2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/setup.h>
33 #include <linux/aer.h>
36 const char *pci_power_names
[] = {
37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39 EXPORT_SYMBOL_GPL(pci_power_names
);
41 int isa_dma_bridge_buggy
;
42 EXPORT_SYMBOL(isa_dma_bridge_buggy
);
45 EXPORT_SYMBOL(pci_pci_problems
);
47 unsigned int pci_pm_d3_delay
;
49 static void pci_pme_list_scan(struct work_struct
*work
);
51 static LIST_HEAD(pci_pme_list
);
52 static DEFINE_MUTEX(pci_pme_list_mutex
);
53 static DECLARE_DELAYED_WORK(pci_pme_work
, pci_pme_list_scan
);
55 struct pci_pme_device
{
56 struct list_head list
;
60 #define PME_TIMEOUT 1000 /* How long between PME checks */
62 static void pci_dev_d3_sleep(struct pci_dev
*dev
)
64 unsigned int delay
= dev
->d3_delay
;
66 if (delay
< pci_pm_d3_delay
)
67 delay
= pci_pm_d3_delay
;
72 #ifdef CONFIG_PCI_DOMAINS
73 int pci_domains_supported
= 1;
76 #define DEFAULT_CARDBUS_IO_SIZE (256)
77 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
78 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
79 unsigned long pci_cardbus_io_size
= DEFAULT_CARDBUS_IO_SIZE
;
80 unsigned long pci_cardbus_mem_size
= DEFAULT_CARDBUS_MEM_SIZE
;
82 #define DEFAULT_HOTPLUG_IO_SIZE (256)
83 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
84 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
85 unsigned long pci_hotplug_io_size
= DEFAULT_HOTPLUG_IO_SIZE
;
86 unsigned long pci_hotplug_mem_size
= DEFAULT_HOTPLUG_MEM_SIZE
;
88 #define DEFAULT_HOTPLUG_BUS_SIZE 1
89 unsigned long pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
91 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_DEFAULT
;
94 * The default CLS is used if arch didn't set CLS explicitly and not
95 * all pci devices agree on the same value. Arch can override either
96 * the dfl or actual value as it sees fit. Don't forget this is
97 * measured in 32-bit words, not bytes.
99 u8 pci_dfl_cache_line_size
= L1_CACHE_BYTES
>> 2;
100 u8 pci_cache_line_size
;
103 * If we set up a device for bus mastering, we need to check the latency
104 * timer as certain BIOSes forget to set it properly.
106 unsigned int pcibios_max_latency
= 255;
108 /* If set, the PCIe ARI capability will not be used. */
109 static bool pcie_ari_disabled
;
111 /* Disable bridge_d3 for all PCIe ports */
112 static bool pci_bridge_d3_disable
;
113 /* Force bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_force
;
116 static int __init
pcie_port_pm_setup(char *str
)
118 if (!strcmp(str
, "off"))
119 pci_bridge_d3_disable
= true;
120 else if (!strcmp(str
, "force"))
121 pci_bridge_d3_force
= true;
124 __setup("pcie_port_pm=", pcie_port_pm_setup
);
127 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
128 * @bus: pointer to PCI bus structure to search
130 * Given a PCI bus, returns the highest PCI bus number present in the set
131 * including the given PCI bus and its list of child PCI buses.
133 unsigned char pci_bus_max_busnr(struct pci_bus
*bus
)
136 unsigned char max
, n
;
138 max
= bus
->busn_res
.end
;
139 list_for_each_entry(tmp
, &bus
->children
, node
) {
140 n
= pci_bus_max_busnr(tmp
);
146 EXPORT_SYMBOL_GPL(pci_bus_max_busnr
);
148 #ifdef CONFIG_HAS_IOMEM
149 void __iomem
*pci_ioremap_bar(struct pci_dev
*pdev
, int bar
)
151 struct resource
*res
= &pdev
->resource
[bar
];
154 * Make sure the BAR is actually a memory resource, not an IO resource
156 if (res
->flags
& IORESOURCE_UNSET
|| !(res
->flags
& IORESOURCE_MEM
)) {
157 dev_warn(&pdev
->dev
, "can't ioremap BAR %d: %pR\n", bar
, res
);
160 return ioremap_nocache(res
->start
, resource_size(res
));
162 EXPORT_SYMBOL_GPL(pci_ioremap_bar
);
164 void __iomem
*pci_ioremap_wc_bar(struct pci_dev
*pdev
, int bar
)
167 * Make sure the BAR is actually a memory resource, not an IO resource
169 if (!(pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)) {
173 return ioremap_wc(pci_resource_start(pdev
, bar
),
174 pci_resource_len(pdev
, bar
));
176 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar
);
180 static int __pci_find_next_cap_ttl(struct pci_bus
*bus
, unsigned int devfn
,
181 u8 pos
, int cap
, int *ttl
)
186 pci_bus_read_config_byte(bus
, devfn
, pos
, &pos
);
192 pci_bus_read_config_word(bus
, devfn
, pos
, &ent
);
204 static int __pci_find_next_cap(struct pci_bus
*bus
, unsigned int devfn
,
207 int ttl
= PCI_FIND_CAP_TTL
;
209 return __pci_find_next_cap_ttl(bus
, devfn
, pos
, cap
, &ttl
);
212 int pci_find_next_capability(struct pci_dev
*dev
, u8 pos
, int cap
)
214 return __pci_find_next_cap(dev
->bus
, dev
->devfn
,
215 pos
+ PCI_CAP_LIST_NEXT
, cap
);
217 EXPORT_SYMBOL_GPL(pci_find_next_capability
);
219 static int __pci_bus_find_cap_start(struct pci_bus
*bus
,
220 unsigned int devfn
, u8 hdr_type
)
224 pci_bus_read_config_word(bus
, devfn
, PCI_STATUS
, &status
);
225 if (!(status
& PCI_STATUS_CAP_LIST
))
229 case PCI_HEADER_TYPE_NORMAL
:
230 case PCI_HEADER_TYPE_BRIDGE
:
231 return PCI_CAPABILITY_LIST
;
232 case PCI_HEADER_TYPE_CARDBUS
:
233 return PCI_CB_CAPABILITY_LIST
;
240 * pci_find_capability - query for devices' capabilities
241 * @dev: PCI device to query
242 * @cap: capability code
244 * Tell if a device supports a given PCI capability.
245 * Returns the address of the requested capability structure within the
246 * device's PCI configuration space or 0 in case the device does not
247 * support it. Possible values for @cap:
249 * %PCI_CAP_ID_PM Power Management
250 * %PCI_CAP_ID_AGP Accelerated Graphics Port
251 * %PCI_CAP_ID_VPD Vital Product Data
252 * %PCI_CAP_ID_SLOTID Slot Identification
253 * %PCI_CAP_ID_MSI Message Signalled Interrupts
254 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
255 * %PCI_CAP_ID_PCIX PCI-X
256 * %PCI_CAP_ID_EXP PCI Express
258 int pci_find_capability(struct pci_dev
*dev
, int cap
)
262 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
264 pos
= __pci_find_next_cap(dev
->bus
, dev
->devfn
, pos
, cap
);
268 EXPORT_SYMBOL(pci_find_capability
);
271 * pci_bus_find_capability - query for devices' capabilities
272 * @bus: the PCI bus to query
273 * @devfn: PCI device to query
274 * @cap: capability code
276 * Like pci_find_capability() but works for pci devices that do not have a
277 * pci_dev structure set up yet.
279 * Returns the address of the requested capability structure within the
280 * device's PCI configuration space or 0 in case the device does not
283 int pci_bus_find_capability(struct pci_bus
*bus
, unsigned int devfn
, int cap
)
288 pci_bus_read_config_byte(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
);
290 pos
= __pci_bus_find_cap_start(bus
, devfn
, hdr_type
& 0x7f);
292 pos
= __pci_find_next_cap(bus
, devfn
, pos
, cap
);
296 EXPORT_SYMBOL(pci_bus_find_capability
);
299 * pci_find_next_ext_capability - Find an extended capability
300 * @dev: PCI device to query
301 * @start: address at which to start looking (0 to start at beginning of list)
302 * @cap: capability code
304 * Returns the address of the next matching extended capability structure
305 * within the device's PCI configuration space or 0 if the device does
306 * not support it. Some capabilities can occur several times, e.g., the
307 * vendor-specific capability, and this provides a way to find them all.
309 int pci_find_next_ext_capability(struct pci_dev
*dev
, int start
, int cap
)
313 int pos
= PCI_CFG_SPACE_SIZE
;
315 /* minimum 8 bytes per capability */
316 ttl
= (PCI_CFG_SPACE_EXP_SIZE
- PCI_CFG_SPACE_SIZE
) / 8;
318 if (dev
->cfg_size
<= PCI_CFG_SPACE_SIZE
)
324 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
328 * If we have no capabilities, this is indicated by cap ID,
329 * cap version and next pointer all being 0.
335 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
!= start
)
338 pos
= PCI_EXT_CAP_NEXT(header
);
339 if (pos
< PCI_CFG_SPACE_SIZE
)
342 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
348 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability
);
351 * pci_find_ext_capability - Find an extended capability
352 * @dev: PCI device to query
353 * @cap: capability code
355 * Returns the address of the requested extended capability structure
356 * within the device's PCI configuration space or 0 if the device does
357 * not support it. Possible values for @cap:
359 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
360 * %PCI_EXT_CAP_ID_VC Virtual Channel
361 * %PCI_EXT_CAP_ID_DSN Device Serial Number
362 * %PCI_EXT_CAP_ID_PWR Power Budgeting
364 int pci_find_ext_capability(struct pci_dev
*dev
, int cap
)
366 return pci_find_next_ext_capability(dev
, 0, cap
);
368 EXPORT_SYMBOL_GPL(pci_find_ext_capability
);
370 static int __pci_find_next_ht_cap(struct pci_dev
*dev
, int pos
, int ht_cap
)
372 int rc
, ttl
= PCI_FIND_CAP_TTL
;
375 if (ht_cap
== HT_CAPTYPE_SLAVE
|| ht_cap
== HT_CAPTYPE_HOST
)
376 mask
= HT_3BIT_CAP_MASK
;
378 mask
= HT_5BIT_CAP_MASK
;
380 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
, pos
,
381 PCI_CAP_ID_HT
, &ttl
);
383 rc
= pci_read_config_byte(dev
, pos
+ 3, &cap
);
384 if (rc
!= PCIBIOS_SUCCESSFUL
)
387 if ((cap
& mask
) == ht_cap
)
390 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
,
391 pos
+ PCI_CAP_LIST_NEXT
,
392 PCI_CAP_ID_HT
, &ttl
);
398 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
399 * @dev: PCI device to query
400 * @pos: Position from which to continue searching
401 * @ht_cap: Hypertransport capability code
403 * To be used in conjunction with pci_find_ht_capability() to search for
404 * all capabilities matching @ht_cap. @pos should always be a value returned
405 * from pci_find_ht_capability().
407 * NB. To be 100% safe against broken PCI devices, the caller should take
408 * steps to avoid an infinite loop.
410 int pci_find_next_ht_capability(struct pci_dev
*dev
, int pos
, int ht_cap
)
412 return __pci_find_next_ht_cap(dev
, pos
+ PCI_CAP_LIST_NEXT
, ht_cap
);
414 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability
);
417 * pci_find_ht_capability - query a device's Hypertransport capabilities
418 * @dev: PCI device to query
419 * @ht_cap: Hypertransport capability code
421 * Tell if a device supports a given Hypertransport capability.
422 * Returns an address within the device's PCI configuration space
423 * or 0 in case the device does not support the request capability.
424 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
425 * which has a Hypertransport capability matching @ht_cap.
427 int pci_find_ht_capability(struct pci_dev
*dev
, int ht_cap
)
431 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
433 pos
= __pci_find_next_ht_cap(dev
, pos
, ht_cap
);
437 EXPORT_SYMBOL_GPL(pci_find_ht_capability
);
440 * pci_find_parent_resource - return resource region of parent bus of given region
441 * @dev: PCI device structure contains resources to be searched
442 * @res: child resource record for which parent is sought
444 * For given resource region of given device, return the resource
445 * region of parent bus the given region is contained in.
447 struct resource
*pci_find_parent_resource(const struct pci_dev
*dev
,
448 struct resource
*res
)
450 const struct pci_bus
*bus
= dev
->bus
;
454 pci_bus_for_each_resource(bus
, r
, i
) {
457 if (res
->start
&& resource_contains(r
, res
)) {
460 * If the window is prefetchable but the BAR is
461 * not, the allocator made a mistake.
463 if (r
->flags
& IORESOURCE_PREFETCH
&&
464 !(res
->flags
& IORESOURCE_PREFETCH
))
468 * If we're below a transparent bridge, there may
469 * be both a positively-decoded aperture and a
470 * subtractively-decoded region that contain the BAR.
471 * We want the positively-decoded one, so this depends
472 * on pci_bus_for_each_resource() giving us those
480 EXPORT_SYMBOL(pci_find_parent_resource
);
483 * pci_find_pcie_root_port - return PCIe Root Port
484 * @dev: PCI device to query
486 * Traverse up the parent chain and return the PCIe Root Port PCI Device
487 * for a given PCI Device.
489 struct pci_dev
*pci_find_pcie_root_port(struct pci_dev
*dev
)
491 struct pci_dev
*bridge
, *highest_pcie_bridge
= NULL
;
493 bridge
= pci_upstream_bridge(dev
);
494 while (bridge
&& pci_is_pcie(bridge
)) {
495 highest_pcie_bridge
= bridge
;
496 bridge
= pci_upstream_bridge(bridge
);
499 if (pci_pcie_type(highest_pcie_bridge
) != PCI_EXP_TYPE_ROOT_PORT
)
502 return highest_pcie_bridge
;
504 EXPORT_SYMBOL(pci_find_pcie_root_port
);
507 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
508 * @dev: the PCI device to operate on
509 * @pos: config space offset of status word
510 * @mask: mask of bit(s) to care about in status word
512 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
514 int pci_wait_for_pending(struct pci_dev
*dev
, int pos
, u16 mask
)
518 /* Wait for Transaction Pending bit clean */
519 for (i
= 0; i
< 4; i
++) {
522 msleep((1 << (i
- 1)) * 100);
524 pci_read_config_word(dev
, pos
, &status
);
525 if (!(status
& mask
))
533 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
534 * @dev: PCI device to have its BARs restored
536 * Restore the BAR values for a given device, so as to make it
537 * accessible by its driver.
539 static void pci_restore_bars(struct pci_dev
*dev
)
543 /* Per SR-IOV spec 3.4.1.11, VF BARs are RO zero */
547 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++)
548 pci_update_resource(dev
, i
);
551 static const struct pci_platform_pm_ops
*pci_platform_pm
;
553 int pci_set_platform_pm(const struct pci_platform_pm_ops
*ops
)
555 if (!ops
->is_manageable
|| !ops
->set_state
|| !ops
->choose_state
||
556 !ops
->sleep_wake
|| !ops
->run_wake
|| !ops
->need_resume
)
558 pci_platform_pm
= ops
;
562 static inline bool platform_pci_power_manageable(struct pci_dev
*dev
)
564 return pci_platform_pm
? pci_platform_pm
->is_manageable(dev
) : false;
567 static inline int platform_pci_set_power_state(struct pci_dev
*dev
,
570 return pci_platform_pm
? pci_platform_pm
->set_state(dev
, t
) : -ENOSYS
;
573 static inline pci_power_t
platform_pci_choose_state(struct pci_dev
*dev
)
575 return pci_platform_pm
?
576 pci_platform_pm
->choose_state(dev
) : PCI_POWER_ERROR
;
579 static inline int platform_pci_sleep_wake(struct pci_dev
*dev
, bool enable
)
581 return pci_platform_pm
?
582 pci_platform_pm
->sleep_wake(dev
, enable
) : -ENODEV
;
585 static inline int platform_pci_run_wake(struct pci_dev
*dev
, bool enable
)
587 return pci_platform_pm
?
588 pci_platform_pm
->run_wake(dev
, enable
) : -ENODEV
;
591 static inline bool platform_pci_need_resume(struct pci_dev
*dev
)
593 return pci_platform_pm
? pci_platform_pm
->need_resume(dev
) : false;
597 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
599 * @dev: PCI device to handle.
600 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
603 * -EINVAL if the requested state is invalid.
604 * -EIO if device does not support PCI PM or its PM capabilities register has a
605 * wrong version, or device doesn't support the requested state.
606 * 0 if device already is in the requested state.
607 * 0 if device's power state has been successfully changed.
609 static int pci_raw_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
612 bool need_restore
= false;
614 /* Check if we're already there */
615 if (dev
->current_state
== state
)
621 if (state
< PCI_D0
|| state
> PCI_D3hot
)
624 /* Validate current state:
625 * Can enter D0 from any state, but if we can only go deeper
626 * to sleep if we're already in a low power state
628 if (state
!= PCI_D0
&& dev
->current_state
<= PCI_D3cold
629 && dev
->current_state
> state
) {
630 dev_err(&dev
->dev
, "invalid power transition (from state %d to %d)\n",
631 dev
->current_state
, state
);
635 /* check if this device supports the desired state */
636 if ((state
== PCI_D1
&& !dev
->d1_support
)
637 || (state
== PCI_D2
&& !dev
->d2_support
))
640 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
642 /* If we're (effectively) in D3, force entire word to 0.
643 * This doesn't affect PME_Status, disables PME_En, and
644 * sets PowerState to 0.
646 switch (dev
->current_state
) {
650 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
655 case PCI_UNKNOWN
: /* Boot-up */
656 if ((pmcsr
& PCI_PM_CTRL_STATE_MASK
) == PCI_D3hot
657 && !(pmcsr
& PCI_PM_CTRL_NO_SOFT_RESET
))
659 /* Fall-through: force to D0 */
665 /* enter specified state */
666 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
668 /* Mandatory power management transition delays */
669 /* see PCI PM 1.1 5.6.1 table 18 */
670 if (state
== PCI_D3hot
|| dev
->current_state
== PCI_D3hot
)
671 pci_dev_d3_sleep(dev
);
672 else if (state
== PCI_D2
|| dev
->current_state
== PCI_D2
)
673 udelay(PCI_PM_D2_DELAY
);
675 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
676 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
677 if (dev
->current_state
!= state
&& printk_ratelimit())
678 dev_info(&dev
->dev
, "Refused to change power state, currently in D%d\n",
682 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
683 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
684 * from D3hot to D0 _may_ perform an internal reset, thereby
685 * going to "D0 Uninitialized" rather than "D0 Initialized".
