4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
24 #include <linux/iomap.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/export.h>
34 #include <linux/backing-dev.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/task_io_accounting_ops.h>
40 #include <linux/bio.h>
41 #include <linux/notifier.h>
42 #include <linux/cpu.h>
43 #include <linux/bitops.h>
44 #include <linux/mpage.h>
45 #include <linux/bit_spinlock.h>
46 #include <trace/events/block.h>
48 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
49 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
50 unsigned long bio_flags
,
51 struct writeback_control
*wbc
);
53 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55 void init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
57 bh
->b_end_io
= handler
;
58 bh
->b_private
= private;
60 EXPORT_SYMBOL(init_buffer
);
62 inline void touch_buffer(struct buffer_head
*bh
)
64 trace_block_touch_buffer(bh
);
65 mark_page_accessed(bh
->b_page
);
67 EXPORT_SYMBOL(touch_buffer
);
69 void __lock_buffer(struct buffer_head
*bh
)
71 wait_on_bit_lock_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
73 EXPORT_SYMBOL(__lock_buffer
);
75 void unlock_buffer(struct buffer_head
*bh
)
77 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
78 smp_mb__after_atomic();
79 wake_up_bit(&bh
->b_state
, BH_Lock
);
81 EXPORT_SYMBOL(unlock_buffer
);
84 * Returns if the page has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the PageDirty information is stale. If
86 * any of the pages are locked, it is assumed they are locked for IO.
88 void buffer_check_dirty_writeback(struct page
*page
,
89 bool *dirty
, bool *writeback
)
91 struct buffer_head
*head
, *bh
;
95 BUG_ON(!PageLocked(page
));
97 if (!page_has_buffers(page
))
100 if (PageWriteback(page
))
103 head
= page_buffers(page
);
106 if (buffer_locked(bh
))
109 if (buffer_dirty(bh
))
112 bh
= bh
->b_this_page
;
113 } while (bh
!= head
);
115 EXPORT_SYMBOL(buffer_check_dirty_writeback
);
118 * Block until a buffer comes unlocked. This doesn't stop it
119 * from becoming locked again - you have to lock it yourself
120 * if you want to preserve its state.
122 void __wait_on_buffer(struct buffer_head
* bh
)
124 wait_on_bit_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
126 EXPORT_SYMBOL(__wait_on_buffer
);
129 __clear_page_buffers(struct page
*page
)
131 ClearPagePrivate(page
);
132 set_page_private(page
, 0);
136 static void buffer_io_error(struct buffer_head
*bh
, char *msg
)
138 if (!test_bit(BH_Quiet
, &bh
->b_state
))
139 printk_ratelimited(KERN_ERR
140 "Buffer I/O error on dev %pg, logical block %llu%s\n",
141 bh
->b_bdev
, (unsigned long long)bh
->b_blocknr
, msg
);
145 * End-of-IO handler helper function which does not touch the bh after
147 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
148 * a race there is benign: unlock_buffer() only use the bh's address for
149 * hashing after unlocking the buffer, so it doesn't actually touch the bh
152 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
155 set_buffer_uptodate(bh
);
157 /* This happens, due to failed read-ahead attempts. */
158 clear_buffer_uptodate(bh
);
164 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
165 * unlock the buffer. This is what ll_rw_block uses too.
167 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
169 __end_buffer_read_notouch(bh
, uptodate
);
172 EXPORT_SYMBOL(end_buffer_read_sync
);
174 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
177 set_buffer_uptodate(bh
);
179 buffer_io_error(bh
, ", lost sync page write");
180 set_buffer_write_io_error(bh
);
181 clear_buffer_uptodate(bh
);
186 EXPORT_SYMBOL(end_buffer_write_sync
);
189 * Various filesystems appear to want __find_get_block to be non-blocking.
190 * But it's the page lock which protects the buffers. To get around this,
191 * we get exclusion from try_to_free_buffers with the blockdev mapping's
194 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
195 * may be quite high. This code could TryLock the page, and if that
196 * succeeds, there is no need to take private_lock. (But if
197 * private_lock is contended then so is mapping->tree_lock).
199 static struct buffer_head
*
200 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
202 struct inode
*bd_inode
= bdev
->bd_inode
;
203 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
204 struct buffer_head
*ret
= NULL
;
206 struct buffer_head
*bh
;
207 struct buffer_head
*head
;
211 index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
212 page
= find_get_page_flags(bd_mapping
, index
, FGP_ACCESSED
);
216 spin_lock(&bd_mapping
->private_lock
);
217 if (!page_has_buffers(page
))
219 head
= page_buffers(page
);
222 if (!buffer_mapped(bh
))
224 else if (bh
->b_blocknr
== block
) {
229 bh
= bh
->b_this_page
;
230 } while (bh
!= head
);
232 /* we might be here because some of the buffers on this page are
233 * not mapped. This is due to various races between
234 * file io on the block device and getblk. It gets dealt with
235 * elsewhere, don't buffer_error if we had some unmapped buffers
238 printk("__find_get_block_slow() failed. "
239 "block=%llu, b_blocknr=%llu\n",
240 (unsigned long long)block
,
241 (unsigned long long)bh
->b_blocknr
);
242 printk("b_state=0x%08lx, b_size=%zu\n",
243 bh
->b_state
, bh
->b_size
);
244 printk("device %pg blocksize: %d\n", bdev
,
245 1 << bd_inode
->i_blkbits
);
248 spin_unlock(&bd_mapping
->private_lock
);
255 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
257 static void free_more_memory(void)
262 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM
);
265 for_each_online_node(nid
) {
267 z
= first_zones_zonelist(node_zonelist(nid
, GFP_NOFS
),
268 gfp_zone(GFP_NOFS
), NULL
);
270 try_to_free_pages(node_zonelist(nid
, GFP_NOFS
), 0,
276 * I/O completion handler for block_read_full_page() - pages
277 * which come unlocked at the end of I/O.
279 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
282 struct buffer_head
*first
;
283 struct buffer_head
*tmp
;
285 int page_uptodate
= 1;
287 BUG_ON(!buffer_async_read(bh
));
291 set_buffer_uptodate(bh
);
293 clear_buffer_uptodate(bh
);
294 buffer_io_error(bh
, ", async page read");
299 * Be _very_ careful from here on. Bad things can happen if
300 * two buffer heads end IO at almost the same time and both
301 * decide that the page is now completely done.
303 first
= page_buffers(page
);
304 local_irq_save(flags
);
305 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
306 clear_buffer_async_read(bh
);
310 if (!buffer_uptodate(tmp
))
312 if (buffer_async_read(tmp
)) {
313 BUG_ON(!buffer_locked(tmp
));
316 tmp
= tmp
->b_this_page
;
318 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
319 local_irq_restore(flags
);
322 * If none of the buffers had errors and they are all
323 * uptodate then we can set the page uptodate.
