2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
45 #include "transaction.h"
46 #include "btrfs_inode.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
53 #include "compression.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
58 struct btrfs_iget_args
{
59 struct btrfs_key
*location
;
60 struct btrfs_root
*root
;
63 static const struct inode_operations btrfs_dir_inode_operations
;
64 static const struct inode_operations btrfs_symlink_inode_operations
;
65 static const struct inode_operations btrfs_dir_ro_inode_operations
;
66 static const struct inode_operations btrfs_special_inode_operations
;
67 static const struct inode_operations btrfs_file_inode_operations
;
68 static const struct address_space_operations btrfs_aops
;
69 static const struct address_space_operations btrfs_symlink_aops
;
70 static const struct file_operations btrfs_dir_file_operations
;
71 static struct extent_io_ops btrfs_extent_io_ops
;
73 static struct kmem_cache
*btrfs_inode_cachep
;
74 struct kmem_cache
*btrfs_trans_handle_cachep
;
75 struct kmem_cache
*btrfs_transaction_cachep
;
76 struct kmem_cache
*btrfs_path_cachep
;
77 struct kmem_cache
*btrfs_free_space_cachep
;
80 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
81 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
82 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
83 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
84 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
85 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
86 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
87 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
90 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
);
91 static int btrfs_truncate(struct inode
*inode
);
92 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
93 static noinline
int cow_file_range(struct inode
*inode
,
94 struct page
*locked_page
,
95 u64 start
, u64 end
, int *page_started
,
96 unsigned long *nr_written
, int unlock
);
97 static noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
98 struct btrfs_root
*root
, struct inode
*inode
);
100 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
101 struct inode
*inode
, struct inode
*dir
,
102 const struct qstr
*qstr
)
106 err
= btrfs_init_acl(trans
, inode
, dir
);
108 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
117 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
118 struct btrfs_root
*root
, struct inode
*inode
,
119 u64 start
, size_t size
, size_t compressed_size
,
121 struct page
**compressed_pages
)
123 struct btrfs_key key
;
124 struct btrfs_path
*path
;
125 struct extent_buffer
*leaf
;
126 struct page
*page
= NULL
;
129 struct btrfs_file_extent_item
*ei
;
132 size_t cur_size
= size
;
134 unsigned long offset
;
136 if (compressed_size
&& compressed_pages
)
137 cur_size
= compressed_size
;
139 path
= btrfs_alloc_path();
143 path
->leave_spinning
= 1;
145 key
.objectid
= btrfs_ino(inode
);
147 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
148 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
150 inode_add_bytes(inode
, size
);
151 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
158 leaf
= path
->nodes
[0];
159 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
160 struct btrfs_file_extent_item
);
161 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
162 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
163 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
164 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
165 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
166 ptr
= btrfs_file_extent_inline_start(ei
);
168 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
171 while (compressed_size
> 0) {
172 cpage
= compressed_pages
[i
];
173 cur_size
= min_t(unsigned long, compressed_size
,
176 kaddr
= kmap_atomic(cpage
, KM_USER0
);
177 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
178 kunmap_atomic(kaddr
, KM_USER0
);
182 compressed_size
-= cur_size
;
184 btrfs_set_file_extent_compression(leaf
, ei
,
187 page
= find_get_page(inode
->i_mapping
,
188 start
>> PAGE_CACHE_SHIFT
);
189 btrfs_set_file_extent_compression(leaf
, ei
, 0);
190 kaddr
= kmap_atomic(page
, KM_USER0
);
191 offset
= start
& (PAGE_CACHE_SIZE
- 1);
192 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
193 kunmap_atomic(kaddr
, KM_USER0
);
194 page_cache_release(page
);
196 btrfs_mark_buffer_dirty(leaf
);
197 btrfs_free_path(path
);
200 * we're an inline extent, so nobody can
201 * extend the file past i_size without locking
202 * a page we already have locked.
204 * We must do any isize and inode updates
205 * before we unlock the pages. Otherwise we
206 * could end up racing with unlink.
208 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
209 btrfs_update_inode(trans
, root
, inode
);
213 btrfs_free_path(path
);
219 * conditionally insert an inline extent into the file. This
220 * does the checks required to make sure the data is small enough
221 * to fit as an inline extent.
223 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
224 struct btrfs_root
*root
,
225 struct inode
*inode
, u64 start
, u64 end
,
226 size_t compressed_size
, int compress_type
,
227 struct page
**compressed_pages
)
229 u64 isize
= i_size_read(inode
);
230 u64 actual_end
= min(end
+ 1, isize
);
231 u64 inline_len
= actual_end
- start
;
232 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
233 ~((u64
)root
->sectorsize
- 1);
235 u64 data_len
= inline_len
;
239 data_len
= compressed_size
;
242 actual_end
>= PAGE_CACHE_SIZE
||
243 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
245 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
247 data_len
> root
->fs_info
->max_inline
) {
251 ret
= btrfs_drop_extents(trans
, inode
, start
, aligned_end
,
255 if (isize
> actual_end
)
256 inline_len
= min_t(u64
, isize
, actual_end
);
257 ret
= insert_inline_extent(trans
, root
, inode
, start
,
258 inline_len
, compressed_size
,
259 compress_type
, compressed_pages
);
261 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
262 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
266 struct async_extent
{
271 unsigned long nr_pages
;
273 struct list_head list
;
278 struct btrfs_root
*root
;
279 struct page
*locked_page
;
282 struct list_head extents
;
283 struct btrfs_work work
;
286 static noinline
int add_async_extent(struct async_cow
*cow
,
287 u64 start
, u64 ram_size
,
290 unsigned long nr_pages
,
293 struct async_extent
*async_extent
;
295 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
296 BUG_ON(!async_extent
);
297 async_extent
->start
= start
;
298 async_extent
->ram_size
= ram_size
;
299 async_extent
->compressed_size
= compressed_size
;
300 async_extent
->pages
= pages
;
301 async_extent
->nr_pages
= nr_pages
;
302 async_extent
->compress_type
= compress_type
;
303 list_add_tail(&async_extent
->list
, &cow
->extents
);
308 * we create compressed extents in two phases. The first
309 * phase compresses a range of pages that have already been
310 * locked (both pages and state bits are locked).
312 * This is done inside an ordered work queue, and the compression
313 * is spread across many cpus. The actual IO submission is step
314 * two, and the ordered work queue takes care of making sure that
315 * happens in the same order things were put onto the queue by
316 * writepages and friends.
318 * If this code finds it can't get good compression, it puts an
319 * entry onto the work queue to write the uncompressed bytes. This
320 * makes sure that both compressed inodes and uncompressed inodes
321 * are written in the same order that pdflush sent them down.
323 static noinline
int compress_file_range(struct inode
*inode
,
324 struct page
*locked_page
,
326 struct async_cow
*async_cow
,
329 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
330 struct btrfs_trans_handle
*trans
;
332 u64 blocksize
= root
->sectorsize
;
334 u64 isize
= i_size_read(inode
);
336 struct page
**pages
= NULL
;
337 unsigned long nr_pages
;
338 unsigned long nr_pages_ret
= 0;
339 unsigned long total_compressed
= 0;
340 unsigned long total_in
= 0;
341 unsigned long max_compressed
= 128 * 1024;
342 unsigned long max_uncompressed
= 128 * 1024;
345 int compress_type
= root
->fs_info
->compress_type
;
348 /* if this is a small write inside eof, kick off a defragbot */
349 if (end
<= BTRFS_I(inode
)->disk_i_size
&& (end
- start
+ 1) < 16 * 1024)
350 btrfs_add_inode_defrag(NULL
, inode
);
352 actual_end
= min_t(u64
, isize
, end
+ 1);
355 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
356 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
359 * we don't want to send crud past the end of i_size through
360 * compression, that's just a waste of CPU time. So, if the
361 * end of the file is before the start of our current
362 * requested range of bytes, we bail out to the uncompressed
363 * cleanup code that can deal with all of this.
365 * It isn't really the fastest way to fix things, but this is a
366 * very uncommon corner.
368 if (actual_end
<= start
)
369 goto cleanup_and_bail_uncompressed
;
371 total_compressed
= actual_end
- start
;
373 /* we want to make sure that amount of ram required to uncompress
374 * an extent is reasonable, so we limit the total size in ram
375 * of a compressed extent to 128k. This is a crucial number
376 * because it also controls how easily we can spread reads across
377 * cpus for decompression.
379 * We also want to make sure the amount of IO required to do
380 * a random read is reasonably small, so we limit the size of
381 * a compressed extent to 128k.
383 total_compressed
= min(total_compressed
, max_uncompressed
);
384 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
385 num_bytes
= max(blocksize
, num_bytes
);
390 * we do compression for mount -o compress and when the
391 * inode has not been flagged as nocompress. This flag can
392 * change at any time if we discover bad compression ratios.
394 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
395 (btrfs_test_opt(root
, COMPRESS
) ||
396 (BTRFS_I(inode
)->force_compress
) ||
397 (BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))) {
399 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
401 /* just bail out to the uncompressed code */
405 if (BTRFS_I(inode
)->force_compress
)
406 compress_type
= BTRFS_I(inode
)->force_compress
;
409 * we need to call clear_page_dirty_for_io on each
410 * page in the range. Otherwise applications with the file
411 * mmap'd can wander in and change the page contents while
412 * we are compressing them.
414 * If the compression fails for any reason, we set the pages
415 * dirty again later on.
417 extent_range_clear_dirty_for_io(inode
, start
, end
);
419 ret
= btrfs_compress_pages(compress_type
,
420 inode
->i_mapping
, start
,
421 total_compressed
, pages
,
422 nr_pages
, &nr_pages_ret
,
428 unsigned long offset
= total_compressed
&
429 (PAGE_CACHE_SIZE
- 1);
430 struct page
*page
= pages
[nr_pages_ret
- 1];
433 /* zero the tail end of the last page, we might be
434 * sending it down to disk
437 kaddr
= kmap_atomic(page
, KM_USER0
);
438 memset(kaddr
+ offset
, 0,
439 PAGE_CACHE_SIZE
- offset
);
440 kunmap_atomic(kaddr
, KM_USER0
);
447 trans
= btrfs_join_transaction(root
);
448 BUG_ON(IS_ERR(trans
));
449 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
451 /* lets try to make an inline extent */
452 if (ret
|| total_in
< (actual_end
- start
)) {
453 /* we didn't compress the entire range, try
454 * to make an uncompressed inline extent.
456 ret
= cow_file_range_inline(trans
, root
, inode
,
457 start
, end
, 0, 0, NULL
);
459 /* try making a compressed inline extent */
460 ret
= cow_file_range_inline(trans
, root
, inode
,
463 compress_type
, pages
);
467 * inline extent creation worked, we don't need
468 * to create any more async work items. Unlock
469 * and free up our temp pages.
471 extent_clear_unlock_delalloc(inode
,
472 &BTRFS_I(inode
)->io_tree
,
474 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
475 EXTENT_CLEAR_DELALLOC
|
476 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
478 btrfs_end_transaction(trans
, root
);
481 btrfs_end_transaction(trans
, root
);
486 * we aren't doing an inline extent round the compressed size
487 * up to a block size boundary so the allocator does sane
490 total_compressed
= (total_compressed
+ blocksize
- 1) &
494 * one last check to make sure the compression is really a
495 * win, compare the page count read with the blocks on disk
497 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
498 ~(PAGE_CACHE_SIZE
- 1);
499 if (total_compressed
>= total_in
) {
502 num_bytes
= total_in
;
505 if (!will_compress
&& pages
) {
507 * the compression code ran but failed to make things smaller,
508 * free any pages it allocated and our page pointer array
510 for (i
= 0; i
< nr_pages_ret
; i
++) {
511 WARN_ON(pages
[i
]->mapping
);
512 page_cache_release(pages
[i
]);
516 total_compressed
= 0;
519 /* flag the file so we don't compress in the future */
520 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
521 !(BTRFS_I(inode
)->force_compress
)) {
522 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
528 /* the async work queues will take care of doing actual
529 * allocation on disk for these compressed pages,
530 * and will submit them to the elevator.
532 add_async_extent(async_cow
, start
, num_bytes
,
533 total_compressed
, pages
, nr_pages_ret
,
536 if (start
+ num_bytes
< end
) {
543 cleanup_and_bail_uncompressed
:
545 * No compression, but we still need to write the pages in
546 * the file we've been given so far. redirty the locked
547 * page if it corresponds to our extent and set things up
548 * for the async work queue to run cow_file_range to do
549 * the normal delalloc dance
551 if (page_offset(locked_page
) >= start
&&
552 page_offset(locked_page
) <= end
) {
553 __set_page_dirty_nobuffers(locked_page
);
554 /* unlocked later on in the async handlers */
557 extent_range_redirty_for_io(inode
, start
, end
);
558 add_async_extent(async_cow
, start
, end
- start
+ 1,
559 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
567 for (i
= 0; i
< nr_pages_ret
; i
++) {
568 WARN_ON(pages
[i
]->mapping
);
569 page_cache_release(pages
[i
]);
577 * phase two of compressed writeback. This is the ordered portion
578 * of the code, which only gets called in the order the work was
579 * queued. We walk all the async extents created by compress_file_range
580 * and send them down to the disk.
582 static noinline
int submit_compressed_extents(struct inode
*inode
,
583 struct async_cow
*async_cow
)
585 struct async_extent
*async_extent
;
587 struct btrfs_trans_handle
*trans
;
588 struct btrfs_key ins
;
589 struct extent_map
*em
;
590 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
591 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
592 struct extent_io_tree
*io_tree
;
595 if (list_empty(&async_cow
->extents
))
599 while (!list_empty(&async_cow
->extents
)) {
600 async_extent
= list_entry(async_cow
->extents
.next
,
601 struct async_extent
, list
);
602 list_del(&async_extent
->list
);
604 io_tree
= &BTRFS_I(inode
)->io_tree
;
607 /* did the compression code fall back to uncompressed IO? */
608 if (!async_extent
->pages
) {
609 int page_started
= 0;
610 unsigned long nr_written
= 0;
612 lock_extent(io_tree
, async_extent
->start
,
613 async_extent
->start
+
614 async_extent
->ram_size
- 1, GFP_NOFS
);
616 /* allocate blocks */
617 ret
= cow_file_range(inode
, async_cow
->locked_page
,
619 async_extent
->start
+
620 async_extent
->ram_size
- 1,
621 &page_started
, &nr_written
, 0);
624 * if page_started, cow_file_range inserted an
625 * inline extent and took care of all the unlocking
626 * and IO for us. Otherwise, we need to submit
627 * all those pages down to the drive.
629 if (!page_started
&& !ret
)
630 extent_write_locked_range(io_tree
,
631 inode
, async_extent
->start
,
632 async_extent
->start
+
633 async_extent
->ram_size
- 1,
641 lock_extent(io_tree
, async_extent
->start
,
642 async_extent
->start
+ async_extent
->ram_size
- 1,
645 trans
= btrfs_join_transaction(root
);
646 BUG_ON(IS_ERR(trans
));
647 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
648 ret
= btrfs_reserve_extent(trans
, root
,
649 async_extent
->compressed_size
,
650 async_extent
->compressed_size
,
653 btrfs_end_transaction(trans
, root
);
657 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
658 WARN_ON(async_extent
->pages
[i
]->mapping
);
659 page_cache_release(async_extent
->pages
[i
]);
661 kfree(async_extent
->pages
);
662 async_extent
->nr_pages
= 0;
663 async_extent
->pages
= NULL
;
664 unlock_extent(io_tree
, async_extent
->start
,
665 async_extent
->start
+
666 async_extent
->ram_size
- 1, GFP_NOFS
);
671 * here we're doing allocation and writeback of the
674 btrfs_drop_extent_cache(inode
, async_extent
->start
,
675 async_extent
->start
+
676 async_extent
->ram_size
- 1, 0);
678 em
= alloc_extent_map();
680 em
->start
= async_extent
->start
;
681 em
->len
= async_extent
->ram_size
;
682 em
->orig_start
= em
->start
;
684 em
->block_start
= ins
.objectid
;
685 em
->block_len
= ins
.offset
;
686 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
687 em
->compress_type
= async_extent
->compress_type
;
688 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
689 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
692 write_lock(&em_tree
->lock
);
693 ret
= add_extent_mapping(em_tree
, em
);
694 write_unlock(&em_tree
->lock
);
695 if (ret
!= -EEXIST
) {
699 btrfs_drop_extent_cache(inode
, async_extent
->start
,
700 async_extent
->start
+
701 async_extent
->ram_size
- 1, 0);
704 ret
= btrfs_add_ordered_extent_compress(inode
,
707 async_extent
->ram_size
,
709 BTRFS_ORDERED_COMPRESSED
,
710 async_extent
->compress_type
);
714 * clear dirty, set writeback and unlock the pages.
716 extent_clear_unlock_delalloc(inode
,
717 &BTRFS_I(inode
)->io_tree
,
719 async_extent
->start
+
720 async_extent
->ram_size
- 1,
721 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
722 EXTENT_CLEAR_UNLOCK
|
723 EXTENT_CLEAR_DELALLOC
|
724 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
726 ret
= btrfs_submit_compressed_write(inode
,
728 async_extent
->ram_size
,
730 ins
.offset
, async_extent
->pages
,
731 async_extent
->nr_pages
);
734 alloc_hint
= ins
.objectid
+ ins
.offset
;
742 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
745 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
746 struct extent_map
*em
;
749 read_lock(&em_tree
->lock
);
750 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
753 * if block start isn't an actual block number then find the
754 * first block in this inode and use that as a hint. If that
755 * block is also bogus then just don't worry about it.
757 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
759 em
= search_extent_mapping(em_tree
, 0, 0);
760 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
761 alloc_hint
= em
->block_start
;
765 alloc_hint
= em
->block_start
;
769 read_unlock(&em_tree
->lock
);
775 * when extent_io.c finds a delayed allocation range in the file,
776 * the call backs end up in this code. The basic idea is to
777 * allocate extents on disk for the range, and create ordered data structs
778 * in ram to track those extents.
780 * locked_page is the page that writepage had locked already. We use
781 * it to make sure we don't do extra locks or unlocks.
783 * *page_started is set to one if we unlock locked_page and do everything
784 * required to start IO on it. It may be clean and already done with
787 static noinline
int cow_file_range(struct inode
*inode
,
788 struct page
*locked_page
,
789 u64 start
, u64 end
, int *page_started
,
790 unsigned long *nr_written
,
793 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
794 struct btrfs_trans_handle
*trans
;
797 unsigned long ram_size
;
800 u64 blocksize
= root
->sectorsize
;
801 struct btrfs_key ins
;
802 struct extent_map
*em
;
803 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
806 BUG_ON(btrfs_is_free_space_inode(root
, inode
));
807 trans
= btrfs_join_transaction(root
);
808 BUG_ON(IS_ERR(trans
));
809 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
811 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
812 num_bytes
= max(blocksize
, num_bytes
);
813 disk_num_bytes
= num_bytes
;
816 /* if this is a small write inside eof, kick off defrag */
817 if (end
<= BTRFS_I(inode
)->disk_i_size
&& num_bytes
< 64 * 1024)
818 btrfs_add_inode_defrag(trans
, inode
);
821 /* lets try to make an inline extent */
822 ret
= cow_file_range_inline(trans
, root
, inode
,
823 start
, end
, 0, 0, NULL
);
825 extent_clear_unlock_delalloc(inode
,
826 &BTRFS_I(inode
)->io_tree
,
828 EXTENT_CLEAR_UNLOCK_PAGE
|
829 EXTENT_CLEAR_UNLOCK
|
830 EXTENT_CLEAR_DELALLOC
|
832 EXTENT_SET_WRITEBACK
|
833 EXTENT_END_WRITEBACK
);
835 *nr_written
= *nr_written
+
836 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
843 BUG_ON(disk_num_bytes
>
844 btrfs_super_total_bytes(root
->fs_info
->super_copy
));
846 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
847 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
849 while (disk_num_bytes
> 0) {
852 cur_alloc_size
= disk_num_bytes
;
853 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
854 root
->sectorsize
, 0, alloc_hint
,
858 em
= alloc_extent_map();
861 em
->orig_start
= em
->start
;
862 ram_size
= ins
.offset
;
863 em
->len
= ins
.offset
;
865 em
->block_start
= ins
.objectid
;
866 em
->block_len
= ins
.offset
;
867 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
868 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
871 write_lock(&em_tree
->lock
);
872 ret
= add_extent_mapping(em_tree
, em
);
873 write_unlock(&em_tree
->lock
);
874 if (ret
!= -EEXIST
) {
878 btrfs_drop_extent_cache(inode
, start
,
879 start
+ ram_size
- 1, 0);
882 cur_alloc_size
= ins
.offset
;
883 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
884 ram_size
, cur_alloc_size
, 0);
887 if (root
->root_key
.objectid
==
888 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
889 ret
= btrfs_reloc_clone_csums(inode
, start
,
894 if (disk_num_bytes
< cur_alloc_size
)
897 /* we're not doing compressed IO, don't unlock the first
898 * page (which the caller expects to stay locked), don't
899 * clear any dirty bits and don't set any writeback bits
901 * Do set the Private2 bit so we know this page was properly
902 * setup for writepage
904 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
905 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
908 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
909 start
, start
+ ram_size
- 1,
911 disk_num_bytes
-= cur_alloc_size
;
912 num_bytes
-= cur_alloc_size
;
913 alloc_hint
= ins
.objectid
+ ins
.offset
;
914 start
+= cur_alloc_size
;
918 btrfs_end_transaction(trans
, root
);
924 * work queue call back to started compression on a file and pages
926 static noinline
void async_cow_start(struct btrfs_work
*work
)
928 struct async_cow
*async_cow
;
930 async_cow
= container_of(work
, struct async_cow
, work
);
932 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
933 async_cow
->start
, async_cow
->end
, async_cow
,
936 async_cow
->inode
= NULL
;
940 * work queue call back to submit previously compressed pages
942 static noinline
void async_cow_submit(struct btrfs_work
*work
)
944 struct async_cow
*async_cow
;
945 struct btrfs_root
*root
;
946 unsigned long nr_pages
;
948 async_cow
= container_of(work
, struct async_cow
, work
);
950 root
= async_cow
->root
;
951 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
954 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
956 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
958 waitqueue_active(&root
->fs_info
->async_submit_wait
))
959 wake_up(&root
->fs_info
->async_submit_wait
);
961 if (async_cow
->inode
)
962 submit_compressed_extents(async_cow
->inode
, async_cow
);
965 static noinline
void async_cow_free(struct btrfs_work
*work
)
967 struct async_cow
*async_cow
;
968 async_cow
= container_of(work
, struct async_cow
, work
);
972 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
973 u64 start
, u64 end
, int *page_started
,
974 unsigned long *nr_written
)
976 struct async_cow
*async_cow
;
977 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
978 unsigned long nr_pages
;
980 int limit
= 10 * 1024 * 1042;
982 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
983 1, 0, NULL
, GFP_NOFS
);
984 while (start
< end
) {
985 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
987 async_cow
->inode
= inode
;
988 async_cow
->root
= root
;
989 async_cow
->locked_page
= locked_page
;
990 async_cow
->start
= start
;
992 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
995 cur_end
= min(end
, start
+ 512 * 1024 - 1);
997 async_cow
->end
= cur_end
;
998 INIT_LIST_HEAD(&async_cow
->extents
);
1000 async_cow
->work
.func
= async_cow_start
;
1001 async_cow
->work
.ordered_func
= async_cow_submit
;
1002 async_cow
->work
.ordered_free
= async_cow_free
;
1003 async_cow
->work
.flags
= 0;
1005 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
1007 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
1009 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
1012 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
1013 wait_event(root
->fs_info
->async_submit_wait
,
1014 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
1018 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
1019 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1020 wait_event(root
->fs_info
->async_submit_wait
,
1021 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1025 *nr_written
+= nr_pages
;
1026 start
= cur_end
+ 1;
1032 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1033 u64 bytenr
, u64 num_bytes
)
1036 struct btrfs_ordered_sum
*sums
;
1039 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1040 bytenr
+ num_bytes
- 1, &list
, 0);
1041 if (ret
== 0 && list_empty(&list
))
1044 while (!list_empty(&list
)) {
1045 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1046 list_del(&sums
->list
);
1053 * when nowcow writeback call back. This checks for snapshots or COW copies
1054 * of the extents that exist in the file, and COWs the file as required.