686 * For example, at least some versions of the 3c905B and the
687 * 3c556B exhibit this behaviour.
689 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
690 * devices in a D3hot state at boot. Consequently, we need to
691 * restore at least the BARs so that the device will be
692 * accessible to its driver.
695 pci_restore_bars(dev
);
698 pcie_aspm_pm_state_change(dev
->bus
->self
);
704 * pci_update_current_state - Read PCI power state of given device from its
705 * PCI PM registers and cache it
706 * @dev: PCI device to handle.
707 * @state: State to cache in case the device doesn't have the PM capability
709 void pci_update_current_state(struct pci_dev
*dev
, pci_power_t state
)
715 * Configuration space is not accessible for device in
716 * D3cold, so just keep or set D3cold for safety
718 if (dev
->current_state
== PCI_D3cold
)
720 if (state
== PCI_D3cold
) {
721 dev
->current_state
= PCI_D3cold
;
724 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
725 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
727 dev
->current_state
= state
;
732 * pci_power_up - Put the given device into D0 forcibly
733 * @dev: PCI device to power up
735 void pci_power_up(struct pci_dev
*dev
)
737 if (platform_pci_power_manageable(dev
))
738 platform_pci_set_power_state(dev
, PCI_D0
);
740 pci_raw_set_power_state(dev
, PCI_D0
);
741 pci_update_current_state(dev
, PCI_D0
);
745 * pci_platform_power_transition - Use platform to change device power state
746 * @dev: PCI device to handle.
747 * @state: State to put the device into.
749 static int pci_platform_power_transition(struct pci_dev
*dev
, pci_power_t state
)
753 if (platform_pci_power_manageable(dev
)) {
754 error
= platform_pci_set_power_state(dev
, state
);
756 pci_update_current_state(dev
, state
);
760 if (error
&& !dev
->pm_cap
) /* Fall back to PCI_D0 */
761 dev
->current_state
= PCI_D0
;
767 * pci_wakeup - Wake up a PCI device
768 * @pci_dev: Device to handle.
769 * @ign: ignored parameter
771 static int pci_wakeup(struct pci_dev
*pci_dev
, void *ign
)
773 pci_wakeup_event(pci_dev
);
774 pm_request_resume(&pci_dev
->dev
);
779 * pci_wakeup_bus - Walk given bus and wake up devices on it
780 * @bus: Top bus of the subtree to walk.
782 static void pci_wakeup_bus(struct pci_bus
*bus
)
785 pci_walk_bus(bus
, pci_wakeup
, NULL
);
789 * __pci_start_power_transition - Start power transition of a PCI device
790 * @dev: PCI device to handle.
791 * @state: State to put the device into.
793 static void __pci_start_power_transition(struct pci_dev
*dev
, pci_power_t state
)
795 if (state
== PCI_D0
) {
796 pci_platform_power_transition(dev
, PCI_D0
);
798 * Mandatory power management transition delays, see
799 * PCI Express Base Specification Revision 2.0 Section
800 * 6.6.1: Conventional Reset. Do not delay for
801 * devices powered on/off by corresponding bridge,
802 * because have already delayed for the bridge.
804 if (dev
->runtime_d3cold
) {
805 msleep(dev
->d3cold_delay
);
807 * When powering on a bridge from D3cold, the
808 * whole hierarchy may be powered on into
809 * D0uninitialized state, resume them to give
810 * them a chance to suspend again
812 pci_wakeup_bus(dev
->subordinate
);
818 * __pci_dev_set_current_state - Set current state of a PCI device
819 * @dev: Device to handle
820 * @data: pointer to state to be set
822 static int __pci_dev_set_current_state(struct pci_dev
*dev
, void *data
)
824 pci_power_t state
= *(pci_power_t
*)data
;
826 dev
->current_state
= state
;
831 * __pci_bus_set_current_state - Walk given bus and set current state of devices
832 * @bus: Top bus of the subtree to walk.
833 * @state: state to be set
835 static void __pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
)
838 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
842 * __pci_complete_power_transition - Complete power transition of a PCI device
843 * @dev: PCI device to handle.
844 * @state: State to put the device into.
846 * This function should not be called directly by device drivers.
848 int __pci_complete_power_transition(struct pci_dev
*dev
, pci_power_t state
)
854 ret
= pci_platform_power_transition(dev
, state
);
855 /* Power off the bridge may power off the whole hierarchy */
856 if (!ret
&& state
== PCI_D3cold
)
857 __pci_bus_set_current_state(dev
->subordinate
, PCI_D3cold
);
860 EXPORT_SYMBOL_GPL(__pci_complete_power_transition
);
863 * pci_set_power_state - Set the power state of a PCI device
864 * @dev: PCI device to handle.
865 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
867 * Transition a device to a new power state, using the platform firmware and/or
868 * the device's PCI PM registers.
871 * -EINVAL if the requested state is invalid.
872 * -EIO if device does not support PCI PM or its PM capabilities register has a
873 * wrong version, or device doesn't support the requested state.
874 * 0 if device already is in the requested state.
875 * 0 if device's power state has been successfully changed.
877 int pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
881 /* bound the state we're entering */
882 if (state
> PCI_D3cold
)
884 else if (state
< PCI_D0
)
886 else if ((state
== PCI_D1
|| state
== PCI_D2
) && pci_no_d1d2(dev
))
888 * If the device or the parent bridge do not support PCI PM,
889 * ignore the request if we're doing anything other than putting
890 * it into D0 (which would only happen on boot).
894 /* Check if we're already there */
895 if (dev
->current_state
== state
)
898 __pci_start_power_transition(dev
, state
);
900 /* This device is quirked not to be put into D3, so
901 don't put it in D3 */
902 if (state
>= PCI_D3hot
&& (dev
->dev_flags
& PCI_DEV_FLAGS_NO_D3
))
906 * To put device in D3cold, we put device into D3hot in native
907 * way, then put device into D3cold with platform ops
909 error
= pci_raw_set_power_state(dev
, state
> PCI_D3hot
?
912 if (!__pci_complete_power_transition(dev
, state
))
917 EXPORT_SYMBOL(pci_set_power_state
);
920 * pci_choose_state - Choose the power state of a PCI device
921 * @dev: PCI device to be suspended
922 * @state: target sleep state for the whole system. This is the value
923 * that is passed to suspend() function.
925 * Returns PCI power state suitable for given device and given system
929 pci_power_t
pci_choose_state(struct pci_dev
*dev
, pm_message_t state
)
936 ret
= platform_pci_choose_state(dev
);
937 if (ret
!= PCI_POWER_ERROR
)
940 switch (state
.event
) {
943 case PM_EVENT_FREEZE
:
944 case PM_EVENT_PRETHAW
:
945 /* REVISIT both freeze and pre-thaw "should" use D0 */
946 case PM_EVENT_SUSPEND
:
947 case PM_EVENT_HIBERNATE
:
950 dev_info(&dev
->dev
, "unrecognized suspend event %d\n",
956 EXPORT_SYMBOL(pci_choose_state
);
958 #define PCI_EXP_SAVE_REGS 7
960 static struct pci_cap_saved_state
*_pci_find_saved_cap(struct pci_dev
*pci_dev
,
961 u16 cap
, bool extended
)
963 struct pci_cap_saved_state
*tmp
;
965 hlist_for_each_entry(tmp
, &pci_dev
->saved_cap_space
, next
) {
966 if (tmp
->cap
.cap_extended
== extended
&& tmp
->cap
.cap_nr
== cap
)
972 struct pci_cap_saved_state
*pci_find_saved_cap(struct pci_dev
*dev
, char cap
)
974 return _pci_find_saved_cap(dev
, cap
, false);
977 struct pci_cap_saved_state
*pci_find_saved_ext_cap(struct pci_dev
*dev
, u16 cap
)
979 return _pci_find_saved_cap(dev
, cap
, true);
982 static int pci_save_pcie_state(struct pci_dev
*dev
)
985 struct pci_cap_saved_state
*save_state
;
988 if (!pci_is_pcie(dev
))
991 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
993 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
997 cap
= (u16
*)&save_state
->cap
.data
[0];
998 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &cap
[i
++]);
999 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL
, &cap
[i
++]);
1000 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL
, &cap
[i
++]);
1001 pcie_capability_read_word(dev
, PCI_EXP_RTCTL
, &cap
[i
++]);
1002 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &cap
[i
++]);
1003 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL2
, &cap
[i
++]);
1004 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL2
, &cap
[i
++]);
1009 static void pci_restore_pcie_state(struct pci_dev
*dev
)
1012 struct pci_cap_saved_state
*save_state
;
1015 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1019 cap
= (u16
*)&save_state
->cap
.data
[0];
1020 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL
, cap
[i
++]);
1021 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL
, cap
[i
++]);
1022 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL
, cap
[i
++]);
1023 pcie_capability_write_word(dev
, PCI_EXP_RTCTL
, cap
[i
++]);
1024 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, cap
[i
++]);
1025 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL2
, cap
[i
++]);
1026 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL2
, cap
[i
++]);
1030 static int pci_save_pcix_state(struct pci_dev
*dev
)
1033 struct pci_cap_saved_state
*save_state
;
1035 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1039 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1041 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
1045 pci_read_config_word(dev
, pos
+ PCI_X_CMD
,
1046 (u16
*)save_state
->cap
.data
);
1051 static void pci_restore_pcix_state(struct pci_dev
*dev
)
1054 struct pci_cap_saved_state
*save_state
;
1057 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1058 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1059 if (!save_state
|| !pos
)
1061 cap
= (u16
*)&save_state
->cap
.data
[0];
1063 pci_write_config_word(dev
, pos
+ PCI_X_CMD
, cap
[i
++]);
1068 * pci_save_state - save the PCI configuration space of a device before suspending
1069 * @dev: - PCI device that we're dealing with
1071 int pci_save_state(struct pci_dev
*dev
)
1074 /* XXX: 100% dword access ok here? */
1075 for (i
= 0; i
< 16; i
++)
1076 pci_read_config_dword(dev
, i
* 4, &dev
->saved_config_space
[i
]);
1077 dev
->state_saved
= true;
1079 i
= pci_save_pcie_state(dev
);
1083 i
= pci_save_pcix_state(dev
);
1087 return pci_save_vc_state(dev
);
1089 EXPORT_SYMBOL(pci_save_state
);
1091 static void pci_restore_config_dword(struct pci_dev
*pdev
, int offset
,
1092 u32 saved_val
, int retry
)
1096 pci_read_config_dword(pdev
, offset
, &val
);
1097 if (val
== saved_val
)
1101 dev_dbg(&pdev
->dev
, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1102 offset
, val
, saved_val
);
1103 pci_write_config_dword(pdev
, offset
, saved_val
);
1107 pci_read_config_dword(pdev
, offset
, &val
);
1108 if (val
== saved_val
)
1115 static void pci_restore_config_space_range(struct pci_dev
*pdev
,
1116 int start
, int end
, int retry
)
1120 for (index
= end
; index
>= start
; index
--)
1121 pci_restore_config_dword(pdev
, 4 * index
,
1122 pdev
->saved_config_space
[index
],
1126 static void pci_restore_config_space(struct pci_dev
*pdev
)
1128 if (pdev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
) {
1129 pci_restore_config_space_range(pdev
, 10, 15, 0);
1130 /* Restore BARs before the command register. */
1131 pci_restore_config_space_range(pdev
, 4, 9, 10);
1132 pci_restore_config_space_range(pdev
, 0, 3, 0);
1134 pci_restore_config_space_range(pdev
, 0, 15, 0);
1139 * pci_restore_state - Restore the saved state of a PCI device
1140 * @dev: - PCI device that we're dealing with
1142 void pci_restore_state(struct pci_dev
*dev
)
1144 if (!dev
->state_saved
)
1147 /* PCI Express register must be restored first */
1148 pci_restore_pcie_state(dev
);
1149 pci_restore_ats_state(dev
);
1150 pci_restore_vc_state(dev
);
1152 pci_cleanup_aer_error_status_regs(dev
);
1154 pci_restore_config_space(dev
);
1156 pci_restore_pcix_state(dev
);
1157 pci_restore_msi_state(dev
);
1159 /* Restore ACS and IOV configuration state */
1160 pci_enable_acs(dev
);
1161 pci_restore_iov_state(dev
);
1163 dev
->state_saved
= false;
1165 EXPORT_SYMBOL(pci_restore_state
);
1167 struct pci_saved_state
{
1168 u32 config_space
[16];
1169 struct pci_cap_saved_data cap
[0];
1173 * pci_store_saved_state - Allocate and return an opaque struct containing
1174 * the device saved state.
1175 * @dev: PCI device that we're dealing with
1177 * Return NULL if no state or error.
1179 struct pci_saved_state
*pci_store_saved_state(struct pci_dev
*dev
)
1181 struct pci_saved_state
*state
;
1182 struct pci_cap_saved_state
*tmp
;
1183 struct pci_cap_saved_data
*cap
;
1186 if (!dev
->state_saved
)
1189 size
= sizeof(*state
) + sizeof(struct pci_cap_saved_data
);
1191 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
)
1192 size
+= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1194 state
= kzalloc(size
, GFP_KERNEL
);
1198 memcpy(state
->config_space
, dev
->saved_config_space
,
1199 sizeof(state
->config_space
));
1202 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
) {
1203 size_t len
= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1204 memcpy(cap
, &tmp
->cap
, len
);
1205 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+ len
);
1207 /* Empty cap_save terminates list */
1211 EXPORT_SYMBOL_GPL(pci_store_saved_state
);
1214 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1215 * @dev: PCI device that we're dealing with
1216 * @state: Saved state returned from pci_store_saved_state()
1218 int pci_load_saved_state(struct pci_dev
*dev
,
1219 struct pci_saved_state
*state
)
1221 struct pci_cap_saved_data
*cap
;
1223 dev
->state_saved
= false;
1228 memcpy(dev
->saved_config_space
, state
->config_space
,
1229 sizeof(state
->config_space
));
1233 struct pci_cap_saved_state
*tmp
;
1235 tmp
= _pci_find_saved_cap(dev
, cap
->cap_nr
, cap
->cap_extended
);
1236 if (!tmp
|| tmp
->cap
.size
!= cap
->size
)
1239 memcpy(tmp
->cap
.data
, cap
->data
, tmp
->cap
.size
);
1240 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+
1241 sizeof(struct pci_cap_saved_data
) + cap
->size
);
1244 dev
->state_saved
= true;
1247 EXPORT_SYMBOL_GPL(pci_load_saved_state
);
1250 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1251 * and free the memory allocated for it.
1252 * @dev: PCI device that we're dealing with
1253 * @state: Pointer to saved state returned from pci_store_saved_state()
1255 int pci_load_and_free_saved_state(struct pci_dev
*dev
,
1256 struct pci_saved_state
**state
)
1258 int ret
= pci_load_saved_state(dev
, *state
);
1263 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state
);
1265 int __weak
pcibios_enable_device(struct pci_dev
*dev
, int bars
)
1267 return pci_enable_resources(dev
, bars
);
1270 static int do_pci_enable_device(struct pci_dev
*dev
, int bars
)
1273 struct pci_dev
*bridge
;
1277 err
= pci_set_power_state(dev
, PCI_D0
);
1278 if (err
< 0 && err
!= -EIO
)
1281 bridge
= pci_upstream_bridge(dev
);
1283 pcie_aspm_powersave_config_link(bridge
);
1285 err
= pcibios_enable_device(dev
, bars
);
1288 pci_fixup_device(pci_fixup_enable
, dev
);
1290 if (dev
->msi_enabled
|| dev
->msix_enabled
)
1293 pci_read_config_byte(dev
, PCI_INTERRUPT_PIN
, &pin
);
1295 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
1296 if (cmd
& PCI_COMMAND_INTX_DISABLE
)
1297 pci_write_config_word(dev
, PCI_COMMAND
,
1298 cmd
& ~PCI_COMMAND_INTX_DISABLE
);
1305 * pci_reenable_device - Resume abandoned device
1306 * @dev: PCI device to be resumed
1308 * Note this function is a backend of pci_default_resume and is not supposed
1309 * to be called by normal code, write proper resume handler and use it instead.
1311 int pci_reenable_device(struct pci_dev
*dev
)
1313 if (pci_is_enabled(dev
))
1314 return do_pci_enable_device(dev
, (1 << PCI_NUM_RESOURCES
) - 1);
1317 EXPORT_SYMBOL(pci_reenable_device
);
1319 static void pci_enable_bridge(struct pci_dev
*dev
)
1321 struct pci_dev
*bridge
;
1324 bridge
= pci_upstream_bridge(dev
);
1326 pci_enable_bridge(bridge
);
1328 if (pci_is_enabled(dev
)) {
1329 if (!dev
->is_busmaster
)
1330 pci_set_master(dev
);
1334 retval
= pci_enable_device(dev
);
1336 dev_err(&dev
->dev
, "Error enabling bridge (%d), continuing\n",
1338 pci_set_master(dev
);
1341 static int pci_enable_device_flags(struct pci_dev
*dev
, unsigned long flags
)
1343 struct pci_dev
*bridge
;
1348 * Power state could be unknown at this point, either due to a fresh
1349 * boot or a device removal call. So get the current power state
1350 * so that things like MSI message writing will behave as expected
1351 * (e.g. if the device really is in D0 at enable time).