325 if (page_uptodate
&& !PageError(page
))
326 SetPageUptodate(page
);
331 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
332 local_irq_restore(flags
);
337 * Completion handler for block_write_full_page() - pages which are unlocked
338 * during I/O, and which have PageWriteback cleared upon I/O completion.
340 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
343 struct buffer_head
*first
;
344 struct buffer_head
*tmp
;
347 BUG_ON(!buffer_async_write(bh
));
351 set_buffer_uptodate(bh
);
353 buffer_io_error(bh
, ", lost async page write");
354 set_bit(AS_EIO
, &page
->mapping
->flags
);
355 set_buffer_write_io_error(bh
);
356 clear_buffer_uptodate(bh
);
360 first
= page_buffers(page
);
361 local_irq_save(flags
);
362 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
364 clear_buffer_async_write(bh
);
366 tmp
= bh
->b_this_page
;
368 if (buffer_async_write(tmp
)) {
369 BUG_ON(!buffer_locked(tmp
));
372 tmp
= tmp
->b_this_page
;
374 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
375 local_irq_restore(flags
);
376 end_page_writeback(page
);
380 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
381 local_irq_restore(flags
);
384 EXPORT_SYMBOL(end_buffer_async_write
);
387 * If a page's buffers are under async readin (end_buffer_async_read
388 * completion) then there is a possibility that another thread of
389 * control could lock one of the buffers after it has completed
390 * but while some of the other buffers have not completed. This
391 * locked buffer would confuse end_buffer_async_read() into not unlocking
392 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
393 * that this buffer is not under async I/O.
395 * The page comes unlocked when it has no locked buffer_async buffers
398 * PageLocked prevents anyone starting new async I/O reads any of
401 * PageWriteback is used to prevent simultaneous writeout of the same
404 * PageLocked prevents anyone from starting writeback of a page which is
405 * under read I/O (PageWriteback is only ever set against a locked page).
407 static void mark_buffer_async_read(struct buffer_head
*bh
)
409 bh
->b_end_io
= end_buffer_async_read
;
410 set_buffer_async_read(bh
);
413 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
414 bh_end_io_t
*handler
)
416 bh
->b_end_io
= handler
;
417 set_buffer_async_write(bh
);
420 void mark_buffer_async_write(struct buffer_head
*bh
)
422 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
424 EXPORT_SYMBOL(mark_buffer_async_write
);
428 * fs/buffer.c contains helper functions for buffer-backed address space's
429 * fsync functions. A common requirement for buffer-based filesystems is
430 * that certain data from the backing blockdev needs to be written out for
431 * a successful fsync(). For example, ext2 indirect blocks need to be
432 * written back and waited upon before fsync() returns.
434 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436 * management of a list of dependent buffers at ->i_mapping->private_list.
438 * Locking is a little subtle: try_to_free_buffers() will remove buffers
439 * from their controlling inode's queue when they are being freed. But
440 * try_to_free_buffers() will be operating against the *blockdev* mapping
441 * at the time, not against the S_ISREG file which depends on those buffers.
442 * So the locking for private_list is via the private_lock in the address_space
443 * which backs the buffers. Which is different from the address_space
444 * against which the buffers are listed. So for a particular address_space,
445 * mapping->private_lock does *not* protect mapping->private_list! In fact,
446 * mapping->private_list will always be protected by the backing blockdev's
449 * Which introduces a requirement: all buffers on an address_space's
450 * ->private_list must be from the same address_space: the blockdev's.
452 * address_spaces which do not place buffers at ->private_list via these
453 * utility functions are free to use private_lock and private_list for
454 * whatever they want. The only requirement is that list_empty(private_list)
455 * be true at clear_inode() time.
457 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
458 * filesystems should do that. invalidate_inode_buffers() should just go
459 * BUG_ON(!list_empty).
461 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
462 * take an address_space, not an inode. And it should be called
463 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
466 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467 * list if it is already on a list. Because if the buffer is on a list,
468 * it *must* already be on the right one. If not, the filesystem is being
469 * silly. This will save a ton of locking. But first we have to ensure
470 * that buffers are taken *off* the old inode's list when they are freed
471 * (presumably in truncate). That requires careful auditing of all
472 * filesystems (do it inside bforget()). It could also be done by bringing
477 * The buffer's backing address_space's private_lock must be held
479 static void __remove_assoc_queue(struct buffer_head
*bh
)
481 list_del_init(&bh
->b_assoc_buffers
);
482 WARN_ON(!bh
->b_assoc_map
);
483 if (buffer_write_io_error(bh
))
484 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
485 bh
->b_assoc_map
= NULL
;
488 int inode_has_buffers(struct inode
*inode
)
490 return !list_empty(&inode
->i_data
.private_list
);
494 * osync is designed to support O_SYNC io. It waits synchronously for
495 * all already-submitted IO to complete, but does not queue any new
496 * writes to the disk.
498 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
499 * you dirty the buffers, and then use osync_inode_buffers to wait for
500 * completion. Any other dirty buffers which are not yet queued for
501 * write will not be flushed to disk by the osync.
503 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
505 struct buffer_head
*bh
;
511 list_for_each_prev(p
, list
) {
513 if (buffer_locked(bh
)) {
517 if (!buffer_uptodate(bh
))
528 static void do_thaw_one(struct super_block
*sb
, void *unused
)
530 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
531 printk(KERN_WARNING
"Emergency Thaw on %pg\n", sb
->s_bdev
);
534 static void do_thaw_all(struct work_struct
*work
)
536 iterate_supers(do_thaw_one
, NULL
);
538 printk(KERN_WARNING
"Emergency Thaw complete\n");
542 * emergency_thaw_all -- forcibly thaw every frozen filesystem
544 * Used for emergency unfreeze of all filesystems via SysRq
546 void emergency_thaw_all(void)
548 struct work_struct
*work
;
550 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
552 INIT_WORK(work
, do_thaw_all
);
558 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
559 * @mapping: the mapping which wants those buffers written
561 * Starts I/O against the buffers at mapping->private_list, and waits upon
564 * Basically, this is a convenience function for fsync().
565 * @mapping is a file or directory which needs those buffers to be written for
566 * a successful fsync().
568 int sync_mapping_buffers(struct address_space
*mapping
)
570 struct address_space
*buffer_mapping
= mapping
->private_data
;
572 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
575 return fsync_buffers_list(&buffer_mapping
->private_lock
,
576 &mapping
->private_list
);
578 EXPORT_SYMBOL(sync_mapping_buffers
);
581 * Called when we've recently written block `bblock', and it is known that
582 * `bblock' was for a buffer_boundary() buffer. This means that the block at
583 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
584 * dirty, schedule it for IO. So that indirects merge nicely with their data.