1056 * If no cow copies or snapshots exist, we write directly to the existing
1059 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1060 struct page
*locked_page
,
1061 u64 start
, u64 end
, int *page_started
, int force
,
1062 unsigned long *nr_written
)
1064 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1065 struct btrfs_trans_handle
*trans
;
1066 struct extent_buffer
*leaf
;
1067 struct btrfs_path
*path
;
1068 struct btrfs_file_extent_item
*fi
;
1069 struct btrfs_key found_key
;
1082 u64 ino
= btrfs_ino(inode
);
1084 path
= btrfs_alloc_path();
1088 nolock
= btrfs_is_free_space_inode(root
, inode
);
1091 trans
= btrfs_join_transaction_nolock(root
);
1093 trans
= btrfs_join_transaction(root
);
1095 BUG_ON(IS_ERR(trans
));
1096 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1098 cow_start
= (u64
)-1;
1101 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1104 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1105 leaf
= path
->nodes
[0];
1106 btrfs_item_key_to_cpu(leaf
, &found_key
,
1107 path
->slots
[0] - 1);
1108 if (found_key
.objectid
== ino
&&
1109 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1114 leaf
= path
->nodes
[0];
1115 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1116 ret
= btrfs_next_leaf(root
, path
);
1121 leaf
= path
->nodes
[0];
1127 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1129 if (found_key
.objectid
> ino
||
1130 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1131 found_key
.offset
> end
)
1134 if (found_key
.offset
> cur_offset
) {
1135 extent_end
= found_key
.offset
;
1140 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1141 struct btrfs_file_extent_item
);
1142 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1144 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1145 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1146 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1147 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1148 extent_end
= found_key
.offset
+
1149 btrfs_file_extent_num_bytes(leaf
, fi
);
1150 if (extent_end
<= start
) {
1154 if (disk_bytenr
== 0)
1156 if (btrfs_file_extent_compression(leaf
, fi
) ||
1157 btrfs_file_extent_encryption(leaf
, fi
) ||
1158 btrfs_file_extent_other_encoding(leaf
, fi
))
1160 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1162 if (btrfs_extent_readonly(root
, disk_bytenr
))
1164 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1166 extent_offset
, disk_bytenr
))
1168 disk_bytenr
+= extent_offset
;
1169 disk_bytenr
+= cur_offset
- found_key
.offset
;
1170 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1172 * force cow if csum exists in the range.
1173 * this ensure that csum for a given extent are
1174 * either valid or do not exist.
1176 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1179 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1180 extent_end
= found_key
.offset
+
1181 btrfs_file_extent_inline_len(leaf
, fi
);
1182 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1187 if (extent_end
<= start
) {
1192 if (cow_start
== (u64
)-1)
1193 cow_start
= cur_offset
;
1194 cur_offset
= extent_end
;
1195 if (cur_offset
> end
)
1201 btrfs_release_path(path
);
1202 if (cow_start
!= (u64
)-1) {
1203 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1204 found_key
.offset
- 1, page_started
,
1207 cow_start
= (u64
)-1;
1210 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1211 struct extent_map
*em
;
1212 struct extent_map_tree
*em_tree
;
1213 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1214 em
= alloc_extent_map();
1216 em
->start
= cur_offset
;
1217 em
->orig_start
= em
->start
;
1218 em
->len
= num_bytes
;
1219 em
->block_len
= num_bytes
;
1220 em
->block_start
= disk_bytenr
;
1221 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1222 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1224 write_lock(&em_tree
->lock
);
1225 ret
= add_extent_mapping(em_tree
, em
);
1226 write_unlock(&em_tree
->lock
);
1227 if (ret
!= -EEXIST
) {
1228 free_extent_map(em
);
1231 btrfs_drop_extent_cache(inode
, em
->start
,
1232 em
->start
+ em
->len
- 1, 0);
1234 type
= BTRFS_ORDERED_PREALLOC
;
1236 type
= BTRFS_ORDERED_NOCOW
;
1239 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1240 num_bytes
, num_bytes
, type
);
1243 if (root
->root_key
.objectid
==
1244 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1245 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1250 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1251 cur_offset
, cur_offset
+ num_bytes
- 1,
1252 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1253 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1254 EXTENT_SET_PRIVATE2
);
1255 cur_offset
= extent_end
;
1256 if (cur_offset
> end
)
1259 btrfs_release_path(path
);
1261 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1262 cow_start
= cur_offset
;
1263 if (cow_start
!= (u64
)-1) {
1264 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1265 page_started
, nr_written
, 1);
1270 ret
= btrfs_end_transaction_nolock(trans
, root
);
1273 ret
= btrfs_end_transaction(trans
, root
);
1276 btrfs_free_path(path
);
1281 * extent_io.c call back to do delayed allocation processing
1283 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1284 u64 start
, u64 end
, int *page_started
,
1285 unsigned long *nr_written
)
1288 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1290 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1291 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1292 page_started
, 1, nr_written
);
1293 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1294 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1295 page_started
, 0, nr_written
);
1296 else if (!btrfs_test_opt(root
, COMPRESS
) &&
1297 !(BTRFS_I(inode
)->force_compress
) &&
1298 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
))
1299 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1300 page_started
, nr_written
, 1);
1302 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1303 page_started
, nr_written
);
1307 static void btrfs_split_extent_hook(struct inode
*inode
,
1308 struct extent_state
*orig
, u64 split
)
1310 /* not delalloc, ignore it */
1311 if (!(orig
->state
& EXTENT_DELALLOC
))
1314 spin_lock(&BTRFS_I(inode
)->lock
);
1315 BTRFS_I(inode
)->outstanding_extents
++;
1316 spin_unlock(&BTRFS_I(inode
)->lock
);
1320 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1321 * extents so we can keep track of new extents that are just merged onto old
1322 * extents, such as when we are doing sequential writes, so we can properly
1323 * account for the metadata space we'll need.
1325 static void btrfs_merge_extent_hook(struct inode
*inode
,
1326 struct extent_state
*new,
1327 struct extent_state
*other
)
1329 /* not delalloc, ignore it */
1330 if (!(other
->state
& EXTENT_DELALLOC
))
1333 spin_lock(&BTRFS_I(inode
)->lock
);
1334 BTRFS_I(inode
)->outstanding_extents
--;
1335 spin_unlock(&BTRFS_I(inode
)->lock
);
1339 * extent_io.c set_bit_hook, used to track delayed allocation
1340 * bytes in this file, and to maintain the list of inodes that
1341 * have pending delalloc work to be done.
1343 static void btrfs_set_bit_hook(struct inode
*inode
,
1344 struct extent_state
*state
, int *bits
)
1348 * set_bit and clear bit hooks normally require _irqsave/restore
1349 * but in this case, we are only testing for the DELALLOC
1350 * bit, which is only set or cleared with irqs on
1352 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1353 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1354 u64 len
= state
->end
+ 1 - state
->start
;
1355 bool do_list
= !btrfs_is_free_space_inode(root
, inode
);
1357 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1358 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1360 spin_lock(&BTRFS_I(inode
)->lock
);
1361 BTRFS_I(inode
)->outstanding_extents
++;
1362 spin_unlock(&BTRFS_I(inode
)->lock
);
1365 spin_lock(&root
->fs_info
->delalloc_lock
);
1366 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1367 root
->fs_info
->delalloc_bytes
+= len
;
1368 if (do_list
&& list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1369 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1370 &root
->fs_info
->delalloc_inodes
);
1372 spin_unlock(&root
->fs_info
->delalloc_lock
);
1377 * extent_io.c clear_bit_hook, see set_bit_hook for why
1379 static void btrfs_clear_bit_hook(struct inode
*inode
,
1380 struct extent_state
*state
, int *bits
)
1383 * set_bit and clear bit hooks normally require _irqsave/restore
1384 * but in this case, we are only testing for the DELALLOC
1385 * bit, which is only set or cleared with irqs on
1387 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1388 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1389 u64 len
= state
->end
+ 1 - state
->start
;
1390 bool do_list
= !btrfs_is_free_space_inode(root
, inode
);
1392 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1393 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1394 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1395 spin_lock(&BTRFS_I(inode
)->lock
);
1396 BTRFS_I(inode
)->outstanding_extents
--;
1397 spin_unlock(&BTRFS_I(inode
)->lock
);
1400 if (*bits
& EXTENT_DO_ACCOUNTING
)
1401 btrfs_delalloc_release_metadata(inode
, len
);
1403 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1405 btrfs_free_reserved_data_space(inode
, len
);
1407 spin_lock(&root
->fs_info
->delalloc_lock
);
1408 root
->fs_info
->delalloc_bytes
-= len
;
1409 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1411 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1412 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1413 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1415 spin_unlock(&root
->fs_info
->delalloc_lock
);
1420 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1421 * we don't create bios that span stripes or chunks
1423 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1424 size_t size
, struct bio
*bio
,
1425 unsigned long bio_flags
)
1427 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1428 struct btrfs_mapping_tree
*map_tree
;
1429 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1434 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1437 length
= bio
->bi_size
;
1438 map_tree
= &root
->fs_info
->mapping_tree
;
1439 map_length
= length
;
1440 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1441 &map_length
, NULL
, 0);
1443 if (map_length
< length
+ size
)
1449 * in order to insert checksums into the metadata in large chunks,
1450 * we wait until bio submission time. All the pages in the bio are
1451 * checksummed and sums are attached onto the ordered extent record.
1453 * At IO completion time the cums attached on the ordered extent record
1454 * are inserted into the btree
1456 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1457 struct bio
*bio
, int mirror_num
,
1458 unsigned long bio_flags
,
1461 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1464 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1470 * in order to insert checksums into the metadata in large chunks,
1471 * we wait until bio submission time. All the pages in the bio are
1472 * checksummed and sums are attached onto the ordered extent record.
1474 * At IO completion time the cums attached on the ordered extent record
1475 * are inserted into the btree
1477 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1478 int mirror_num
, unsigned long bio_flags
,
1481 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1482 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1486 * extent_io.c submission hook. This does the right thing for csum calculation
1487 * on write, or reading the csums from the tree before a read
1489 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1490 int mirror_num
, unsigned long bio_flags
,
1493 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1497 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1499 if (btrfs_is_free_space_inode(root
, inode
))
1500 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 2);
1502 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1505 if (!(rw
& REQ_WRITE
)) {
1506 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1507 return btrfs_submit_compressed_read(inode
, bio
,
1508 mirror_num
, bio_flags
);
1509 } else if (!skip_sum
) {
1510 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1515 } else if (!skip_sum
) {
1516 /* csum items have already been cloned */
1517 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1519 /* we're doing a write, do the async checksumming */
1520 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1521 inode
, rw
, bio
, mirror_num
,
1522 bio_flags
, bio_offset
,
1523 __btrfs_submit_bio_start
,
1524 __btrfs_submit_bio_done
);
1528 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1532 * given a list of ordered sums record them in the inode. This happens
1533 * at IO completion time based on sums calculated at bio submission time.
1535 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1536 struct inode
*inode
, u64 file_offset
,
1537 struct list_head
*list
)
1539 struct btrfs_ordered_sum
*sum
;
1541 list_for_each_entry(sum
, list
, list
) {
1542 btrfs_csum_file_blocks(trans
,
1543 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1548 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1549 struct extent_state
**cached_state
)
1551 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1553 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1554 cached_state
, GFP_NOFS
);
1557 /* see btrfs_writepage_start_hook for details on why this is required */
1558 struct btrfs_writepage_fixup
{
1560 struct btrfs_work work
;
1563 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1565 struct btrfs_writepage_fixup
*fixup
;
1566 struct btrfs_ordered_extent
*ordered
;
1567 struct extent_state
*cached_state
= NULL
;
1569 struct inode
*inode
;
1573 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1577 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1578 ClearPageChecked(page
);
1582 inode
= page
->mapping
->host
;
1583 page_start
= page_offset(page
);
1584 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1586 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, 0,
1587 &cached_state
, GFP_NOFS
);
1589 /* already ordered? We're done */
1590 if (PagePrivate2(page
))
1593 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1595 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
1596 page_end
, &cached_state
, GFP_NOFS
);
1598 btrfs_start_ordered_extent(inode
, ordered
, 1);
1603 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
1604 ClearPageChecked(page
);
1606 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1607 &cached_state
, GFP_NOFS
);
1610 page_cache_release(page
);
1615 * There are a few paths in the higher layers of the kernel that directly
1616 * set the page dirty bit without asking the filesystem if it is a
1617 * good idea. This causes problems because we want to make sure COW
1618 * properly happens and the data=ordered rules are followed.
1620 * In our case any range that doesn't have the ORDERED bit set
1621 * hasn't been properly setup for IO. We kick off an async process
1622 * to fix it up. The async helper will wait for ordered extents, set
1623 * the delalloc bit and make it safe to write the page.
1625 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1627 struct inode
*inode
= page
->mapping
->host
;
1628 struct btrfs_writepage_fixup
*fixup
;
1629 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1631 /* this page is properly in the ordered list */
1632 if (TestClearPagePrivate2(page
))
1635 if (PageChecked(page
))
1638 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1642 SetPageChecked(page
);
1643 page_cache_get(page
);
1644 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1646 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1650 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1651 struct inode
*inode
, u64 file_pos
,
1652 u64 disk_bytenr
, u64 disk_num_bytes
,
1653 u64 num_bytes
, u64 ram_bytes
,
1654 u8 compression
, u8 encryption
,
1655 u16 other_encoding
, int extent_type
)
1657 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1658 struct btrfs_file_extent_item
*fi
;
1659 struct btrfs_path
*path
;
1660 struct extent_buffer
*leaf
;
1661 struct btrfs_key ins
;
1665 path
= btrfs_alloc_path();
1669 path
->leave_spinning
= 1;
1672 * we may be replacing one extent in the tree with another.
1673 * The new extent is pinned in the extent map, and we don't want
1674 * to drop it from the cache until it is completely in the btree.
1676 * So, tell btrfs_drop_extents to leave this extent in the cache.
1677 * the caller is expected to unpin it and allow it to be merged
1680 ret
= btrfs_drop_extents(trans
, inode
, file_pos
, file_pos
+ num_bytes
,
1684 ins
.objectid
= btrfs_ino(inode
);
1685 ins
.offset
= file_pos
;
1686 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1687 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1689 leaf
= path
->nodes
[0];
1690 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1691 struct btrfs_file_extent_item
);
1692 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1693 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1694 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1695 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1696 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1697 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1698 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1699 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1700 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1701 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1703 btrfs_unlock_up_safe(path
, 1);
1704 btrfs_set_lock_blocking(leaf
);
1706 btrfs_mark_buffer_dirty(leaf
);
1708 inode_add_bytes(inode
, num_bytes
);
1710 ins
.objectid
= disk_bytenr
;
1711 ins
.offset
= disk_num_bytes
;
1712 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1713 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1714 root
->root_key
.objectid
,
1715 btrfs_ino(inode
), file_pos
, &ins
);
1717 btrfs_free_path(path
);
1723 * helper function for btrfs_finish_ordered_io, this
1724 * just reads in some of the csum leaves to prime them into ram
1725 * before we start the transaction. It limits the amount of btree
1726 * reads required while inside the transaction.
1728 /* as ordered data IO finishes, this gets called so we can finish
1729 * an ordered extent if the range of bytes in the file it covers are
1732 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1734 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1735 struct btrfs_trans_handle
*trans
= NULL
;
1736 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1737 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1738 struct extent_state
*cached_state
= NULL
;
1739 int compress_type
= 0;
1743 ret
= btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
1747 BUG_ON(!ordered_extent
);
1749 nolock
= btrfs_is_free_space_inode(root
, inode
);
1751 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
1752 BUG_ON(!list_empty(&ordered_extent
->list
));
1753 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1756 trans
= btrfs_join_transaction_nolock(root
);
1758 trans
= btrfs_join_transaction(root
);
1759 BUG_ON(IS_ERR(trans
));
1760 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1761 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
1767 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
1768 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1769 0, &cached_state
, GFP_NOFS
);
1772 trans
= btrfs_join_transaction_nolock(root
);
1774 trans
= btrfs_join_transaction(root
);
1775 BUG_ON(IS_ERR(trans
));
1776 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1778 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1779 compress_type
= ordered_extent
->compress_type
;
1780 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1781 BUG_ON(compress_type
);
1782 ret
= btrfs_mark_extent_written(trans
, inode
,
1783 ordered_extent
->file_offset
,
1784 ordered_extent
->file_offset
+
1785 ordered_extent
->len
);
1788 BUG_ON(root
== root
->fs_info
->tree_root
);
1789 ret
= insert_reserved_file_extent(trans
, inode
,
1790 ordered_extent
->file_offset
,
1791 ordered_extent
->start
,
1792 ordered_extent
->disk_len
,
1793 ordered_extent
->len
,
1794 ordered_extent
->len
,
1795 compress_type
, 0, 0,
1796 BTRFS_FILE_EXTENT_REG
);
1797 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1798 ordered_extent
->file_offset
,
1799 ordered_extent
->len
);
1802 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
1803 ordered_extent
->file_offset
+
1804 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
1806 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1807 &ordered_extent
->list
);
1809 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
1810 if (!ret
|| !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1811 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
1816 if (root
!= root
->fs_info
->tree_root
)
1817 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
1820 btrfs_end_transaction_nolock(trans
, root
);
1822 btrfs_end_transaction(trans
, root
);
1826 btrfs_put_ordered_extent(ordered_extent
);
1827 /* once for the tree */
1828 btrfs_put_ordered_extent(ordered_extent
);
1833 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1834 struct extent_state
*state
, int uptodate
)
1836 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
1838 ClearPagePrivate2(page
);
1839 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1843 * when reads are done, we need to check csums to verify the data is correct
1844 * if there's a match, we allow the bio to finish. If not, the code in
1845 * extent_io.c will try to find good copies for us.