1355 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1356 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1359 if (atomic_inc_return(&dev
->enable_cnt
) > 1)
1360 return 0; /* already enabled */
1362 bridge
= pci_upstream_bridge(dev
);
1364 pci_enable_bridge(bridge
);
1366 /* only skip sriov related */
1367 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
1368 if (dev
->resource
[i
].flags
& flags
)
1370 for (i
= PCI_BRIDGE_RESOURCES
; i
< DEVICE_COUNT_RESOURCE
; i
++)
1371 if (dev
->resource
[i
].flags
& flags
)
1374 err
= do_pci_enable_device(dev
, bars
);
1376 atomic_dec(&dev
->enable_cnt
);
1381 * pci_enable_device_io - Initialize a device for use with IO space
1382 * @dev: PCI device to be initialized
1384 * Initialize device before it's used by a driver. Ask low-level code
1385 * to enable I/O resources. Wake up the device if it was suspended.
1386 * Beware, this function can fail.
1388 int pci_enable_device_io(struct pci_dev
*dev
)
1390 return pci_enable_device_flags(dev
, IORESOURCE_IO
);
1392 EXPORT_SYMBOL(pci_enable_device_io
);
1395 * pci_enable_device_mem - Initialize a device for use with Memory space
1396 * @dev: PCI device to be initialized
1398 * Initialize device before it's used by a driver. Ask low-level code
1399 * to enable Memory resources. Wake up the device if it was suspended.
1400 * Beware, this function can fail.
1402 int pci_enable_device_mem(struct pci_dev
*dev
)
1404 return pci_enable_device_flags(dev
, IORESOURCE_MEM
);
1406 EXPORT_SYMBOL(pci_enable_device_mem
);
1409 * pci_enable_device - Initialize device before it's used by a driver.
1410 * @dev: PCI device to be initialized
1412 * Initialize device before it's used by a driver. Ask low-level code
1413 * to enable I/O and memory. Wake up the device if it was suspended.
1414 * Beware, this function can fail.
1416 * Note we don't actually enable the device many times if we call
1417 * this function repeatedly (we just increment the count).
1419 int pci_enable_device(struct pci_dev
*dev
)
1421 return pci_enable_device_flags(dev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1423 EXPORT_SYMBOL(pci_enable_device
);
1426 * Managed PCI resources. This manages device on/off, intx/msi/msix
1427 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1428 * there's no need to track it separately. pci_devres is initialized
1429 * when a device is enabled using managed PCI device enable interface.
1432 unsigned int enabled
:1;
1433 unsigned int pinned
:1;
1434 unsigned int orig_intx
:1;
1435 unsigned int restore_intx
:1;
1439 static void pcim_release(struct device
*gendev
, void *res
)
1441 struct pci_dev
*dev
= to_pci_dev(gendev
);
1442 struct pci_devres
*this = res
;
1445 if (dev
->msi_enabled
)
1446 pci_disable_msi(dev
);
1447 if (dev
->msix_enabled
)
1448 pci_disable_msix(dev
);
1450 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
1451 if (this->region_mask
& (1 << i
))
1452 pci_release_region(dev
, i
);
1454 if (this->restore_intx
)
1455 pci_intx(dev
, this->orig_intx
);
1457 if (this->enabled
&& !this->pinned
)
1458 pci_disable_device(dev
);
1461 static struct pci_devres
*get_pci_dr(struct pci_dev
*pdev
)
1463 struct pci_devres
*dr
, *new_dr
;
1465 dr
= devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1469 new_dr
= devres_alloc(pcim_release
, sizeof(*new_dr
), GFP_KERNEL
);
1472 return devres_get(&pdev
->dev
, new_dr
, NULL
, NULL
);
1475 static struct pci_devres
*find_pci_dr(struct pci_dev
*pdev
)
1477 if (pci_is_managed(pdev
))
1478 return devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1483 * pcim_enable_device - Managed pci_enable_device()
1484 * @pdev: PCI device to be initialized
1486 * Managed pci_enable_device().
1488 int pcim_enable_device(struct pci_dev
*pdev
)
1490 struct pci_devres
*dr
;
1493 dr
= get_pci_dr(pdev
);
1499 rc
= pci_enable_device(pdev
);
1501 pdev
->is_managed
= 1;
1506 EXPORT_SYMBOL(pcim_enable_device
);
1509 * pcim_pin_device - Pin managed PCI device
1510 * @pdev: PCI device to pin
1512 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1513 * driver detach. @pdev must have been enabled with
1514 * pcim_enable_device().
1516 void pcim_pin_device(struct pci_dev
*pdev
)
1518 struct pci_devres
*dr
;
1520 dr
= find_pci_dr(pdev
);
1521 WARN_ON(!dr
|| !dr
->enabled
);
1525 EXPORT_SYMBOL(pcim_pin_device
);
1528 * pcibios_add_device - provide arch specific hooks when adding device dev
1529 * @dev: the PCI device being added
1531 * Permits the platform to provide architecture specific functionality when
1532 * devices are added. This is the default implementation. Architecture
1533 * implementations can override this.
1535 int __weak
pcibios_add_device(struct pci_dev
*dev
)
1541 * pcibios_release_device - provide arch specific hooks when releasing device dev
1542 * @dev: the PCI device being released
1544 * Permits the platform to provide architecture specific functionality when
1545 * devices are released. This is the default implementation. Architecture
1546 * implementations can override this.
1548 void __weak
pcibios_release_device(struct pci_dev
*dev
) {}
1551 * pcibios_disable_device - disable arch specific PCI resources for device dev
1552 * @dev: the PCI device to disable
1554 * Disables architecture specific PCI resources for the device. This
1555 * is the default implementation. Architecture implementations can
1558 void __weak
pcibios_disable_device(struct pci_dev
*dev
) {}
1561 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1562 * @irq: ISA IRQ to penalize
1563 * @active: IRQ active or not
1565 * Permits the platform to provide architecture-specific functionality when
1566 * penalizing ISA IRQs. This is the default implementation. Architecture
1567 * implementations can override this.
1569 void __weak
pcibios_penalize_isa_irq(int irq
, int active
) {}
1571 static void do_pci_disable_device(struct pci_dev
*dev
)
1575 pci_read_config_word(dev
, PCI_COMMAND
, &pci_command
);
1576 if (pci_command
& PCI_COMMAND_MASTER
) {
1577 pci_command
&= ~PCI_COMMAND_MASTER
;
1578 pci_write_config_word(dev
, PCI_COMMAND
, pci_command
);
1581 pcibios_disable_device(dev
);
1585 * pci_disable_enabled_device - Disable device without updating enable_cnt
1586 * @dev: PCI device to disable
1588 * NOTE: This function is a backend of PCI power management routines and is
1589 * not supposed to be called drivers.
1591 void pci_disable_enabled_device(struct pci_dev
*dev
)
1593 if (pci_is_enabled(dev
))
1594 do_pci_disable_device(dev
);
1598 * pci_disable_device - Disable PCI device after use
1599 * @dev: PCI device to be disabled
1601 * Signal to the system that the PCI device is not in use by the system
1602 * anymore. This only involves disabling PCI bus-mastering, if active.
1604 * Note we don't actually disable the device until all callers of
1605 * pci_enable_device() have called pci_disable_device().
1607 void pci_disable_device(struct pci_dev
*dev
)
1609 struct pci_devres
*dr
;
1611 dr
= find_pci_dr(dev
);
1615 dev_WARN_ONCE(&dev
->dev
, atomic_read(&dev
->enable_cnt
) <= 0,
1616 "disabling already-disabled device");
1618 if (atomic_dec_return(&dev
->enable_cnt
) != 0)
1621 do_pci_disable_device(dev
);
1623 dev
->is_busmaster
= 0;
1625 EXPORT_SYMBOL(pci_disable_device
);
1628 * pcibios_set_pcie_reset_state - set reset state for device dev
1629 * @dev: the PCIe device reset
1630 * @state: Reset state to enter into
1633 * Sets the PCIe reset state for the device. This is the default
1634 * implementation. Architecture implementations can override this.
1636 int __weak
pcibios_set_pcie_reset_state(struct pci_dev
*dev
,
1637 enum pcie_reset_state state
)
1643 * pci_set_pcie_reset_state - set reset state for device dev
1644 * @dev: the PCIe device reset
1645 * @state: Reset state to enter into
1648 * Sets the PCI reset state for the device.
1650 int pci_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
1652 return pcibios_set_pcie_reset_state(dev
, state
);
1654 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state
);
1657 * pci_check_pme_status - Check if given device has generated PME.
1658 * @dev: Device to check.
1660 * Check the PME status of the device and if set, clear it and clear PME enable
1661 * (if set). Return 'true' if PME status and PME enable were both set or
1662 * 'false' otherwise.
1664 bool pci_check_pme_status(struct pci_dev
*dev
)
1673 pmcsr_pos
= dev
->pm_cap
+ PCI_PM_CTRL
;
1674 pci_read_config_word(dev
, pmcsr_pos
, &pmcsr
);
1675 if (!(pmcsr
& PCI_PM_CTRL_PME_STATUS
))
1678 /* Clear PME status. */
1679 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
1680 if (pmcsr
& PCI_PM_CTRL_PME_ENABLE
) {
1681 /* Disable PME to avoid interrupt flood. */
1682 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1686 pci_write_config_word(dev
, pmcsr_pos
, pmcsr
);
1692 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1693 * @dev: Device to handle.
1694 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1696 * Check if @dev has generated PME and queue a resume request for it in that
1699 static int pci_pme_wakeup(struct pci_dev
*dev
, void *pme_poll_reset
)
1701 if (pme_poll_reset
&& dev
->pme_poll
)
1702 dev
->pme_poll
= false;
1704 if (pci_check_pme_status(dev
)) {
1705 pci_wakeup_event(dev
);
1706 pm_request_resume(&dev
->dev
);
1712 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1713 * @bus: Top bus of the subtree to walk.
1715 void pci_pme_wakeup_bus(struct pci_bus
*bus
)
1718 pci_walk_bus(bus
, pci_pme_wakeup
, (void *)true);
1723 * pci_pme_capable - check the capability of PCI device to generate PME#
1724 * @dev: PCI device to handle.
1725 * @state: PCI state from which device will issue PME#.
1727 bool pci_pme_capable(struct pci_dev
*dev
, pci_power_t state
)
1732 return !!(dev
->pme_support
& (1 << state
));
1734 EXPORT_SYMBOL(pci_pme_capable
);
1736 static void pci_pme_list_scan(struct work_struct
*work
)
1738 struct pci_pme_device
*pme_dev
, *n
;
1740 mutex_lock(&pci_pme_list_mutex
);
1741 list_for_each_entry_safe(pme_dev
, n
, &pci_pme_list
, list
) {
1742 if (pme_dev
->dev
->pme_poll
) {
1743 struct pci_dev
*bridge
;
1745 bridge
= pme_dev
->dev
->bus
->self
;
1747 * If bridge is in low power state, the
1748 * configuration space of subordinate devices
1749 * may be not accessible
1751 if (bridge
&& bridge
->current_state
!= PCI_D0
)
1753 pci_pme_wakeup(pme_dev
->dev
, NULL
);
1755 list_del(&pme_dev
->list
);
1759 if (!list_empty(&pci_pme_list
))
1760 schedule_delayed_work(&pci_pme_work
,
1761 msecs_to_jiffies(PME_TIMEOUT
));
1762 mutex_unlock(&pci_pme_list_mutex
);
1765 static void __pci_pme_active(struct pci_dev
*dev
, bool enable
)
1769 if (!dev
->pme_support
)
1772 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1773 /* Clear PME_Status by writing 1 to it and enable PME# */
1774 pmcsr
|= PCI_PM_CTRL_PME_STATUS
| PCI_PM_CTRL_PME_ENABLE
;
1776 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1778 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
1782 * pci_pme_active - enable or disable PCI device's PME# function
1783 * @dev: PCI device to handle.
1784 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1786 * The caller must verify that the device is capable of generating PME# before
1787 * calling this function with @enable equal to 'true'.
1789 void pci_pme_active(struct pci_dev
*dev
, bool enable
)
1791 __pci_pme_active(dev
, enable
);
1794 * PCI (as opposed to PCIe) PME requires that the device have
1795 * its PME# line hooked up correctly. Not all hardware vendors
1796 * do this, so the PME never gets delivered and the device
1797 * remains asleep. The easiest way around this is to
1798 * periodically walk the list of suspended devices and check
1799 * whether any have their PME flag set. The assumption is that
1800 * we'll wake up often enough anyway that this won't be a huge
1801 * hit, and the power savings from the devices will still be a
1804 * Although PCIe uses in-band PME message instead of PME# line
1805 * to report PME, PME does not work for some PCIe devices in
1806 * reality. For example, there are devices that set their PME
1807 * status bits, but don't really bother to send a PME message;
1808 * there are PCI Express Root Ports that don't bother to
1809 * trigger interrupts when they receive PME messages from the
1810 * devices below. So PME poll is used for PCIe devices too.
1813 if (dev
->pme_poll
) {
1814 struct pci_pme_device
*pme_dev
;
1816 pme_dev
= kmalloc(sizeof(struct pci_pme_device
),
1819 dev_warn(&dev
->dev
, "can't enable PME#\n");
1823 mutex_lock(&pci_pme_list_mutex
);
1824 list_add(&pme_dev
->list
, &pci_pme_list
);
1825 if (list_is_singular(&pci_pme_list
))
1826 schedule_delayed_work(&pci_pme_work
,
1827 msecs_to_jiffies(PME_TIMEOUT
));
1828 mutex_unlock(&pci_pme_list_mutex
);
1830 mutex_lock(&pci_pme_list_mutex
);
1831 list_for_each_entry(pme_dev
, &pci_pme_list
, list
) {
1832 if (pme_dev
->dev
== dev
) {
1833 list_del(&pme_dev
->list
);
1838 mutex_unlock(&pci_pme_list_mutex
);
1842 dev_dbg(&dev
->dev
, "PME# %s\n", enable
? "enabled" : "disabled");
1844 EXPORT_SYMBOL(pci_pme_active
);
1847 * __pci_enable_wake - enable PCI device as wakeup event source
1848 * @dev: PCI device affected
1849 * @state: PCI state from which device will issue wakeup events
1850 * @runtime: True if the events are to be generated at run time
1851 * @enable: True to enable event generation; false to disable
1853 * This enables the device as a wakeup event source, or disables it.
1854 * When such events involves platform-specific hooks, those hooks are
1855 * called automatically by this routine.
1857 * Devices with legacy power management (no standard PCI PM capabilities)
1858 * always require such platform hooks.
1861 * 0 is returned on success
1862 * -EINVAL is returned if device is not supposed to wake up the system
1863 * Error code depending on the platform is returned if both the platform and
1864 * the native mechanism fail to enable the generation of wake-up events
1866 int __pci_enable_wake(struct pci_dev
*dev
, pci_power_t state
,
1867 bool runtime
, bool enable
)
1871 if (enable
&& !runtime
&& !device_may_wakeup(&dev
->dev
))
1874 /* Don't do the same thing twice in a row for one device. */
1875 if (!!enable
== !!dev
->wakeup_prepared
)
1879 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1880 * Anderson we should be doing PME# wake enable followed by ACPI wake
1881 * enable. To disable wake-up we call the platform first, for symmetry.
1887 if (pci_pme_capable(dev
, state
))
1888 pci_pme_active(dev
, true);
1891 error
= runtime
? platform_pci_run_wake(dev
, true) :
1892 platform_pci_sleep_wake(dev
, true);
1896 dev
->wakeup_prepared
= true;
1899 platform_pci_run_wake(dev
, false);
1901 platform_pci_sleep_wake(dev
, false);
1902 pci_pme_active(dev
, false);
1903 dev
->wakeup_prepared
= false;
1908 EXPORT_SYMBOL(__pci_enable_wake
);
1911 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1912 * @dev: PCI device to prepare
1913 * @enable: True to enable wake-up event generation; false to disable
1915 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1916 * and this function allows them to set that up cleanly - pci_enable_wake()
1917 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1918 * ordering constraints.
1920 * This function only returns error code if the device is not capable of
1921 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1922 * enable wake-up power for it.
1924 int pci_wake_from_d3(struct pci_dev
*dev
, bool enable
)
1926 return pci_pme_capable(dev
, PCI_D3cold
) ?
1927 pci_enable_wake(dev
, PCI_D3cold
, enable
) :
1928 pci_enable_wake(dev
, PCI_D3hot
, enable
);
1930 EXPORT_SYMBOL(pci_wake_from_d3
);
1933 * pci_target_state - find an appropriate low power state for a given PCI dev
1936 * Use underlying platform code to find a supported low power state for @dev.
1937 * If the platform can't manage @dev, return the deepest state from which it
1938 * can generate wake events, based on any available PME info.
1940 static pci_power_t
pci_target_state(struct pci_dev
*dev
)
1942 pci_power_t target_state
= PCI_D3hot
;
1944 if (platform_pci_power_manageable(dev
)) {
1946 * Call the platform to choose the target state of the device
1947 * and enable wake-up from this state if supported.
1949 pci_power_t state
= platform_pci_choose_state(dev
);
1952 case PCI_POWER_ERROR
:
1957 if (pci_no_d1d2(dev
))
1960 target_state
= state
;
1962 } else if (!dev
->pm_cap
) {
1963 target_state
= PCI_D0
;
1964 } else if (device_may_wakeup(&dev
->dev
)) {
1966 * Find the deepest state from which the device can generate
1967 * wake-up events, make it the target state and enable device
1970 if (dev
->pme_support
) {
1972 && !(dev
->pme_support
& (1 << target_state
)))
1977 return target_state
;
1981 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1982 * @dev: Device to handle.
1984 * Choose the power state appropriate for the device depending on whether
1985 * it can wake up the system and/or is power manageable by the platform
1986 * (PCI_D3hot is the default) and put the device into that state.
1988 int pci_prepare_to_sleep(struct pci_dev
*dev
)
1990 pci_power_t target_state
= pci_target_state(dev
);
1993 if (target_state
== PCI_POWER_ERROR
)
1996 pci_enable_wake(dev
, target_state
, device_may_wakeup(&dev
->dev
));
1998 error
= pci_set_power_state(dev
, target_state
);
2001 pci_enable_wake(dev
, target_state
, false);
2005 EXPORT_SYMBOL(pci_prepare_to_sleep
);
2008 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2009 * @dev: Device to handle.