586 void write_boundary_block(struct block_device
*bdev
,
587 sector_t bblock
, unsigned blocksize
)
589 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
591 if (buffer_dirty(bh
))
592 ll_rw_block(REQ_OP_WRITE
, 0, 1, &bh
);
597 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
599 struct address_space
*mapping
= inode
->i_mapping
;
600 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
602 mark_buffer_dirty(bh
);
603 if (!mapping
->private_data
) {
604 mapping
->private_data
= buffer_mapping
;
606 BUG_ON(mapping
->private_data
!= buffer_mapping
);
608 if (!bh
->b_assoc_map
) {
609 spin_lock(&buffer_mapping
->private_lock
);
610 list_move_tail(&bh
->b_assoc_buffers
,
611 &mapping
->private_list
);
612 bh
->b_assoc_map
= mapping
;
613 spin_unlock(&buffer_mapping
->private_lock
);
616 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
619 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
622 * If warn is true, then emit a warning if the page is not uptodate and has
623 * not been truncated.
625 * The caller must hold lock_page_memcg().
627 static void __set_page_dirty(struct page
*page
, struct address_space
*mapping
,
632 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
633 if (page
->mapping
) { /* Race with truncate? */
634 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
635 account_page_dirtied(page
, mapping
);
636 radix_tree_tag_set(&mapping
->page_tree
,
637 page_index(page
), PAGECACHE_TAG_DIRTY
);
639 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
643 * Add a page to the dirty page list.
645 * It is a sad fact of life that this function is called from several places
646 * deeply under spinlocking. It may not sleep.
648 * If the page has buffers, the uptodate buffers are set dirty, to preserve
649 * dirty-state coherency between the page and the buffers. It the page does
650 * not have buffers then when they are later attached they will all be set
653 * The buffers are dirtied before the page is dirtied. There's a small race
654 * window in which a writepage caller may see the page cleanness but not the
655 * buffer dirtiness. That's fine. If this code were to set the page dirty
656 * before the buffers, a concurrent writepage caller could clear the page dirty
657 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
658 * page on the dirty page list.
660 * We use private_lock to lock against try_to_free_buffers while using the
661 * page's buffer list. Also use this to protect against clean buffers being
662 * added to the page after it was set dirty.
664 * FIXME: may need to call ->reservepage here as well. That's rather up to the
665 * address_space though.
667 int __set_page_dirty_buffers(struct page
*page
)
670 struct address_space
*mapping
= page_mapping(page
);
672 if (unlikely(!mapping
))
673 return !TestSetPageDirty(page
);
675 spin_lock(&mapping
->private_lock
);
676 if (page_has_buffers(page
)) {
677 struct buffer_head
*head
= page_buffers(page
);
678 struct buffer_head
*bh
= head
;
681 set_buffer_dirty(bh
);
682 bh
= bh
->b_this_page
;
683 } while (bh
!= head
);
686 * Lock out page->mem_cgroup migration to keep PageDirty
687 * synchronized with per-memcg dirty page counters.
689 lock_page_memcg(page
);
690 newly_dirty
= !TestSetPageDirty(page
);
691 spin_unlock(&mapping
->private_lock
);
694 __set_page_dirty(page
, mapping
, 1);
696 unlock_page_memcg(page
);
699 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
703 EXPORT_SYMBOL(__set_page_dirty_buffers
);
706 * Write out and wait upon a list of buffers.
708 * We have conflicting pressures: we want to make sure that all
709 * initially dirty buffers get waited on, but that any subsequently
710 * dirtied buffers don't. After all, we don't want fsync to last
711 * forever if somebody is actively writing to the file.
713 * Do this in two main stages: first we copy dirty buffers to a
714 * temporary inode list, queueing the writes as we go. Then we clean
715 * up, waiting for those writes to complete.
717 * During this second stage, any subsequent updates to the file may end
718 * up refiling the buffer on the original inode's dirty list again, so
719 * there is a chance we will end up with a buffer queued for write but
720 * not yet completed on that list. So, as a final cleanup we go through
721 * the osync code to catch these locked, dirty buffers without requeuing
722 * any newly dirty buffers for write.
724 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
726 struct buffer_head
*bh
;
727 struct list_head tmp
;
728 struct address_space
*mapping
;
730 struct blk_plug plug
;
732 INIT_LIST_HEAD(&tmp
);
733 blk_start_plug(&plug
);
736 while (!list_empty(list
)) {
737 bh
= BH_ENTRY(list
->next
);
738 mapping
= bh
->b_assoc_map
;
739 __remove_assoc_queue(bh
);
740 /* Avoid race with mark_buffer_dirty_inode() which does
741 * a lockless check and we rely on seeing the dirty bit */
743 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
744 list_add(&bh
->b_assoc_buffers
, &tmp
);
745 bh
->b_assoc_map
= mapping
;
746 if (buffer_dirty(bh
)) {
750 * Ensure any pending I/O completes so that
751 * write_dirty_buffer() actually writes the
752 * current contents - it is a noop if I/O is
753 * still in flight on potentially older
756 write_dirty_buffer(bh
, WRITE_SYNC
);
759 * Kick off IO for the previous mapping. Note
760 * that we will not run the very last mapping,
761 * wait_on_buffer() will do that for us
762 * through sync_buffer().
771 blk_finish_plug(&plug
);
774 while (!list_empty(&tmp
)) {
775 bh
= BH_ENTRY(tmp
.prev
);
777 mapping
= bh
->b_assoc_map
;
778 __remove_assoc_queue(bh
);
779 /* Avoid race with mark_buffer_dirty_inode() which does
780 * a lockless check and we rely on seeing the dirty bit */
782 if (buffer_dirty(bh
)) {
783 list_add(&bh
->b_assoc_buffers
,
784 &mapping
->private_list
);
785 bh
->b_assoc_map
= mapping
;
789 if (!buffer_uptodate(bh
))
796 err2
= osync_buffers_list(lock
, list
);
804 * Invalidate any and all dirty buffers on a given inode. We are
805 * probably unmounting the fs, but that doesn't mean we have already
806 * done a sync(). Just drop the buffers from the inode list.
808 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
809 * assumes that all the buffers are against the blockdev. Not true
812 void invalidate_inode_buffers(struct inode
*inode
)
814 if (inode_has_buffers(inode
)) {
815 struct address_space
*mapping
= &inode
->i_data
;
816 struct list_head
*list
= &mapping
->private_list
;
817 struct address_space
*buffer_mapping
= mapping
->private_data
;
819 spin_lock(&buffer_mapping
->private_lock
);
820 while (!list_empty(list
))
821 __remove_assoc_queue(BH_ENTRY(list
->next
));
822 spin_unlock(&buffer_mapping
->private_lock
);
825 EXPORT_SYMBOL(invalidate_inode_buffers
);
828 * Remove any clean buffers from the inode's buffer list. This is called
829 * when we're trying to free the inode itself. Those buffers can pin it.
831 * Returns true if all buffers were removed.