1847 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1848 struct extent_state
*state
)
1850 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1851 struct inode
*inode
= page
->mapping
->host
;
1852 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1854 u64
private = ~(u32
)0;
1856 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1859 if (PageChecked(page
)) {
1860 ClearPageChecked(page
);
1864 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1867 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1868 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
1869 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1874 if (state
&& state
->start
== start
) {
1875 private = state
->private;
1878 ret
= get_state_private(io_tree
, start
, &private);
1880 kaddr
= kmap_atomic(page
, KM_USER0
);
1884 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1885 btrfs_csum_final(csum
, (char *)&csum
);
1886 if (csum
!= private)
1889 kunmap_atomic(kaddr
, KM_USER0
);
1894 printk_ratelimited(KERN_INFO
"btrfs csum failed ino %llu off %llu csum %u "
1896 (unsigned long long)btrfs_ino(page
->mapping
->host
),
1897 (unsigned long long)start
, csum
,
1898 (unsigned long long)private);
1899 memset(kaddr
+ offset
, 1, end
- start
+ 1);
1900 flush_dcache_page(page
);
1901 kunmap_atomic(kaddr
, KM_USER0
);
1907 struct delayed_iput
{
1908 struct list_head list
;
1909 struct inode
*inode
;
1912 void btrfs_add_delayed_iput(struct inode
*inode
)
1914 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
1915 struct delayed_iput
*delayed
;
1917 if (atomic_add_unless(&inode
->i_count
, -1, 1))
1920 delayed
= kmalloc(sizeof(*delayed
), GFP_NOFS
| __GFP_NOFAIL
);
1921 delayed
->inode
= inode
;
1923 spin_lock(&fs_info
->delayed_iput_lock
);
1924 list_add_tail(&delayed
->list
, &fs_info
->delayed_iputs
);
1925 spin_unlock(&fs_info
->delayed_iput_lock
);
1928 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
1931 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1932 struct delayed_iput
*delayed
;
1935 spin_lock(&fs_info
->delayed_iput_lock
);
1936 empty
= list_empty(&fs_info
->delayed_iputs
);
1937 spin_unlock(&fs_info
->delayed_iput_lock
);
1941 down_read(&root
->fs_info
->cleanup_work_sem
);
1942 spin_lock(&fs_info
->delayed_iput_lock
);
1943 list_splice_init(&fs_info
->delayed_iputs
, &list
);
1944 spin_unlock(&fs_info
->delayed_iput_lock
);
1946 while (!list_empty(&list
)) {
1947 delayed
= list_entry(list
.next
, struct delayed_iput
, list
);
1948 list_del(&delayed
->list
);
1949 iput(delayed
->inode
);
1952 up_read(&root
->fs_info
->cleanup_work_sem
);
1955 enum btrfs_orphan_cleanup_state
{
1956 ORPHAN_CLEANUP_STARTED
= 1,
1957 ORPHAN_CLEANUP_DONE
= 2,
1961 * This is called in transaction commmit time. If there are no orphan
1962 * files in the subvolume, it removes orphan item and frees block_rsv
1965 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
1966 struct btrfs_root
*root
)
1970 if (!list_empty(&root
->orphan_list
) ||
1971 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
1974 if (root
->orphan_item_inserted
&&
1975 btrfs_root_refs(&root
->root_item
) > 0) {
1976 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
1977 root
->root_key
.objectid
);
1979 root
->orphan_item_inserted
= 0;
1982 if (root
->orphan_block_rsv
) {
1983 WARN_ON(root
->orphan_block_rsv
->size
> 0);
1984 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
1985 root
->orphan_block_rsv
= NULL
;
1990 * This creates an orphan entry for the given inode in case something goes
1991 * wrong in the middle of an unlink/truncate.
1993 * NOTE: caller of this function should reserve 5 units of metadata for
1996 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1998 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1999 struct btrfs_block_rsv
*block_rsv
= NULL
;
2004 if (!root
->orphan_block_rsv
) {
2005 block_rsv
= btrfs_alloc_block_rsv(root
);
2010 spin_lock(&root
->orphan_lock
);
2011 if (!root
->orphan_block_rsv
) {
2012 root
->orphan_block_rsv
= block_rsv
;
2013 } else if (block_rsv
) {
2014 btrfs_free_block_rsv(root
, block_rsv
);
2018 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2019 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2022 * For proper ENOSPC handling, we should do orphan
2023 * cleanup when mounting. But this introduces backward
2024 * compatibility issue.
2026 if (!xchg(&root
->orphan_item_inserted
, 1))
2034 if (!BTRFS_I(inode
)->orphan_meta_reserved
) {
2035 BTRFS_I(inode
)->orphan_meta_reserved
= 1;
2038 spin_unlock(&root
->orphan_lock
);
2040 /* grab metadata reservation from transaction handle */
2042 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
2046 /* insert an orphan item to track this unlinked/truncated file */
2048 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
2049 BUG_ON(ret
&& ret
!= -EEXIST
);
2052 /* insert an orphan item to track subvolume contains orphan files */
2054 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
2055 root
->root_key
.objectid
);
2062 * We have done the truncate/delete so we can go ahead and remove the orphan
2063 * item for this particular inode.
2065 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2067 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2068 int delete_item
= 0;
2069 int release_rsv
= 0;
2072 spin_lock(&root
->orphan_lock
);
2073 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2074 list_del_init(&BTRFS_I(inode
)->i_orphan
);
2078 if (BTRFS_I(inode
)->orphan_meta_reserved
) {
2079 BTRFS_I(inode
)->orphan_meta_reserved
= 0;
2082 spin_unlock(&root
->orphan_lock
);
2084 if (trans
&& delete_item
) {
2085 ret
= btrfs_del_orphan_item(trans
, root
, btrfs_ino(inode
));
2090 btrfs_orphan_release_metadata(inode
);
2096 * this cleans up any orphans that may be left on the list from the last use
2099 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
2101 struct btrfs_path
*path
;
2102 struct extent_buffer
*leaf
;
2103 struct btrfs_key key
, found_key
;
2104 struct btrfs_trans_handle
*trans
;
2105 struct inode
*inode
;
2106 u64 last_objectid
= 0;
2107 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2109 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
2112 path
= btrfs_alloc_path();
2119 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2120 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2121 key
.offset
= (u64
)-1;
2124 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2129 * if ret == 0 means we found what we were searching for, which
2130 * is weird, but possible, so only screw with path if we didn't
2131 * find the key and see if we have stuff that matches
2135 if (path
->slots
[0] == 0)
2140 /* pull out the item */
2141 leaf
= path
->nodes
[0];
2142 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2144 /* make sure the item matches what we want */
2145 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2147 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2150 /* release the path since we're done with it */
2151 btrfs_release_path(path
);
2154 * this is where we are basically btrfs_lookup, without the
2155 * crossing root thing. we store the inode number in the
2156 * offset of the orphan item.
2159 if (found_key
.offset
== last_objectid
) {
2160 printk(KERN_ERR
"btrfs: Error removing orphan entry, "
2161 "stopping orphan cleanup\n");
2166 last_objectid
= found_key
.offset
;
2168 found_key
.objectid
= found_key
.offset
;
2169 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2170 found_key
.offset
= 0;
2171 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
2172 ret
= PTR_RET(inode
);
2173 if (ret
&& ret
!= -ESTALE
)
2176 if (ret
== -ESTALE
&& root
== root
->fs_info
->tree_root
) {
2177 struct btrfs_root
*dead_root
;
2178 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2179 int is_dead_root
= 0;
2182 * this is an orphan in the tree root. Currently these
2183 * could come from 2 sources:
2184 * a) a snapshot deletion in progress
2185 * b) a free space cache inode
2186 * We need to distinguish those two, as the snapshot
2187 * orphan must not get deleted.
2188 * find_dead_roots already ran before us, so if this
2189 * is a snapshot deletion, we should find the root
2190 * in the dead_roots list
2192 spin_lock(&fs_info
->trans_lock
);
2193 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
2195 if (dead_root
->root_key
.objectid
==
2196 found_key
.objectid
) {
2201 spin_unlock(&fs_info
->trans_lock
);
2203 /* prevent this orphan from being found again */
2204 key
.offset
= found_key
.objectid
- 1;
2209 * Inode is already gone but the orphan item is still there,
2210 * kill the orphan item.
2212 if (ret
== -ESTALE
) {
2213 trans
= btrfs_start_transaction(root
, 1);
2214 if (IS_ERR(trans
)) {
2215 ret
= PTR_ERR(trans
);
2218 ret
= btrfs_del_orphan_item(trans
, root
,
2219 found_key
.objectid
);
2221 btrfs_end_transaction(trans
, root
);
2226 * add this inode to the orphan list so btrfs_orphan_del does
2227 * the proper thing when we hit it
2229 spin_lock(&root
->orphan_lock
);
2230 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2231 spin_unlock(&root
->orphan_lock
);
2233 /* if we have links, this was a truncate, lets do that */
2234 if (inode
->i_nlink
) {
2235 if (!S_ISREG(inode
->i_mode
)) {
2242 * Need to hold the imutex for reservation purposes, not
2243 * a huge deal here but I have a WARN_ON in
2244 * btrfs_delalloc_reserve_space to catch offenders.
2246 mutex_lock(&inode
->i_mutex
);
2247 ret
= btrfs_truncate(inode
);
2248 mutex_unlock(&inode
->i_mutex
);
2253 /* this will do delete_inode and everything for us */
2258 /* release the path since we're done with it */
2259 btrfs_release_path(path
);
2261 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
2263 if (root
->orphan_block_rsv
)
2264 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
2267 if (root
->orphan_block_rsv
|| root
->orphan_item_inserted
) {
2268 trans
= btrfs_join_transaction(root
);
2270 btrfs_end_transaction(trans
, root
);
2274 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2276 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2280 printk(KERN_CRIT
"btrfs: could not do orphan cleanup %d\n", ret
);
2281 btrfs_free_path(path
);
2286 * very simple check to peek ahead in the leaf looking for xattrs. If we
2287 * don't find any xattrs, we know there can't be any acls.
2289 * slot is the slot the inode is in, objectid is the objectid of the inode
2291 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2292 int slot
, u64 objectid
)
2294 u32 nritems
= btrfs_header_nritems(leaf
);
2295 struct btrfs_key found_key
;
2299 while (slot
< nritems
) {
2300 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2302 /* we found a different objectid, there must not be acls */
2303 if (found_key
.objectid
!= objectid
)
2306 /* we found an xattr, assume we've got an acl */
2307 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2311 * we found a key greater than an xattr key, there can't
2312 * be any acls later on
2314 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2321 * it goes inode, inode backrefs, xattrs, extents,
2322 * so if there are a ton of hard links to an inode there can
2323 * be a lot of backrefs. Don't waste time searching too hard,
2324 * this is just an optimization
2329 /* we hit the end of the leaf before we found an xattr or
2330 * something larger than an xattr. We have to assume the inode
2337 * read an inode from the btree into the in-memory inode
2339 static void btrfs_read_locked_inode(struct inode
*inode
)
2341 struct btrfs_path
*path
;
2342 struct extent_buffer
*leaf
;
2343 struct btrfs_inode_item
*inode_item
;
2344 struct btrfs_timespec
*tspec
;
2345 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2346 struct btrfs_key location
;
2350 bool filled
= false;
2352 ret
= btrfs_fill_inode(inode
, &rdev
);
2356 path
= btrfs_alloc_path();
2360 path
->leave_spinning
= 1;
2361 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2363 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2367 leaf
= path
->nodes
[0];
2372 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2373 struct btrfs_inode_item
);
2374 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2375 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
2376 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2377 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2378 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2380 tspec
= btrfs_inode_atime(inode_item
);
2381 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2382 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2384 tspec
= btrfs_inode_mtime(inode_item
);
2385 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2386 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2388 tspec
= btrfs_inode_ctime(inode_item
);
2389 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2390 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2392 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2393 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2394 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2395 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2397 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2399 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2400 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2403 * try to precache a NULL acl entry for files that don't have
2404 * any xattrs or acls
2406 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
2409 cache_no_acl(inode
);
2411 btrfs_free_path(path
);
2413 switch (inode
->i_mode
& S_IFMT
) {
2415 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2416 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2417 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2418 inode
->i_fop
= &btrfs_file_operations
;
2419 inode
->i_op
= &btrfs_file_inode_operations
;
2422 inode
->i_fop
= &btrfs_dir_file_operations
;
2423 if (root
== root
->fs_info
->tree_root
)
2424 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2426 inode
->i_op
= &btrfs_dir_inode_operations
;
2429 inode
->i_op
= &btrfs_symlink_inode_operations
;
2430 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2431 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2434 inode
->i_op
= &btrfs_special_inode_operations
;
2435 init_special_inode(inode
, inode
->i_mode
, rdev
);
2439 btrfs_update_iflags(inode
);
2443 btrfs_free_path(path
);
2444 make_bad_inode(inode
);
2448 * given a leaf and an inode, copy the inode fields into the leaf
2450 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2451 struct extent_buffer
*leaf
,
2452 struct btrfs_inode_item
*item
,
2453 struct inode
*inode
)
2455 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2456 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2457 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2458 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2459 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2461 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2462 inode
->i_atime
.tv_sec
);
2463 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2464 inode
->i_atime
.tv_nsec
);
2466 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2467 inode
->i_mtime
.tv_sec
);
2468 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2469 inode
->i_mtime
.tv_nsec
);
2471 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2472 inode
->i_ctime
.tv_sec
);
2473 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2474 inode
->i_ctime
.tv_nsec
);
2476 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2477 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2478 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2479 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2480 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2481 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2482 btrfs_set_inode_block_group(leaf
, item
, 0);
2486 * copy everything in the in-memory inode into the btree.
2488 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
2489 struct btrfs_root
*root
, struct inode
*inode
)
2491 struct btrfs_inode_item
*inode_item
;
2492 struct btrfs_path
*path
;
2493 struct extent_buffer
*leaf
;
2496 path
= btrfs_alloc_path();
2500 path
->leave_spinning
= 1;
2501 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
2509 btrfs_unlock_up_safe(path
, 1);
2510 leaf
= path
->nodes
[0];
2511 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2512 struct btrfs_inode_item
);
2514 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2515 btrfs_mark_buffer_dirty(leaf
);
2516 btrfs_set_inode_last_trans(trans
, inode
);
2519 btrfs_free_path(path
);
2524 * copy everything in the in-memory inode into the btree.
2526 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2527 struct btrfs_root
*root
, struct inode
*inode
)
2532 * If the inode is a free space inode, we can deadlock during commit
2533 * if we put it into the delayed code.
2535 * The data relocation inode should also be directly updated
2538 if (!btrfs_is_free_space_inode(root
, inode
)
2539 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
) {
2540 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
2542 btrfs_set_inode_last_trans(trans
, inode
);
2546 return btrfs_update_inode_item(trans
, root
, inode
);
2549 static noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
2550 struct btrfs_root
*root
, struct inode
*inode
)
2554 ret
= btrfs_update_inode(trans
, root
, inode
);
2556 return btrfs_update_inode_item(trans
, root
, inode
);
2561 * unlink helper that gets used here in inode.c and in the tree logging
2562 * recovery code. It remove a link in a directory with a given name, and
2563 * also drops the back refs in the inode to the directory
2565 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2566 struct btrfs_root
*root
,
2567 struct inode
*dir
, struct inode
*inode
,
2568 const char *name
, int name_len
)
2570 struct btrfs_path
*path
;
2572 struct extent_buffer
*leaf
;
2573 struct btrfs_dir_item
*di
;
2574 struct btrfs_key key
;
2576 u64 ino
= btrfs_ino(inode
);
2577 u64 dir_ino
= btrfs_ino(dir
);
2579 path
= btrfs_alloc_path();
2585 path
->leave_spinning
= 1;
2586 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2587 name
, name_len
, -1);
2596 leaf
= path
->nodes
[0];
2597 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2598 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2601 btrfs_release_path(path
);
2603 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
2606 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2607 "inode %llu parent %llu\n", name_len
, name
,
2608 (unsigned long long)ino
, (unsigned long long)dir_ino
);
2612 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
2616 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2618 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2620 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2625 btrfs_free_path(path
);
2629 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2630 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2631 btrfs_update_inode(trans
, root
, dir
);
2636 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2637 struct btrfs_root
*root
,
2638 struct inode
*dir
, struct inode
*inode
,
2639 const char *name
, int name_len
)
2642 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
2644 btrfs_drop_nlink(inode
);
2645 ret
= btrfs_update_inode(trans
, root
, inode
);
2651 /* helper to check if there is any shared block in the path */
2652 static int check_path_shared(struct btrfs_root
*root
,
2653 struct btrfs_path
*path
)
2655 struct extent_buffer
*eb
;
2659 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2662 if (!path
->nodes
[level
])
2664 eb
= path
->nodes
[level
];
2665 if (!btrfs_block_can_be_shared(root
, eb
))
2667 ret
= btrfs_lookup_extent_info(NULL
, root
, eb
->start
, eb
->len
,
2676 * helper to start transaction for unlink and rmdir.
2678 * unlink and rmdir are special in btrfs, they do not always free space.
2679 * so in enospc case, we should make sure they will free space before
2680 * allowing them to use the global metadata reservation.
2682 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
,
2683 struct dentry
*dentry
)
2685 struct btrfs_trans_handle
*trans
;
2686 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2687 struct btrfs_path
*path
;
2688 struct btrfs_inode_ref
*ref
;
2689 struct btrfs_dir_item
*di
;
2690 struct inode
*inode
= dentry
->d_inode
;
2695 u64 ino
= btrfs_ino(inode
);
2696 u64 dir_ino
= btrfs_ino(dir
);
2699 * 1 for the possible orphan item
2700 * 1 for the dir item
2701 * 1 for the dir index
2702 * 1 for the inode ref
2703 * 1 for the inode ref in the tree log
2704 * 2 for the dir entries in the log
2707 trans
= btrfs_start_transaction(root
, 8);
2708 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
2711 if (ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
2712 return ERR_PTR(-ENOSPC
);
2714 /* check if there is someone else holds reference */
2715 if (S_ISDIR(inode
->i_mode
) && atomic_read(&inode
->i_count
) > 1)
2716 return ERR_PTR(-ENOSPC
);
2718 if (atomic_read(&inode
->i_count
) > 2)
2719 return ERR_PTR(-ENOSPC
);
2721 if (xchg(&root
->fs_info
->enospc_unlink
, 1))
2722 return ERR_PTR(-ENOSPC
);
2724 path
= btrfs_alloc_path();
2726 root
->fs_info
->enospc_unlink
= 0;
2727 return ERR_PTR(-ENOMEM
);
2730 /* 1 for the orphan item */
2731 trans
= btrfs_start_transaction(root
, 1);
2732 if (IS_ERR(trans
)) {
2733 btrfs_free_path(path
);
2734 root
->fs_info
->enospc_unlink
= 0;
2738 path
->skip_locking
= 1;
2739 path
->search_commit_root
= 1;
2741 ret
= btrfs_lookup_inode(trans
, root
, path
,
2742 &BTRFS_I(dir
)->location
, 0);
2748 if (check_path_shared(root
, path
))
2753 btrfs_release_path(path
);
2755 ret
= btrfs_lookup_inode(trans
, root
, path
,
2756 &BTRFS_I(inode
)->location
, 0);
2762 if (check_path_shared(root
, path
))
2767 btrfs_release_path(path
);
2769 if (ret
== 0 && S_ISREG(inode
->i_mode
)) {
2770 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
2777 if (check_path_shared(root
, path
))
2779 btrfs_release_path(path
);
2787 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2788 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2794 if (check_path_shared(root
, path
))
2800 btrfs_release_path(path
);
2802 ref
= btrfs_lookup_inode_ref(trans
, root
, path
,
2803 dentry
->d_name
.name
, dentry
->d_name
.len
,
2810 if (check_path_shared(root
, path
))
2812 index
= btrfs_inode_ref_index(path
->nodes
[0], ref
);
2813 btrfs_release_path(path
);
2816 * This is a commit root search, if we can lookup inode item and other
2817 * relative items in the commit root, it means the transaction of
2818 * dir/file creation has been committed, and the dir index item that we
2819 * delay to insert has also been inserted into the commit root. So
2820 * we needn't worry about the delayed insertion of the dir index item
2823 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir_ino
, index
,
2824 dentry
->d_name
.name
, dentry
->d_name
.len
, 0);
2829 BUG_ON(ret
== -ENOENT
);
2830 if (check_path_shared(root
, path
))
2835 btrfs_free_path(path
);
2836 /* Migrate the orphan reservation over */
2838 err
= btrfs_block_rsv_migrate(trans
->block_rsv
,
2839 &root
->fs_info
->global_block_rsv
,
2840 trans
->bytes_reserved
);
2843 btrfs_end_transaction(trans
, root
);
2844 root
->fs_info
->enospc_unlink
= 0;
2845 return ERR_PTR(err
);
2848 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
2852 static void __unlink_end_trans(struct btrfs_trans_handle
*trans
,
2853 struct btrfs_root
*root
)
2855 if (trans
->block_rsv
== &root
->fs_info
->global_block_rsv
) {
2856 btrfs_block_rsv_release(root
, trans
->block_rsv
,
2857 trans
->bytes_reserved
);
2858 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
2859 BUG_ON(!root
->fs_info
->enospc_unlink
);
2860 root
->fs_info
->enospc_unlink
= 0;
2862 btrfs_end_transaction_throttle(trans
, root
);
2865 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2867 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2868 struct btrfs_trans_handle
*trans
;
2869 struct inode
*inode
= dentry
->d_inode
;
2871 unsigned long nr
= 0;
2873 trans
= __unlink_start_trans(dir
, dentry
);
2875 return PTR_ERR(trans
);
2877 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2879 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2880 dentry
->d_name
.name
, dentry
->d_name
.len
);
2884 if (inode
->i_nlink
== 0) {
2885 ret
= btrfs_orphan_add(trans
, inode
);
2891 nr
= trans
->blocks_used
;
2892 __unlink_end_trans(trans
, root
);
2893 btrfs_btree_balance_dirty(root
, nr
);
2897 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
2898 struct btrfs_root
*root
,
2899 struct inode
*dir
, u64 objectid
,
2900 const char *name
, int name_len
)
2902 struct btrfs_path
*path
;
2903 struct extent_buffer
*leaf
;
2904 struct btrfs_dir_item
*di
;
2905 struct btrfs_key key
;
2908 u64 dir_ino
= btrfs_ino(dir
);
2910 path
= btrfs_alloc_path();
2914 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
2915 name
, name_len
, -1);
2916 BUG_ON(IS_ERR_OR_NULL(di
));
2918 leaf
= path
->nodes
[0];
2919 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2920 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2921 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2923 btrfs_release_path(path
);
2925 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
2926 objectid
, root
->root_key
.objectid
,
2927 dir_ino
, &index
, name
, name_len
);
2929 BUG_ON(ret
!= -ENOENT
);
2930 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
2932 BUG_ON(IS_ERR_OR_NULL(di
));
2934 leaf
= path
->nodes
[0];
2935 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2936 btrfs_release_path(path
);
2939 btrfs_release_path(path
);
2941 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
2944 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2945 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2946 ret
= btrfs_update_inode(trans
, root
, dir
);
2949 btrfs_free_path(path
);
2953 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2955 struct inode
*inode
= dentry
->d_inode
;
2957 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2958 struct btrfs_trans_handle
*trans
;
2959 unsigned long nr
= 0;
2961 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
2962 btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
2965 trans
= __unlink_start_trans(dir
, dentry
);
2967 return PTR_ERR(trans
);
2969 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
2970 err
= btrfs_unlink_subvol(trans
, root
, dir
,
2971 BTRFS_I(inode
)->location
.objectid
,
2972 dentry
->d_name
.name
,
2973 dentry
->d_name
.len
);
2977 err
= btrfs_orphan_add(trans
, inode
);
2981 /* now the directory is empty */
2982 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2983 dentry
->d_name
.name
, dentry
->d_name
.len
);
2985 btrfs_i_size_write(inode
, 0);
2987 nr
= trans
->blocks_used
;
2988 __unlink_end_trans(trans
, root
);
2989 btrfs_btree_balance_dirty(root
, nr
);
2995 * this can truncate away extent items, csum items and directory items.