2011 * Disable device's system wake-up capability and put it into D0.
2013 int pci_back_from_sleep(struct pci_dev
*dev
)
2015 pci_enable_wake(dev
, PCI_D0
, false);
2016 return pci_set_power_state(dev
, PCI_D0
);
2018 EXPORT_SYMBOL(pci_back_from_sleep
);
2021 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2022 * @dev: PCI device being suspended.
2024 * Prepare @dev to generate wake-up events at run time and put it into a low
2027 int pci_finish_runtime_suspend(struct pci_dev
*dev
)
2029 pci_power_t target_state
= pci_target_state(dev
);
2032 if (target_state
== PCI_POWER_ERROR
)
2035 dev
->runtime_d3cold
= target_state
== PCI_D3cold
;
2037 __pci_enable_wake(dev
, target_state
, true, pci_dev_run_wake(dev
));
2039 error
= pci_set_power_state(dev
, target_state
);
2042 __pci_enable_wake(dev
, target_state
, true, false);
2043 dev
->runtime_d3cold
= false;
2050 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2051 * @dev: Device to check.
2053 * Return true if the device itself is capable of generating wake-up events
2054 * (through the platform or using the native PCIe PME) or if the device supports
2055 * PME and one of its upstream bridges can generate wake-up events.
2057 bool pci_dev_run_wake(struct pci_dev
*dev
)
2059 struct pci_bus
*bus
= dev
->bus
;
2061 if (device_run_wake(&dev
->dev
))
2064 if (!dev
->pme_support
)
2067 while (bus
->parent
) {
2068 struct pci_dev
*bridge
= bus
->self
;
2070 if (device_run_wake(&bridge
->dev
))
2076 /* We have reached the root bus. */
2078 return device_run_wake(bus
->bridge
);
2082 EXPORT_SYMBOL_GPL(pci_dev_run_wake
);
2085 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2086 * @pci_dev: Device to check.
2088 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2089 * reconfigured due to wakeup settings difference between system and runtime
2090 * suspend and the current power state of it is suitable for the upcoming
2091 * (system) transition.
2093 * If the device is not configured for system wakeup, disable PME for it before
2094 * returning 'true' to prevent it from waking up the system unnecessarily.
2096 bool pci_dev_keep_suspended(struct pci_dev
*pci_dev
)
2098 struct device
*dev
= &pci_dev
->dev
;
2100 if (!pm_runtime_suspended(dev
)
2101 || pci_target_state(pci_dev
) != pci_dev
->current_state
2102 || platform_pci_need_resume(pci_dev
))
2106 * At this point the device is good to go unless it's been configured
2107 * to generate PME at the runtime suspend time, but it is not supposed
2108 * to wake up the system. In that case, simply disable PME for it
2109 * (it will have to be re-enabled on exit from system resume).
2111 * If the device's power state is D3cold and the platform check above
2112 * hasn't triggered, the device's configuration is suitable and we don't
2113 * need to manipulate it at all.
2115 spin_lock_irq(&dev
->power
.lock
);
2117 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
&&
2118 !device_may_wakeup(dev
))
2119 __pci_pme_active(pci_dev
, false);
2121 spin_unlock_irq(&dev
->power
.lock
);
2126 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2127 * @pci_dev: Device to handle.
2129 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2130 * it might have been disabled during the prepare phase of system suspend if
2131 * the device was not configured for system wakeup.
2133 void pci_dev_complete_resume(struct pci_dev
*pci_dev
)
2135 struct device
*dev
= &pci_dev
->dev
;
2137 if (!pci_dev_run_wake(pci_dev
))
2140 spin_lock_irq(&dev
->power
.lock
);
2142 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
)
2143 __pci_pme_active(pci_dev
, true);
2145 spin_unlock_irq(&dev
->power
.lock
);
2148 void pci_config_pm_runtime_get(struct pci_dev
*pdev
)
2150 struct device
*dev
= &pdev
->dev
;
2151 struct device
*parent
= dev
->parent
;
2154 pm_runtime_get_sync(parent
);
2155 pm_runtime_get_noresume(dev
);
2157 * pdev->current_state is set to PCI_D3cold during suspending,
2158 * so wait until suspending completes
2160 pm_runtime_barrier(dev
);
2162 * Only need to resume devices in D3cold, because config
2163 * registers are still accessible for devices suspended but
2166 if (pdev
->current_state
== PCI_D3cold
)
2167 pm_runtime_resume(dev
);
2170 void pci_config_pm_runtime_put(struct pci_dev
*pdev
)
2172 struct device
*dev
= &pdev
->dev
;
2173 struct device
*parent
= dev
->parent
;
2175 pm_runtime_put(dev
);
2177 pm_runtime_put_sync(parent
);
2181 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2182 * @bridge: Bridge to check
2184 * This function checks if it is possible to move the bridge to D3.
2185 * Currently we only allow D3 for recent enough PCIe ports.
2187 static bool pci_bridge_d3_possible(struct pci_dev
*bridge
)
2191 if (!pci_is_pcie(bridge
))
2194 switch (pci_pcie_type(bridge
)) {
2195 case PCI_EXP_TYPE_ROOT_PORT
:
2196 case PCI_EXP_TYPE_UPSTREAM
:
2197 case PCI_EXP_TYPE_DOWNSTREAM
:
2198 if (pci_bridge_d3_disable
)
2200 if (pci_bridge_d3_force
)
2204 * It should be safe to put PCIe ports from 2015 or newer
2207 if (dmi_get_date(DMI_BIOS_DATE
, &year
, NULL
, NULL
) &&
2217 static int pci_dev_check_d3cold(struct pci_dev
*dev
, void *data
)
2219 bool *d3cold_ok
= data
;
2223 * The device needs to be allowed to go D3cold and if it is wake
2224 * capable to do so from D3cold.
2226 no_d3cold
= dev
->no_d3cold
|| !dev
->d3cold_allowed
||
2227 (device_may_wakeup(&dev
->dev
) && !pci_pme_capable(dev
, PCI_D3cold
)) ||
2228 !pci_power_manageable(dev
);
2230 *d3cold_ok
= !no_d3cold
;
2236 * pci_bridge_d3_update - Update bridge D3 capabilities
2237 * @dev: PCI device which is changed
2238 * @remove: Is the device being removed
2240 * Update upstream bridge PM capabilities accordingly depending on if the
2241 * device PM configuration was changed or the device is being removed. The
2242 * change is also propagated upstream.
2244 static void pci_bridge_d3_update(struct pci_dev
*dev
, bool remove
)
2246 struct pci_dev
*bridge
;
2247 bool d3cold_ok
= true;
2249 bridge
= pci_upstream_bridge(dev
);
2250 if (!bridge
|| !pci_bridge_d3_possible(bridge
))
2253 pci_dev_get(bridge
);
2255 * If the device is removed we do not care about its D3cold
2259 pci_dev_check_d3cold(dev
, &d3cold_ok
);
2263 * We need to go through all children to find out if all of
2264 * them can still go to D3cold.
2266 pci_walk_bus(bridge
->subordinate
, pci_dev_check_d3cold
,
2270 if (bridge
->bridge_d3
!= d3cold_ok
) {
2271 bridge
->bridge_d3
= d3cold_ok
;
2272 /* Propagate change to upstream bridges */
2273 pci_bridge_d3_update(bridge
, false);
2276 pci_dev_put(bridge
);
2280 * pci_bridge_d3_device_changed - Update bridge D3 capabilities on change
2281 * @dev: PCI device that was changed
2283 * If a device is added or its PM configuration, such as is it allowed to
2284 * enter D3cold, is changed this function updates upstream bridge PM
2285 * capabilities accordingly.
2287 void pci_bridge_d3_device_changed(struct pci_dev
*dev
)
2289 pci_bridge_d3_update(dev
, false);
2293 * pci_bridge_d3_device_removed - Update bridge D3 capabilities on remove
2294 * @dev: PCI device being removed
2296 * Function updates upstream bridge PM capabilities based on other devices
2297 * still left on the bus.
2299 void pci_bridge_d3_device_removed(struct pci_dev
*dev
)
2301 pci_bridge_d3_update(dev
, true);
2305 * pci_d3cold_enable - Enable D3cold for device
2306 * @dev: PCI device to handle
2308 * This function can be used in drivers to enable D3cold from the device
2309 * they handle. It also updates upstream PCI bridge PM capabilities
2312 void pci_d3cold_enable(struct pci_dev
*dev
)
2314 if (dev
->no_d3cold
) {
2315 dev
->no_d3cold
= false;
2316 pci_bridge_d3_device_changed(dev
);
2319 EXPORT_SYMBOL_GPL(pci_d3cold_enable
);
2322 * pci_d3cold_disable - Disable D3cold for device
2323 * @dev: PCI device to handle
2325 * This function can be used in drivers to disable D3cold from the device
2326 * they handle. It also updates upstream PCI bridge PM capabilities
2329 void pci_d3cold_disable(struct pci_dev
*dev
)
2331 if (!dev
->no_d3cold
) {
2332 dev
->no_d3cold
= true;
2333 pci_bridge_d3_device_changed(dev
);
2336 EXPORT_SYMBOL_GPL(pci_d3cold_disable
);
2339 * pci_pm_init - Initialize PM functions of given PCI device
2340 * @dev: PCI device to handle.
2342 void pci_pm_init(struct pci_dev
*dev
)
2347 pm_runtime_forbid(&dev
->dev
);
2348 pm_runtime_set_active(&dev
->dev
);
2349 pm_runtime_enable(&dev
->dev
);
2350 device_enable_async_suspend(&dev
->dev
);
2351 dev
->wakeup_prepared
= false;
2354 dev
->pme_support
= 0;
2356 /* find PCI PM capability in list */
2357 pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
2360 /* Check device's ability to generate PME# */
2361 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &pmc
);
2363 if ((pmc
& PCI_PM_CAP_VER_MASK
) > 3) {
2364 dev_err(&dev
->dev
, "unsupported PM cap regs version (%u)\n",
2365 pmc
& PCI_PM_CAP_VER_MASK
);
2370 dev
->d3_delay
= PCI_PM_D3_WAIT
;
2371 dev
->d3cold_delay
= PCI_PM_D3COLD_WAIT
;
2372 dev
->bridge_d3
= pci_bridge_d3_possible(dev
);
2373 dev
->d3cold_allowed
= true;
2375 dev
->d1_support
= false;
2376 dev
->d2_support
= false;
2377 if (!pci_no_d1d2(dev
)) {
2378 if (pmc
& PCI_PM_CAP_D1
)
2379 dev
->d1_support
= true;
2380 if (pmc
& PCI_PM_CAP_D2
)
2381 dev
->d2_support
= true;
2383 if (dev
->d1_support
|| dev
->d2_support
)
2384 dev_printk(KERN_DEBUG
, &dev
->dev
, "supports%s%s\n",
2385 dev
->d1_support
? " D1" : "",
2386 dev
->d2_support
? " D2" : "");
2389 pmc
&= PCI_PM_CAP_PME_MASK
;
2391 dev_printk(KERN_DEBUG
, &dev
->dev
,
2392 "PME# supported from%s%s%s%s%s\n",
2393 (pmc
& PCI_PM_CAP_PME_D0
) ? " D0" : "",
2394 (pmc
& PCI_PM_CAP_PME_D1
) ? " D1" : "",
2395 (pmc
& PCI_PM_CAP_PME_D2
) ? " D2" : "",
2396 (pmc
& PCI_PM_CAP_PME_D3
) ? " D3hot" : "",
2397 (pmc
& PCI_PM_CAP_PME_D3cold
) ? " D3cold" : "");
2398 dev
->pme_support
= pmc
>> PCI_PM_CAP_PME_SHIFT
;
2399 dev
->pme_poll
= true;
2401 * Make device's PM flags reflect the wake-up capability, but
2402 * let the user space enable it to wake up the system as needed.
2404 device_set_wakeup_capable(&dev
->dev
, true);
2405 /* Disable the PME# generation functionality */
2406 pci_pme_active(dev
, false);
2410 static unsigned long pci_ea_flags(struct pci_dev
*dev
, u8 prop
)
2412 unsigned long flags
= IORESOURCE_PCI_FIXED
| IORESOURCE_PCI_EA_BEI
;
2416 case PCI_EA_P_VF_MEM
:
2417 flags
|= IORESOURCE_MEM
;
2419 case PCI_EA_P_MEM_PREFETCH
:
2420 case PCI_EA_P_VF_MEM_PREFETCH
:
2421 flags
|= IORESOURCE_MEM
| IORESOURCE_PREFETCH
;
2424 flags
|= IORESOURCE_IO
;
2433 static struct resource
*pci_ea_get_resource(struct pci_dev
*dev
, u8 bei
,
2436 if (bei
<= PCI_EA_BEI_BAR5
&& prop
<= PCI_EA_P_IO
)
2437 return &dev
->resource
[bei
];
2438 #ifdef CONFIG_PCI_IOV
2439 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
&&
2440 (prop
== PCI_EA_P_VF_MEM
|| prop
== PCI_EA_P_VF_MEM_PREFETCH
))
2441 return &dev
->resource
[PCI_IOV_RESOURCES
+
2442 bei
- PCI_EA_BEI_VF_BAR0
];
2444 else if (bei
== PCI_EA_BEI_ROM
)
2445 return &dev
->resource
[PCI_ROM_RESOURCE
];
2450 /* Read an Enhanced Allocation (EA) entry */
2451 static int pci_ea_read(struct pci_dev
*dev
, int offset
)
2453 struct resource
*res
;
2454 int ent_size
, ent_offset
= offset
;
2455 resource_size_t start
, end
;
2456 unsigned long flags
;
2457 u32 dw0
, bei
, base
, max_offset
;
2459 bool support_64
= (sizeof(resource_size_t
) >= 8);
2461 pci_read_config_dword(dev
, ent_offset
, &dw0
);
2464 /* Entry size field indicates DWORDs after 1st */
2465 ent_size
= ((dw0
& PCI_EA_ES
) + 1) << 2;
2467 if (!(dw0
& PCI_EA_ENABLE
)) /* Entry not enabled */
2470 bei
= (dw0
& PCI_EA_BEI
) >> 4;
2471 prop
= (dw0
& PCI_EA_PP
) >> 8;
2474 * If the Property is in the reserved range, try the Secondary
2477 if (prop
> PCI_EA_P_BRIDGE_IO
&& prop
< PCI_EA_P_MEM_RESERVED
)
2478 prop
= (dw0
& PCI_EA_SP
) >> 16;
2479 if (prop
> PCI_EA_P_BRIDGE_IO
)
2482 res
= pci_ea_get_resource(dev
, bei
, prop
);
2484 dev_err(&dev
->dev
, "Unsupported EA entry BEI: %u\n", bei
);
2488 flags
= pci_ea_flags(dev
, prop
);
2490 dev_err(&dev
->dev
, "Unsupported EA properties: %#x\n", prop
);
2495 pci_read_config_dword(dev
, ent_offset
, &base
);
2496 start
= (base
& PCI_EA_FIELD_MASK
);
2499 /* Read MaxOffset */
2500 pci_read_config_dword(dev
, ent_offset
, &max_offset
);
2503 /* Read Base MSBs (if 64-bit entry) */
2504 if (base
& PCI_EA_IS_64
) {
2507 pci_read_config_dword(dev
, ent_offset
, &base_upper
);
2510 flags
|= IORESOURCE_MEM_64
;
2512 /* entry starts above 32-bit boundary, can't use */
2513 if (!support_64
&& base_upper
)
2517 start
|= ((u64
)base_upper
<< 32);
2520 end
= start
+ (max_offset
| 0x03);
2522 /* Read MaxOffset MSBs (if 64-bit entry) */
2523 if (max_offset
& PCI_EA_IS_64
) {
2524 u32 max_offset_upper
;
2526 pci_read_config_dword(dev
, ent_offset
, &max_offset_upper
);
2529 flags
|= IORESOURCE_MEM_64
;
2531 /* entry too big, can't use */
2532 if (!support_64
&& max_offset_upper
)
2536 end
+= ((u64
)max_offset_upper
<< 32);
2540 dev_err(&dev
->dev
, "EA Entry crosses address boundary\n");
2544 if (ent_size
!= ent_offset
- offset
) {
2546 "EA Entry Size (%d) does not match length read (%d)\n",
2547 ent_size
, ent_offset
- offset
);
2551 res
->name
= pci_name(dev
);
2556 if (bei
<= PCI_EA_BEI_BAR5
)
2557 dev_printk(KERN_DEBUG
, &dev
->dev
, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2559 else if (bei
== PCI_EA_BEI_ROM
)
2560 dev_printk(KERN_DEBUG
, &dev
->dev
, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2562 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
)
2563 dev_printk(KERN_DEBUG
, &dev
->dev
, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2564 bei
- PCI_EA_BEI_VF_BAR0
, res
, prop
);
2566 dev_printk(KERN_DEBUG
, &dev
->dev
, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2570 return offset
+ ent_size
;
2573 /* Enhanced Allocation Initialization */
2574 void pci_ea_init(struct pci_dev
*dev
)
2581 /* find PCI EA capability in list */
2582 ea
= pci_find_capability(dev
, PCI_CAP_ID_EA
);
2586 /* determine the number of entries */
2587 pci_bus_read_config_byte(dev
->bus
, dev
->devfn
, ea
+ PCI_EA_NUM_ENT
,
2589 num_ent
&= PCI_EA_NUM_ENT_MASK
;
2591 offset
= ea
+ PCI_EA_FIRST_ENT
;
2593 /* Skip DWORD 2 for type 1 functions */
2594 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
)
2597 /* parse each EA entry */
2598 for (i
= 0; i
< num_ent
; ++i
)
2599 offset
= pci_ea_read(dev
, offset
);
2602 static void pci_add_saved_cap(struct pci_dev
*pci_dev
,
2603 struct pci_cap_saved_state
*new_cap
)
2605 hlist_add_head(&new_cap
->next
, &pci_dev
->saved_cap_space
);
2609 * _pci_add_cap_save_buffer - allocate buffer for saving given
2610 * capability registers
2611 * @dev: the PCI device
2612 * @cap: the capability to allocate the buffer for
2613 * @extended: Standard or Extended capability ID
2614 * @size: requested size of the buffer
2616 static int _pci_add_cap_save_buffer(struct pci_dev
*dev
, u16 cap
,
2617 bool extended
, unsigned int size
)
2620 struct pci_cap_saved_state
*save_state
;
2623 pos
= pci_find_ext_capability(dev
, cap
);
2625 pos
= pci_find_capability(dev
, cap
);
2630 save_state
= kzalloc(sizeof(*save_state
) + size
, GFP_KERNEL
);
2634 save_state
->cap
.cap_nr
= cap
;
2635 save_state
->cap
.cap_extended
= extended
;
2636 save_state
->cap
.size
= size
;
2637 pci_add_saved_cap(dev
, save_state
);
2642 int pci_add_cap_save_buffer(struct pci_dev
*dev
, char cap
, unsigned int size
)
2644 return _pci_add_cap_save_buffer(dev
, cap
, false, size
);
2647 int pci_add_ext_cap_save_buffer(struct pci_dev
*dev
, u16 cap
, unsigned int size
)
2649 return _pci_add_cap_save_buffer(dev
, cap
, true, size
);
2653 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2654 * @dev: the PCI device
2656 void pci_allocate_cap_save_buffers(struct pci_dev
*dev
)
2660 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_EXP
,
2661 PCI_EXP_SAVE_REGS
* sizeof(u16
));
2664 "unable to preallocate PCI Express save buffer\n");
2666 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_PCIX
, sizeof(u16
));
2669 "unable to preallocate PCI-X save buffer\n");
2671 pci_allocate_vc_save_buffers(dev
);
2674 void pci_free_cap_save_buffers(struct pci_dev
*dev
)
2676 struct pci_cap_saved_state
*tmp
;
2677 struct hlist_node
*n
;
2679 hlist_for_each_entry_safe(tmp
, n
, &dev
->saved_cap_space
, next
)
2684 * pci_configure_ari - enable or disable ARI forwarding
2685 * @dev: the PCI device
2687 * If @dev and its upstream bridge both support ARI, enable ARI in the
2688 * bridge. Otherwise, disable ARI in the bridge.