833 int remove_inode_buffers(struct inode
*inode
)
837 if (inode_has_buffers(inode
)) {
838 struct address_space
*mapping
= &inode
->i_data
;
839 struct list_head
*list
= &mapping
->private_list
;
840 struct address_space
*buffer_mapping
= mapping
->private_data
;
842 spin_lock(&buffer_mapping
->private_lock
);
843 while (!list_empty(list
)) {
844 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
845 if (buffer_dirty(bh
)) {
849 __remove_assoc_queue(bh
);
851 spin_unlock(&buffer_mapping
->private_lock
);
857 * Create the appropriate buffers when given a page for data area and
858 * the size of each buffer.. Use the bh->b_this_page linked list to
859 * follow the buffers created. Return NULL if unable to create more
862 * The retry flag is used to differentiate async IO (paging, swapping)
863 * which may not fail from ordinary buffer allocations.
865 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
868 struct buffer_head
*bh
, *head
;
874 while ((offset
-= size
) >= 0) {
875 bh
= alloc_buffer_head(GFP_NOFS
);
879 bh
->b_this_page
= head
;
885 /* Link the buffer to its page */
886 set_bh_page(bh
, page
, offset
);
890 * In case anything failed, we just free everything we got.
896 head
= head
->b_this_page
;
897 free_buffer_head(bh
);
902 * Return failure for non-async IO requests. Async IO requests
903 * are not allowed to fail, so we have to wait until buffer heads
904 * become available. But we don't want tasks sleeping with
905 * partially complete buffers, so all were released above.
910 /* We're _really_ low on memory. Now we just
911 * wait for old buffer heads to become free due to
912 * finishing IO. Since this is an async request and
913 * the reserve list is empty, we're sure there are
914 * async buffer heads in use.
919 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
922 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
924 struct buffer_head
*bh
, *tail
;
929 bh
= bh
->b_this_page
;
931 tail
->b_this_page
= head
;
932 attach_page_buffers(page
, head
);
935 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
937 sector_t retval
= ~((sector_t
)0);
938 loff_t sz
= i_size_read(bdev
->bd_inode
);
941 unsigned int sizebits
= blksize_bits(size
);
942 retval
= (sz
>> sizebits
);
948 * Initialise the state of a blockdev page's buffers.
951 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
952 sector_t block
, int size
)
954 struct buffer_head
*head
= page_buffers(page
);
955 struct buffer_head
*bh
= head
;
956 int uptodate
= PageUptodate(page
);
957 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
960 if (!buffer_mapped(bh
)) {
961 init_buffer(bh
, NULL
, NULL
);
963 bh
->b_blocknr
= block
;
965 set_buffer_uptodate(bh
);
966 if (block
< end_block
)
967 set_buffer_mapped(bh
);
970 bh
= bh
->b_this_page
;
971 } while (bh
!= head
);
974 * Caller needs to validate requested block against end of device.
980 * Create the page-cache page that contains the requested block.
982 * This is used purely for blockdev mappings.
985 grow_dev_page(struct block_device
*bdev
, sector_t block
,
986 pgoff_t index
, int size
, int sizebits
, gfp_t gfp
)
988 struct inode
*inode
= bdev
->bd_inode
;
990 struct buffer_head
*bh
;
992 int ret
= 0; /* Will call free_more_memory() */
995 gfp_mask
= mapping_gfp_constraint(inode
->i_mapping
, ~__GFP_FS
) | gfp
;
998 * XXX: __getblk_slow() can not really deal with failure and
999 * will endlessly loop on improvised global reclaim. Prefer
1000 * looping in the allocator rather than here, at least that
1001 * code knows what it's doing.
1003 gfp_mask
|= __GFP_NOFAIL
;
1005 page
= find_or_create_page(inode
->i_mapping
, index
, gfp_mask
);
1009 BUG_ON(!PageLocked(page
));
1011 if (page_has_buffers(page
)) {
1012 bh
= page_buffers(page
);
1013 if (bh
->b_size
== size
) {
1014 end_block
= init_page_buffers(page
, bdev
,
1015 (sector_t
)index
<< sizebits
,
1019 if (!try_to_free_buffers(page
))
1024 * Allocate some buffers for this page
1026 bh
= alloc_page_buffers(page
, size
, 0);
1031 * Link the page to the buffers and initialise them. Take the
1032 * lock to be atomic wrt __find_get_block(), which does not
1033 * run under the page lock.
1035 spin_lock(&inode
->i_mapping
->private_lock
);
1036 link_dev_buffers(page
, bh
);
1037 end_block
= init_page_buffers(page
, bdev
, (sector_t
)index
<< sizebits
,
1039 spin_unlock(&inode
->i_mapping
->private_lock
);
1041 ret
= (block
< end_block
) ? 1 : -ENXIO
;
1049 * Create buffers for the specified block device block's page. If
1050 * that page was dirty, the buffers are set dirty also.
1053 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
, gfp_t gfp
)
1061 } while ((size
<< sizebits
) < PAGE_SIZE
);
1063 index
= block
>> sizebits
;
1066 * Check for a block which wants to lie outside our maximum possible
1067 * pagecache index. (this comparison is done using sector_t types).
1069 if (unlikely(index
!= block
>> sizebits
)) {
1070 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1072 __func__
, (unsigned long long)block
,
1077 /* Create a page with the proper size buffers.. */
1078 return grow_dev_page(bdev
, block
, index
, size
, sizebits
, gfp
);
1081 struct buffer_head
*
1082 __getblk_slow(struct block_device
*bdev
, sector_t block
,
1083 unsigned size
, gfp_t gfp
)
1085 /* Size must be multiple of hard sectorsize */
1086 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1087 (size
< 512 || size
> PAGE_SIZE
))) {
1088 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1090 printk(KERN_ERR
"logical block size: %d\n",
1091 bdev_logical_block_size(bdev
));
1098 struct buffer_head
*bh
;
1101 bh
= __find_get_block(bdev
, block
, size
);
1105 ret
= grow_buffers(bdev
, block
, size
, gfp
);
1112 EXPORT_SYMBOL(__getblk_slow
);
1115 * The relationship between dirty buffers and dirty pages:
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page. If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1130 * Also. When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate. But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate. A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
1139 * @bh: the buffer_head to mark dirty
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1147 * mapping->tree_lock and mapping->host->i_lock.
1149 void mark_buffer_dirty(struct buffer_head
*bh
)
1151 WARN_ON_ONCE(!buffer_uptodate(bh
));
1153 trace_block_dirty_buffer(bh
);
1156 * Very *carefully* optimize the it-is-already-dirty case.
1158 * Don't let the final "is it dirty" escape to before we
1159 * perhaps modified the buffer.