2996 * It starts at a high offset and removes keys until it can't find
2997 * any higher than new_size
2999 * csum items that cross the new i_size are truncated to the new size
3002 * min_type is the minimum key type to truncate down to. If set to 0, this
3003 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3005 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
3006 struct btrfs_root
*root
,
3007 struct inode
*inode
,
3008 u64 new_size
, u32 min_type
)
3010 struct btrfs_path
*path
;
3011 struct extent_buffer
*leaf
;
3012 struct btrfs_file_extent_item
*fi
;
3013 struct btrfs_key key
;
3014 struct btrfs_key found_key
;
3015 u64 extent_start
= 0;
3016 u64 extent_num_bytes
= 0;
3017 u64 extent_offset
= 0;
3019 u64 mask
= root
->sectorsize
- 1;
3020 u32 found_type
= (u8
)-1;
3023 int pending_del_nr
= 0;
3024 int pending_del_slot
= 0;
3025 int extent_type
= -1;
3029 u64 ino
= btrfs_ino(inode
);
3031 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
3033 path
= btrfs_alloc_path();
3038 if (root
->ref_cows
|| root
== root
->fs_info
->tree_root
)
3039 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
3042 * This function is also used to drop the items in the log tree before
3043 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3044 * it is used to drop the loged items. So we shouldn't kill the delayed
3047 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
3048 btrfs_kill_delayed_inode_items(inode
);
3051 key
.offset
= (u64
)-1;
3055 path
->leave_spinning
= 1;
3056 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3063 /* there are no items in the tree for us to truncate, we're
3066 if (path
->slots
[0] == 0)
3073 leaf
= path
->nodes
[0];
3074 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3075 found_type
= btrfs_key_type(&found_key
);
3078 if (found_key
.objectid
!= ino
)
3081 if (found_type
< min_type
)
3084 item_end
= found_key
.offset
;
3085 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
3086 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3087 struct btrfs_file_extent_item
);
3088 extent_type
= btrfs_file_extent_type(leaf
, fi
);
3089 encoding
= btrfs_file_extent_compression(leaf
, fi
);
3090 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
3091 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
3093 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3095 btrfs_file_extent_num_bytes(leaf
, fi
);
3096 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3097 item_end
+= btrfs_file_extent_inline_len(leaf
,
3102 if (found_type
> min_type
) {
3105 if (item_end
< new_size
)
3107 if (found_key
.offset
>= new_size
)
3113 /* FIXME, shrink the extent if the ref count is only 1 */
3114 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
3117 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
3119 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
3120 if (!del_item
&& !encoding
) {
3121 u64 orig_num_bytes
=
3122 btrfs_file_extent_num_bytes(leaf
, fi
);
3123 extent_num_bytes
= new_size
-
3124 found_key
.offset
+ root
->sectorsize
- 1;
3125 extent_num_bytes
= extent_num_bytes
&
3126 ~((u64
)root
->sectorsize
- 1);
3127 btrfs_set_file_extent_num_bytes(leaf
, fi
,
3129 num_dec
= (orig_num_bytes
-
3131 if (root
->ref_cows
&& extent_start
!= 0)
3132 inode_sub_bytes(inode
, num_dec
);
3133 btrfs_mark_buffer_dirty(leaf
);
3136 btrfs_file_extent_disk_num_bytes(leaf
,
3138 extent_offset
= found_key
.offset
-
3139 btrfs_file_extent_offset(leaf
, fi
);
3141 /* FIXME blocksize != 4096 */
3142 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
3143 if (extent_start
!= 0) {
3146 inode_sub_bytes(inode
, num_dec
);
3149 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
3151 * we can't truncate inline items that have had
3155 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
3156 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
3157 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
3158 u32 size
= new_size
- found_key
.offset
;
3160 if (root
->ref_cows
) {
3161 inode_sub_bytes(inode
, item_end
+ 1 -
3165 btrfs_file_extent_calc_inline_size(size
);
3166 ret
= btrfs_truncate_item(trans
, root
, path
,
3168 } else if (root
->ref_cows
) {
3169 inode_sub_bytes(inode
, item_end
+ 1 -
3175 if (!pending_del_nr
) {
3176 /* no pending yet, add ourselves */
3177 pending_del_slot
= path
->slots
[0];
3179 } else if (pending_del_nr
&&
3180 path
->slots
[0] + 1 == pending_del_slot
) {
3181 /* hop on the pending chunk */
3183 pending_del_slot
= path
->slots
[0];
3190 if (found_extent
&& (root
->ref_cows
||
3191 root
== root
->fs_info
->tree_root
)) {
3192 btrfs_set_path_blocking(path
);
3193 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3194 extent_num_bytes
, 0,
3195 btrfs_header_owner(leaf
),
3196 ino
, extent_offset
);
3200 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3203 if (path
->slots
[0] == 0 ||
3204 path
->slots
[0] != pending_del_slot
) {
3205 if (root
->ref_cows
&&
3206 BTRFS_I(inode
)->location
.objectid
!=
3207 BTRFS_FREE_INO_OBJECTID
) {
3211 if (pending_del_nr
) {
3212 ret
= btrfs_del_items(trans
, root
, path
,
3218 btrfs_release_path(path
);
3225 if (pending_del_nr
) {
3226 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3230 btrfs_free_path(path
);
3235 * taken from block_truncate_page, but does cow as it zeros out
3236 * any bytes left in the last page in the file.
3238 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
3240 struct inode
*inode
= mapping
->host
;
3241 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3242 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3243 struct btrfs_ordered_extent
*ordered
;
3244 struct extent_state
*cached_state
= NULL
;
3246 u32 blocksize
= root
->sectorsize
;
3247 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3248 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3250 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
3255 if ((offset
& (blocksize
- 1)) == 0)
3257 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
3263 page
= find_or_create_page(mapping
, index
, mask
);
3265 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3269 page_start
= page_offset(page
);
3270 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3272 if (!PageUptodate(page
)) {
3273 ret
= btrfs_readpage(NULL
, page
);
3275 if (page
->mapping
!= mapping
) {
3277 page_cache_release(page
);
3280 if (!PageUptodate(page
)) {
3285 wait_on_page_writeback(page
);
3287 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
3289 set_page_extent_mapped(page
);
3291 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3293 unlock_extent_cached(io_tree
, page_start
, page_end
,
3294 &cached_state
, GFP_NOFS
);
3296 page_cache_release(page
);
3297 btrfs_start_ordered_extent(inode
, ordered
, 1);
3298 btrfs_put_ordered_extent(ordered
);
3302 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3303 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
3304 0, 0, &cached_state
, GFP_NOFS
);
3306 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
3309 unlock_extent_cached(io_tree
, page_start
, page_end
,
3310 &cached_state
, GFP_NOFS
);
3315 if (offset
!= PAGE_CACHE_SIZE
) {
3317 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
3318 flush_dcache_page(page
);
3321 ClearPageChecked(page
);
3322 set_page_dirty(page
);
3323 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
,
3328 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
3330 page_cache_release(page
);
3336 * This function puts in dummy file extents for the area we're creating a hole
3337 * for. So if we are truncating this file to a larger size we need to insert
3338 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3339 * the range between oldsize and size
3341 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
3343 struct btrfs_trans_handle
*trans
;
3344 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3345 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3346 struct extent_map
*em
= NULL
;
3347 struct extent_state
*cached_state
= NULL
;
3348 u64 mask
= root
->sectorsize
- 1;
3349 u64 hole_start
= (oldsize
+ mask
) & ~mask
;
3350 u64 block_end
= (size
+ mask
) & ~mask
;
3356 if (size
<= hole_start
)
3360 struct btrfs_ordered_extent
*ordered
;
3361 btrfs_wait_ordered_range(inode
, hole_start
,
3362 block_end
- hole_start
);
3363 lock_extent_bits(io_tree
, hole_start
, block_end
- 1, 0,
3364 &cached_state
, GFP_NOFS
);
3365 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3368 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
3369 &cached_state
, GFP_NOFS
);
3370 btrfs_put_ordered_extent(ordered
);
3373 cur_offset
= hole_start
;
3375 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3376 block_end
- cur_offset
, 0);
3377 BUG_ON(IS_ERR_OR_NULL(em
));
3378 last_byte
= min(extent_map_end(em
), block_end
);
3379 last_byte
= (last_byte
+ mask
) & ~mask
;
3380 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3382 hole_size
= last_byte
- cur_offset
;
3384 trans
= btrfs_start_transaction(root
, 3);
3385 if (IS_ERR(trans
)) {
3386 err
= PTR_ERR(trans
);
3390 err
= btrfs_drop_extents(trans
, inode
, cur_offset
,
3391 cur_offset
+ hole_size
,
3394 btrfs_update_inode(trans
, root
, inode
);
3395 btrfs_end_transaction(trans
, root
);
3399 err
= btrfs_insert_file_extent(trans
, root
,
3400 btrfs_ino(inode
), cur_offset
, 0,
3401 0, hole_size
, 0, hole_size
,
3404 btrfs_update_inode(trans
, root
, inode
);
3405 btrfs_end_transaction(trans
, root
);
3409 btrfs_drop_extent_cache(inode
, hole_start
,
3412 btrfs_update_inode(trans
, root
, inode
);
3413 btrfs_end_transaction(trans
, root
);
3415 free_extent_map(em
);
3417 cur_offset
= last_byte
;
3418 if (cur_offset
>= block_end
)
3422 free_extent_map(em
);
3423 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
3428 static int btrfs_setsize(struct inode
*inode
, loff_t newsize
)
3430 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3431 struct btrfs_trans_handle
*trans
;
3432 loff_t oldsize
= i_size_read(inode
);
3435 if (newsize
== oldsize
)
3438 if (newsize
> oldsize
) {
3439 truncate_pagecache(inode
, oldsize
, newsize
);
3440 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
3444 trans
= btrfs_start_transaction(root
, 1);
3446 return PTR_ERR(trans
);
3448 i_size_write(inode
, newsize
);
3449 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
3450 ret
= btrfs_update_inode(trans
, root
, inode
);
3451 btrfs_end_transaction_throttle(trans
, root
);
3455 * We're truncating a file that used to have good data down to
3456 * zero. Make sure it gets into the ordered flush list so that
3457 * any new writes get down to disk quickly.
3460 BTRFS_I(inode
)->ordered_data_close
= 1;
3462 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3463 truncate_setsize(inode
, newsize
);
3464 ret
= btrfs_truncate(inode
);
3470 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3472 struct inode
*inode
= dentry
->d_inode
;
3473 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3476 if (btrfs_root_readonly(root
))
3479 err
= inode_change_ok(inode
, attr
);
3483 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3484 err
= btrfs_setsize(inode
, attr
->ia_size
);
3489 if (attr
->ia_valid
) {
3490 setattr_copy(inode
, attr
);
3491 err
= btrfs_dirty_inode(inode
);
3493 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
3494 err
= btrfs_acl_chmod(inode
);
3500 void btrfs_evict_inode(struct inode
*inode
)
3502 struct btrfs_trans_handle
*trans
;
3503 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3504 struct btrfs_block_rsv
*rsv
, *global_rsv
;
3505 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
3509 trace_btrfs_inode_evict(inode
);
3511 truncate_inode_pages(&inode
->i_data
, 0);
3512 if (inode
->i_nlink
&& (btrfs_root_refs(&root
->root_item
) != 0 ||
3513 btrfs_is_free_space_inode(root
, inode
)))
3516 if (is_bad_inode(inode
)) {
3517 btrfs_orphan_del(NULL
, inode
);
3520 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3521 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3523 if (root
->fs_info
->log_root_recovering
) {
3524 BUG_ON(!list_empty(&BTRFS_I(inode
)->i_orphan
));
3528 if (inode
->i_nlink
> 0) {
3529 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3533 rsv
= btrfs_alloc_block_rsv(root
);
3535 btrfs_orphan_del(NULL
, inode
);
3538 rsv
->size
= min_size
;
3539 global_rsv
= &root
->fs_info
->global_block_rsv
;
3541 btrfs_i_size_write(inode
, 0);
3544 * This is a bit simpler than btrfs_truncate since
3546 * 1) We've already reserved our space for our orphan item in the
3548 * 2) We're going to delete the inode item, so we don't need to update
3551 * So we just need to reserve some slack space in case we add bytes when
3552 * doing the truncate.
3555 ret
= btrfs_block_rsv_refill_noflush(root
, rsv
, min_size
);
3558 * Try and steal from the global reserve since we will
3559 * likely not use this space anyway, we want to try as
3560 * hard as possible to get this to work.
3563 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, min_size
);
3566 printk(KERN_WARNING
"Could not get space for a "
3567 "delete, will truncate on mount %d\n", ret
);
3568 btrfs_orphan_del(NULL
, inode
);
3569 btrfs_free_block_rsv(root
, rsv
);
3573 trans
= btrfs_start_transaction(root
, 0);
3574 if (IS_ERR(trans
)) {
3575 btrfs_orphan_del(NULL
, inode
);
3576 btrfs_free_block_rsv(root
, rsv
);
3580 trans
->block_rsv
= rsv
;
3582 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
3586 nr
= trans
->blocks_used
;
3587 btrfs_end_transaction(trans
, root
);
3589 btrfs_btree_balance_dirty(root
, nr
);
3592 btrfs_free_block_rsv(root
, rsv
);
3595 trans
->block_rsv
= root
->orphan_block_rsv
;
3596 ret
= btrfs_orphan_del(trans
, inode
);
3600 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3601 if (!(root
== root
->fs_info
->tree_root
||
3602 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
3603 btrfs_return_ino(root
, btrfs_ino(inode
));
3605 nr
= trans
->blocks_used
;
3606 btrfs_end_transaction(trans
, root
);
3607 btrfs_btree_balance_dirty(root
, nr
);
3609 end_writeback(inode
);
3614 * this returns the key found in the dir entry in the location pointer.
3615 * If no dir entries were found, location->objectid is 0.
3617 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3618 struct btrfs_key
*location
)
3620 const char *name
= dentry
->d_name
.name
;
3621 int namelen
= dentry
->d_name
.len
;
3622 struct btrfs_dir_item
*di
;
3623 struct btrfs_path
*path
;
3624 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3627 path
= btrfs_alloc_path();
3631 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
3636 if (IS_ERR_OR_NULL(di
))
3639 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3641 btrfs_free_path(path
);
3644 location
->objectid
= 0;
3649 * when we hit a tree root in a directory, the btrfs part of the inode
3650 * needs to be changed to reflect the root directory of the tree root. This
3651 * is kind of like crossing a mount point.
3653 static int fixup_tree_root_location(struct btrfs_root
*root
,
3655 struct dentry
*dentry
,
3656 struct btrfs_key
*location
,
3657 struct btrfs_root
**sub_root
)
3659 struct btrfs_path
*path
;
3660 struct btrfs_root
*new_root
;
3661 struct btrfs_root_ref
*ref
;
3662 struct extent_buffer
*leaf
;
3666 path
= btrfs_alloc_path();
3673 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3674 BTRFS_I(dir
)->root
->root_key
.objectid
,
3675 location
->objectid
);
3682 leaf
= path
->nodes
[0];
3683 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3684 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
3685 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3688 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3689 (unsigned long)(ref
+ 1),
3690 dentry
->d_name
.len
);
3694 btrfs_release_path(path
);
3696 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3697 if (IS_ERR(new_root
)) {
3698 err
= PTR_ERR(new_root
);
3702 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
3707 *sub_root
= new_root
;
3708 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
3709 location
->type
= BTRFS_INODE_ITEM_KEY
;
3710 location
->offset
= 0;
3713 btrfs_free_path(path
);
3717 static void inode_tree_add(struct inode
*inode
)
3719 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3720 struct btrfs_inode
*entry
;
3722 struct rb_node
*parent
;
3723 u64 ino
= btrfs_ino(inode
);
3725 p
= &root
->inode_tree
.rb_node
;
3728 if (inode_unhashed(inode
))
3731 spin_lock(&root
->inode_lock
);
3734 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3736 if (ino
< btrfs_ino(&entry
->vfs_inode
))
3737 p
= &parent
->rb_left
;
3738 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
3739 p
= &parent
->rb_right
;
3741 WARN_ON(!(entry
->vfs_inode
.i_state
&
3742 (I_WILL_FREE
| I_FREEING
)));
3743 rb_erase(parent
, &root
->inode_tree
);
3744 RB_CLEAR_NODE(parent
);
3745 spin_unlock(&root
->inode_lock
);
3749 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3750 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3751 spin_unlock(&root
->inode_lock
);
3754 static void inode_tree_del(struct inode
*inode
)
3756 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3759 spin_lock(&root
->inode_lock
);
3760 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3761 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3762 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3763 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3765 spin_unlock(&root
->inode_lock
);
3768 * Free space cache has inodes in the tree root, but the tree root has a
3769 * root_refs of 0, so this could end up dropping the tree root as a
3770 * snapshot, so we need the extra !root->fs_info->tree_root check to
3771 * make sure we don't drop it.
3773 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0 &&
3774 root
!= root
->fs_info
->tree_root
) {
3775 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
3776 spin_lock(&root
->inode_lock
);
3777 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3778 spin_unlock(&root
->inode_lock
);
3780 btrfs_add_dead_root(root
);
3784 int btrfs_invalidate_inodes(struct btrfs_root
*root
)
3786 struct rb_node
*node
;
3787 struct rb_node
*prev
;
3788 struct btrfs_inode
*entry
;
3789 struct inode
*inode
;
3792 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3794 spin_lock(&root
->inode_lock
);
3796 node
= root
->inode_tree
.rb_node
;
3800 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3802 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
3803 node
= node
->rb_left
;
3804 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
3805 node
= node
->rb_right
;
3811 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
3812 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
3816 prev
= rb_next(prev
);
3820 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3821 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
3822 inode
= igrab(&entry
->vfs_inode
);
3824 spin_unlock(&root
->inode_lock
);
3825 if (atomic_read(&inode
->i_count
) > 1)
3826 d_prune_aliases(inode
);
3828 * btrfs_drop_inode will have it removed from
3829 * the inode cache when its usage count
3834 spin_lock(&root
->inode_lock
);
3838 if (cond_resched_lock(&root
->inode_lock
))
3841 node
= rb_next(node
);
3843 spin_unlock(&root
->inode_lock
);
3847 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
3849 struct btrfs_iget_args
*args
= p
;
3850 inode
->i_ino
= args
->location
->objectid
;
3851 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
3852 sizeof(*args
->location
));
3853 BTRFS_I(inode
)->root
= args
->root
;
3854 btrfs_set_inode_space_info(args
->root
, inode
);
3858 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
3860 struct btrfs_iget_args
*args
= opaque
;
3861 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
3862 args
->root
== BTRFS_I(inode
)->root
;
3865 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
3866 struct btrfs_key
*location
,
3867 struct btrfs_root
*root
)
3869 struct inode
*inode
;
3870 struct btrfs_iget_args args
;
3871 args
.location
= location
;
3874 inode
= iget5_locked(s
, location
->objectid
, btrfs_find_actor
,
3875 btrfs_init_locked_inode
,
3880 /* Get an inode object given its location and corresponding root.