2690 void pci_configure_ari(struct pci_dev
*dev
)
2693 struct pci_dev
*bridge
;
2695 if (pcie_ari_disabled
|| !pci_is_pcie(dev
) || dev
->devfn
)
2698 bridge
= dev
->bus
->self
;
2702 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
2703 if (!(cap
& PCI_EXP_DEVCAP2_ARI
))
2706 if (pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ARI
)) {
2707 pcie_capability_set_word(bridge
, PCI_EXP_DEVCTL2
,
2708 PCI_EXP_DEVCTL2_ARI
);
2709 bridge
->ari_enabled
= 1;
2711 pcie_capability_clear_word(bridge
, PCI_EXP_DEVCTL2
,
2712 PCI_EXP_DEVCTL2_ARI
);
2713 bridge
->ari_enabled
= 0;
2717 static int pci_acs_enable
;
2720 * pci_request_acs - ask for ACS to be enabled if supported
2722 void pci_request_acs(void)
2728 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2729 * @dev: the PCI device
2731 static void pci_std_enable_acs(struct pci_dev
*dev
)
2737 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
2741 pci_read_config_word(dev
, pos
+ PCI_ACS_CAP
, &cap
);
2742 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2744 /* Source Validation */
2745 ctrl
|= (cap
& PCI_ACS_SV
);
2747 /* P2P Request Redirect */
2748 ctrl
|= (cap
& PCI_ACS_RR
);
2750 /* P2P Completion Redirect */
2751 ctrl
|= (cap
& PCI_ACS_CR
);
2753 /* Upstream Forwarding */
2754 ctrl
|= (cap
& PCI_ACS_UF
);
2756 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
2760 * pci_enable_acs - enable ACS if hardware support it
2761 * @dev: the PCI device
2763 void pci_enable_acs(struct pci_dev
*dev
)
2765 if (!pci_acs_enable
)
2768 if (!pci_dev_specific_enable_acs(dev
))
2771 pci_std_enable_acs(dev
);
2774 static bool pci_acs_flags_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2779 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ACS
);
2784 * Except for egress control, capabilities are either required
2785 * or only required if controllable. Features missing from the
2786 * capability field can therefore be assumed as hard-wired enabled.
2788 pci_read_config_word(pdev
, pos
+ PCI_ACS_CAP
, &cap
);
2789 acs_flags
&= (cap
| PCI_ACS_EC
);
2791 pci_read_config_word(pdev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2792 return (ctrl
& acs_flags
) == acs_flags
;
2796 * pci_acs_enabled - test ACS against required flags for a given device
2797 * @pdev: device to test
2798 * @acs_flags: required PCI ACS flags
2800 * Return true if the device supports the provided flags. Automatically
2801 * filters out flags that are not implemented on multifunction devices.
2803 * Note that this interface checks the effective ACS capabilities of the
2804 * device rather than the actual capabilities. For instance, most single
2805 * function endpoints are not required to support ACS because they have no
2806 * opportunity for peer-to-peer access. We therefore return 'true'
2807 * regardless of whether the device exposes an ACS capability. This makes
2808 * it much easier for callers of this function to ignore the actual type
2809 * or topology of the device when testing ACS support.
2811 bool pci_acs_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2815 ret
= pci_dev_specific_acs_enabled(pdev
, acs_flags
);
2820 * Conventional PCI and PCI-X devices never support ACS, either
2821 * effectively or actually. The shared bus topology implies that
2822 * any device on the bus can receive or snoop DMA.
2824 if (!pci_is_pcie(pdev
))
2827 switch (pci_pcie_type(pdev
)) {
2829 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2830 * but since their primary interface is PCI/X, we conservatively
2831 * handle them as we would a non-PCIe device.
2833 case PCI_EXP_TYPE_PCIE_BRIDGE
:
2835 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2836 * applicable... must never implement an ACS Extended Capability...".
2837 * This seems arbitrary, but we take a conservative interpretation
2838 * of this statement.
2840 case PCI_EXP_TYPE_PCI_BRIDGE
:
2841 case PCI_EXP_TYPE_RC_EC
:
2844 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2845 * implement ACS in order to indicate their peer-to-peer capabilities,
2846 * regardless of whether they are single- or multi-function devices.
2848 case PCI_EXP_TYPE_DOWNSTREAM
:
2849 case PCI_EXP_TYPE_ROOT_PORT
:
2850 return pci_acs_flags_enabled(pdev
, acs_flags
);
2852 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2853 * implemented by the remaining PCIe types to indicate peer-to-peer
2854 * capabilities, but only when they are part of a multifunction
2855 * device. The footnote for section 6.12 indicates the specific
2856 * PCIe types included here.
2858 case PCI_EXP_TYPE_ENDPOINT
:
2859 case PCI_EXP_TYPE_UPSTREAM
:
2860 case PCI_EXP_TYPE_LEG_END
:
2861 case PCI_EXP_TYPE_RC_END
:
2862 if (!pdev
->multifunction
)
2865 return pci_acs_flags_enabled(pdev
, acs_flags
);
2869 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2870 * to single function devices with the exception of downstream ports.
2876 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2877 * @start: starting downstream device
2878 * @end: ending upstream device or NULL to search to the root bus
2879 * @acs_flags: required flags
2881 * Walk up a device tree from start to end testing PCI ACS support. If
2882 * any step along the way does not support the required flags, return false.
2884 bool pci_acs_path_enabled(struct pci_dev
*start
,
2885 struct pci_dev
*end
, u16 acs_flags
)
2887 struct pci_dev
*pdev
, *parent
= start
;
2892 if (!pci_acs_enabled(pdev
, acs_flags
))
2895 if (pci_is_root_bus(pdev
->bus
))
2896 return (end
== NULL
);
2898 parent
= pdev
->bus
->self
;
2899 } while (pdev
!= end
);
2905 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2906 * @dev: the PCI device
2907 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2909 * Perform INTx swizzling for a device behind one level of bridge. This is
2910 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2911 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2912 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2913 * the PCI Express Base Specification, Revision 2.1)
2915 u8
pci_swizzle_interrupt_pin(const struct pci_dev
*dev
, u8 pin
)
2919 if (pci_ari_enabled(dev
->bus
))
2922 slot
= PCI_SLOT(dev
->devfn
);
2924 return (((pin
- 1) + slot
) % 4) + 1;
2927 int pci_get_interrupt_pin(struct pci_dev
*dev
, struct pci_dev
**bridge
)
2935 while (!pci_is_root_bus(dev
->bus
)) {
2936 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
2937 dev
= dev
->bus
->self
;
2944 * pci_common_swizzle - swizzle INTx all the way to root bridge
2945 * @dev: the PCI device
2946 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2948 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2949 * bridges all the way up to a PCI root bus.
2951 u8
pci_common_swizzle(struct pci_dev
*dev
, u8
*pinp
)
2955 while (!pci_is_root_bus(dev
->bus
)) {
2956 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
2957 dev
= dev
->bus
->self
;
2960 return PCI_SLOT(dev
->devfn
);
2962 EXPORT_SYMBOL_GPL(pci_common_swizzle
);
2965 * pci_release_region - Release a PCI bar
2966 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2967 * @bar: BAR to release
2969 * Releases the PCI I/O and memory resources previously reserved by a
2970 * successful call to pci_request_region. Call this function only
2971 * after all use of the PCI regions has ceased.
2973 void pci_release_region(struct pci_dev
*pdev
, int bar
)
2975 struct pci_devres
*dr
;
2977 if (pci_resource_len(pdev
, bar
) == 0)
2979 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
)
2980 release_region(pci_resource_start(pdev
, bar
),
2981 pci_resource_len(pdev
, bar
));
2982 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)
2983 release_mem_region(pci_resource_start(pdev
, bar
),
2984 pci_resource_len(pdev
, bar
));
2986 dr
= find_pci_dr(pdev
);
2988 dr
->region_mask
&= ~(1 << bar
);
2990 EXPORT_SYMBOL(pci_release_region
);
2993 * __pci_request_region - Reserved PCI I/O and memory resource
2994 * @pdev: PCI device whose resources are to be reserved
2995 * @bar: BAR to be reserved
2996 * @res_name: Name to be associated with resource.
2997 * @exclusive: whether the region access is exclusive or not
2999 * Mark the PCI region associated with PCI device @pdev BR @bar as
3000 * being reserved by owner @res_name. Do not access any
3001 * address inside the PCI regions unless this call returns
3004 * If @exclusive is set, then the region is marked so that userspace
3005 * is explicitly not allowed to map the resource via /dev/mem or
3006 * sysfs MMIO access.
3008 * Returns 0 on success, or %EBUSY on error. A warning
3009 * message is also printed on failure.
3011 static int __pci_request_region(struct pci_dev
*pdev
, int bar
,
3012 const char *res_name
, int exclusive
)
3014 struct pci_devres
*dr
;
3016 if (pci_resource_len(pdev
, bar
) == 0)
3019 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
) {
3020 if (!request_region(pci_resource_start(pdev
, bar
),
3021 pci_resource_len(pdev
, bar
), res_name
))
3023 } else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
) {
3024 if (!__request_mem_region(pci_resource_start(pdev
, bar
),
3025 pci_resource_len(pdev
, bar
), res_name
,
3030 dr
= find_pci_dr(pdev
);
3032 dr
->region_mask
|= 1 << bar
;
3037 dev_warn(&pdev
->dev
, "BAR %d: can't reserve %pR\n", bar
,
3038 &pdev
->resource
[bar
]);
3043 * pci_request_region - Reserve PCI I/O and memory resource
3044 * @pdev: PCI device whose resources are to be reserved
3045 * @bar: BAR to be reserved
3046 * @res_name: Name to be associated with resource
3048 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3049 * being reserved by owner @res_name. Do not access any
3050 * address inside the PCI regions unless this call returns
3053 * Returns 0 on success, or %EBUSY on error. A warning
3054 * message is also printed on failure.
3056 int pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
)
3058 return __pci_request_region(pdev
, bar
, res_name
, 0);
3060 EXPORT_SYMBOL(pci_request_region
);
3063 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3064 * @pdev: PCI device whose resources are to be reserved
3065 * @bar: BAR to be reserved
3066 * @res_name: Name to be associated with resource.
3068 * Mark the PCI region associated with PCI device @pdev BR @bar as
3069 * being reserved by owner @res_name. Do not access any
3070 * address inside the PCI regions unless this call returns
3073 * Returns 0 on success, or %EBUSY on error. A warning
3074 * message is also printed on failure.
3076 * The key difference that _exclusive makes it that userspace is
3077 * explicitly not allowed to map the resource via /dev/mem or
3080 int pci_request_region_exclusive(struct pci_dev
*pdev
, int bar
,
3081 const char *res_name
)
3083 return __pci_request_region(pdev
, bar
, res_name
, IORESOURCE_EXCLUSIVE
);
3085 EXPORT_SYMBOL(pci_request_region_exclusive
);
3088 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3089 * @pdev: PCI device whose resources were previously reserved
3090 * @bars: Bitmask of BARs to be released
3092 * Release selected PCI I/O and memory resources previously reserved.
3093 * Call this function only after all use of the PCI regions has ceased.
3095 void pci_release_selected_regions(struct pci_dev
*pdev
, int bars
)
3099 for (i
= 0; i
< 6; i
++)
3100 if (bars
& (1 << i
))
3101 pci_release_region(pdev
, i
);
3103 EXPORT_SYMBOL(pci_release_selected_regions
);
3105 static int __pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3106 const char *res_name
, int excl
)
3110 for (i
= 0; i
< 6; i
++)
3111 if (bars
& (1 << i
))
3112 if (__pci_request_region(pdev
, i
, res_name
, excl
))
3118 if (bars
& (1 << i
))
3119 pci_release_region(pdev
, i
);
3126 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3127 * @pdev: PCI device whose resources are to be reserved
3128 * @bars: Bitmask of BARs to be requested
3129 * @res_name: Name to be associated with resource
3131 int pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3132 const char *res_name
)
3134 return __pci_request_selected_regions(pdev
, bars
, res_name
, 0);
3136 EXPORT_SYMBOL(pci_request_selected_regions
);
3138 int pci_request_selected_regions_exclusive(struct pci_dev
*pdev
, int bars
,
3139 const char *res_name
)
3141 return __pci_request_selected_regions(pdev
, bars
, res_name
,
3142 IORESOURCE_EXCLUSIVE
);
3144 EXPORT_SYMBOL(pci_request_selected_regions_exclusive
);
3147 * pci_release_regions - Release reserved PCI I/O and memory resources
3148 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3150 * Releases all PCI I/O and memory resources previously reserved by a
3151 * successful call to pci_request_regions. Call this function only
3152 * after all use of the PCI regions has ceased.
3155 void pci_release_regions(struct pci_dev
*pdev
)
3157 pci_release_selected_regions(pdev
, (1 << 6) - 1);
3159 EXPORT_SYMBOL(pci_release_regions
);
3162 * pci_request_regions - Reserved PCI I/O and memory resources
3163 * @pdev: PCI device whose resources are to be reserved
3164 * @res_name: Name to be associated with resource.
3166 * Mark all PCI regions associated with PCI device @pdev as
3167 * being reserved by owner @res_name. Do not access any
3168 * address inside the PCI regions unless this call returns
3171 * Returns 0 on success, or %EBUSY on error. A warning
3172 * message is also printed on failure.
3174 int pci_request_regions(struct pci_dev
*pdev
, const char *res_name
)
3176 return pci_request_selected_regions(pdev
, ((1 << 6) - 1), res_name
);
3178 EXPORT_SYMBOL(pci_request_regions
);
3181 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3182 * @pdev: PCI device whose resources are to be reserved
3183 * @res_name: Name to be associated with resource.
3185 * Mark all PCI regions associated with PCI device @pdev as
3186 * being reserved by owner @res_name. Do not access any
3187 * address inside the PCI regions unless this call returns
3190 * pci_request_regions_exclusive() will mark the region so that
3191 * /dev/mem and the sysfs MMIO access will not be allowed.
3193 * Returns 0 on success, or %EBUSY on error. A warning
3194 * message is also printed on failure.
3196 int pci_request_regions_exclusive(struct pci_dev
*pdev
, const char *res_name
)
3198 return pci_request_selected_regions_exclusive(pdev
,
3199 ((1 << 6) - 1), res_name
);
3201 EXPORT_SYMBOL(pci_request_regions_exclusive
);
3205 struct list_head list
;
3207 resource_size_t size
;
3210 static LIST_HEAD(io_range_list
);
3211 static DEFINE_SPINLOCK(io_range_lock
);
3215 * Record the PCI IO range (expressed as CPU physical address + size).