1161 if (buffer_dirty(bh
)) {
1163 if (buffer_dirty(bh
))
1167 if (!test_set_buffer_dirty(bh
)) {
1168 struct page
*page
= bh
->b_page
;
1169 struct address_space
*mapping
= NULL
;
1171 lock_page_memcg(page
);
1172 if (!TestSetPageDirty(page
)) {
1173 mapping
= page_mapping(page
);
1175 __set_page_dirty(page
, mapping
, 0);
1177 unlock_page_memcg(page
);
1179 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1182 EXPORT_SYMBOL(mark_buffer_dirty
);
1185 * Decrement a buffer_head's reference count. If all buffers against a page
1186 * have zero reference count, are clean and unlocked, and if the page is clean
1187 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1188 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1189 * a page but it ends up not being freed, and buffers may later be reattached).
1191 void __brelse(struct buffer_head
* buf
)
1193 if (atomic_read(&buf
->b_count
)) {
1197 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1199 EXPORT_SYMBOL(__brelse
);
1202 * bforget() is like brelse(), except it discards any
1203 * potentially dirty data.
1205 void __bforget(struct buffer_head
*bh
)
1207 clear_buffer_dirty(bh
);
1208 if (bh
->b_assoc_map
) {
1209 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1211 spin_lock(&buffer_mapping
->private_lock
);
1212 list_del_init(&bh
->b_assoc_buffers
);
1213 bh
->b_assoc_map
= NULL
;
1214 spin_unlock(&buffer_mapping
->private_lock
);
1218 EXPORT_SYMBOL(__bforget
);
1220 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1223 if (buffer_uptodate(bh
)) {
1228 bh
->b_end_io
= end_buffer_read_sync
;
1229 submit_bh(REQ_OP_READ
, 0, bh
);
1231 if (buffer_uptodate(bh
))
1239 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1240 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1241 * refcount elevated by one when they're in an LRU. A buffer can only appear
1242 * once in a particular CPU's LRU. A single buffer can be present in multiple
1243 * CPU's LRUs at the same time.
1245 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1246 * sb_find_get_block().
1248 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1249 * a local interrupt disable for that.
1252 #define BH_LRU_SIZE 16
1255 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1258 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1261 #define bh_lru_lock() local_irq_disable()
1262 #define bh_lru_unlock() local_irq_enable()
1264 #define bh_lru_lock() preempt_disable()
1265 #define bh_lru_unlock() preempt_enable()
1268 static inline void check_irqs_on(void)
1270 #ifdef irqs_disabled
1271 BUG_ON(irqs_disabled());
1276 * The LRU management algorithm is dopey-but-simple. Sorry.
1278 static void bh_lru_install(struct buffer_head
*bh
)
1280 struct buffer_head
*evictee
= NULL
;
1284 if (__this_cpu_read(bh_lrus
.bhs
[0]) != bh
) {
1285 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1291 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1292 struct buffer_head
*bh2
=
1293 __this_cpu_read(bh_lrus
.bhs
[in
]);
1298 if (out
>= BH_LRU_SIZE
) {
1299 BUG_ON(evictee
!= NULL
);
1306 while (out
< BH_LRU_SIZE
)
1308 memcpy(this_cpu_ptr(&bh_lrus
.bhs
), bhs
, sizeof(bhs
));
1317 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1319 static struct buffer_head
*
1320 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1322 struct buffer_head
*ret
= NULL
;
1327 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1328 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1330 if (bh
&& bh
->b_blocknr
== block
&& bh
->b_bdev
== bdev
&&
1331 bh
->b_size
== size
) {
1334 __this_cpu_write(bh_lrus
.bhs
[i
],
1335 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1338 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1350 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1351 * it in the LRU and mark it as accessed. If it is not present then return
1354 struct buffer_head
*
1355 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1357 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1360 /* __find_get_block_slow will mark the page accessed */
1361 bh
= __find_get_block_slow(bdev
, block
);
1369 EXPORT_SYMBOL(__find_get_block
);
1372 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1373 * which corresponds to the passed block_device, block and size. The
1374 * returned buffer has its reference count incremented.
1376 * __getblk_gfp() will lock up the machine if grow_dev_page's
1377 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1379 struct buffer_head
*
1380 __getblk_gfp(struct block_device
*bdev
, sector_t block
,
1381 unsigned size
, gfp_t gfp
)
1383 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1387 bh
= __getblk_slow(bdev
, block
, size
, gfp
);
1390 EXPORT_SYMBOL(__getblk_gfp
);
1393 * Do async read-ahead on a buffer..
1395 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1397 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1399 ll_rw_block(REQ_OP_READ
, REQ_RAHEAD
, 1, &bh
);
1403 EXPORT_SYMBOL(__breadahead
);
1406 * __bread_gfp() - reads a specified block and returns the bh
1407 * @bdev: the block_device to read from
1408 * @block: number of block
1409 * @size: size (in bytes) to read
1410 * @gfp: page allocation flag
1412 * Reads a specified block, and returns buffer head that contains it.
1413 * The page cache can be allocated from non-movable area
1414 * not to prevent page migration if you set gfp to zero.
1415 * It returns NULL if the block was unreadable.
1417 struct buffer_head
*
1418 __bread_gfp(struct block_device
*bdev
, sector_t block
,
1419 unsigned size
, gfp_t gfp
)
1421 struct buffer_head
*bh
= __getblk_gfp(bdev
, block
, size
, gfp
);
1423 if (likely(bh
) && !buffer_uptodate(bh
))
1424 bh
= __bread_slow(bh
);
1427 EXPORT_SYMBOL(__bread_gfp
);
1430 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1431 * This doesn't race because it runs in each cpu either in irq
1432 * or with preempt disabled.
1434 static void invalidate_bh_lru(void *arg
)
1436 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1439 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1443 put_cpu_var(bh_lrus
);
1446 static bool has_bh_in_lru(int cpu
, void *dummy
)
1448 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1451 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1459 void invalidate_bh_lrus(void)
1461 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1, GFP_KERNEL
);
1463 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1465 void set_bh_page(struct buffer_head
*bh
,
1466 struct page
*page
, unsigned long offset
)
1469 BUG_ON(offset
>= PAGE_SIZE
);
1470 if (PageHighMem(page
))
1472 * This catches illegal uses and preserves the offset:
1474 bh
->b_data
= (char *)(0 + offset
);
1476 bh
->b_data
= page_address(page
) + offset
;
1478 EXPORT_SYMBOL(set_bh_page
);
1481 * Called when truncating a buffer on a page completely.
1484 /* Bits that are cleared during an invalidate */
1485 #define BUFFER_FLAGS_DISCARD \
1486 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1487 1 << BH_Delay | 1 << BH_Unwritten)
1489 static void discard_buffer(struct buffer_head
* bh
)
1491 unsigned long b_state
, b_state_old
;
1494 clear_buffer_dirty(bh
);
1496 b_state
= bh
->b_state
;
1498 b_state_old
= cmpxchg(&bh
->b_state
, b_state
,
1499 (b_state
& ~BUFFER_FLAGS_DISCARD
));
1500 if (b_state_old
== b_state
)
1502 b_state
= b_state_old
;
1508 * block_invalidatepage - invalidate part or all of a buffer-backed page
1510 * @page: the page which is affected
1511 * @offset: start of the range to invalidate
1512 * @length: length of the range to invalidate
1514 * block_invalidatepage() is called when all or part of the page has become
1515 * invalidated by a truncate operation.