3881 * Returns in *is_new if the inode was read from disk
3883 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
3884 struct btrfs_root
*root
, int *new)
3886 struct inode
*inode
;
3888 inode
= btrfs_iget_locked(s
, location
, root
);
3890 return ERR_PTR(-ENOMEM
);
3892 if (inode
->i_state
& I_NEW
) {
3893 btrfs_read_locked_inode(inode
);
3894 if (!is_bad_inode(inode
)) {
3895 inode_tree_add(inode
);
3896 unlock_new_inode(inode
);
3900 unlock_new_inode(inode
);
3902 inode
= ERR_PTR(-ESTALE
);
3909 static struct inode
*new_simple_dir(struct super_block
*s
,
3910 struct btrfs_key
*key
,
3911 struct btrfs_root
*root
)
3913 struct inode
*inode
= new_inode(s
);
3916 return ERR_PTR(-ENOMEM
);
3918 BTRFS_I(inode
)->root
= root
;
3919 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
3920 BTRFS_I(inode
)->dummy_inode
= 1;
3922 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
3923 inode
->i_op
= &simple_dir_inode_operations
;
3924 inode
->i_fop
= &simple_dir_operations
;
3925 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
3926 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
3931 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
3933 struct inode
*inode
;
3934 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3935 struct btrfs_root
*sub_root
= root
;
3936 struct btrfs_key location
;
3940 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3941 return ERR_PTR(-ENAMETOOLONG
);
3943 if (unlikely(d_need_lookup(dentry
))) {
3944 memcpy(&location
, dentry
->d_fsdata
, sizeof(struct btrfs_key
));
3945 kfree(dentry
->d_fsdata
);
3946 dentry
->d_fsdata
= NULL
;
3947 /* This thing is hashed, drop it for now */
3950 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
3954 return ERR_PTR(ret
);
3956 if (location
.objectid
== 0)
3959 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
3960 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
3964 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
3966 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
3967 ret
= fixup_tree_root_location(root
, dir
, dentry
,
3968 &location
, &sub_root
);
3971 inode
= ERR_PTR(ret
);
3973 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
3975 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
3977 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
3979 if (!IS_ERR(inode
) && root
!= sub_root
) {
3980 down_read(&root
->fs_info
->cleanup_work_sem
);
3981 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
3982 ret
= btrfs_orphan_cleanup(sub_root
);
3983 up_read(&root
->fs_info
->cleanup_work_sem
);
3985 inode
= ERR_PTR(ret
);
3991 static int btrfs_dentry_delete(const struct dentry
*dentry
)
3993 struct btrfs_root
*root
;
3995 if (!dentry
->d_inode
&& !IS_ROOT(dentry
))
3996 dentry
= dentry
->d_parent
;
3998 if (dentry
->d_inode
) {
3999 root
= BTRFS_I(dentry
->d_inode
)->root
;
4000 if (btrfs_root_refs(&root
->root_item
) == 0)
4006 static void btrfs_dentry_release(struct dentry
*dentry
)
4008 if (dentry
->d_fsdata
)
4009 kfree(dentry
->d_fsdata
);
4012 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
4013 struct nameidata
*nd
)
4017 ret
= d_splice_alias(btrfs_lookup_dentry(dir
, dentry
), dentry
);
4018 if (unlikely(d_need_lookup(dentry
))) {
4019 spin_lock(&dentry
->d_lock
);
4020 dentry
->d_flags
&= ~DCACHE_NEED_LOOKUP
;
4021 spin_unlock(&dentry
->d_lock
);
4026 unsigned char btrfs_filetype_table
[] = {
4027 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
4030 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
4033 struct inode
*inode
= filp
->f_dentry
->d_inode
;
4034 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4035 struct btrfs_item
*item
;
4036 struct btrfs_dir_item
*di
;
4037 struct btrfs_key key
;
4038 struct btrfs_key found_key
;
4039 struct btrfs_path
*path
;
4040 struct list_head ins_list
;
4041 struct list_head del_list
;
4044 struct extent_buffer
*leaf
;
4046 unsigned char d_type
;
4051 int key_type
= BTRFS_DIR_INDEX_KEY
;
4055 int is_curr
= 0; /* filp->f_pos points to the current index? */
4057 /* FIXME, use a real flag for deciding about the key type */
4058 if (root
->fs_info
->tree_root
== root
)
4059 key_type
= BTRFS_DIR_ITEM_KEY
;
4061 /* special case for "." */
4062 if (filp
->f_pos
== 0) {
4063 over
= filldir(dirent
, ".", 1,
4064 filp
->f_pos
, btrfs_ino(inode
), DT_DIR
);
4069 /* special case for .., just use the back ref */
4070 if (filp
->f_pos
== 1) {
4071 u64 pino
= parent_ino(filp
->f_path
.dentry
);
4072 over
= filldir(dirent
, "..", 2,
4073 filp
->f_pos
, pino
, DT_DIR
);
4078 path
= btrfs_alloc_path();
4084 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4085 INIT_LIST_HEAD(&ins_list
);
4086 INIT_LIST_HEAD(&del_list
);
4087 btrfs_get_delayed_items(inode
, &ins_list
, &del_list
);
4090 btrfs_set_key_type(&key
, key_type
);
4091 key
.offset
= filp
->f_pos
;
4092 key
.objectid
= btrfs_ino(inode
);
4094 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4099 leaf
= path
->nodes
[0];
4100 slot
= path
->slots
[0];
4101 if (slot
>= btrfs_header_nritems(leaf
)) {
4102 ret
= btrfs_next_leaf(root
, path
);
4110 item
= btrfs_item_nr(leaf
, slot
);
4111 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
4113 if (found_key
.objectid
!= key
.objectid
)
4115 if (btrfs_key_type(&found_key
) != key_type
)
4117 if (found_key
.offset
< filp
->f_pos
)
4119 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
4120 btrfs_should_delete_dir_index(&del_list
,
4124 filp
->f_pos
= found_key
.offset
;
4127 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
4129 di_total
= btrfs_item_size(leaf
, item
);
4131 while (di_cur
< di_total
) {
4132 struct btrfs_key location
;
4135 if (verify_dir_item(root
, leaf
, di
))
4138 name_len
= btrfs_dir_name_len(leaf
, di
);
4139 if (name_len
<= sizeof(tmp_name
)) {
4140 name_ptr
= tmp_name
;
4142 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
4148 read_extent_buffer(leaf
, name_ptr
,
4149 (unsigned long)(di
+ 1), name_len
);
4151 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
4152 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
4156 q
.hash
= full_name_hash(q
.name
, q
.len
);
4157 tmp
= d_lookup(filp
->f_dentry
, &q
);
4159 struct btrfs_key
*newkey
;
4161 newkey
= kzalloc(sizeof(struct btrfs_key
),
4165 tmp
= d_alloc(filp
->f_dentry
, &q
);
4171 memcpy(newkey
, &location
,
4172 sizeof(struct btrfs_key
));
4173 tmp
->d_fsdata
= newkey
;
4174 tmp
->d_flags
|= DCACHE_NEED_LOOKUP
;
4181 /* is this a reference to our own snapshot? If so
4184 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
4185 location
.objectid
== root
->root_key
.objectid
) {
4189 over
= filldir(dirent
, name_ptr
, name_len
,
4190 found_key
.offset
, location
.objectid
,
4194 if (name_ptr
!= tmp_name
)
4199 di_len
= btrfs_dir_name_len(leaf
, di
) +
4200 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
4202 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
4208 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
4211 ret
= btrfs_readdir_delayed_dir_index(filp
, dirent
, filldir
,
4217 /* Reached end of directory/root. Bump pos past the last item. */
4218 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4220 * 32-bit glibc will use getdents64, but then strtol -
4221 * so the last number we can serve is this.
4223 filp
->f_pos
= 0x7fffffff;
4229 if (key_type
== BTRFS_DIR_INDEX_KEY
)
4230 btrfs_put_delayed_items(&ins_list
, &del_list
);
4231 btrfs_free_path(path
);
4235 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4237 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4238 struct btrfs_trans_handle
*trans
;
4240 bool nolock
= false;
4242 if (BTRFS_I(inode
)->dummy_inode
)
4245 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(root
, inode
))
4248 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
4250 trans
= btrfs_join_transaction_nolock(root
);
4252 trans
= btrfs_join_transaction(root
);
4254 return PTR_ERR(trans
);
4256 ret
= btrfs_end_transaction_nolock(trans
, root
);
4258 ret
= btrfs_commit_transaction(trans
, root
);
4264 * This is somewhat expensive, updating the tree every time the
4265 * inode changes. But, it is most likely to find the inode in cache.
4266 * FIXME, needs more benchmarking...there are no reasons other than performance
4267 * to keep or drop this code.
4269 int btrfs_dirty_inode(struct inode
*inode
)
4271 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4272 struct btrfs_trans_handle
*trans
;
4275 if (BTRFS_I(inode
)->dummy_inode
)
4278 trans
= btrfs_join_transaction(root
);
4280 return PTR_ERR(trans
);
4282 ret
= btrfs_update_inode(trans
, root
, inode
);
4283 if (ret
&& ret
== -ENOSPC
) {
4284 /* whoops, lets try again with the full transaction */
4285 btrfs_end_transaction(trans
, root
);
4286 trans
= btrfs_start_transaction(root
, 1);
4288 return PTR_ERR(trans
);
4290 ret
= btrfs_update_inode(trans
, root
, inode
);
4292 btrfs_end_transaction(trans
, root
);
4293 if (BTRFS_I(inode
)->delayed_node
)
4294 btrfs_balance_delayed_items(root
);
4300 * This is a copy of file_update_time. We need this so we can return error on
4301 * ENOSPC for updating the inode in the case of file write and mmap writes.
4303 int btrfs_update_time(struct file
*file
)
4305 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4306 struct timespec now
;
4308 enum { S_MTIME
= 1, S_CTIME
= 2, S_VERSION
= 4 } sync_it
= 0;
4310 /* First try to exhaust all avenues to not sync */
4311 if (IS_NOCMTIME(inode
))
4314 now
= current_fs_time(inode
->i_sb
);
4315 if (!timespec_equal(&inode
->i_mtime
, &now
))
4318 if (!timespec_equal(&inode
->i_ctime
, &now
))
4321 if (IS_I_VERSION(inode
))
4322 sync_it
|= S_VERSION
;
4327 /* Finally allowed to write? Takes lock. */
4328 if (mnt_want_write_file(file
))
4331 /* Only change inode inside the lock region */
4332 if (sync_it
& S_VERSION
)
4333 inode_inc_iversion(inode
);
4334 if (sync_it
& S_CTIME
)
4335 inode
->i_ctime
= now
;
4336 if (sync_it
& S_MTIME
)
4337 inode
->i_mtime
= now
;
4338 ret
= btrfs_dirty_inode(inode
);
4340 mark_inode_dirty_sync(inode
);
4341 mnt_drop_write(file
->f_path
.mnt
);
4346 * find the highest existing sequence number in a directory
4347 * and then set the in-memory index_cnt variable to reflect
4348 * free sequence numbers
4350 static int btrfs_set_inode_index_count(struct inode
*inode
)
4352 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4353 struct btrfs_key key
, found_key
;
4354 struct btrfs_path
*path
;
4355 struct extent_buffer
*leaf
;
4358 key
.objectid
= btrfs_ino(inode
);
4359 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
4360 key
.offset
= (u64
)-1;
4362 path
= btrfs_alloc_path();
4366 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4369 /* FIXME: we should be able to handle this */
4375 * MAGIC NUMBER EXPLANATION:
4376 * since we search a directory based on f_pos we have to start at 2
4377 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4378 * else has to start at 2
4380 if (path
->slots
[0] == 0) {
4381 BTRFS_I(inode
)->index_cnt
= 2;
4387 leaf
= path
->nodes
[0];
4388 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4390 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4391 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
4392 BTRFS_I(inode
)->index_cnt
= 2;
4396 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
4398 btrfs_free_path(path
);
4403 * helper to find a free sequence number in a given directory. This current
4404 * code is very simple, later versions will do smarter things in the btree
4406 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
4410 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
4411 ret
= btrfs_inode_delayed_dir_index_count(dir
);
4413 ret
= btrfs_set_inode_index_count(dir
);
4419 *index
= BTRFS_I(dir
)->index_cnt
;
4420 BTRFS_I(dir
)->index_cnt
++;
4425 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
4426 struct btrfs_root
*root
,
4428 const char *name
, int name_len
,
4429 u64 ref_objectid
, u64 objectid
, int mode
,
4432 struct inode
*inode
;
4433 struct btrfs_inode_item
*inode_item
;
4434 struct btrfs_key
*location
;
4435 struct btrfs_path
*path
;
4436 struct btrfs_inode_ref
*ref
;
4437 struct btrfs_key key
[2];
4443 path
= btrfs_alloc_path();
4445 return ERR_PTR(-ENOMEM
);
4447 inode
= new_inode(root
->fs_info
->sb
);
4449 btrfs_free_path(path
);
4450 return ERR_PTR(-ENOMEM
);
4454 * we have to initialize this early, so we can reclaim the inode
4455 * number if we fail afterwards in this function.
4457 inode
->i_ino
= objectid
;
4460 trace_btrfs_inode_request(dir
);
4462 ret
= btrfs_set_inode_index(dir
, index
);
4464 btrfs_free_path(path
);
4466 return ERR_PTR(ret
);
4470 * index_cnt is ignored for everything but a dir,
4471 * btrfs_get_inode_index_count has an explanation for the magic
4474 BTRFS_I(inode
)->index_cnt
= 2;
4475 BTRFS_I(inode
)->root
= root
;
4476 BTRFS_I(inode
)->generation
= trans
->transid
;
4477 inode
->i_generation
= BTRFS_I(inode
)->generation
;
4478 btrfs_set_inode_space_info(root
, inode
);
4485 key
[0].objectid
= objectid
;
4486 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4489 key
[1].objectid
= objectid
;
4490 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4491 key
[1].offset
= ref_objectid
;
4493 sizes
[0] = sizeof(struct btrfs_inode_item
);
4494 sizes
[1] = name_len
+ sizeof(*ref
);
4496 path
->leave_spinning
= 1;
4497 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4501 inode_init_owner(inode
, dir
, mode
);
4502 inode_set_bytes(inode
, 0);
4503 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4504 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4505 struct btrfs_inode_item
);
4506 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4508 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4509 struct btrfs_inode_ref
);
4510 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4511 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4512 ptr
= (unsigned long)(ref
+ 1);
4513 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4515 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4516 btrfs_free_path(path
);
4518 location
= &BTRFS_I(inode
)->location
;
4519 location
->objectid
= objectid
;
4520 location
->offset
= 0;
4521 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4523 btrfs_inherit_iflags(inode
, dir
);
4525 if (S_ISREG(mode
)) {
4526 if (btrfs_test_opt(root
, NODATASUM
))
4527 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4528 if (btrfs_test_opt(root
, NODATACOW
) ||
4529 (BTRFS_I(dir
)->flags
& BTRFS_INODE_NODATACOW
))
4530 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4533 insert_inode_hash(inode
);
4534 inode_tree_add(inode
);
4536 trace_btrfs_inode_new(inode
);
4537 btrfs_set_inode_last_trans(trans
, inode
);
4542 BTRFS_I(dir
)->index_cnt
--;
4543 btrfs_free_path(path
);
4545 return ERR_PTR(ret
);
4548 static inline u8
btrfs_inode_type(struct inode
*inode
)
4550 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4554 * utility function to add 'inode' into 'parent_inode' with
4555 * a give name and a given sequence number.
4556 * if 'add_backref' is true, also insert a backref from the
4557 * inode to the parent directory.
4559 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4560 struct inode
*parent_inode
, struct inode
*inode
,
4561 const char *name
, int name_len
, int add_backref
, u64 index
)
4564 struct btrfs_key key
;
4565 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4566 u64 ino
= btrfs_ino(inode
);
4567 u64 parent_ino
= btrfs_ino(parent_inode
);
4569 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4570 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4573 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4577 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4578 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4579 key
.objectid
, root
->root_key
.objectid
,
4580 parent_ino
, index
, name
, name_len
);
4581 } else if (add_backref
) {
4582 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
4587 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4589 btrfs_inode_type(inode
), index
);
4592 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4594 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4595 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4600 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4601 struct inode
*dir
, struct dentry
*dentry
,
4602 struct inode
*inode
, int backref
, u64 index
)
4604 int err
= btrfs_add_link(trans
, dir
, inode
,
4605 dentry
->d_name
.name
, dentry
->d_name
.len
,
4612 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4613 int mode
, dev_t rdev
)
4615 struct btrfs_trans_handle
*trans
;
4616 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4617 struct inode
*inode
= NULL
;
4621 unsigned long nr
= 0;
4624 if (!new_valid_dev(rdev
))
4628 * 2 for inode item and ref
4630 * 1 for xattr if selinux is on
4632 trans
= btrfs_start_transaction(root
, 5);
4634 return PTR_ERR(trans
);
4636 err
= btrfs_find_free_ino(root
, &objectid
);
4640 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4641 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4643 if (IS_ERR(inode
)) {
4644 err
= PTR_ERR(inode
);
4648 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4655 * If the active LSM wants to access the inode during
4656 * d_instantiate it needs these. Smack checks to see
4657 * if the filesystem supports xattrs by looking at the
4661 inode
->i_op
= &btrfs_special_inode_operations
;
4662 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4666 init_special_inode(inode
, inode
->i_mode
, rdev
);
4667 btrfs_update_inode(trans
, root
, inode
);
4668 d_instantiate(dentry
, inode
);
4671 nr
= trans
->blocks_used
;
4672 btrfs_end_transaction_throttle(trans
, root
);
4673 btrfs_btree_balance_dirty(root
, nr
);
4675 inode_dec_link_count(inode
);
4681 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4682 int mode
, struct nameidata
*nd
)
4684 struct btrfs_trans_handle
*trans
;
4685 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4686 struct inode
*inode
= NULL
;
4689 unsigned long nr
= 0;
4694 * 2 for inode item and ref
4696 * 1 for xattr if selinux is on
4698 trans
= btrfs_start_transaction(root
, 5);
4700 return PTR_ERR(trans
);
4702 err
= btrfs_find_free_ino(root
, &objectid
);
4706 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4707 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4709 if (IS_ERR(inode
)) {
4710 err
= PTR_ERR(inode
);
4714 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4721 * If the active LSM wants to access the inode during
4722 * d_instantiate it needs these. Smack checks to see
4723 * if the filesystem supports xattrs by looking at the
4726 inode
->i_fop
= &btrfs_file_operations
;
4727 inode
->i_op
= &btrfs_file_inode_operations
;
4729 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
4733 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4734 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4735 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4736 d_instantiate(dentry
, inode
);
4739 nr
= trans
->blocks_used
;
4740 btrfs_end_transaction_throttle(trans
, root
);
4742 inode_dec_link_count(inode
);
4745 btrfs_btree_balance_dirty(root
, nr
);
4749 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
4750 struct dentry
*dentry
)
4752 struct btrfs_trans_handle
*trans
;
4753 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4754 struct inode
*inode
= old_dentry
->d_inode
;
4756 unsigned long nr
= 0;
4760 /* do not allow sys_link's with other subvols of the same device */
4761 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
4764 if (inode
->i_nlink
== ~0U)
4767 err
= btrfs_set_inode_index(dir
, &index
);
4772 * 2 items for inode and inode ref
4773 * 2 items for dir items
4774 * 1 item for parent inode
4776 trans
= btrfs_start_transaction(root
, 5);
4777 if (IS_ERR(trans
)) {
4778 err
= PTR_ERR(trans
);
4782 btrfs_inc_nlink(inode
);
4783 inode
->i_ctime
= CURRENT_TIME
;
4786 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
4791 struct dentry
*parent
= dentry
->d_parent
;
4792 err
= btrfs_update_inode(trans
, root
, inode
);
4794 d_instantiate(dentry
, inode
);
4795 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
4798 nr
= trans
->blocks_used
;
4799 btrfs_end_transaction_throttle(trans
, root
);
4802 inode_dec_link_count(inode
);
4805 btrfs_btree_balance_dirty(root
, nr
);
4809 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
4811 struct inode
*inode
= NULL
;
4812 struct btrfs_trans_handle
*trans
;
4813 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4815 int drop_on_err
= 0;
4818 unsigned long nr
= 1;
4821 * 2 items for inode and ref
4822 * 2 items for dir items
4823 * 1 for xattr if selinux is on
4825 trans
= btrfs_start_transaction(root
, 5);
4827 return PTR_ERR(trans
);
4829 err
= btrfs_find_free_ino(root
, &objectid
);
4833 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4834 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
4835 S_IFDIR
| mode
, &index
);
4836 if (IS_ERR(inode
)) {
4837 err
= PTR_ERR(inode
);
4843 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
4847 inode
->i_op
= &btrfs_dir_inode_operations
;
4848 inode
->i_fop
= &btrfs_dir_file_operations
;
4850 btrfs_i_size_write(inode
, 0);
4851 err
= btrfs_update_inode(trans
, root
, inode
);
4855 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
4856 dentry
->d_name
.len
, 0, index
);
4860 d_instantiate(dentry
, inode
);
4864 nr
= trans
->blocks_used
;
4865 btrfs_end_transaction_throttle(trans
, root
);
4868 btrfs_btree_balance_dirty(root
, nr
);
4872 /* helper for btfs_get_extent. Given an existing extent in the tree,
4873 * and an extent that you want to insert, deal with overlap and insert
4874 * the new extent into the tree.