3216 * Return a negative value if an error has occured, zero otherwise
3218 int __weak
pci_register_io_range(phys_addr_t addr
, resource_size_t size
)
3223 struct io_range
*range
;
3224 resource_size_t allocated_size
= 0;
3226 /* check if the range hasn't been previously recorded */
3227 spin_lock(&io_range_lock
);
3228 list_for_each_entry(range
, &io_range_list
, list
) {
3229 if (addr
>= range
->start
&& addr
+ size
<= range
->start
+ size
) {
3230 /* range already registered, bail out */
3233 allocated_size
+= range
->size
;
3236 /* range not registed yet, check for available space */
3237 if (allocated_size
+ size
- 1 > IO_SPACE_LIMIT
) {
3238 /* if it's too big check if 64K space can be reserved */
3239 if (allocated_size
+ SZ_64K
- 1 > IO_SPACE_LIMIT
) {
3245 pr_warn("Requested IO range too big, new size set to 64K\n");
3248 /* add the range to the list */
3249 range
= kzalloc(sizeof(*range
), GFP_ATOMIC
);
3255 range
->start
= addr
;
3258 list_add_tail(&range
->list
, &io_range_list
);
3261 spin_unlock(&io_range_lock
);
3267 phys_addr_t
pci_pio_to_address(unsigned long pio
)
3269 phys_addr_t address
= (phys_addr_t
)OF_BAD_ADDR
;
3272 struct io_range
*range
;
3273 resource_size_t allocated_size
= 0;
3275 if (pio
> IO_SPACE_LIMIT
)
3278 spin_lock(&io_range_lock
);
3279 list_for_each_entry(range
, &io_range_list
, list
) {
3280 if (pio
>= allocated_size
&& pio
< allocated_size
+ range
->size
) {
3281 address
= range
->start
+ pio
- allocated_size
;
3284 allocated_size
+= range
->size
;
3286 spin_unlock(&io_range_lock
);
3292 unsigned long __weak
pci_address_to_pio(phys_addr_t address
)
3295 struct io_range
*res
;
3296 resource_size_t offset
= 0;
3297 unsigned long addr
= -1;
3299 spin_lock(&io_range_lock
);
3300 list_for_each_entry(res
, &io_range_list
, list
) {
3301 if (address
>= res
->start
&& address
< res
->start
+ res
->size
) {
3302 addr
= address
- res
->start
+ offset
;
3305 offset
+= res
->size
;
3307 spin_unlock(&io_range_lock
);
3311 if (address
> IO_SPACE_LIMIT
)
3312 return (unsigned long)-1;
3314 return (unsigned long) address
;
3319 * pci_remap_iospace - Remap the memory mapped I/O space
3320 * @res: Resource describing the I/O space
3321 * @phys_addr: physical address of range to be mapped
3323 * Remap the memory mapped I/O space described by the @res
3324 * and the CPU physical address @phys_addr into virtual address space.
3325 * Only architectures that have memory mapped IO functions defined
3326 * (and the PCI_IOBASE value defined) should call this function.
3328 int __weak
pci_remap_iospace(const struct resource
*res
, phys_addr_t phys_addr
)
3330 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3331 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
3333 if (!(res
->flags
& IORESOURCE_IO
))
3336 if (res
->end
> IO_SPACE_LIMIT
)
3339 return ioremap_page_range(vaddr
, vaddr
+ resource_size(res
), phys_addr
,
3340 pgprot_device(PAGE_KERNEL
));
3342 /* this architecture does not have memory mapped I/O space,
3343 so this function should never be called */
3344 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3350 * pci_unmap_iospace - Unmap the memory mapped I/O space
3351 * @res: resource to be unmapped
3353 * Unmap the CPU virtual address @res from virtual address space.
3354 * Only architectures that have memory mapped IO functions defined
3355 * (and the PCI_IOBASE value defined) should call this function.
3357 void pci_unmap_iospace(struct resource
*res
)
3359 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3360 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
3362 unmap_kernel_range(vaddr
, resource_size(res
));
3366 static void __pci_set_master(struct pci_dev
*dev
, bool enable
)
3370 pci_read_config_word(dev
, PCI_COMMAND
, &old_cmd
);
3372 cmd
= old_cmd
| PCI_COMMAND_MASTER
;
3374 cmd
= old_cmd
& ~PCI_COMMAND_MASTER
;
3375 if (cmd
!= old_cmd
) {
3376 dev_dbg(&dev
->dev
, "%s bus mastering\n",
3377 enable
? "enabling" : "disabling");
3378 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3380 dev
->is_busmaster
= enable
;
3384 * pcibios_setup - process "pci=" kernel boot arguments
3385 * @str: string used to pass in "pci=" kernel boot arguments
3387 * Process kernel boot arguments. This is the default implementation.
3388 * Architecture specific implementations can override this as necessary.
3390 char * __weak __init
pcibios_setup(char *str
)
3396 * pcibios_set_master - enable PCI bus-mastering for device dev
3397 * @dev: the PCI device to enable
3399 * Enables PCI bus-mastering for the device. This is the default
3400 * implementation. Architecture specific implementations can override
3401 * this if necessary.
3403 void __weak
pcibios_set_master(struct pci_dev
*dev
)
3407 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3408 if (pci_is_pcie(dev
))
3411 pci_read_config_byte(dev
, PCI_LATENCY_TIMER
, &lat
);
3413 lat
= (64 <= pcibios_max_latency
) ? 64 : pcibios_max_latency
;
3414 else if (lat
> pcibios_max_latency
)
3415 lat
= pcibios_max_latency
;
3419 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, lat
);
3423 * pci_set_master - enables bus-mastering for device dev
3424 * @dev: the PCI device to enable
3426 * Enables bus-mastering on the device and calls pcibios_set_master()
3427 * to do the needed arch specific settings.
3429 void pci_set_master(struct pci_dev
*dev
)
3431 __pci_set_master(dev
, true);
3432 pcibios_set_master(dev
);
3434 EXPORT_SYMBOL(pci_set_master
);
3437 * pci_clear_master - disables bus-mastering for device dev
3438 * @dev: the PCI device to disable
3440 void pci_clear_master(struct pci_dev
*dev
)
3442 __pci_set_master(dev
, false);
3444 EXPORT_SYMBOL(pci_clear_master
);
3447 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3448 * @dev: the PCI device for which MWI is to be enabled
3450 * Helper function for pci_set_mwi.
3451 * Originally copied from drivers/net/acenic.c.
3452 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3454 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3456 int pci_set_cacheline_size(struct pci_dev
*dev
)
3460 if (!pci_cache_line_size
)
3463 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3464 equal to or multiple of the right value. */
3465 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
3466 if (cacheline_size
>= pci_cache_line_size
&&
3467 (cacheline_size
% pci_cache_line_size
) == 0)
3470 /* Write the correct value. */
3471 pci_write_config_byte(dev
, PCI_CACHE_LINE_SIZE
, pci_cache_line_size
);
3473 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
3474 if (cacheline_size
== pci_cache_line_size
)
3477 dev_printk(KERN_DEBUG
, &dev
->dev
, "cache line size of %d is not supported\n",
3478 pci_cache_line_size
<< 2);
3482 EXPORT_SYMBOL_GPL(pci_set_cacheline_size
);
3485 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3486 * @dev: the PCI device for which MWI is enabled
3488 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3490 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3492 int pci_set_mwi(struct pci_dev
*dev
)
3494 #ifdef PCI_DISABLE_MWI
3500 rc
= pci_set_cacheline_size(dev
);
3504 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
3505 if (!(cmd
& PCI_COMMAND_INVALIDATE
)) {
3506 dev_dbg(&dev
->dev
, "enabling Mem-Wr-Inval\n");
3507 cmd
|= PCI_COMMAND_INVALIDATE
;
3508 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3513 EXPORT_SYMBOL(pci_set_mwi
);
3516 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3517 * @dev: the PCI device for which MWI is enabled
3519 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3520 * Callers are not required to check the return value.
3522 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3524 int pci_try_set_mwi(struct pci_dev
*dev
)
3526 #ifdef PCI_DISABLE_MWI
3529 return pci_set_mwi(dev
);
3532 EXPORT_SYMBOL(pci_try_set_mwi
);
3535 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3536 * @dev: the PCI device to disable
3538 * Disables PCI Memory-Write-Invalidate transaction on the device
3540 void pci_clear_mwi(struct pci_dev
*dev
)
3542 #ifndef PCI_DISABLE_MWI
3545 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
3546 if (cmd
& PCI_COMMAND_INVALIDATE
) {
3547 cmd
&= ~PCI_COMMAND_INVALIDATE
;
3548 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3552 EXPORT_SYMBOL(pci_clear_mwi
);
3555 * pci_intx - enables/disables PCI INTx for device dev
3556 * @pdev: the PCI device to operate on
3557 * @enable: boolean: whether to enable or disable PCI INTx
3559 * Enables/disables PCI INTx for device dev
3561 void pci_intx(struct pci_dev
*pdev
, int enable
)
3563 u16 pci_command
, new;
3565 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_command
);
3568 new = pci_command
& ~PCI_COMMAND_INTX_DISABLE
;
3570 new = pci_command
| PCI_COMMAND_INTX_DISABLE
;
3572 if (new != pci_command
) {
3573 struct pci_devres
*dr
;
3575 pci_write_config_word(pdev
, PCI_COMMAND
, new);
3577 dr
= find_pci_dr(pdev
);
3578 if (dr
&& !dr
->restore_intx
) {
3579 dr
->restore_intx
= 1;
3580 dr
->orig_intx
= !enable
;
3584 EXPORT_SYMBOL_GPL(pci_intx
);
3587 * pci_intx_mask_supported - probe for INTx masking support
3588 * @dev: the PCI device to operate on
3590 * Check if the device dev support INTx masking via the config space
3593 bool pci_intx_mask_supported(struct pci_dev
*dev
)
3595 bool mask_supported
= false;
3598 if (dev
->broken_intx_masking
)
3601 pci_cfg_access_lock(dev
);
3603 pci_read_config_word(dev
, PCI_COMMAND
, &orig
);
3604 pci_write_config_word(dev
, PCI_COMMAND
,
3605 orig
^ PCI_COMMAND_INTX_DISABLE
);
3606 pci_read_config_word(dev
, PCI_COMMAND
, &new);
3609 * There's no way to protect against hardware bugs or detect them
3610 * reliably, but as long as we know what the value should be, let's
3611 * go ahead and check it.
3613 if ((new ^ orig
) & ~PCI_COMMAND_INTX_DISABLE
) {
3614 dev_err(&dev
->dev
, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3616 } else if ((new ^ orig
) & PCI_COMMAND_INTX_DISABLE
) {
3617 mask_supported
= true;
3618 pci_write_config_word(dev
, PCI_COMMAND
, orig
);
3621 pci_cfg_access_unlock(dev
);
3622 return mask_supported
;
3624 EXPORT_SYMBOL_GPL(pci_intx_mask_supported
);
3626 static bool pci_check_and_set_intx_mask(struct pci_dev
*dev
, bool mask
)
3628 struct pci_bus
*bus
= dev
->bus
;
3629 bool mask_updated
= true;
3630 u32 cmd_status_dword
;
3631 u16 origcmd
, newcmd
;
3632 unsigned long flags
;
3636 * We do a single dword read to retrieve both command and status.
3637 * Document assumptions that make this possible.
3639 BUILD_BUG_ON(PCI_COMMAND
% 4);
3640 BUILD_BUG_ON(PCI_COMMAND
+ 2 != PCI_STATUS
);
3642 raw_spin_lock_irqsave(&pci_lock
, flags
);
3644 bus
->ops
->read(bus
, dev
->devfn
, PCI_COMMAND
, 4, &cmd_status_dword
);
3646 irq_pending
= (cmd_status_dword
>> 16) & PCI_STATUS_INTERRUPT
;
3649 * Check interrupt status register to see whether our device
3650 * triggered the interrupt (when masking) or the next IRQ is
3651 * already pending (when unmasking).
3653 if (mask
!= irq_pending
) {
3654 mask_updated
= false;
3658 origcmd
= cmd_status_dword
;
3659 newcmd
= origcmd
& ~PCI_COMMAND_INTX_DISABLE
;
3661 newcmd
|= PCI_COMMAND_INTX_DISABLE
;
3662 if (newcmd
!= origcmd
)
3663 bus
->ops
->write(bus
, dev
->devfn
, PCI_COMMAND
, 2, newcmd
);
3666 raw_spin_unlock_irqrestore(&pci_lock
, flags
);
3668 return mask_updated
;
3672 * pci_check_and_mask_intx - mask INTx on pending interrupt
3673 * @dev: the PCI device to operate on
3675 * Check if the device dev has its INTx line asserted, mask it and
3676 * return true in that case. False is returned if not interrupt was
3679 bool pci_check_and_mask_intx(struct pci_dev
*dev
)
3681 return pci_check_and_set_intx_mask(dev
, true);
3683 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx
);
3686 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3687 * @dev: the PCI device to operate on
3689 * Check if the device dev has its INTx line asserted, unmask it if not
3690 * and return true. False is returned and the mask remains active if
3691 * there was still an interrupt pending.
3693 bool pci_check_and_unmask_intx(struct pci_dev
*dev
)
3695 return pci_check_and_set_intx_mask(dev
, false);
3697 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx
);
3700 * pci_wait_for_pending_transaction - waits for pending transaction
3701 * @dev: the PCI device to operate on
3703 * Return 0 if transaction is pending 1 otherwise.
3705 int pci_wait_for_pending_transaction(struct pci_dev
*dev
)
3707 if (!pci_is_pcie(dev
))
3710 return pci_wait_for_pending(dev
, pci_pcie_cap(dev
) + PCI_EXP_DEVSTA
,
3711 PCI_EXP_DEVSTA_TRPND
);
3713 EXPORT_SYMBOL(pci_wait_for_pending_transaction
);
3716 * We should only need to wait 100ms after FLR, but some devices take longer.
3717 * Wait for up to 1000ms for config space to return something other than -1.
3718 * Intel IGD requires this when an LCD panel is attached. We read the 2nd
3719 * dword because VFs don't implement the 1st dword.
3721 static void pci_flr_wait(struct pci_dev
*dev
)
3728 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
3729 } while (i
++ < 10 && id
== ~0);
3732 dev_warn(&dev
->dev
, "Failed to return from FLR\n");
3734 dev_info(&dev
->dev
, "Required additional %dms to return from FLR\n",
3738 static int pcie_flr(struct pci_dev
*dev
, int probe
)
3742 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &cap
);
3743 if (!(cap
& PCI_EXP_DEVCAP_FLR
))
3749 if (!pci_wait_for_pending_transaction(dev
))
3750 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing function level reset anyway\n");
3752 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL
, PCI_EXP_DEVCTL_BCR_FLR
);
3757 static int pci_af_flr(struct pci_dev
*dev
, int probe
)
3762 pos
= pci_find_capability(dev
, PCI_CAP_ID_AF
);
3766 pci_read_config_byte(dev
, pos
+ PCI_AF_CAP
, &cap
);
3767 if (!(cap
& PCI_AF_CAP_TP
) || !(cap
& PCI_AF_CAP_FLR
))
3774 * Wait for Transaction Pending bit to clear. A word-aligned test
3775 * is used, so we use the conrol offset rather than status and shift
3776 * the test bit to match.
3778 if (!pci_wait_for_pending(dev
, pos
+ PCI_AF_CTRL
,
3779 PCI_AF_STATUS_TP
<< 8))
3780 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3782 pci_write_config_byte(dev
, pos
+ PCI_AF_CTRL
, PCI_AF_CTRL_FLR
);
3788 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3789 * @dev: Device to reset.
3790 * @probe: If set, only check if the device can be reset this way.
3792 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3793 * unset, it will be reinitialized internally when going from PCI_D3hot to
3794 * PCI_D0. If that's the case and the device is not in a low-power state
3795 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3797 * NOTE: This causes the caller to sleep for twice the device power transition
3798 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3799 * by default (i.e. unless the @dev's d3_delay field has a different value).
3800 * Moreover, only devices in D0 can be reset by this function.
3802 static int pci_pm_reset(struct pci_dev
*dev
, int probe
)
3806 if (!dev
->pm_cap
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_PM_RESET
)
3809 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &csr
);
3810 if (csr
& PCI_PM_CTRL_NO_SOFT_RESET
)
3816 if (dev
->current_state
!= PCI_D0
)
3819 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3821 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3822 pci_dev_d3_sleep(dev
);
3824 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3826 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3827 pci_dev_d3_sleep(dev
);
3832 void pci_reset_secondary_bus(struct pci_dev
*dev
)
3836 pci_read_config_word(dev
, PCI_BRIDGE_CONTROL
, &ctrl
);
3837 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
3838 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3840 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3841 * this to 2ms to ensure that we meet the minimum requirement.
3845 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
3846 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3849 * Trhfa for conventional PCI is 2^25 clock cycles.
3850 * Assuming a minimum 33MHz clock this results in a 1s
3851 * delay before we can consider subordinate devices to
3852 * be re-initialized. PCIe has some ways to shorten this,
3853 * but we don't make use of them yet.
3858 void __weak
pcibios_reset_secondary_bus(struct pci_dev
*dev
)
3860 pci_reset_secondary_bus(dev
);
3864 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3865 * @dev: Bridge device
3867 * Use the bridge control register to assert reset on the secondary bus.
3868 * Devices on the secondary bus are left in power-on state.
3870 void pci_reset_bridge_secondary_bus(struct pci_dev
*dev
)
3872 pcibios_reset_secondary_bus(dev
);
3874 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus
);
3876 static int pci_parent_bus_reset(struct pci_dev
*dev
, int probe
)
3878 struct pci_dev
*pdev
;
3880 if (pci_is_root_bus(dev
->bus
) || dev
->subordinate
||
3881 !dev
->bus
->self
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
3884 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
3891 pci_reset_bridge_secondary_bus(dev
->bus
->self
);
3896 static int pci_reset_hotplug_slot(struct hotplug_slot
*hotplug
, int probe
)
3900 if (!hotplug
|| !try_module_get(hotplug
->ops
->owner
))
3903 if (hotplug
->ops
->reset_slot
)
3904 rc
= hotplug
->ops
->reset_slot(hotplug
, probe
);
3906 module_put(hotplug
->ops
->owner
);
3911 static int pci_dev_reset_slot_function(struct pci_dev
*dev
, int probe
)
3913 struct pci_dev
*pdev
;
3915 if (dev
->subordinate
|| !dev
->slot
||
3916 dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
3919 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
3920 if (pdev
!= dev
&& pdev
->slot
== dev
->slot
)
3923 return pci_reset_hotplug_slot(dev
->slot
->hotplug
, probe
);
3926 static int __pci_dev_reset(struct pci_dev
*dev
, int probe
)
3932 rc
= pci_dev_specific_reset(dev
, probe
);
3936 rc
= pcie_flr(dev
, probe
);
3940 rc
= pci_af_flr(dev
, probe
);
3944 rc
= pci_pm_reset(dev
, probe
);
3948 rc
= pci_dev_reset_slot_function(dev
, probe
);
3952 rc
= pci_parent_bus_reset(dev
, probe
);
3957 static void pci_dev_lock(struct pci_dev
*dev
)
3959 pci_cfg_access_lock(dev
);
3960 /* block PM suspend, driver probe, etc. */
3961 device_lock(&dev
->dev
);
3964 /* Return 1 on successful lock, 0 on contention */
3965 static int pci_dev_trylock(struct pci_dev
*dev
)
3967 if (pci_cfg_access_trylock(dev
)) {
3968 if (device_trylock(&dev
->dev
))
3970 pci_cfg_access_unlock(dev
);
3976 static void pci_dev_unlock(struct pci_dev
*dev
)
3978 device_unlock(&dev
->dev
);
3979 pci_cfg_access_unlock(dev
);
3983 * pci_reset_notify - notify device driver of reset
3984 * @dev: device to be notified of reset
3985 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3988 * Must be called prior to device access being disabled and after device
3989 * access is restored.