1517 * block_invalidatepage() does not have to release all buffers, but it must
1518 * ensure that no dirty buffer is left outside @offset and that no I/O
1519 * is underway against any of the blocks which are outside the truncation
1520 * point. Because the caller is about to free (and possibly reuse) those
1523 void block_invalidatepage(struct page
*page
, unsigned int offset
,
1524 unsigned int length
)
1526 struct buffer_head
*head
, *bh
, *next
;
1527 unsigned int curr_off
= 0;
1528 unsigned int stop
= length
+ offset
;
1530 BUG_ON(!PageLocked(page
));
1531 if (!page_has_buffers(page
))
1535 * Check for overflow
1537 BUG_ON(stop
> PAGE_SIZE
|| stop
< length
);
1539 head
= page_buffers(page
);
1542 unsigned int next_off
= curr_off
+ bh
->b_size
;
1543 next
= bh
->b_this_page
;
1546 * Are we still fully in range ?
1548 if (next_off
> stop
)
1552 * is this block fully invalidated?
1554 if (offset
<= curr_off
)
1556 curr_off
= next_off
;
1558 } while (bh
!= head
);
1561 * We release buffers only if the entire page is being invalidated.
1562 * The get_block cached value has been unconditionally invalidated,
1563 * so real IO is not possible anymore.
1566 try_to_release_page(page
, 0);
1570 EXPORT_SYMBOL(block_invalidatepage
);
1574 * We attach and possibly dirty the buffers atomically wrt
1575 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1576 * is already excluded via the page lock.
1578 void create_empty_buffers(struct page
*page
,
1579 unsigned long blocksize
, unsigned long b_state
)
1581 struct buffer_head
*bh
, *head
, *tail
;
1583 head
= alloc_page_buffers(page
, blocksize
, 1);
1586 bh
->b_state
|= b_state
;
1588 bh
= bh
->b_this_page
;
1590 tail
->b_this_page
= head
;
1592 spin_lock(&page
->mapping
->private_lock
);
1593 if (PageUptodate(page
) || PageDirty(page
)) {
1596 if (PageDirty(page
))
1597 set_buffer_dirty(bh
);
1598 if (PageUptodate(page
))
1599 set_buffer_uptodate(bh
);
1600 bh
= bh
->b_this_page
;
1601 } while (bh
!= head
);
1603 attach_page_buffers(page
, head
);
1604 spin_unlock(&page
->mapping
->private_lock
);
1606 EXPORT_SYMBOL(create_empty_buffers
);
1609 * We are taking a block for data and we don't want any output from any
1610 * buffer-cache aliases starting from return from that function and
1611 * until the moment when something will explicitly mark the buffer
1612 * dirty (hopefully that will not happen until we will free that block ;-)
1613 * We don't even need to mark it not-uptodate - nobody can expect
1614 * anything from a newly allocated buffer anyway. We used to used
1615 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1616 * don't want to mark the alias unmapped, for example - it would confuse
1617 * anyone who might pick it with bread() afterwards...
1619 * Also.. Note that bforget() doesn't lock the buffer. So there can
1620 * be writeout I/O going on against recently-freed buffers. We don't
1621 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1622 * only if we really need to. That happens here.
1624 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1626 struct buffer_head
*old_bh
;
1630 old_bh
= __find_get_block_slow(bdev
, block
);
1632 clear_buffer_dirty(old_bh
);
1633 wait_on_buffer(old_bh
);
1634 clear_buffer_req(old_bh
);
1638 EXPORT_SYMBOL(unmap_underlying_metadata
);
1641 * Size is a power-of-two in the range 512..PAGE_SIZE,
1642 * and the case we care about most is PAGE_SIZE.
1644 * So this *could* possibly be written with those
1645 * constraints in mind (relevant mostly if some
1646 * architecture has a slow bit-scan instruction)
1648 static inline int block_size_bits(unsigned int blocksize
)
1650 return ilog2(blocksize
);
1653 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1655 BUG_ON(!PageLocked(page
));
1657 if (!page_has_buffers(page
))
1658 create_empty_buffers(page
, 1 << ACCESS_ONCE(inode
->i_blkbits
), b_state
);
1659 return page_buffers(page
);
1663 * NOTE! All mapped/uptodate combinations are valid:
1665 * Mapped Uptodate Meaning
1667 * No No "unknown" - must do get_block()
1668 * No Yes "hole" - zero-filled
1669 * Yes No "allocated" - allocated on disk, not read in
1670 * Yes Yes "valid" - allocated and up-to-date in memory.
1672 * "Dirty" is valid only with the last case (mapped+uptodate).
1676 * While block_write_full_page is writing back the dirty buffers under
1677 * the page lock, whoever dirtied the buffers may decide to clean them
1678 * again at any time. We handle that by only looking at the buffer
1679 * state inside lock_buffer().
1681 * If block_write_full_page() is called for regular writeback
1682 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1683 * locked buffer. This only can happen if someone has written the buffer
1684 * directly, with submit_bh(). At the address_space level PageWriteback
1685 * prevents this contention from occurring.
1687 * If block_write_full_page() is called with wbc->sync_mode ==
1688 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1689 * causes the writes to be flagged as synchronous writes.
1691 int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1692 get_block_t
*get_block
, struct writeback_control
*wbc
,
1693 bh_end_io_t
*handler
)
1697 sector_t last_block
;
1698 struct buffer_head
*bh
, *head
;
1699 unsigned int blocksize
, bbits
;
1700 int nr_underway
= 0;
1701 int write_flags
= (wbc
->sync_mode
== WB_SYNC_ALL
? WRITE_SYNC
: 0);
1703 head
= create_page_buffers(page
, inode
,
1704 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1707 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1708 * here, and the (potentially unmapped) buffers may become dirty at
1709 * any time. If a buffer becomes dirty here after we've inspected it
1710 * then we just miss that fact, and the page stays dirty.
1712 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1713 * handle that here by just cleaning them.
1717 blocksize
= bh
->b_size
;
1718 bbits
= block_size_bits(blocksize
);
1720 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1721 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1724 * Get all the dirty buffers mapped to disk addresses and
1725 * handle any aliases from the underlying blockdev's mapping.
1728 if (block
> last_block
) {
1730 * mapped buffers outside i_size will occur, because
1731 * this page can be outside i_size when there is a
1732 * truncate in progress.