4876 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
4877 struct extent_map
*existing
,
4878 struct extent_map
*em
,
4879 u64 map_start
, u64 map_len
)
4883 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
4884 start_diff
= map_start
- em
->start
;
4885 em
->start
= map_start
;
4887 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
4888 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
4889 em
->block_start
+= start_diff
;
4890 em
->block_len
-= start_diff
;
4892 return add_extent_mapping(em_tree
, em
);
4895 static noinline
int uncompress_inline(struct btrfs_path
*path
,
4896 struct inode
*inode
, struct page
*page
,
4897 size_t pg_offset
, u64 extent_offset
,
4898 struct btrfs_file_extent_item
*item
)
4901 struct extent_buffer
*leaf
= path
->nodes
[0];
4904 unsigned long inline_size
;
4908 WARN_ON(pg_offset
!= 0);
4909 compress_type
= btrfs_file_extent_compression(leaf
, item
);
4910 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4911 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4912 btrfs_item_nr(leaf
, path
->slots
[0]));
4913 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4916 ptr
= btrfs_file_extent_inline_start(item
);
4918 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
4920 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
4921 ret
= btrfs_decompress(compress_type
, tmp
, page
,
4922 extent_offset
, inline_size
, max_size
);
4924 char *kaddr
= kmap_atomic(page
, KM_USER0
);
4925 unsigned long copy_size
= min_t(u64
,
4926 PAGE_CACHE_SIZE
- pg_offset
,
4927 max_size
- extent_offset
);
4928 memset(kaddr
+ pg_offset
, 0, copy_size
);
4929 kunmap_atomic(kaddr
, KM_USER0
);
4936 * a bit scary, this does extent mapping from logical file offset to the disk.
4937 * the ugly parts come from merging extents from the disk with the in-ram
4938 * representation. This gets more complex because of the data=ordered code,
4939 * where the in-ram extents might be locked pending data=ordered completion.
4941 * This also copies inline extents directly into the page.
4944 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
4945 size_t pg_offset
, u64 start
, u64 len
,
4951 u64 extent_start
= 0;
4953 u64 objectid
= btrfs_ino(inode
);
4955 struct btrfs_path
*path
= NULL
;
4956 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4957 struct btrfs_file_extent_item
*item
;
4958 struct extent_buffer
*leaf
;
4959 struct btrfs_key found_key
;
4960 struct extent_map
*em
= NULL
;
4961 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4962 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4963 struct btrfs_trans_handle
*trans
= NULL
;
4967 read_lock(&em_tree
->lock
);
4968 em
= lookup_extent_mapping(em_tree
, start
, len
);
4970 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4971 read_unlock(&em_tree
->lock
);
4974 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
4975 free_extent_map(em
);
4976 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
4977 free_extent_map(em
);
4981 em
= alloc_extent_map();
4986 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4987 em
->start
= EXTENT_MAP_HOLE
;
4988 em
->orig_start
= EXTENT_MAP_HOLE
;
4990 em
->block_len
= (u64
)-1;
4993 path
= btrfs_alloc_path();
4999 * Chances are we'll be called again, so go ahead and do
5005 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
5006 objectid
, start
, trans
!= NULL
);
5013 if (path
->slots
[0] == 0)
5018 leaf
= path
->nodes
[0];
5019 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5020 struct btrfs_file_extent_item
);
5021 /* are we inside the extent that was found? */
5022 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5023 found_type
= btrfs_key_type(&found_key
);
5024 if (found_key
.objectid
!= objectid
||
5025 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
5029 found_type
= btrfs_file_extent_type(leaf
, item
);
5030 extent_start
= found_key
.offset
;
5031 compress_type
= btrfs_file_extent_compression(leaf
, item
);
5032 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5033 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5034 extent_end
= extent_start
+
5035 btrfs_file_extent_num_bytes(leaf
, item
);
5036 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5038 size
= btrfs_file_extent_inline_len(leaf
, item
);
5039 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
5040 ~((u64
)root
->sectorsize
- 1);
5043 if (start
>= extent_end
) {
5045 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
5046 ret
= btrfs_next_leaf(root
, path
);
5053 leaf
= path
->nodes
[0];
5055 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5056 if (found_key
.objectid
!= objectid
||
5057 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5059 if (start
+ len
<= found_key
.offset
)
5062 em
->len
= found_key
.offset
- start
;
5066 if (found_type
== BTRFS_FILE_EXTENT_REG
||
5067 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5068 em
->start
= extent_start
;
5069 em
->len
= extent_end
- extent_start
;
5070 em
->orig_start
= extent_start
-
5071 btrfs_file_extent_offset(leaf
, item
);
5072 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
5074 em
->block_start
= EXTENT_MAP_HOLE
;
5077 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
5078 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5079 em
->compress_type
= compress_type
;
5080 em
->block_start
= bytenr
;
5081 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
5084 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
5085 em
->block_start
= bytenr
;
5086 em
->block_len
= em
->len
;
5087 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
5088 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
5091 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
5095 size_t extent_offset
;
5098 em
->block_start
= EXTENT_MAP_INLINE
;
5099 if (!page
|| create
) {
5100 em
->start
= extent_start
;
5101 em
->len
= extent_end
- extent_start
;
5105 size
= btrfs_file_extent_inline_len(leaf
, item
);
5106 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
5107 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
5108 size
- extent_offset
);
5109 em
->start
= extent_start
+ extent_offset
;
5110 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
5111 ~((u64
)root
->sectorsize
- 1);
5112 em
->orig_start
= EXTENT_MAP_INLINE
;
5113 if (compress_type
) {
5114 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
5115 em
->compress_type
= compress_type
;
5117 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
5118 if (create
== 0 && !PageUptodate(page
)) {
5119 if (btrfs_file_extent_compression(leaf
, item
) !=
5120 BTRFS_COMPRESS_NONE
) {
5121 ret
= uncompress_inline(path
, inode
, page
,
5123 extent_offset
, item
);
5127 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5129 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
5130 memset(map
+ pg_offset
+ copy_size
, 0,
5131 PAGE_CACHE_SIZE
- pg_offset
-
5136 flush_dcache_page(page
);
5137 } else if (create
&& PageUptodate(page
)) {
5141 free_extent_map(em
);
5144 btrfs_release_path(path
);
5145 trans
= btrfs_join_transaction(root
);
5148 return ERR_CAST(trans
);
5152 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
5155 btrfs_mark_buffer_dirty(leaf
);
5157 set_extent_uptodate(io_tree
, em
->start
,
5158 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
5161 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
5168 em
->block_start
= EXTENT_MAP_HOLE
;
5169 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
5171 btrfs_release_path(path
);
5172 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
5173 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
5174 "[%llu %llu]\n", (unsigned long long)em
->start
,
5175 (unsigned long long)em
->len
,
5176 (unsigned long long)start
,
5177 (unsigned long long)len
);
5183 write_lock(&em_tree
->lock
);
5184 ret
= add_extent_mapping(em_tree
, em
);
5185 /* it is possible that someone inserted the extent into the tree
5186 * while we had the lock dropped. It is also possible that
5187 * an overlapping map exists in the tree
5189 if (ret
== -EEXIST
) {
5190 struct extent_map
*existing
;
5194 existing
= lookup_extent_mapping(em_tree
, start
, len
);
5195 if (existing
&& (existing
->start
> start
||
5196 existing
->start
+ existing
->len
<= start
)) {
5197 free_extent_map(existing
);
5201 existing
= lookup_extent_mapping(em_tree
, em
->start
,
5204 err
= merge_extent_mapping(em_tree
, existing
,
5207 free_extent_map(existing
);
5209 free_extent_map(em
);
5214 free_extent_map(em
);
5218 free_extent_map(em
);
5223 write_unlock(&em_tree
->lock
);
5226 trace_btrfs_get_extent(root
, em
);
5229 btrfs_free_path(path
);
5231 ret
= btrfs_end_transaction(trans
, root
);
5236 free_extent_map(em
);
5237 return ERR_PTR(err
);
5242 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
5243 size_t pg_offset
, u64 start
, u64 len
,
5246 struct extent_map
*em
;
5247 struct extent_map
*hole_em
= NULL
;
5248 u64 range_start
= start
;
5254 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
5259 * if our em maps to a hole, there might
5260 * actually be delalloc bytes behind it
5262 if (em
->block_start
!= EXTENT_MAP_HOLE
)
5268 /* check to see if we've wrapped (len == -1 or similar) */
5277 /* ok, we didn't find anything, lets look for delalloc */
5278 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
5279 end
, len
, EXTENT_DELALLOC
, 1);
5280 found_end
= range_start
+ found
;
5281 if (found_end
< range_start
)
5282 found_end
= (u64
)-1;
5285 * we didn't find anything useful, return
5286 * the original results from get_extent()
5288 if (range_start
> end
|| found_end
<= start
) {
5294 /* adjust the range_start to make sure it doesn't
5295 * go backwards from the start they passed in
5297 range_start
= max(start
,range_start
);
5298 found
= found_end
- range_start
;
5301 u64 hole_start
= start
;
5304 em
= alloc_extent_map();
5310 * when btrfs_get_extent can't find anything it
5311 * returns one huge hole
5313 * make sure what it found really fits our range, and
5314 * adjust to make sure it is based on the start from
5318 u64 calc_end
= extent_map_end(hole_em
);
5320 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
5321 free_extent_map(hole_em
);
5324 hole_start
= max(hole_em
->start
, start
);
5325 hole_len
= calc_end
- hole_start
;
5329 if (hole_em
&& range_start
> hole_start
) {
5330 /* our hole starts before our delalloc, so we
5331 * have to return just the parts of the hole
5332 * that go until the delalloc starts
5334 em
->len
= min(hole_len
,
5335 range_start
- hole_start
);
5336 em
->start
= hole_start
;
5337 em
->orig_start
= hole_start
;
5339 * don't adjust block start at all,
5340 * it is fixed at EXTENT_MAP_HOLE
5342 em
->block_start
= hole_em
->block_start
;
5343 em
->block_len
= hole_len
;
5345 em
->start
= range_start
;
5347 em
->orig_start
= range_start
;
5348 em
->block_start
= EXTENT_MAP_DELALLOC
;
5349 em
->block_len
= found
;
5351 } else if (hole_em
) {
5356 free_extent_map(hole_em
);
5358 free_extent_map(em
);
5359 return ERR_PTR(err
);
5364 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
5365 struct extent_map
*em
,
5368 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5369 struct btrfs_trans_handle
*trans
;
5370 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
5371 struct btrfs_key ins
;
5374 bool insert
= false;
5377 * Ok if the extent map we looked up is a hole and is for the exact
5378 * range we want, there is no reason to allocate a new one, however if
5379 * it is not right then we need to free this one and drop the cache for
5382 if (em
->block_start
!= EXTENT_MAP_HOLE
|| em
->start
!= start
||
5384 free_extent_map(em
);
5387 btrfs_drop_extent_cache(inode
, start
, start
+ len
- 1, 0);
5390 trans
= btrfs_join_transaction(root
);
5392 return ERR_CAST(trans
);
5394 if (start
<= BTRFS_I(inode
)->disk_i_size
&& len
< 64 * 1024)
5395 btrfs_add_inode_defrag(trans
, inode
);
5397 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5399 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
5400 ret
= btrfs_reserve_extent(trans
, root
, len
, root
->sectorsize
, 0,
5401 alloc_hint
, (u64
)-1, &ins
, 1);
5408 em
= alloc_extent_map();
5410 em
= ERR_PTR(-ENOMEM
);
5416 em
->orig_start
= em
->start
;
5417 em
->len
= ins
.offset
;
5419 em
->block_start
= ins
.objectid
;
5420 em
->block_len
= ins
.offset
;
5421 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
5424 * We need to do this because if we're using the original em we searched
5425 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5428 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5431 write_lock(&em_tree
->lock
);
5432 ret
= add_extent_mapping(em_tree
, em
);
5433 write_unlock(&em_tree
->lock
);
5436 btrfs_drop_extent_cache(inode
, start
, start
+ em
->len
- 1, 0);
5439 ret
= btrfs_add_ordered_extent_dio(inode
, start
, ins
.objectid
,
5440 ins
.offset
, ins
.offset
, 0);
5442 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
);
5446 btrfs_end_transaction(trans
, root
);
5451 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5452 * block must be cow'd
5454 static noinline
int can_nocow_odirect(struct btrfs_trans_handle
*trans
,
5455 struct inode
*inode
, u64 offset
, u64 len
)
5457 struct btrfs_path
*path
;
5459 struct extent_buffer
*leaf
;
5460 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5461 struct btrfs_file_extent_item
*fi
;
5462 struct btrfs_key key
;
5470 path
= btrfs_alloc_path();
5474 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
5479 slot
= path
->slots
[0];
5482 /* can't find the item, must cow */
5489 leaf
= path
->nodes
[0];
5490 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5491 if (key
.objectid
!= btrfs_ino(inode
) ||
5492 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
5493 /* not our file or wrong item type, must cow */
5497 if (key
.offset
> offset
) {
5498 /* Wrong offset, must cow */
5502 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5503 found_type
= btrfs_file_extent_type(leaf
, fi
);
5504 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
5505 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
5506 /* not a regular extent, must cow */
5509 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
5510 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
5512 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
5513 if (extent_end
< offset
+ len
) {
5514 /* extent doesn't include our full range, must cow */
5518 if (btrfs_extent_readonly(root
, disk_bytenr
))
5522 * look for other files referencing this extent, if we
5523 * find any we must cow
5525 if (btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
5526 key
.offset
- backref_offset
, disk_bytenr
))
5530 * adjust disk_bytenr and num_bytes to cover just the bytes
5531 * in this extent we are about to write. If there
5532 * are any csums in that range we have to cow in order
5533 * to keep the csums correct
5535 disk_bytenr
+= backref_offset
;
5536 disk_bytenr
+= offset
- key
.offset
;
5537 num_bytes
= min(offset
+ len
, extent_end
) - offset
;
5538 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
5541 * all of the above have passed, it is safe to overwrite this extent
5546 btrfs_free_path(path
);
5550 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
5551 struct buffer_head
*bh_result
, int create
)
5553 struct extent_map
*em
;
5554 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5555 u64 start
= iblock
<< inode
->i_blkbits
;
5556 u64 len
= bh_result
->b_size
;
5557 struct btrfs_trans_handle
*trans
;
5559 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
5564 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5565 * io. INLINE is special, and we could probably kludge it in here, but
5566 * it's still buffered so for safety lets just fall back to the generic
5569 * For COMPRESSED we _have_ to read the entire extent in so we can
5570 * decompress it, so there will be buffering required no matter what we
5571 * do, so go ahead and fallback to buffered.
5573 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5574 * to buffered IO. Don't blame me, this is the price we pay for using
5577 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
5578 em
->block_start
== EXTENT_MAP_INLINE
) {
5579 free_extent_map(em
);
5583 /* Just a good old fashioned hole, return */
5584 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
5585 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
5586 free_extent_map(em
);
5587 /* DIO will do one hole at a time, so just unlock a sector */
5588 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
,
5589 start
+ root
->sectorsize
- 1, GFP_NOFS
);
5594 * We don't allocate a new extent in the following cases
5596 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5598 * 2) The extent is marked as PREALLOC. We're good to go here and can
5599 * just use the extent.
5603 len
= em
->len
- (start
- em
->start
);
5607 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
5608 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
5609 em
->block_start
!= EXTENT_MAP_HOLE
)) {
5614 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5615 type
= BTRFS_ORDERED_PREALLOC
;
5617 type
= BTRFS_ORDERED_NOCOW
;
5618 len
= min(len
, em
->len
- (start
- em
->start
));
5619 block_start
= em
->block_start
+ (start
- em
->start
);
5622 * we're not going to log anything, but we do need
5623 * to make sure the current transaction stays open
5624 * while we look for nocow cross refs
5626 trans
= btrfs_join_transaction(root
);
5630 if (can_nocow_odirect(trans
, inode
, start
, len
) == 1) {
5631 ret
= btrfs_add_ordered_extent_dio(inode
, start
,
5632 block_start
, len
, len
, type
);
5633 btrfs_end_transaction(trans
, root
);
5635 free_extent_map(em
);
5640 btrfs_end_transaction(trans
, root
);
5644 * this will cow the extent, reset the len in case we changed
5647 len
= bh_result
->b_size
;
5648 em
= btrfs_new_extent_direct(inode
, em
, start
, len
);
5651 len
= min(len
, em
->len
- (start
- em
->start
));
5653 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
5654 EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DIRTY
, 1,
5657 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
5659 bh_result
->b_size
= len
;
5660 bh_result
->b_bdev
= em
->bdev
;
5661 set_buffer_mapped(bh_result
);
5662 if (create
&& !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
5663 set_buffer_new(bh_result
);
5665 free_extent_map(em
);
5670 struct btrfs_dio_private
{
5671 struct inode
*inode
;
5678 /* number of bios pending for this dio */
5679 atomic_t pending_bios
;
5684 struct bio
*orig_bio
;
5687 static void btrfs_endio_direct_read(struct bio
*bio
, int err
)
5689 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5690 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
5691 struct bio_vec
*bvec
= bio
->bi_io_vec
;
5692 struct inode
*inode
= dip
->inode
;
5693 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5695 u32
*private = dip
->csums
;
5697 start
= dip
->logical_offset
;
5699 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
5700 struct page
*page
= bvec
->bv_page
;
5703 unsigned long flags
;
5705 local_irq_save(flags
);
5706 kaddr
= kmap_atomic(page
, KM_IRQ0
);
5707 csum
= btrfs_csum_data(root
, kaddr
+ bvec
->bv_offset
,
5708 csum
, bvec
->bv_len
);
5709 btrfs_csum_final(csum
, (char *)&csum
);
5710 kunmap_atomic(kaddr
, KM_IRQ0
);
5711 local_irq_restore(flags
);
5713 flush_dcache_page(bvec
->bv_page
);
5714 if (csum
!= *private) {
5715 printk(KERN_ERR
"btrfs csum failed ino %llu off"
5716 " %llu csum %u private %u\n",
5717 (unsigned long long)btrfs_ino(inode
),
5718 (unsigned long long)start
,
5724 start
+= bvec
->bv_len
;
5727 } while (bvec
<= bvec_end
);
5729 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
5730 dip
->logical_offset
+ dip
->bytes
- 1, GFP_NOFS
);
5731 bio
->bi_private
= dip
->private;
5736 /* If we had a csum failure make sure to clear the uptodate flag */
5738 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5739 dio_end_io(bio
, err
);
5742 static void btrfs_endio_direct_write(struct bio
*bio
, int err
)
5744 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5745 struct inode
*inode
= dip
->inode
;
5746 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5747 struct btrfs_trans_handle
*trans
;
5748 struct btrfs_ordered_extent
*ordered
= NULL
;
5749 struct extent_state
*cached_state
= NULL
;
5750 u64 ordered_offset
= dip
->logical_offset
;
5751 u64 ordered_bytes
= dip
->bytes
;
5757 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
5765 trans
= btrfs_join_transaction(root
);
5766 if (IS_ERR(trans
)) {
5770 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5772 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
)) {
5773 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5775 err
= btrfs_update_inode_fallback(trans
, root
, inode
);
5779 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5780 ordered
->file_offset
+ ordered
->len
- 1, 0,
5781 &cached_state
, GFP_NOFS
);
5783 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
)) {
5784 ret
= btrfs_mark_extent_written(trans
, inode
,
5785 ordered
->file_offset
,
5786 ordered
->file_offset
+
5793 ret
= insert_reserved_file_extent(trans
, inode
,
5794 ordered
->file_offset
,
5800 BTRFS_FILE_EXTENT_REG
);
5801 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
5802 ordered
->file_offset
, ordered
->len
);
5810 add_pending_csums(trans
, inode
, ordered
->file_offset
, &ordered
->list
);
5811 ret
= btrfs_ordered_update_i_size(inode
, 0, ordered
);
5812 if (!ret
|| !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
))
5813 btrfs_update_inode_fallback(trans
, root
, inode
);
5816 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, ordered
->file_offset
,
5817 ordered
->file_offset
+ ordered
->len
- 1,
5818 &cached_state
, GFP_NOFS
);
5820 btrfs_delalloc_release_metadata(inode
, ordered
->len
);
5821 btrfs_end_transaction(trans
, root
);
5822 ordered_offset
= ordered
->file_offset
+ ordered
->len
;
5823 btrfs_put_ordered_extent(ordered
);
5824 btrfs_put_ordered_extent(ordered
);
5828 * our bio might span multiple ordered extents. If we haven't
5829 * completed the accounting for the whole dio, go back and try again
5831 if (ordered_offset
< dip
->logical_offset
+ dip
->bytes
) {
5832 ordered_bytes
= dip
->logical_offset
+ dip
->bytes
-
5837 bio
->bi_private
= dip
->private;
5842 /* If we had an error make sure to clear the uptodate flag */
5844 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
5845 dio_end_io(bio
, err
);
5848 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
5849 struct bio
*bio
, int mirror_num
,
5850 unsigned long bio_flags
, u64 offset
)
5853 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5854 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
5859 static void btrfs_end_dio_bio(struct bio
*bio
, int err
)
5861 struct btrfs_dio_private
*dip
= bio
->bi_private
;
5864 printk(KERN_ERR
"btrfs direct IO failed ino %llu rw %lu "
5865 "sector %#Lx len %u err no %d\n",
5866 (unsigned long long)btrfs_ino(dip
->inode
), bio
->bi_rw
,
5867 (unsigned long long)bio
->bi_sector
, bio
->bi_size
, err
);
5871 * before atomic variable goto zero, we must make sure
5872 * dip->errors is perceived to be set.
