->start + eb->len);
4242 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4244 while (len > 0) {
4245 page = extent_buffer_page(eb, i);
4246 WARN_ON(!PageUptodate(page));
4248 cur = min(len, PAGE_CACHE_SIZE - offset);
4249 kaddr = page_address(page);
4250 memset(kaddr + offset, c, cur);
4252 len -= cur;
4253 offset = 0;
4254 i++;
4258 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4259 unsigned long dst_offset, unsigned long src_offset,
4260 unsigned long len)
4262 u64 dst_len = dst->len;
4263 size_t cur;
4264 size_t offset;
4265 struct page *page;
4266 char *kaddr;
4267 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4268 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4270 WARN_ON(src->len != dst_len);
4272 offset = (start_offset + dst_offset) &
4273 ((unsigned long)PAGE_CACHE_SIZE - 1);
4275 while (len > 0) {
4276 page = extent_buffer_page(dst, i);
4277 WARN_ON(!PageUptodate(page));
4279 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4281 kaddr = page_address(page);
4282 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4284 src_offset += cur;
4285 len -= cur;
4286 offset = 0;
4287 i++;
4291 static void move_pages(struct page *dst_page, struct page *src_page,
4292 unsigned long dst_off, unsigned long src_off,
4293 unsigned long len)
4295 char *dst_kaddr = page_address(dst_page);
4296 if (dst_page == src_page) {
4297 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4298 } else {
4299 char *src_kaddr = page_address(src_page);
4300 char *p = dst_kaddr + dst_off + len;
4301 char *s = src_kaddr + src_off + len;
4303 while (len--)
4304 *--p = *--s;
4308 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4310 unsigned long distance = (src > dst) ? src - dst : dst - src;
4311 return distance < len;
4314 static void copy_pages(struct page *dst_page, struct page *src_page,
4315 unsigned long dst_off, unsigned long src_off,
4316 unsigned long len)
4318 char *dst_kaddr = page_address(dst_page);
4319 char *src_kaddr;
4321 if (dst_page != src_page) {
4322 src_kaddr = page_address(src_page);
4323 } else {
4324 src_kaddr = dst_kaddr;
4325 BUG_ON(areas_overlap(src_off, dst_off, len));
4328 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4331 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4332 unsigned long src_offset, unsigned long len)
4334 size_t cur;
4335 size_t dst_off_in_page;
4336 size_t src_off_in_page;
4337 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4338 unsigned long dst_i;
4339 unsigned long src_i;
4341 if (src_offset + len > dst->len) {
4342 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4343 "len %lu dst len %lu\n", src_offset, len, dst->len);
4344 BUG_ON(1);
4346 if (dst_offset + len > dst->len) {
4347 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4348 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4349 BUG_ON(1);
4352 while (len > 0) {
4353 dst_off_in_page = (start_offset + dst_offset) &
4354 ((unsigned long)PAGE_CACHE_SIZE - 1);
4355 src_off_in_page = (start_offset + src_offset) &
4356 ((unsigned long)PAGE_CACHE_SIZE - 1);
4358 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4359 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4361 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4362 src_off_in_page));
4363 cur = min_t(unsigned long, cur,
4364 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4366 copy_pages(extent_buffer_page(dst, dst_i),
4367 extent_buffer_page(dst, src_i),
4368 dst_off_in_page, src_off_in_page, cur);
4370 src_offset += cur;
4371 dst_offset += cur;
4372 len -= cur;
4376 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4377 unsigned long src_offset, unsigned long len)
4379 size_t cur;
4380 size_t dst_off_in_page;
4381 size_t src_off_in_page;
4382 unsigned long dst_end = dst_offset + len - 1;
4383 unsigned long src_end = src_offset + len - 1;
4384 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4385 unsigned long dst_i;
4386 unsigned long src_i;
4388 if (src_offset + len > dst->len) {
4389 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4390 "len %lu len %lu\n", src_offset, len, dst->len);
4391 BUG_ON(1);
4393 if (dst_offset + len > dst->len) {
4394 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4395 "len %lu len %lu\n", dst_offset, len, dst->len);
4396 BUG_ON(1);
4398 if (!areas_overlap(src_offset, dst_offset, len)) {
4399 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4400 return;
4402 while (len > 0) {
4403 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4404 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4406 dst_off_in_page = (start_offset + dst_end) &
4407 ((unsigned long)PAGE_CACHE_SIZE - 1);
4408 src_off_in_page = (start_offset + src_end) &
4409 ((unsigned long)PAGE_CACHE_SIZE - 1);
4411 cur = min_t(unsigned long, len, src_off_in_page + 1);
4412 cur = min(cur, dst_off_in_page + 1);
4413 move_pages(extent_buffer_page(dst, dst_i),
4414 extent_buffer_page(dst, src_i),
4415 dst_off_in_page - cur + 1,
4416 src_off_in_page - cur + 1, cur);
4418 dst_end -= cur;
4419 src_end -= cur;
4420 len -= cur;
4424 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4426 struct extent_buffer *eb =
4427 container_of(head, struct extent_buffer, rcu_head);
4429 btrfs_release_extent_buffer(eb);
4432 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4434 u64 start = page_offset(page);
4435 struct extent_buffer *eb;
4436 int ret = 1;
4438 spin_lock(&tree->buffer_lock);
4439 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4440 if (!eb) {
4441 spin_unlock(&tree->buffer_lock);
4442 return ret;
4445 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4446 ret = 0;
4447 goto out;
4451 * set @eb->refs to 0 if it is already 1, and then release the @eb.
4452 * Or go back.
4454 if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4455 ret = 0;
4456 goto out;
4459 radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4460 out:
4461 spin_unlock(&tree->buffer_lock);
4463 /* at this point we can safely release the extent buffer */
4464 if (atomic_read(&eb->refs) == 0)
4465 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4466 return ret;