1735 * The buffer was zeroed by block_write_full_page()
1737 clear_buffer_dirty(bh
);
1738 set_buffer_uptodate(bh
);
1739 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1741 WARN_ON(bh
->b_size
!= blocksize
);
1742 err
= get_block(inode
, block
, bh
, 1);
1745 clear_buffer_delay(bh
);
1746 if (buffer_new(bh
)) {
1747 /* blockdev mappings never come here */
1748 clear_buffer_new(bh
);
1749 unmap_underlying_metadata(bh
->b_bdev
,
1753 bh
= bh
->b_this_page
;
1755 } while (bh
!= head
);
1758 if (!buffer_mapped(bh
))
1761 * If it's a fully non-blocking write attempt and we cannot
1762 * lock the buffer then redirty the page. Note that this can
1763 * potentially cause a busy-wait loop from writeback threads
1764 * and kswapd activity, but those code paths have their own
1765 * higher-level throttling.
1767 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1769 } else if (!trylock_buffer(bh
)) {
1770 redirty_page_for_writepage(wbc
, page
);
1773 if (test_clear_buffer_dirty(bh
)) {
1774 mark_buffer_async_write_endio(bh
, handler
);
1778 } while ((bh
= bh
->b_this_page
) != head
);
1781 * The page and its buffers are protected by PageWriteback(), so we can
1782 * drop the bh refcounts early.
1784 BUG_ON(PageWriteback(page
));
1785 set_page_writeback(page
);
1788 struct buffer_head
*next
= bh
->b_this_page
;
1789 if (buffer_async_write(bh
)) {
1790 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
, 0, wbc
);
1794 } while (bh
!= head
);
1799 if (nr_underway
== 0) {
1801 * The page was marked dirty, but the buffers were
1802 * clean. Someone wrote them back by hand with
1803 * ll_rw_block/submit_bh. A rare case.
1805 end_page_writeback(page
);
1808 * The page and buffer_heads can be released at any time from
1816 * ENOSPC, or some other error. We may already have added some
1817 * blocks to the file, so we need to write these out to avoid
1818 * exposing stale data.
1819 * The page is currently locked and not marked for writeback
1822 /* Recovery: lock and submit the mapped buffers */
1824 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1825 !buffer_delay(bh
)) {
1827 mark_buffer_async_write_endio(bh
, handler
);
1830 * The buffer may have been set dirty during
1831 * attachment to a dirty page.
1833 clear_buffer_dirty(bh
);
1835 } while ((bh
= bh
->b_this_page
) != head
);
1837 BUG_ON(PageWriteback(page
));
1838 mapping_set_error(page
->mapping
, err
);
1839 set_page_writeback(page
);
1841 struct buffer_head
*next
= bh
->b_this_page
;
1842 if (buffer_async_write(bh
)) {
1843 clear_buffer_dirty(bh
);
1844 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
, 0, wbc
);
1848 } while (bh
!= head
);
1852 EXPORT_SYMBOL(__block_write_full_page
);
1855 * If a page has any new buffers, zero them out here, and mark them uptodate
1856 * and dirty so they'll be written out (in order to prevent uninitialised
1857 * block data from leaking). And clear the new bit.
1859 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1861 unsigned int block_start
, block_end
;
1862 struct buffer_head
*head
, *bh
;
1864 BUG_ON(!PageLocked(page
));
1865 if (!page_has_buffers(page
))
1868 bh
= head
= page_buffers(page
);
1871 block_end
= block_start
+ bh
->b_size
;
1873 if (buffer_new(bh
)) {
1874 if (block_end
> from
&& block_start
< to
) {
1875 if (!PageUptodate(page
)) {
1876 unsigned start
, size
;
1878 start
= max(from
, block_start
);
1879 size
= min(to
, block_end
) - start
;
1881 zero_user(page
, start
, size
);
1882 set_buffer_uptodate(bh
);
1885 clear_buffer_new(bh
);
1886 mark_buffer_dirty(bh
);
1890 block_start
= block_end
;
1891 bh
= bh
->b_this_page
;
1892 } while (bh
!= head
);
1894 EXPORT_SYMBOL(page_zero_new_buffers
);
1897 iomap_to_bh(struct inode
*inode
, sector_t block
, struct buffer_head
*bh
,
1898 struct iomap
*iomap
)
1900 loff_t offset
= block
<< inode
->i_blkbits
;
1902 bh
->b_bdev
= iomap
->bdev
;
1905 * Block points to offset in file we need to map, iomap contains
1906 * the offset at which the map starts. If the map ends before the
1907 * current block, then do not map the buffer and let the caller
1910 BUG_ON(offset
>= iomap
->offset
+ iomap
->length
);
1912 switch (iomap
->type
) {
1915 * If the buffer is not up to date or beyond the current EOF,
1916 * we need to mark it as new to ensure sub-block zeroing is
1917 * executed if necessary.
1919 if (!buffer_uptodate(bh
) ||
1920 (offset
>= i_size_read(inode
)))
1923 case IOMAP_DELALLOC
:
1924 if (!buffer_uptodate(bh
) ||
1925 (offset
>= i_size_read(inode
)))
1927 set_buffer_uptodate(bh
);
1928 set_buffer_mapped(bh
);
1929 set_buffer_delay(bh
);
1931 case IOMAP_UNWRITTEN
:
1933 * For unwritten regions, we always need to ensure that
1934 * sub-block writes cause the regions in the block we are not
1935 * writing to are zeroed. Set the buffer as new to ensure this.
1938 set_buffer_unwritten(bh
);
1941 if (offset
>= i_size_read(inode
))
1943 bh
->b_blocknr
= (iomap
->blkno
>> (inode
->i_blkbits
- 9)) +
1944 ((offset
- iomap
->offset
) >> inode
->i_blkbits
);
1945 set_buffer_mapped(bh
);
1950 int __block_write_begin_int(struct page
*page
, loff_t pos
, unsigned len
,
1951 get_block_t
*get_block
, struct iomap
*iomap
)
1953 unsigned from
= pos
& (PAGE_SIZE
- 1);
1954 unsigned to
= from
+ len
;
1955 struct inode
*inode
= page
->mapping
->host
;
1956 unsigned block_start
, block_end
;
1959 unsigned blocksize
, bbits
;
1960 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1962 BUG_ON(!PageLocked(page
));
1963 BUG_ON(from
> PAGE_SIZE
);
1964 BUG_ON(to
> PAGE_SIZE
);
1967 head
= create_page_buffers(page
, inode
, 0);
1968 blocksize
= head
->b_size
;
1969 bbits
= block_size_bits(blocksize
);
1971 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1973 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1974 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1975 block_end
= block_start
+ blocksize
;
1976 if (block_end
<= from
|| block_start
>= to
) {
1977 if (PageUptodate(page
)) {
1978 if (!buffer_uptodate(bh
))
1979 set_buffer_uptodate(bh
);
1984 clear_buffer_new(bh
);
1985 if (!buffer_mapped(bh
)) {
1986 WARN_ON(bh
->b_size
!= blocksize
);
1988 err
= get_block(inode
, block
, bh
, 1);
1992 iomap_to_bh(inode
, block
, bh
, iomap
);
1995 if (buffer_new(bh
)) {
1996 unmap_underlying_metadata(bh
->b_bdev
,
1998 if (PageUptodate(page
)) {
1999 clear_buffer_new(bh
);
2000 set_buffer_uptodate(bh
);
2001 mark_buffer_dirty(bh
);
2004 if (block_end
> to
|| block_start
< from
)
2005 zero_user_segments(page
,
2011 if (PageUptodate(page
)) {
2012 if (!buffer_uptodate(bh
))
2013 set_buffer_uptodate(bh
);
2016 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
2017 !buffer_unwritten(bh
) &&
2018 (block_start
< from
|| block_end
> to
)) {
2019 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2024 * If we issued read requests - let them complete.