5874 smp_mb__before_atomic_dec();
5877 /* if there are more bios still pending for this dio, just exit */
5878 if (!atomic_dec_and_test(&dip
->pending_bios
))
5882 bio_io_error(dip
->orig_bio
);
5884 set_bit(BIO_UPTODATE
, &dip
->orig_bio
->bi_flags
);
5885 bio_endio(dip
->orig_bio
, 0);
5891 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
5892 u64 first_sector
, gfp_t gfp_flags
)
5894 int nr_vecs
= bio_get_nr_vecs(bdev
);
5895 return btrfs_bio_alloc(bdev
, first_sector
, nr_vecs
, gfp_flags
);
5898 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
5899 int rw
, u64 file_offset
, int skip_sum
,
5900 u32
*csums
, int async_submit
)
5902 int write
= rw
& REQ_WRITE
;
5903 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5907 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
5914 if (write
&& async_submit
) {
5915 ret
= btrfs_wq_submit_bio(root
->fs_info
,
5916 inode
, rw
, bio
, 0, 0,
5918 __btrfs_submit_bio_start_direct_io
,
5919 __btrfs_submit_bio_done
);
5923 * If we aren't doing async submit, calculate the csum of the
5926 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
5929 } else if (!skip_sum
) {
5930 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, bio
,
5931 file_offset
, csums
);
5937 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
5943 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
5946 struct inode
*inode
= dip
->inode
;
5947 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5948 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
5950 struct bio
*orig_bio
= dip
->orig_bio
;
5951 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
5952 u64 start_sector
= orig_bio
->bi_sector
;
5953 u64 file_offset
= dip
->logical_offset
;
5957 u32
*csums
= dip
->csums
;
5959 int async_submit
= 0;
5960 int write
= rw
& REQ_WRITE
;
5962 map_length
= orig_bio
->bi_size
;
5963 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
5964 &map_length
, NULL
, 0);
5970 if (map_length
>= orig_bio
->bi_size
) {
5976 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
5979 bio
->bi_private
= dip
;
5980 bio
->bi_end_io
= btrfs_end_dio_bio
;
5981 atomic_inc(&dip
->pending_bios
);
5983 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
5984 if (unlikely(map_length
< submit_len
+ bvec
->bv_len
||
5985 bio_add_page(bio
, bvec
->bv_page
, bvec
->bv_len
,
5986 bvec
->bv_offset
) < bvec
->bv_len
)) {
5988 * inc the count before we submit the bio so
5989 * we know the end IO handler won't happen before
5990 * we inc the count. Otherwise, the dip might get freed
5991 * before we're done setting it up
5993 atomic_inc(&dip
->pending_bios
);
5994 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
5995 file_offset
, skip_sum
,
5996 csums
, async_submit
);
5999 atomic_dec(&dip
->pending_bios
);
6003 /* Write's use the ordered csums */
6004 if (!write
&& !skip_sum
)
6005 csums
= csums
+ nr_pages
;
6006 start_sector
+= submit_len
>> 9;
6007 file_offset
+= submit_len
;
6012 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
6013 start_sector
, GFP_NOFS
);
6016 bio
->bi_private
= dip
;
6017 bio
->bi_end_io
= btrfs_end_dio_bio
;
6019 map_length
= orig_bio
->bi_size
;
6020 ret
= btrfs_map_block(map_tree
, READ
, start_sector
<< 9,
6021 &map_length
, NULL
, 0);
6027 submit_len
+= bvec
->bv_len
;
6034 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
6035 csums
, async_submit
);
6043 * before atomic variable goto zero, we must
6044 * make sure dip->errors is perceived to be set.
6046 smp_mb__before_atomic_dec();
6047 if (atomic_dec_and_test(&dip
->pending_bios
))
6048 bio_io_error(dip
->orig_bio
);
6050 /* bio_end_io() will handle error, so we needn't return it */
6054 static void btrfs_submit_direct(int rw
, struct bio
*bio
, struct inode
*inode
,
6057 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6058 struct btrfs_dio_private
*dip
;
6059 struct bio_vec
*bvec
= bio
->bi_io_vec
;
6061 int write
= rw
& REQ_WRITE
;
6064 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
6066 dip
= kmalloc(sizeof(*dip
), GFP_NOFS
);
6073 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6074 if (!write
&& !skip_sum
) {
6075 dip
->csums
= kmalloc(sizeof(u32
) * bio
->bi_vcnt
, GFP_NOFS
);
6083 dip
->private = bio
->bi_private
;
6085 dip
->logical_offset
= file_offset
;
6089 dip
->bytes
+= bvec
->bv_len
;
6091 } while (bvec
<= (bio
->bi_io_vec
+ bio
->bi_vcnt
- 1));
6093 dip
->disk_bytenr
= (u64
)bio
->bi_sector
<< 9;
6094 bio
->bi_private
= dip
;
6096 dip
->orig_bio
= bio
;
6097 atomic_set(&dip
->pending_bios
, 0);
6100 bio
->bi_end_io
= btrfs_endio_direct_write
;
6102 bio
->bi_end_io
= btrfs_endio_direct_read
;
6104 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
6109 * If this is a write, we need to clean up the reserved space and kill
6110 * the ordered extent.
6113 struct btrfs_ordered_extent
*ordered
;
6114 ordered
= btrfs_lookup_ordered_extent(inode
, file_offset
);
6115 if (!test_bit(BTRFS_ORDERED_PREALLOC
, &ordered
->flags
) &&
6116 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered
->flags
))
6117 btrfs_free_reserved_extent(root
, ordered
->start
,
6119 btrfs_put_ordered_extent(ordered
);
6120 btrfs_put_ordered_extent(ordered
);
6122 bio_endio(bio
, ret
);
6125 static ssize_t
check_direct_IO(struct btrfs_root
*root
, int rw
, struct kiocb
*iocb
,
6126 const struct iovec
*iov
, loff_t offset
,
6127 unsigned long nr_segs
)
6133 unsigned blocksize_mask
= root
->sectorsize
- 1;
6134 ssize_t retval
= -EINVAL
;
6135 loff_t end
= offset
;
6137 if (offset
& blocksize_mask
)
6140 /* Check the memory alignment. Blocks cannot straddle pages */
6141 for (seg
= 0; seg
< nr_segs
; seg
++) {
6142 addr
= (unsigned long)iov
[seg
].iov_base
;
6143 size
= iov
[seg
].iov_len
;
6145 if ((addr
& blocksize_mask
) || (size
& blocksize_mask
))
6148 /* If this is a write we don't need to check anymore */
6153 * Check to make sure we don't have duplicate iov_base's in this
6154 * iovec, if so return EINVAL, otherwise we'll get csum errors
6155 * when reading back.
6157 for (i
= seg
+ 1; i
< nr_segs
; i
++) {
6158 if (iov
[seg
].iov_base
== iov
[i
].iov_base
)
6166 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
6167 const struct iovec
*iov
, loff_t offset
,
6168 unsigned long nr_segs
)
6170 struct file
*file
= iocb
->ki_filp
;
6171 struct inode
*inode
= file
->f_mapping
->host
;
6172 struct btrfs_ordered_extent
*ordered
;
6173 struct extent_state
*cached_state
= NULL
;
6174 u64 lockstart
, lockend
;
6176 int writing
= rw
& WRITE
;
6178 size_t count
= iov_length(iov
, nr_segs
);
6180 if (check_direct_IO(BTRFS_I(inode
)->root
, rw
, iocb
, iov
,
6186 lockend
= offset
+ count
- 1;
6189 ret
= btrfs_delalloc_reserve_space(inode
, count
);
6195 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6196 0, &cached_state
, GFP_NOFS
);
6198 * We're concerned with the entire range that we're going to be
6199 * doing DIO to, so we need to make sure theres no ordered
6200 * extents in this range.
6202 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
6203 lockend
- lockstart
+ 1);
6206 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6207 &cached_state
, GFP_NOFS
);
6208 btrfs_start_ordered_extent(inode
, ordered
, 1);
6209 btrfs_put_ordered_extent(ordered
);
6214 * we don't use btrfs_set_extent_delalloc because we don't want
6215 * the dirty or uptodate bits
6218 write_bits
= EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
;
6219 ret
= set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
6220 EXTENT_DELALLOC
, 0, NULL
, &cached_state
,
6223 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
6224 lockend
, EXTENT_LOCKED
| write_bits
,
6225 1, 0, &cached_state
, GFP_NOFS
);
6230 free_extent_state(cached_state
);
6231 cached_state
= NULL
;
6233 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
6234 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
6235 iov
, offset
, nr_segs
, btrfs_get_blocks_direct
, NULL
,
6236 btrfs_submit_direct
, 0);
6238 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
6239 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
,
6240 offset
+ iov_length(iov
, nr_segs
) - 1,
6241 EXTENT_LOCKED
| write_bits
, 1, 0,
6242 &cached_state
, GFP_NOFS
);
6243 } else if (ret
>= 0 && ret
< iov_length(iov
, nr_segs
)) {
6245 * We're falling back to buffered, unlock the section we didn't
6248 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, offset
+ ret
,
6249 offset
+ iov_length(iov
, nr_segs
) - 1,
6250 EXTENT_LOCKED
| write_bits
, 1, 0,
6251 &cached_state
, GFP_NOFS
);
6254 free_extent_state(cached_state
);
6258 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
6259 __u64 start
, __u64 len
)
6261 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
6264 int btrfs_readpage(struct file
*file
, struct page
*page
)
6266 struct extent_io_tree
*tree
;
6267 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6268 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
6271 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
6273 struct extent_io_tree
*tree
;
6276 if (current
->flags
& PF_MEMALLOC
) {
6277 redirty_page_for_writepage(wbc
, page
);
6281 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6282 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
6285 int btrfs_writepages(struct address_space
*mapping
,
6286 struct writeback_control
*wbc
)
6288 struct extent_io_tree
*tree
;
6290 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6291 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
6295 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
6296 struct list_head
*pages
, unsigned nr_pages
)
6298 struct extent_io_tree
*tree
;
6299 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
6300 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
6303 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6305 struct extent_io_tree
*tree
;
6306 struct extent_map_tree
*map
;
6309 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6310 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
6311 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
6313 ClearPagePrivate(page
);
6314 set_page_private(page
, 0);
6315 page_cache_release(page
);
6320 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
6322 if (PageWriteback(page
) || PageDirty(page
))
6324 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
6327 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
6329 struct extent_io_tree
*tree
;
6330 struct btrfs_ordered_extent
*ordered
;
6331 struct extent_state
*cached_state
= NULL
;
6332 u64 page_start
= page_offset(page
);
6333 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6337 * we have the page locked, so new writeback can't start,
6338 * and the dirty bit won't be cleared while we are here.
6340 * Wait for IO on this page so that we can safely clear
6341 * the PagePrivate2 bit and do ordered accounting
6343 wait_on_page_writeback(page
);
6345 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
6347 btrfs_releasepage(page
, GFP_NOFS
);
6350 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6352 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
6356 * IO on this page will never be started, so we need
6357 * to account for any ordered extents now
6359 clear_extent_bit(tree
, page_start
, page_end
,
6360 EXTENT_DIRTY
| EXTENT_DELALLOC
|
6361 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
, 1, 0,
6362 &cached_state
, GFP_NOFS
);
6364 * whoever cleared the private bit is responsible
6365 * for the finish_ordered_io
6367 if (TestClearPagePrivate2(page
)) {
6368 btrfs_finish_ordered_io(page
->mapping
->host
,
6369 page_start
, page_end
);
6371 btrfs_put_ordered_extent(ordered
);
6372 cached_state
= NULL
;
6373 lock_extent_bits(tree
, page_start
, page_end
, 0, &cached_state
,
6376 clear_extent_bit(tree
, page_start
, page_end
,
6377 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
6378 EXTENT_DO_ACCOUNTING
, 1, 1, &cached_state
, GFP_NOFS
);
6379 __btrfs_releasepage(page
, GFP_NOFS
);
6381 ClearPageChecked(page
);
6382 if (PagePrivate(page
)) {
6383 ClearPagePrivate(page
);
6384 set_page_private(page
, 0);
6385 page_cache_release(page
);
6390 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6391 * called from a page fault handler when a page is first dirtied. Hence we must
6392 * be careful to check for EOF conditions here. We set the page up correctly
6393 * for a written page which means we get ENOSPC checking when writing into
6394 * holes and correct delalloc and unwritten extent mapping on filesystems that
6395 * support these features.
6397 * We are not allowed to take the i_mutex here so we have to play games to
6398 * protect against truncate races as the page could now be beyond EOF. Because
6399 * vmtruncate() writes the inode size before removing pages, once we have the
6400 * page lock we can determine safely if the page is beyond EOF. If it is not
6401 * beyond EOF, then the page is guaranteed safe against truncation until we
6404 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
6406 struct page
*page
= vmf
->page
;
6407 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
6408 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6409 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6410 struct btrfs_ordered_extent
*ordered
;
6411 struct extent_state
*cached_state
= NULL
;
6413 unsigned long zero_start
;
6419 /* Need this to keep space reservations serialized */
6420 mutex_lock(&inode
->i_mutex
);
6421 ret
= btrfs_delalloc_reserve_space(inode
, PAGE_CACHE_SIZE
);
6422 mutex_unlock(&inode
->i_mutex
);
6424 ret
= btrfs_update_time(vma
->vm_file
);
6428 else /* -ENOSPC, -EIO, etc */
6429 ret
= VM_FAULT_SIGBUS
;
6433 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
6436 size
= i_size_read(inode
);
6437 page_start
= page_offset(page
);
6438 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6440 if ((page
->mapping
!= inode
->i_mapping
) ||
6441 (page_start
>= size
)) {
6442 /* page got truncated out from underneath us */
6445 wait_on_page_writeback(page
);
6447 lock_extent_bits(io_tree
, page_start
, page_end
, 0, &cached_state
,
6449 set_page_extent_mapped(page
);
6452 * we can't set the delalloc bits if there are pending ordered
6453 * extents. Drop our locks and wait for them to finish
6455 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6457 unlock_extent_cached(io_tree
, page_start
, page_end
,
6458 &cached_state
, GFP_NOFS
);
6460 btrfs_start_ordered_extent(inode
, ordered
, 1);
6461 btrfs_put_ordered_extent(ordered
);
6466 * XXX - page_mkwrite gets called every time the page is dirtied, even
6467 * if it was already dirty, so for space accounting reasons we need to
6468 * clear any delalloc bits for the range we are fixing to save. There
6469 * is probably a better way to do this, but for now keep consistent with
6470 * prepare_pages in the normal write path.
6472 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
6473 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
6474 0, 0, &cached_state
, GFP_NOFS
);
6476 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
,
6479 unlock_extent_cached(io_tree
, page_start
, page_end
,
6480 &cached_state
, GFP_NOFS
);
6481 ret
= VM_FAULT_SIGBUS
;
6486 /* page is wholly or partially inside EOF */
6487 if (page_start
+ PAGE_CACHE_SIZE
> size
)
6488 zero_start
= size
& ~PAGE_CACHE_MASK
;
6490 zero_start
= PAGE_CACHE_SIZE
;
6492 if (zero_start
!= PAGE_CACHE_SIZE
) {
6494 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
6495 flush_dcache_page(page
);
6498 ClearPageChecked(page
);
6499 set_page_dirty(page
);
6500 SetPageUptodate(page
);
6502 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
6503 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
6505 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
6509 return VM_FAULT_LOCKED
;
6511 btrfs_delalloc_release_space(inode
, PAGE_CACHE_SIZE
);
6516 static int btrfs_truncate(struct inode
*inode
)
6518 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6519 struct btrfs_block_rsv
*rsv
;
6522 struct btrfs_trans_handle
*trans
;
6524 u64 mask
= root
->sectorsize
- 1;
6525 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
6527 ret
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
6531 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
6532 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
6535 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6536 * 3 things going on here
6538 * 1) We need to reserve space for our orphan item and the space to
6539 * delete our orphan item. Lord knows we don't want to have a dangling
6540 * orphan item because we didn't reserve space to remove it.
6542 * 2) We need to reserve space to update our inode.
6544 * 3) We need to have something to cache all the space that is going to
6545 * be free'd up by the truncate operation, but also have some slack
6546 * space reserved in case it uses space during the truncate (thank you
6547 * very much snapshotting).
6549 * And we need these to all be seperate. The fact is we can use alot of
6550 * space doing the truncate, and we have no earthly idea how much space
6551 * we will use, so we need the truncate reservation to be seperate so it
6552 * doesn't end up using space reserved for updating the inode or
6553 * removing the orphan item. We also need to be able to stop the
6554 * transaction and start a new one, which means we need to be able to
6555 * update the inode several times, and we have no idea of knowing how
6556 * many times that will be, so we can't just reserve 1 item for the
6557 * entirety of the opration, so that has to be done seperately as well.
6558 * Then there is the orphan item, which does indeed need to be held on
6559 * to for the whole operation, and we need nobody to touch this reserved
6560 * space except the orphan code.
6562 * So that leaves us with
6564 * 1) root->orphan_block_rsv - for the orphan deletion.
6565 * 2) rsv - for the truncate reservation, which we will steal from the
6566 * transaction reservation.
6567 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6568 * updating the inode.
6570 rsv
= btrfs_alloc_block_rsv(root
);
6573 rsv
->size
= min_size
;
6576 * 1 for the truncate slack space
6577 * 1 for the orphan item we're going to add
6578 * 1 for the orphan item deletion
6579 * 1 for updating the inode.
6581 trans
= btrfs_start_transaction(root
, 4);
6582 if (IS_ERR(trans
)) {
6583 err
= PTR_ERR(trans
);
6587 /* Migrate the slack space for the truncate to our reserve */
6588 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
6592 ret
= btrfs_orphan_add(trans
, inode
);
6594 btrfs_end_transaction(trans
, root
);
6599 * setattr is responsible for setting the ordered_data_close flag,
6600 * but that is only tested during the last file release. That
6601 * could happen well after the next commit, leaving a great big
6602 * window where new writes may get lost if someone chooses to write
6603 * to this file after truncating to zero
6605 * The inode doesn't have any dirty data here, and so if we commit
6606 * this is a noop. If someone immediately starts writing to the inode
6607 * it is very likely we'll catch some of their writes in this
6608 * transaction, and the commit will find this file on the ordered
6609 * data list with good things to send down.
6611 * This is a best effort solution, there is still a window where
6612 * using truncate to replace the contents of the file will
6613 * end up with a zero length file after a crash.
6615 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
6616 btrfs_add_ordered_operation(trans
, root
, inode
);
6619 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
);
6622 * This can only happen with the original transaction we
6623 * started above, every other time we shouldn't have a
6624 * transaction started yet.
6633 /* Just need the 1 for updating the inode */
6634 trans
= btrfs_start_transaction(root
, 1);
6635 if (IS_ERR(trans
)) {
6636 ret
= err
= PTR_ERR(trans
);
6642 trans
->block_rsv
= rsv
;
6644 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
6646 BTRFS_EXTENT_DATA_KEY
);
6647 if (ret
!= -EAGAIN
) {
6652 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
6653 ret
= btrfs_update_inode(trans
, root
, inode
);
6659 nr
= trans
->blocks_used
;
6660 btrfs_end_transaction(trans
, root
);
6662 btrfs_btree_balance_dirty(root
, nr
);
6665 if (ret
== 0 && inode
->i_nlink
> 0) {
6666 trans
->block_rsv
= root
->orphan_block_rsv
;
6667 ret
= btrfs_orphan_del(trans
, inode
);
6670 } else if (ret
&& inode
->i_nlink
> 0) {
6672 * Failed to do the truncate, remove us from the in memory
6675 ret
= btrfs_orphan_del(NULL
, inode
);
6679 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
6680 ret
= btrfs_update_inode(trans
, root
, inode
);
6684 nr
= trans
->blocks_used
;
6685 ret
= btrfs_end_transaction_throttle(trans
, root
);
6686 btrfs_btree_balance_dirty(root
, nr
);
6690 btrfs_free_block_rsv(root
, rsv
);
6699 * create a new subvolume directory/inode (helper for the ioctl).