3991 static void pci_reset_notify(struct pci_dev
*dev
, bool prepare
)
3993 const struct pci_error_handlers
*err_handler
=
3994 dev
->driver
? dev
->driver
->err_handler
: NULL
;
3995 if (err_handler
&& err_handler
->reset_notify
)
3996 err_handler
->reset_notify(dev
, prepare
);
3999 static void pci_dev_save_and_disable(struct pci_dev
*dev
)
4001 pci_reset_notify(dev
, true);
4004 * Wake-up device prior to save. PM registers default to D0 after
4005 * reset and a simple register restore doesn't reliably return
4006 * to a non-D0 state anyway.
4008 pci_set_power_state(dev
, PCI_D0
);
4010 pci_save_state(dev
);
4012 * Disable the device by clearing the Command register, except for
4013 * INTx-disable which is set. This not only disables MMIO and I/O port
4014 * BARs, but also prevents the device from being Bus Master, preventing
4015 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4016 * compliant devices, INTx-disable prevents legacy interrupts.
4018 pci_write_config_word(dev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
4021 static void pci_dev_restore(struct pci_dev
*dev
)
4023 pci_restore_state(dev
);
4024 pci_reset_notify(dev
, false);
4027 static int pci_dev_reset(struct pci_dev
*dev
, int probe
)
4034 rc
= __pci_dev_reset(dev
, probe
);
4037 pci_dev_unlock(dev
);
4043 * __pci_reset_function - reset a PCI device function
4044 * @dev: PCI device to reset
4046 * Some devices allow an individual function to be reset without affecting
4047 * other functions in the same device. The PCI device must be responsive
4048 * to PCI config space in order to use this function.
4050 * The device function is presumed to be unused when this function is called.
4051 * Resetting the device will make the contents of PCI configuration space
4052 * random, so any caller of this must be prepared to reinitialise the
4053 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4056 * Returns 0 if the device function was successfully reset or negative if the
4057 * device doesn't support resetting a single function.
4059 int __pci_reset_function(struct pci_dev
*dev
)
4061 return pci_dev_reset(dev
, 0);
4063 EXPORT_SYMBOL_GPL(__pci_reset_function
);
4066 * __pci_reset_function_locked - reset a PCI device function while holding
4067 * the @dev mutex lock.
4068 * @dev: PCI device to reset
4070 * Some devices allow an individual function to be reset without affecting
4071 * other functions in the same device. The PCI device must be responsive
4072 * to PCI config space in order to use this function.
4074 * The device function is presumed to be unused and the caller is holding
4075 * the device mutex lock when this function is called.
4076 * Resetting the device will make the contents of PCI configuration space
4077 * random, so any caller of this must be prepared to reinitialise the
4078 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4081 * Returns 0 if the device function was successfully reset or negative if the
4082 * device doesn't support resetting a single function.
4084 int __pci_reset_function_locked(struct pci_dev
*dev
)
4086 return __pci_dev_reset(dev
, 0);
4088 EXPORT_SYMBOL_GPL(__pci_reset_function_locked
);
4091 * pci_probe_reset_function - check whether the device can be safely reset
4092 * @dev: PCI device to reset
4094 * Some devices allow an individual function to be reset without affecting
4095 * other functions in the same device. The PCI device must be responsive
4096 * to PCI config space in order to use this function.
4098 * Returns 0 if the device function can be reset or negative if the
4099 * device doesn't support resetting a single function.
4101 int pci_probe_reset_function(struct pci_dev
*dev
)
4103 return pci_dev_reset(dev
, 1);
4107 * pci_reset_function - quiesce and reset a PCI device function
4108 * @dev: PCI device to reset
4110 * Some devices allow an individual function to be reset without affecting
4111 * other functions in the same device. The PCI device must be responsive
4112 * to PCI config space in order to use this function.
4114 * This function does not just reset the PCI portion of a device, but
4115 * clears all the state associated with the device. This function differs
4116 * from __pci_reset_function in that it saves and restores device state
4119 * Returns 0 if the device function was successfully reset or negative if the
4120 * device doesn't support resetting a single function.
4122 int pci_reset_function(struct pci_dev
*dev
)
4126 rc
= pci_dev_reset(dev
, 1);
4130 pci_dev_save_and_disable(dev
);
4132 rc
= pci_dev_reset(dev
, 0);
4134 pci_dev_restore(dev
);
4138 EXPORT_SYMBOL_GPL(pci_reset_function
);
4141 * pci_try_reset_function - quiesce and reset a PCI device function
4142 * @dev: PCI device to reset
4144 * Same as above, except return -EAGAIN if unable to lock device.
4146 int pci_try_reset_function(struct pci_dev
*dev
)
4150 rc
= pci_dev_reset(dev
, 1);
4154 pci_dev_save_and_disable(dev
);
4156 if (pci_dev_trylock(dev
)) {
4157 rc
= __pci_dev_reset(dev
, 0);
4158 pci_dev_unlock(dev
);
4162 pci_dev_restore(dev
);
4166 EXPORT_SYMBOL_GPL(pci_try_reset_function
);
4168 /* Do any devices on or below this bus prevent a bus reset? */
4169 static bool pci_bus_resetable(struct pci_bus
*bus
)
4171 struct pci_dev
*dev
;
4173 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4174 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
4175 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
4182 /* Lock devices from the top of the tree down */
4183 static void pci_bus_lock(struct pci_bus
*bus
)
4185 struct pci_dev
*dev
;
4187 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4189 if (dev
->subordinate
)
4190 pci_bus_lock(dev
->subordinate
);
4194 /* Unlock devices from the bottom of the tree up */
4195 static void pci_bus_unlock(struct pci_bus
*bus
)
4197 struct pci_dev
*dev
;
4199 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4200 if (dev
->subordinate
)
4201 pci_bus_unlock(dev
->subordinate
);
4202 pci_dev_unlock(dev
);
4206 /* Return 1 on successful lock, 0 on contention */
4207 static int pci_bus_trylock(struct pci_bus
*bus
)
4209 struct pci_dev
*dev
;
4211 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4212 if (!pci_dev_trylock(dev
))
4214 if (dev
->subordinate
) {
4215 if (!pci_bus_trylock(dev
->subordinate
)) {
4216 pci_dev_unlock(dev
);
4224 list_for_each_entry_continue_reverse(dev
, &bus
->devices
, bus_list
) {
4225 if (dev
->subordinate
)
4226 pci_bus_unlock(dev
->subordinate
);
4227 pci_dev_unlock(dev
);
4232 /* Do any devices on or below this slot prevent a bus reset? */
4233 static bool pci_slot_resetable(struct pci_slot
*slot
)
4235 struct pci_dev
*dev
;
4237 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4238 if (!dev
->slot
|| dev
->slot
!= slot
)
4240 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
4241 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
4248 /* Lock devices from the top of the tree down */
4249 static void pci_slot_lock(struct pci_slot
*slot
)
4251 struct pci_dev
*dev
;
4253 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4254 if (!dev
->slot
|| dev
->slot
!= slot
)
4257 if (dev
->subordinate
)
4258 pci_bus_lock(dev
->subordinate
);
4262 /* Unlock devices from the bottom of the tree up */
4263 static void pci_slot_unlock(struct pci_slot
*slot
)
4265 struct pci_dev
*dev
;
4267 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4268 if (!dev
->slot
|| dev
->slot
!= slot
)
4270 if (dev
->subordinate
)
4271 pci_bus_unlock(dev
->subordinate
);
4272 pci_dev_unlock(dev
);
4276 /* Return 1 on successful lock, 0 on contention */
4277 static int pci_slot_trylock(struct pci_slot
*slot
)
4279 struct pci_dev
*dev
;
4281 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4282 if (!dev
->slot
|| dev
->slot
!= slot
)
4284 if (!pci_dev_trylock(dev
))
4286 if (dev
->subordinate
) {
4287 if (!pci_bus_trylock(dev
->subordinate
)) {
4288 pci_dev_unlock(dev
);
4296 list_for_each_entry_continue_reverse(dev
,
4297 &slot
->bus
->devices
, bus_list
) {
4298 if (!dev
->slot
|| dev
->slot
!= slot
)
4300 if (dev
->subordinate
)
4301 pci_bus_unlock(dev
->subordinate
);
4302 pci_dev_unlock(dev
);
4307 /* Save and disable devices from the top of the tree down */
4308 static void pci_bus_save_and_disable(struct pci_bus
*bus
)
4310 struct pci_dev
*dev
;
4312 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4313 pci_dev_save_and_disable(dev
);
4314 if (dev
->subordinate
)
4315 pci_bus_save_and_disable(dev
->subordinate
);
4320 * Restore devices from top of the tree down - parent bridges need to be
4321 * restored before we can get to subordinate devices.
4323 static void pci_bus_restore(struct pci_bus
*bus
)
4325 struct pci_dev
*dev
;
4327 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4328 pci_dev_restore(dev
);
4329 if (dev
->subordinate
)
4330 pci_bus_restore(dev
->subordinate
);
4334 /* Save and disable devices from the top of the tree down */
4335 static void pci_slot_save_and_disable(struct pci_slot
*slot
)
4337 struct pci_dev
*dev
;
4339 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4340 if (!dev
->slot
|| dev
->slot
!= slot
)
4342 pci_dev_save_and_disable(dev
);
4343 if (dev
->subordinate
)
4344 pci_bus_save_and_disable(dev
->subordinate
);
4349 * Restore devices from top of the tree down - parent bridges need to be
4350 * restored before we can get to subordinate devices.
4352 static void pci_slot_restore(struct pci_slot
*slot
)
4354 struct pci_dev
*dev
;
4356 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4357 if (!dev
->slot
|| dev
->slot
!= slot
)
4359 pci_dev_restore(dev
);
4360 if (dev
->subordinate
)
4361 pci_bus_restore(dev
->subordinate
);
4365 static int pci_slot_reset(struct pci_slot
*slot
, int probe
)
4369 if (!slot
|| !pci_slot_resetable(slot
))
4373 pci_slot_lock(slot
);
4377 rc
= pci_reset_hotplug_slot(slot
->hotplug
, probe
);
4380 pci_slot_unlock(slot
);
4386 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4387 * @slot: PCI slot to probe
4389 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4391 int pci_probe_reset_slot(struct pci_slot
*slot
)
4393 return pci_slot_reset(slot
, 1);
4395 EXPORT_SYMBOL_GPL(pci_probe_reset_slot
);
4398 * pci_reset_slot - reset a PCI slot
4399 * @slot: PCI slot to reset
4401 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4402 * independent of other slots. For instance, some slots may support slot power
4403 * control. In the case of a 1:1 bus to slot architecture, this function may
4404 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4405 * Generally a slot reset should be attempted before a bus reset. All of the
4406 * function of the slot and any subordinate buses behind the slot are reset
4407 * through this function. PCI config space of all devices in the slot and
4408 * behind the slot is saved before and restored after reset.
4410 * Return 0 on success, non-zero on error.
4412 int pci_reset_slot(struct pci_slot
*slot
)
4416 rc
= pci_slot_reset(slot
, 1);
4420 pci_slot_save_and_disable(slot
);
4422 rc
= pci_slot_reset(slot
, 0);
4424 pci_slot_restore(slot
);
4428 EXPORT_SYMBOL_GPL(pci_reset_slot
);
4431 * pci_try_reset_slot - Try to reset a PCI slot
4432 * @slot: PCI slot to reset
4434 * Same as above except return -EAGAIN if the slot cannot be locked
4436 int pci_try_reset_slot(struct pci_slot
*slot
)
4440 rc
= pci_slot_reset(slot
, 1);
4444 pci_slot_save_and_disable(slot
);
4446 if (pci_slot_trylock(slot
)) {
4448 rc
= pci_reset_hotplug_slot(slot
->hotplug
, 0);
4449 pci_slot_unlock(slot
);
4453 pci_slot_restore(slot
);
4457 EXPORT_SYMBOL_GPL(pci_try_reset_slot
);
4459 static int pci_bus_reset(struct pci_bus
*bus
, int probe
)
4461 if (!bus
->self
|| !pci_bus_resetable(bus
))
4471 pci_reset_bridge_secondary_bus(bus
->self
);
4473 pci_bus_unlock(bus
);
4479 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4480 * @bus: PCI bus to probe
4482 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4484 int pci_probe_reset_bus(struct pci_bus
*bus
)
4486 return pci_bus_reset(bus
, 1);
4488 EXPORT_SYMBOL_GPL(pci_probe_reset_bus
);
4491 * pci_reset_bus - reset a PCI bus
4492 * @bus: top level PCI bus to reset
4494 * Do a bus reset on the given bus and any subordinate buses, saving
4495 * and restoring state of all devices.
4497 * Return 0 on success, non-zero on error.
4499 int pci_reset_bus(struct pci_bus
*bus
)
4503 rc
= pci_bus_reset(bus
, 1);
4507 pci_bus_save_and_disable(bus
);
4509 rc
= pci_bus_reset(bus
, 0);
4511 pci_bus_restore(bus
);
4515 EXPORT_SYMBOL_GPL(pci_reset_bus
);
4518 * pci_try_reset_bus - Try to reset a PCI bus
4519 * @bus: top level PCI bus to reset
4521 * Same as above except return -EAGAIN if the bus cannot be locked
4523 int pci_try_reset_bus(struct pci_bus
*bus
)
4527 rc
= pci_bus_reset(bus
, 1);
4531 pci_bus_save_and_disable(bus
);
4533 if (pci_bus_trylock(bus
)) {
4535 pci_reset_bridge_secondary_bus(bus
->self
);
4536 pci_bus_unlock(bus
);
4540 pci_bus_restore(bus
);
4544 EXPORT_SYMBOL_GPL(pci_try_reset_bus
);
4547 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4548 * @dev: PCI device to query
4550 * Returns mmrbc: maximum designed memory read count in bytes
4551 * or appropriate error value.
4553 int pcix_get_max_mmrbc(struct pci_dev
*dev
)
4558 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4562 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
4565 return 512 << ((stat
& PCI_X_STATUS_MAX_READ
) >> 21);
4567 EXPORT_SYMBOL(pcix_get_max_mmrbc
);
4570 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4571 * @dev: PCI device to query
4573 * Returns mmrbc: maximum memory read count in bytes
4574 * or appropriate error value.
4576 int pcix_get_mmrbc(struct pci_dev
*dev
)
4581 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4585 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
4588 return 512 << ((cmd
& PCI_X_CMD_MAX_READ
) >> 2);
4590 EXPORT_SYMBOL(pcix_get_mmrbc
);
4593 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4594 * @dev: PCI device to query
4595 * @mmrbc: maximum memory read count in bytes
4596 * valid values are 512, 1024, 2048, 4096
4598 * If possible sets maximum memory read byte count, some bridges have erratas
4599 * that prevent this.
4601 int pcix_set_mmrbc(struct pci_dev
*dev
, int mmrbc
)
4607 if (mmrbc
< 512 || mmrbc
> 4096 || !is_power_of_2(mmrbc
))
4610 v
= ffs(mmrbc
) - 10;
4612 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4616 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
4619 if (v
> (stat
& PCI_X_STATUS_MAX_READ
) >> 21)
4622 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
4625 o
= (cmd
& PCI_X_CMD_MAX_READ
) >> 2;
4627 if (v
> o
&& (dev
->bus
->bus_flags
& PCI_BUS_FLAGS_NO_MMRBC
))
4630 cmd
&= ~PCI_X_CMD_MAX_READ
;
4632 if (pci_write_config_word(dev
, cap
+ PCI_X_CMD
, cmd
))
4637 EXPORT_SYMBOL(pcix_set_mmrbc
);
4640 * pcie_get_readrq - get PCI Express read request size
4641 * @dev: PCI device to query
4643 * Returns maximum memory read request in bytes
4644 * or appropriate error value.
4646 int pcie_get_readrq(struct pci_dev
*dev
)
4650 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4652 return 128 << ((ctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
4654 EXPORT_SYMBOL(pcie_get_readrq
);
4657 * pcie_set_readrq - set PCI Express maximum memory read request
4658 * @dev: PCI device to query
4659 * @rq: maximum memory read count in bytes
4660 * valid values are 128, 256, 512, 1024, 2048, 4096
4662 * If possible sets maximum memory read request in bytes
4664 int pcie_set_readrq(struct pci_dev
*dev
, int rq
)
4668 if (rq
< 128 || rq
> 4096 || !is_power_of_2(rq
))
4672 * If using the "performance" PCIe config, we clamp the
4673 * read rq size to the max packet size to prevent the
4674 * host bridge generating requests larger than we can
4677 if (pcie_bus_config
== PCIE_BUS_PERFORMANCE
) {
4678 int mps
= pcie_get_mps(dev
);
4684 v
= (ffs(rq
) - 8) << 12;
4686 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4687 PCI_EXP_DEVCTL_READRQ
, v
);
4689 EXPORT_SYMBOL(pcie_set_readrq
);
4692 * pcie_get_mps - get PCI Express maximum payload size
4693 * @dev: PCI device to query
4695 * Returns maximum payload size in bytes
4697 int pcie_get_mps(struct pci_dev
*dev
)
4701 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4703 return 128 << ((ctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
4705 EXPORT_SYMBOL(pcie_get_mps
);
4708 * pcie_set_mps - set PCI Express maximum payload size
4709 * @dev: PCI device to query
4710 * @mps: maximum payload size in bytes
4711 * valid values are 128, 256, 512, 1024, 2048, 4096
4713 * If possible sets maximum payload size
4715 int pcie_set_mps(struct pci_dev
*dev
, int mps
)
4719 if (mps
< 128 || mps
> 4096 || !is_power_of_2(mps
))
4723 if (v
> dev
->pcie_mpss
)
4727 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4728 PCI_EXP_DEVCTL_PAYLOAD
, v
);
4730 EXPORT_SYMBOL(pcie_set_mps
);
4733 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4734 * @dev: PCI device to query
4735 * @speed: storage for minimum speed
4736 * @width: storage for minimum width
4738 * This function will walk up the PCI device chain and determine the minimum
4739 * link width and speed of the device.
4741 int pcie_get_minimum_link(struct pci_dev
*dev
, enum pci_bus_speed
*speed
,
4742 enum pcie_link_width
*width
)
4746 *speed
= PCI_SPEED_UNKNOWN
;
4747 *width
= PCIE_LNK_WIDTH_UNKNOWN
;
4751 enum pci_bus_speed next_speed
;
4752 enum pcie_link_width next_width
;
4754 ret
= pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnksta
);
4758 next_speed
= pcie_link_speed
[lnksta
& PCI_EXP_LNKSTA_CLS
];
4759 next_width
= (lnksta
& PCI_EXP_LNKSTA_NLW
) >>
4760 PCI_EXP_LNKSTA_NLW_SHIFT
;
4762 if (next_speed
< *speed
)
4763 *speed
= next_speed
;
4765 if (next_width
< *width
)
4766 *width
= next_width
;
4768 dev
= dev
->bus
->self
;
4773 EXPORT_SYMBOL(pcie_get_minimum_link
);
4776 * pci_select_bars - Make BAR mask from the type of resource
4777 * @dev: the PCI device for which BAR mask is made
4778 * @flags: resource type mask to be selected
4780 * This helper routine makes bar mask from the type of resource.
4782 int pci_select_bars(struct pci_dev
*dev
, unsigned long flags
)
4785 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++)
4786 if (pci_resource_flags(dev
, i
) & flags
)
4790 EXPORT_SYMBOL(pci_select_bars
);
4793 * pci_resource_bar - get position of the BAR associated with a resource
4794 * @dev: the PCI device
4795 * @resno: the resource number
4796 * @type: the BAR type to be filled in
4798 * Returns BAR position in config space, or 0 if the BAR is invalid.
4800 int pci_resource_bar(struct pci_dev
*dev
, int resno
, enum pci_bar_type
*type
)
4804 if (resno
< PCI_ROM_RESOURCE
) {
4805 *type
= pci_bar_unknown
;
4806 return PCI_BASE_ADDRESS_0
+ 4 * resno
;
4807 } else if (resno
== PCI_ROM_RESOURCE
) {
4808 *type
= pci_bar_mem32
;
4809 return dev
->rom_base_reg
;
4810 } else if (resno
< PCI_BRIDGE_RESOURCES
) {
4811 /* device specific resource */
4812 *type
= pci_bar_unknown
;
4813 reg
= pci_iov_resource_bar(dev
, resno
);
4818 dev_err(&dev
->dev
, "BAR %d: invalid resource\n", resno
);
4822 /* Some architectures require additional programming to enable VGA */
4823 static arch_set_vga_state_t arch_set_vga_state
;
4825 void __init
pci_register_set_vga_state(arch_set_vga_state_t func
)
4827 arch_set_vga_state
= func
; /* NULL disables */
4830 static int pci_set_vga_state_arch(struct pci_dev
*dev
, bool decode
,
4831 unsigned int command_bits
, u32 flags
)
4833 if (arch_set_vga_state
)
4834 return arch_set_vga_state(dev
, decode
, command_bits
,
4840 * pci_set_vga_state - set VGA decode state on device and parents if requested
4841 * @dev: the PCI device
4842 * @decode: true = enable decoding, false = disable decoding
4843 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4844 * @flags: traverse ancestors and change bridges
4845 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4847 int pci_set_vga_state(struct pci_dev
*dev
, bool decode
,
4848 unsigned int command_bits
, u32 flags
)
4850 struct pci_bus
*bus
;
4851 struct pci_dev
*bridge
;
4855 WARN_ON((flags
& PCI_VGA_STATE_CHANGE_DECODES
) && (command_bits
& ~(PCI_COMMAND_IO
|PCI_COMMAND_MEMORY
)));
4857 /* ARCH specific VGA enables */
4858 rc
= pci_set_vga_state_arch(dev
, decode
, command_bits
, flags
);
4862 if (flags
& PCI_VGA_STATE_CHANGE_DECODES
) {
4863 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4865 cmd
|= command_bits
;
4867 cmd
&= ~command_bits
;
4868 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4871 if (!(flags
& PCI_VGA_STATE_CHANGE_BRIDGE
))
4878 pci_read_config_word(bridge
, PCI_BRIDGE_CONTROL
,
4881 cmd
|= PCI_BRIDGE_CTL_VGA
;
4883 cmd
&= ~PCI_BRIDGE_CTL_VGA
;
4884 pci_write_config_word(bridge
, PCI_BRIDGE_CONTROL
,
4893 * pci_add_dma_alias - Add a DMA devfn alias for a device
4894 * @dev: the PCI device for which alias is added
4895 * @devfn: alias slot and function
4897 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4898 * It should be called early, preferably as PCI fixup header quirk.
4900 void pci_add_dma_alias(struct pci_dev
*dev
, u8 devfn
)
4902 if (!dev
->dma_alias_mask
)
4903 dev
->dma_alias_mask
= kcalloc(BITS_TO_LONGS(U8_MAX
),
4904 sizeof(long), GFP_KERNEL
);
4905 if (!dev
->dma_alias_mask
) {
4906 dev_warn(&dev
->dev
, "Unable to allocate DMA alias mask\n");
4910 set_bit(devfn
, dev
->dma_alias_mask
);
4911 dev_info(&dev
->dev
, "Enabling fixed DMA alias to %02x.%d\n",
4912 PCI_SLOT(devfn
), PCI_FUNC(devfn
));
4915 bool pci_devs_are_dma_aliases(struct pci_dev
*dev1
, struct pci_dev
*dev2
)
4917 return (dev1
->dma_alias_mask
&&
4918 test_bit(dev2
->devfn
, dev1
->dma_alias_mask
)) ||
4919 (dev2
->dma_alias_mask
&&
4920 test_bit(dev1
->devfn
, dev2
->dma_alias_mask
));
4923 bool pci_device_is_present(struct pci_dev
*pdev
)
4927 return pci_bus_read_dev_vendor_id(pdev
->bus
, pdev
->devfn
, &v
, 0);
4929 EXPORT_SYMBOL_GPL(pci_device_is_present
);
4931 void pci_ignore_hotplug(struct pci_dev
*dev
)
4933 struct pci_dev
*bridge
= dev
->bus
->self
;
4935 dev
->ignore_hotplug
= 1;
4936 /* Propagate the "ignore hotplug" setting to the parent bridge. */
4938 bridge
->ignore_hotplug
= 1;
4940 EXPORT_SYMBOL_GPL(pci_ignore_hotplug
);
4942 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4943 static char resource_alignment_param
[RESOURCE_ALIGNMENT_PARAM_SIZE
] = {0};
4944 static DEFINE_SPINLOCK(resource_alignment_lock
);
4947 * pci_specified_resource_alignment - get resource alignment specified by user.
4948 * @dev: the PCI device to get
4950 * RETURNS: Resource alignment if it is specified.
4951 * Zero if it is not specified.
4953 static resource_size_t
pci_specified_resource_alignment(struct pci_dev
*dev
)
4955 int seg
, bus
, slot
, func
, align_order
, count
;
4956 unsigned short vendor
, device
, subsystem_vendor
, subsystem_device
;
4957 resource_size_t align
= 0;
4960 spin_lock(&resource_alignment_lock
);
4961 p
= resource_alignment_param
;
4964 if (sscanf(p
, "%d%n", &align_order
, &count
) == 1 &&
4970 if (strncmp(p
, "pci:", 4) == 0) {
4971 /* PCI vendor/device (subvendor/subdevice) ids are specified */
4973 if (sscanf(p
, "%hx:%hx:%hx:%hx%n",
4974 &vendor
, &device
, &subsystem_vendor
, &subsystem_device
, &count
) != 4) {
4975 if (sscanf(p
, "%hx:%hx%n", &vendor
, &device
, &count
) != 2) {
4976 printk(KERN_ERR
"PCI: Can't parse resource_alignment parameter: pci:%s\n",
4980 subsystem_vendor
= subsystem_device
= 0;
4983 if ((!vendor
|| (vendor
== dev
->vendor
)) &&
4984 (!device
|| (device
== dev
->device
)) &&
4985 (!subsystem_vendor
|| (subsystem_vendor
== dev
->subsystem_vendor
)) &&
4986 (!subsystem_device
|| (subsystem_device
== dev
->subsystem_device
))) {
4987 if (align_order
== -1)
4990 align
= 1 << align_order
;
4996 if (sscanf(p
, "%x:%x:%x.%x%n",
4997 &seg
, &bus
, &slot
, &func
, &count
) != 4) {
4999 if (sscanf(p
, "%x:%x.%x%n",
5000 &bus
, &slot
, &func
, &count
) != 3) {
5001 /* Invalid format */
5002 printk(KERN_ERR
"PCI: Can't parse resource_alignment parameter: %s\n",
5008 if (seg
== pci_domain_nr(dev
->bus
) &&
5009 bus
== dev
->bus
->number
&&
5010 slot
== PCI_SLOT(dev
->devfn
) &&
5011 func
== PCI_FUNC(dev
->devfn
)) {
5012 if (align_order
== -1)
5015 align
= 1 << align_order
;
5020 if (*p
!= ';' && *p
!= ',') {
5021 /* End of param or invalid format */
5026 spin_unlock(&resource_alignment_lock
);
5031 * This function disables memory decoding and releases memory resources
5032 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5033 * It also rounds up size to specified alignment.
5034 * Later on, the kernel will assign page-aligned memory resource back
5037 void pci_reassigndev_resource_alignment(struct pci_dev
*dev
)
5041 resource_size_t align
, size
;
5044 /* check if specified PCI is target device to reassign */
5045 align
= pci_specified_resource_alignment(dev
);
5049 if (dev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
&&
5050 (dev
->class >> 8) == PCI_CLASS_BRIDGE_HOST
) {
5052 "Can't reassign resources to host bridge.\n");
5057 "Disabling memory decoding and releasing memory resources.\n");
5058 pci_read_config_word(dev
, PCI_COMMAND
, &command
);
5059 command
&= ~PCI_COMMAND_MEMORY
;
5060 pci_write_config_word(dev
, PCI_COMMAND
, command
);
5062 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++) {
5063 r
= &dev
->resource
[i
];
5064 if (!(r
->flags
& IORESOURCE_MEM
))
5066 size
= resource_size(r
);
5070 "Rounding up size of resource #%d to %#llx.\n",
5071 i
, (unsigned long long)size
);
5073 r
->flags
|= IORESOURCE_UNSET
;
5077 /* Need to disable bridge's resource window,
5078 * to enable the kernel to reassign new resource
5081 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
&&
5082 (dev
->class >> 8) == PCI_CLASS_BRIDGE_PCI
) {
5083 for (i
= PCI_BRIDGE_RESOURCES
; i
< PCI_NUM_RESOURCES
; i
++) {
5084 r
= &dev
->resource
[i
];
5085 if (!(r
->flags
& IORESOURCE_MEM
))
5087 r
->flags
|= IORESOURCE_UNSET
;
5088 r
->end
= resource_size(r
) - 1;
5091 pci_disable_bridge_window(dev
);
5095 static ssize_t
pci_set_resource_alignment_param(const char *buf
, size_t count
)
5097 if (count
> RESOURCE_ALIGNMENT_PARAM_SIZE
- 1)
5098 count
= RESOURCE_ALIGNMENT_PARAM_SIZE
- 1;
5099 spin_lock(&resource_alignment_lock
);
5100 strncpy(resource_alignment_param
, buf
, count
);
5101 resource_alignment_param
[count
] = '\0';
5102 spin_unlock(&resource_alignment_lock
);
5106 static ssize_t
pci_get_resource_alignment_param(char *buf
, size_t size
)
5109 spin_lock(&resource_alignment_lock
);
5110 count
= snprintf(buf
, size
, "%s", resource_alignment_param
);
5111 spin_unlock(&resource_alignment_lock
);
5115 static ssize_t
pci_resource_alignment_show(struct bus_type
*bus
, char *buf
)
5117 return pci_get_resource_alignment_param(buf
, PAGE_SIZE
);
5120 static ssize_t
pci_resource_alignment_store(struct bus_type
*bus
,
5121 const char *buf
, size_t count
)
5123 return pci_set_resource_alignment_param(buf
, count
);
5126 static BUS_ATTR(resource_alignment
, 0644, pci_resource_alignment_show
,
5127 pci_resource_alignment_store
);
5129 static int __init
pci_resource_alignment_sysfs_init(void)
5131 return bus_create_file(&pci_bus_type
,
5132 &bus_attr_resource_alignment
);
5134 late_initcall(pci_resource_alignment_sysfs_init
);
5136 static void pci_no_domains(void)
5138 #ifdef CONFIG_PCI_DOMAINS
5139 pci_domains_supported
= 0;
5143 #ifdef CONFIG_PCI_DOMAINS
5144 static atomic_t __domain_nr
= ATOMIC_INIT(-1);
5146 int pci_get_new_domain_nr(void)
5148 return atomic_inc_return(&__domain_nr
);
5151 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5152 static int of_pci_bus_find_domain_nr(struct device
*parent
)
5154 static int use_dt_domains
= -1;
5158 domain
= of_get_pci_domain_nr(parent
->of_node
);
5160 * Check DT domain and use_dt_domains values.
5162 * If DT domain property is valid (domain >= 0) and
5163 * use_dt_domains != 0, the DT assignment is valid since this means
5164 * we have not previously allocated a domain number by using
5165 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5166 * 1, to indicate that we have just assigned a domain number from
5169 * If DT domain property value is not valid (ie domain < 0), and we
5170 * have not previously assigned a domain number from DT
5171 * (use_dt_domains != 1) we should assign a domain number by
5174 * pci_get_new_domain_nr()
5176 * API and update the use_dt_domains value to keep track of method we
5177 * are using to assign domain numbers (use_dt_domains = 0).
5179 * All other combinations imply we have a platform that is trying
5180 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5181 * which is a recipe for domain mishandling and it is prevented by
5182 * invalidating the domain value (domain = -1) and printing a
5183 * corresponding error.
5185 if (domain
>= 0 && use_dt_domains
) {
5187 } else if (domain
< 0 && use_dt_domains
!= 1) {
5189 domain
= pci_get_new_domain_nr();
5191 dev_err(parent
, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5192 parent
->of_node
->full_name
);
5199 int pci_bus_find_domain_nr(struct pci_bus
*bus
, struct device
*parent
)
5201 return acpi_disabled
? of_pci_bus_find_domain_nr(parent
) :
5202 acpi_pci_bus_find_domain_nr(bus
);
5208 * pci_ext_cfg_avail - can we access extended PCI config space?
5210 * Returns 1 if we can access PCI extended config space (offsets
5211 * greater than 0xff). This is the default implementation. Architecture
5212 * implementations can override this.
5214 int __weak
pci_ext_cfg_avail(void)
5219 void __weak
pci_fixup_cardbus(struct pci_bus
*bus
)
5222 EXPORT_SYMBOL(pci_fixup_cardbus
);
5224 static int __init
pci_setup(char *str
)
5227 char *k
= strchr(str
, ',');
5230 if (*str
&& (str
= pcibios_setup(str
)) && *str
) {
5231 if (!strcmp(str
, "nomsi")) {
5233 } else if (!strcmp(str
, "noaer")) {
5235 } else if (!strncmp(str
, "realloc=", 8)) {
5236 pci_realloc_get_opt(str
+ 8);
5237 } else if (!strncmp(str
, "realloc", 7)) {
5238 pci_realloc_get_opt("on");
5239 } else if (!strcmp(str
, "nodomains")) {
5241 } else if (!strncmp(str
, "noari", 5)) {
5242 pcie_ari_disabled
= true;
5243 } else if (!strncmp(str
, "cbiosize=", 9)) {
5244 pci_cardbus_io_size
= memparse(str
+ 9, &str
);
5245 } else if (!strncmp(str
, "cbmemsize=", 10)) {
5246 pci_cardbus_mem_size
= memparse(str
+ 10, &str
);
5247 } else if (!strncmp(str
, "resource_alignment=", 19)) {
5248 pci_set_resource_alignment_param(str
+ 19,
5250 } else if (!strncmp(str
, "ecrc=", 5)) {
5251 pcie_ecrc_get_policy(str
+ 5);
5252 } else if (!strncmp(str
, "hpiosize=", 9)) {
5253 pci_hotplug_io_size
= memparse(str
+ 9, &str
);
5254 } else if (!strncmp(str
, "hpmemsize=", 10)) {
5255 pci_hotplug_mem_size
= memparse(str
+ 10, &str
);
5256 } else if (!strncmp(str
, "hpbussize=", 10)) {
5257 pci_hotplug_bus_size
=
5258 simple_strtoul(str
+ 10, &str
, 0);
5259 if (pci_hotplug_bus_size
> 0xff)
5260 pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
5261 } else if (!strncmp(str
, "pcie_bus_tune_off", 17)) {
5262 pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
5263 } else if (!strncmp(str
, "pcie_bus_safe", 13)) {
5264 pcie_bus_config
= PCIE_BUS_SAFE
;
5265 } else if (!strncmp(str
, "pcie_bus_perf", 13)) {
5266 pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
5267 } else if (!strncmp(str
, "pcie_bus_peer2peer", 18)) {
5268 pcie_bus_config
= PCIE_BUS_PEER2PEER
;
5269 } else if (!strncmp(str
, "pcie_scan_all", 13)) {
5270 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS
);
5272 printk(KERN_ERR
"PCI: Unknown option `%s'\n",
5280 early_param("pci", pci_setup
);