6701 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
6702 struct btrfs_root
*new_root
, u64 new_dirid
)
6704 struct inode
*inode
;
6708 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
6709 new_dirid
, S_IFDIR
| 0700, &index
);
6711 return PTR_ERR(inode
);
6712 inode
->i_op
= &btrfs_dir_inode_operations
;
6713 inode
->i_fop
= &btrfs_dir_file_operations
;
6715 set_nlink(inode
, 1);
6716 btrfs_i_size_write(inode
, 0);
6718 err
= btrfs_update_inode(trans
, new_root
, inode
);
6725 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
6727 struct btrfs_inode
*ei
;
6728 struct inode
*inode
;
6730 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
6735 ei
->space_info
= NULL
;
6739 ei
->last_sub_trans
= 0;
6740 ei
->logged_trans
= 0;
6741 ei
->delalloc_bytes
= 0;
6742 ei
->disk_i_size
= 0;
6745 ei
->index_cnt
= (u64
)-1;
6746 ei
->last_unlink_trans
= 0;
6748 spin_lock_init(&ei
->lock
);
6749 ei
->outstanding_extents
= 0;
6750 ei
->reserved_extents
= 0;
6752 ei
->ordered_data_close
= 0;
6753 ei
->orphan_meta_reserved
= 0;
6754 ei
->dummy_inode
= 0;
6756 ei
->delalloc_meta_reserved
= 0;
6757 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
6759 ei
->delayed_node
= NULL
;
6761 inode
= &ei
->vfs_inode
;
6762 extent_map_tree_init(&ei
->extent_tree
);
6763 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
6764 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
6765 mutex_init(&ei
->log_mutex
);
6766 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
6767 INIT_LIST_HEAD(&ei
->i_orphan
);
6768 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
6769 INIT_LIST_HEAD(&ei
->ordered_operations
);
6770 RB_CLEAR_NODE(&ei
->rb_node
);
6775 static void btrfs_i_callback(struct rcu_head
*head
)
6777 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
6778 INIT_LIST_HEAD(&inode
->i_dentry
);
6779 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
6782 void btrfs_destroy_inode(struct inode
*inode
)
6784 struct btrfs_ordered_extent
*ordered
;
6785 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6787 WARN_ON(!list_empty(&inode
->i_dentry
));
6788 WARN_ON(inode
->i_data
.nrpages
);
6789 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
6790 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
6791 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
6792 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
6795 * This can happen where we create an inode, but somebody else also
6796 * created the same inode and we need to destroy the one we already
6803 * Make sure we're properly removed from the ordered operation
6807 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
6808 spin_lock(&root
->fs_info
->ordered_extent_lock
);
6809 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
6810 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
6813 spin_lock(&root
->orphan_lock
);
6814 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
6815 printk(KERN_INFO
"BTRFS: inode %llu still on the orphan list\n",
6816 (unsigned long long)btrfs_ino(inode
));
6817 list_del_init(&BTRFS_I(inode
)->i_orphan
);
6819 spin_unlock(&root
->orphan_lock
);
6822 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
6826 printk(KERN_ERR
"btrfs found ordered "
6827 "extent %llu %llu on inode cleanup\n",
6828 (unsigned long long)ordered
->file_offset
,
6829 (unsigned long long)ordered
->len
);
6830 btrfs_remove_ordered_extent(inode
, ordered
);
6831 btrfs_put_ordered_extent(ordered
);
6832 btrfs_put_ordered_extent(ordered
);
6835 inode_tree_del(inode
);
6836 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
6838 btrfs_remove_delayed_node(inode
);
6839 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
6842 int btrfs_drop_inode(struct inode
*inode
)
6844 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6846 if (btrfs_root_refs(&root
->root_item
) == 0 &&
6847 !btrfs_is_free_space_inode(root
, inode
))
6850 return generic_drop_inode(inode
);
6853 static void init_once(void *foo
)
6855 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
6857 inode_init_once(&ei
->vfs_inode
);
6860 void btrfs_destroy_cachep(void)
6862 if (btrfs_inode_cachep
)
6863 kmem_cache_destroy(btrfs_inode_cachep
);
6864 if (btrfs_trans_handle_cachep
)
6865 kmem_cache_destroy(btrfs_trans_handle_cachep
);
6866 if (btrfs_transaction_cachep
)
6867 kmem_cache_destroy(btrfs_transaction_cachep
);
6868 if (btrfs_path_cachep
)
6869 kmem_cache_destroy(btrfs_path_cachep
);
6870 if (btrfs_free_space_cachep
)
6871 kmem_cache_destroy(btrfs_free_space_cachep
);
6874 int btrfs_init_cachep(void)
6876 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
6877 sizeof(struct btrfs_inode
), 0,
6878 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
6879 if (!btrfs_inode_cachep
)
6882 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
6883 sizeof(struct btrfs_trans_handle
), 0,
6884 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6885 if (!btrfs_trans_handle_cachep
)
6888 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
6889 sizeof(struct btrfs_transaction
), 0,
6890 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6891 if (!btrfs_transaction_cachep
)
6894 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
6895 sizeof(struct btrfs_path
), 0,
6896 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6897 if (!btrfs_path_cachep
)
6900 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space_cache",
6901 sizeof(struct btrfs_free_space
), 0,
6902 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
6903 if (!btrfs_free_space_cachep
)
6908 btrfs_destroy_cachep();
6912 static int btrfs_getattr(struct vfsmount
*mnt
,
6913 struct dentry
*dentry
, struct kstat
*stat
)
6915 struct inode
*inode
= dentry
->d_inode
;
6916 u32 blocksize
= inode
->i_sb
->s_blocksize
;
6918 generic_fillattr(inode
, stat
);
6919 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
6920 stat
->blksize
= PAGE_CACHE_SIZE
;
6921 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
6922 ALIGN(BTRFS_I(inode
)->delalloc_bytes
, blocksize
)) >> 9;
6927 * If a file is moved, it will inherit the cow and compression flags of the new
6930 static void fixup_inode_flags(struct inode
*dir
, struct inode
*inode
)
6932 struct btrfs_inode
*b_dir
= BTRFS_I(dir
);
6933 struct btrfs_inode
*b_inode
= BTRFS_I(inode
);
6935 if (b_dir
->flags
& BTRFS_INODE_NODATACOW
)
6936 b_inode
->flags
|= BTRFS_INODE_NODATACOW
;
6938 b_inode
->flags
&= ~BTRFS_INODE_NODATACOW
;
6940 if (b_dir
->flags
& BTRFS_INODE_COMPRESS
)
6941 b_inode
->flags
|= BTRFS_INODE_COMPRESS
;
6943 b_inode
->flags
&= ~BTRFS_INODE_COMPRESS
;
6946 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
6947 struct inode
*new_dir
, struct dentry
*new_dentry
)
6949 struct btrfs_trans_handle
*trans
;
6950 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
6951 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
6952 struct inode
*new_inode
= new_dentry
->d_inode
;
6953 struct inode
*old_inode
= old_dentry
->d_inode
;
6954 struct timespec ctime
= CURRENT_TIME
;
6958 u64 old_ino
= btrfs_ino(old_inode
);
6960 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
6963 /* we only allow rename subvolume link between subvolumes */
6964 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
6967 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
6968 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
6971 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
6972 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
6975 * we're using rename to replace one file with another.
6976 * and the replacement file is large. Start IO on it now so
6977 * we don't add too much work to the end of the transaction
6979 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
6980 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
6981 filemap_flush(old_inode
->i_mapping
);
6983 /* close the racy window with snapshot create/destroy ioctl */
6984 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
6985 down_read(&root
->fs_info
->subvol_sem
);
6987 * We want to reserve the absolute worst case amount of items. So if
6988 * both inodes are subvols and we need to unlink them then that would
6989 * require 4 item modifications, but if they are both normal inodes it
6990 * would require 5 item modifications, so we'll assume their normal
6991 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6992 * should cover the worst case number of items we'll modify.
6994 trans
= btrfs_start_transaction(root
, 20);
6995 if (IS_ERR(trans
)) {
6996 ret
= PTR_ERR(trans
);
7001 btrfs_record_root_in_trans(trans
, dest
);
7003 ret
= btrfs_set_inode_index(new_dir
, &index
);
7007 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7008 /* force full log commit if subvolume involved. */
7009 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
7011 ret
= btrfs_insert_inode_ref(trans
, dest
,
7012 new_dentry
->d_name
.name
,
7013 new_dentry
->d_name
.len
,
7015 btrfs_ino(new_dir
), index
);
7019 * this is an ugly little race, but the rename is required
7020 * to make sure that if we crash, the inode is either at the
7021 * old name or the new one. pinning the log transaction lets
7022 * us make sure we don't allow a log commit to come in after
7023 * we unlink the name but before we add the new name back in.
7025 btrfs_pin_log_trans(root
);
7028 * make sure the inode gets flushed if it is replacing
7031 if (new_inode
&& new_inode
->i_size
&& S_ISREG(old_inode
->i_mode
))
7032 btrfs_add_ordered_operation(trans
, root
, old_inode
);
7034 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
7035 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
7036 old_inode
->i_ctime
= ctime
;
7038 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
7039 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
7041 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
7042 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
7043 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
7044 old_dentry
->d_name
.name
,
7045 old_dentry
->d_name
.len
);
7047 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
7048 old_dentry
->d_inode
,
7049 old_dentry
->d_name
.name
,
7050 old_dentry
->d_name
.len
);
7052 ret
= btrfs_update_inode(trans
, root
, old_inode
);
7057 new_inode
->i_ctime
= CURRENT_TIME
;
7058 if (unlikely(btrfs_ino(new_inode
) ==
7059 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
7060 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
7061 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
7063 new_dentry
->d_name
.name
,
7064 new_dentry
->d_name
.len
);
7065 BUG_ON(new_inode
->i_nlink
== 0);
7067 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
7068 new_dentry
->d_inode
,
7069 new_dentry
->d_name
.name
,
7070 new_dentry
->d_name
.len
);
7073 if (new_inode
->i_nlink
== 0) {
7074 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
7079 fixup_inode_flags(new_dir
, old_inode
);
7081 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
7082 new_dentry
->d_name
.name
,
7083 new_dentry
->d_name
.len
, 0, index
);
7086 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
7087 struct dentry
*parent
= new_dentry
->d_parent
;
7088 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
7089 btrfs_end_log_trans(root
);
7092 btrfs_end_transaction_throttle(trans
, root
);
7094 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
7095 up_read(&root
->fs_info
->subvol_sem
);
7101 * some fairly slow code that needs optimization. This walks the list
7102 * of all the inodes with pending delalloc and forces them to disk.
7104 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
7106 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
7107 struct btrfs_inode
*binode
;
7108 struct inode
*inode
;
7110 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
7113 spin_lock(&root
->fs_info
->delalloc_lock
);
7114 while (!list_empty(head
)) {
7115 binode
= list_entry(head
->next
, struct btrfs_inode
,
7117 inode
= igrab(&binode
->vfs_inode
);
7119 list_del_init(&binode
->delalloc_inodes
);
7120 spin_unlock(&root
->fs_info
->delalloc_lock
);
7122 filemap_flush(inode
->i_mapping
);
7124 btrfs_add_delayed_iput(inode
);
7129 spin_lock(&root
->fs_info
->delalloc_lock
);
7131 spin_unlock(&root
->fs_info
->delalloc_lock
);
7133 /* the filemap_flush will queue IO into the worker threads, but
7134 * we have to make sure the IO is actually started and that
7135 * ordered extents get created before we return
7137 atomic_inc(&root
->fs_info
->async_submit_draining
);
7138 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
7139 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
7140 wait_event(root
->fs_info
->async_submit_wait
,
7141 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
7142 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
7144 atomic_dec(&root
->fs_info
->async_submit_draining
);
7148 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
7149 const char *symname
)
7151 struct btrfs_trans_handle
*trans
;
7152 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
7153 struct btrfs_path
*path
;
7154 struct btrfs_key key
;
7155 struct inode
*inode
= NULL
;
7163 struct btrfs_file_extent_item
*ei
;
7164 struct extent_buffer
*leaf
;
7165 unsigned long nr
= 0;
7167 name_len
= strlen(symname
) + 1;
7168 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
7169 return -ENAMETOOLONG
;
7172 * 2 items for inode item and ref
7173 * 2 items for dir items
7174 * 1 item for xattr if selinux is on
7176 trans
= btrfs_start_transaction(root
, 5);
7178 return PTR_ERR(trans
);
7180 err
= btrfs_find_free_ino(root
, &objectid
);
7184 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
7185 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
7186 S_IFLNK
|S_IRWXUGO
, &index
);
7187 if (IS_ERR(inode
)) {
7188 err
= PTR_ERR(inode
);
7192 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
7199 * If the active LSM wants to access the inode during
7200 * d_instantiate it needs these. Smack checks to see
7201 * if the filesystem supports xattrs by looking at the
7204 inode
->i_fop
= &btrfs_file_operations
;
7205 inode
->i_op
= &btrfs_file_inode_operations
;
7207 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
7211 inode
->i_mapping
->a_ops
= &btrfs_aops
;
7212 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7213 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
7218 path
= btrfs_alloc_path();
7224 key
.objectid
= btrfs_ino(inode
);
7226 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
7227 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
7228 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
7232 btrfs_free_path(path
);
7235 leaf
= path
->nodes
[0];
7236 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
7237 struct btrfs_file_extent_item
);
7238 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
7239 btrfs_set_file_extent_type(leaf
, ei
,
7240 BTRFS_FILE_EXTENT_INLINE
);
7241 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
7242 btrfs_set_file_extent_compression(leaf
, ei
, 0);
7243 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
7244 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
7246 ptr
= btrfs_file_extent_inline_start(ei
);
7247 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
7248 btrfs_mark_buffer_dirty(leaf
);
7249 btrfs_free_path(path
);
7251 inode
->i_op
= &btrfs_symlink_inode_operations
;
7252 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
7253 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
7254 inode_set_bytes(inode
, name_len
);
7255 btrfs_i_size_write(inode
, name_len
- 1);
7256 err
= btrfs_update_inode(trans
, root
, inode
);
7262 d_instantiate(dentry
, inode
);
7263 nr
= trans
->blocks_used
;
7264 btrfs_end_transaction_throttle(trans
, root
);
7266 inode_dec_link_count(inode
);
7269 btrfs_btree_balance_dirty(root
, nr
);
7273 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7274 u64 start
, u64 num_bytes
, u64 min_size
,
7275 loff_t actual_len
, u64
*alloc_hint
,
7276 struct btrfs_trans_handle
*trans
)
7278 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7279 struct btrfs_key ins
;
7280 u64 cur_offset
= start
;
7283 bool own_trans
= true;
7287 while (num_bytes
> 0) {
7289 trans
= btrfs_start_transaction(root
, 3);
7290 if (IS_ERR(trans
)) {
7291 ret
= PTR_ERR(trans
);
7296 ret
= btrfs_reserve_extent(trans
, root
, num_bytes
, min_size
,
7297 0, *alloc_hint
, (u64
)-1, &ins
, 1);
7300 btrfs_end_transaction(trans
, root
);
7304 ret
= insert_reserved_file_extent(trans
, inode
,
7305 cur_offset
, ins
.objectid
,
7306 ins
.offset
, ins
.offset
,
7307 ins
.offset
, 0, 0, 0,
7308 BTRFS_FILE_EXTENT_PREALLOC
);
7310 btrfs_drop_extent_cache(inode
, cur_offset
,
7311 cur_offset
+ ins
.offset
-1, 0);
7313 num_bytes
-= ins
.offset
;
7314 cur_offset
+= ins
.offset
;
7315 *alloc_hint
= ins
.objectid
+ ins
.offset
;
7317 inode
->i_ctime
= CURRENT_TIME
;
7318 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
7319 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
7320 (actual_len
> inode
->i_size
) &&
7321 (cur_offset
> inode
->i_size
)) {
7322 if (cur_offset
> actual_len
)
7323 i_size
= actual_len
;
7325 i_size
= cur_offset
;
7326 i_size_write(inode
, i_size
);
7327 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
7330 ret
= btrfs_update_inode(trans
, root
, inode
);
7334 btrfs_end_transaction(trans
, root
);
7339 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
7340 u64 start
, u64 num_bytes
, u64 min_size
,
7341 loff_t actual_len
, u64
*alloc_hint
)
7343 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7344 min_size
, actual_len
, alloc_hint
,
7348 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
7349 struct btrfs_trans_handle
*trans
, int mode
,
7350 u64 start
, u64 num_bytes
, u64 min_size
,
7351 loff_t actual_len
, u64
*alloc_hint
)
7353 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
7354 min_size
, actual_len
, alloc_hint
, trans
);
7357 static int btrfs_set_page_dirty(struct page
*page
)
7359 return __set_page_dirty_nobuffers(page
);
7362 static int btrfs_permission(struct inode
*inode
, int mask
)
7364 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7365 umode_t mode
= inode
->i_mode
;
7367 if (mask
& MAY_WRITE
&&
7368 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
7369 if (btrfs_root_readonly(root
))
7371 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
7374 return generic_permission(inode
, mask
);
7377 static const struct inode_operations btrfs_dir_inode_operations
= {
7378 .getattr
= btrfs_getattr
,
7379 .lookup
= btrfs_lookup
,
7380 .create
= btrfs_create
,
7381 .unlink
= btrfs_unlink
,
7383 .mkdir
= btrfs_mkdir
,
7384 .rmdir
= btrfs_rmdir
,
7385 .rename
= btrfs_rename
,
7386 .symlink
= btrfs_symlink
,
7387 .setattr
= btrfs_setattr
,
7388 .mknod
= btrfs_mknod
,
7389 .setxattr
= btrfs_setxattr
,
7390 .getxattr
= btrfs_getxattr
,
7391 .listxattr
= btrfs_listxattr
,
7392 .removexattr
= btrfs_removexattr
,
7393 .permission
= btrfs_permission
,
7394 .get_acl
= btrfs_get_acl
,
7396 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
7397 .lookup
= btrfs_lookup
,
7398 .permission
= btrfs_permission
,
7399 .get_acl
= btrfs_get_acl
,
7402 static const struct file_operations btrfs_dir_file_operations
= {
7403 .llseek
= generic_file_llseek
,
7404 .read
= generic_read_dir
,
7405 .readdir
= btrfs_real_readdir
,
7406 .unlocked_ioctl
= btrfs_ioctl
,
7407 #ifdef CONFIG_COMPAT
7408 .compat_ioctl
= btrfs_ioctl
,
7410 .release
= btrfs_release_file
,
7411 .fsync
= btrfs_sync_file
,
7414 static struct extent_io_ops btrfs_extent_io_ops
= {
7415 .fill_delalloc
= run_delalloc_range
,
7416 .submit_bio_hook
= btrfs_submit_bio_hook
,
7417 .merge_bio_hook
= btrfs_merge_bio_hook
,
7418 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
7419 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
7420 .writepage_start_hook
= btrfs_writepage_start_hook
,
7421 .set_bit_hook
= btrfs_set_bit_hook
,
7422 .clear_bit_hook
= btrfs_clear_bit_hook
,
7423 .merge_extent_hook
= btrfs_merge_extent_hook
,
7424 .split_extent_hook
= btrfs_split_extent_hook
,
7428 * btrfs doesn't support the bmap operation because swapfiles
7429 * use bmap to make a mapping of extents in the file. They assume
7430 * these extents won't change over the life of the file and they
7431 * use the bmap result to do IO directly to the drive.
7433 * the btrfs bmap call would return logical addresses that aren't
7434 * suitable for IO and they also will change frequently as COW
7435 * operations happen. So, swapfile + btrfs == corruption.
7437 * For now we're avoiding this by dropping bmap.
7439 static const struct address_space_operations btrfs_aops
= {
7440 .readpage
= btrfs_readpage
,
7441 .writepage
= btrfs_writepage
,
7442 .writepages
= btrfs_writepages
,
7443 .readpages
= btrfs_readpages
,
7444 .direct_IO
= btrfs_direct_IO
,
7445 .invalidatepage
= btrfs_invalidatepage
,
7446 .releasepage
= btrfs_releasepage
,
7447 .set_page_dirty
= btrfs_set_page_dirty
,
7448 .error_remove_page
= generic_error_remove_page
,
7451 static const struct address_space_operations btrfs_symlink_aops
= {
7452 .readpage
= btrfs_readpage
,
7453 .writepage
= btrfs_writepage
,
7454 .invalidatepage
= btrfs_invalidatepage
,
7455 .releasepage
= btrfs_releasepage
,
7458 static const struct inode_operations btrfs_file_inode_operations
= {
7459 .getattr
= btrfs_getattr
,
7460 .setattr
= btrfs_setattr
,
7461 .setxattr
= btrfs_setxattr
,
7462 .getxattr
= btrfs_getxattr
,
7463 .listxattr
= btrfs_listxattr
,
7464 .removexattr
= btrfs_removexattr
,
7465 .permission
= btrfs_permission
,
7466 .fiemap
= btrfs_fiemap
,
7467 .get_acl
= btrfs_get_acl
,
7469 static const struct inode_operations btrfs_special_inode_operations
= {
7470 .getattr
= btrfs_getattr
,
7471 .setattr
= btrfs_setattr
,
7472 .permission
= btrfs_permission
,
7473 .setxattr
= btrfs_setxattr
,
7474 .getxattr
= btrfs_getxattr
,
7475 .listxattr
= btrfs_listxattr
,
7476 .removexattr
= btrfs_removexattr
,
7477 .get_acl
= btrfs_get_acl
,
7479 static const struct inode_operations btrfs_symlink_inode_operations
= {
7480 .readlink
= generic_readlink
,
7481 .follow_link
= page_follow_link_light
,
7482 .put_link
= page_put_link
,
7483 .getattr
= btrfs_getattr
,
7484 .setattr
= btrfs_setattr
,
7485 .permission
= btrfs_permission
,
7486 .setxattr
= btrfs_setxattr
,
7487 .getxattr
= btrfs_getxattr
,
7488 .listxattr
= btrfs_listxattr
,
7489 .removexattr
= btrfs_removexattr
,
7490 .get_acl
= btrfs_get_acl
,
7493 const struct dentry_operations btrfs_dentry_operations
= {
7494 .d_delete
= btrfs_dentry_delete
,
7495 .d_release
= btrfs_dentry_release
,