2026 while(wait_bh
> wait
) {
2027 wait_on_buffer(*--wait_bh
);
2028 if (!buffer_uptodate(*wait_bh
))
2032 page_zero_new_buffers(page
, from
, to
);
2036 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
2037 get_block_t
*get_block
)
2039 return __block_write_begin_int(page
, pos
, len
, get_block
, NULL
);
2041 EXPORT_SYMBOL(__block_write_begin
);
2043 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
2044 unsigned from
, unsigned to
)
2046 unsigned block_start
, block_end
;
2049 struct buffer_head
*bh
, *head
;
2051 bh
= head
= page_buffers(page
);
2052 blocksize
= bh
->b_size
;
2056 block_end
= block_start
+ blocksize
;
2057 if (block_end
<= from
|| block_start
>= to
) {
2058 if (!buffer_uptodate(bh
))
2061 set_buffer_uptodate(bh
);
2062 mark_buffer_dirty(bh
);
2064 clear_buffer_new(bh
);
2066 block_start
= block_end
;
2067 bh
= bh
->b_this_page
;
2068 } while (bh
!= head
);
2071 * If this is a partial write which happened to make all buffers
2072 * uptodate then we can optimize away a bogus readpage() for
2073 * the next read(). Here we 'discover' whether the page went
2074 * uptodate as a result of this (potentially partial) write.
2077 SetPageUptodate(page
);
2082 * block_write_begin takes care of the basic task of block allocation and
2083 * bringing partial write blocks uptodate first.
2085 * The filesystem needs to handle block truncation upon failure.
2087 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
2088 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
2090 pgoff_t index
= pos
>> PAGE_SHIFT
;
2094 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2098 status
= __block_write_begin(page
, pos
, len
, get_block
);
2099 if (unlikely(status
)) {
2108 EXPORT_SYMBOL(block_write_begin
);
2110 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2111 loff_t pos
, unsigned len
, unsigned copied
,
2112 struct page
*page
, void *fsdata
)
2114 struct inode
*inode
= mapping
->host
;
2117 start
= pos
& (PAGE_SIZE
- 1);
2119 if (unlikely(copied
< len
)) {
2121 * The buffers that were written will now be uptodate, so we
2122 * don't have to worry about a readpage reading them and
2123 * overwriting a partial write. However if we have encountered
2124 * a short write and only partially written into a buffer, it
2125 * will not be marked uptodate, so a readpage might come in and
2126 * destroy our partial write.
2128 * Do the simplest thing, and just treat any short write to a
2129 * non uptodate page as a zero-length write, and force the
2130 * caller to redo the whole thing.
2132 if (!PageUptodate(page
))
2135 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2137 flush_dcache_page(page
);
2139 /* This could be a short (even 0-length) commit */
2140 __block_commit_write(inode
, page
, start
, start
+copied
);
2144 EXPORT_SYMBOL(block_write_end
);
2146 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2147 loff_t pos
, unsigned len
, unsigned copied
,
2148 struct page
*page
, void *fsdata
)
2150 struct inode
*inode
= mapping
->host
;
2151 loff_t old_size
= inode
->i_size
;
2152 int i_size_changed
= 0;
2154 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2157 * No need to use i_size_read() here, the i_size
2158 * cannot change under us because we hold i_mutex.
2160 * But it's important to update i_size while still holding page lock:
2161 * page writeout could otherwise come in and zero beyond i_size.
2163 if (pos
+copied
> inode
->i_size
) {
2164 i_size_write(inode
, pos
+copied
);
2172 pagecache_isize_extended(inode
, old_size
, pos
);
2174 * Don't mark the inode dirty under page lock. First, it unnecessarily
2175 * makes the holding time of page lock longer. Second, it forces lock
2176 * ordering of page lock and transaction start for journaling
2180 mark_inode_dirty(inode
);
2184 EXPORT_SYMBOL(generic_write_end
);
2187 * block_is_partially_uptodate checks whether buffers within a page are
2190 * Returns true if all buffers which correspond to a file portion
2191 * we want to read are uptodate.
2193 int block_is_partially_uptodate(struct page
*page
, unsigned long from
,
2194 unsigned long count
)
2196 unsigned block_start
, block_end
, blocksize
;
2198 struct buffer_head
*bh
, *head
;
2201 if (!page_has_buffers(page
))
2204 head
= page_buffers(page
);
2205 blocksize
= head
->b_size
;
2206 to
= min_t(unsigned, PAGE_SIZE
- from
, count
);
2208 if (from
< blocksize
&& to
> PAGE_SIZE
- blocksize
)
2214 block_end
= block_start
+ blocksize
;
2215 if (block_end
> from
&& block_start
< to
) {
2216 if (!buffer_uptodate(bh
)) {
2220 if (block_end
>= to
)
2223 block_start
= block_end
;
2224 bh
= bh
->b_this_page
;
2225 } while (bh
!= head
);
2229 EXPORT_SYMBOL(block_is_partially_uptodate
);
2232 * Generic "read page" function for block devices that have the normal
2233 * get_block functionality. This is most of the block device filesystems.
2234 * Reads the page asynchronously --- the unlock_buffer() and
2235 * set/clear_buffer_uptodate() functions propagate buffer state into the
2236 * page struct once IO has completed.
2238 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2240 struct inode
*inode
= page
->mapping
->host
;
2241 sector_t iblock
, lblock
;
2242 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2243 unsigned int blocksize
, bbits
;
2245 int fully_mapped
= 1;
2247 head
= create_page_buffers(page
, inode
, 0);
2248 blocksize
= head
->b_size
;
2249 bbits
= block_size_bits(blocksize
);
2251 iblock
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
2252 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2258 if (buffer_uptodate(bh
))
2261 if (!buffer_mapped(bh
)) {
2265 if (iblock
< lblock
) {
2266 WARN_ON(bh
->b_size
!= blocksize
);
2267 err
= get_block(inode
, iblock
, bh
, 0);
2271 if (!buffer_mapped(bh
)) {
2272 zero_user(page
, i
* blocksize
, blocksize
);
2274 set_buffer_uptodate(bh
);
2278 * get_block() might have updated the buffer
2281 if (buffer_uptodate(bh
))
2285 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2288 SetPageMappedToDisk(page
);
2292 * All buffers are uptodate - we can set the page uptodate
2293 * as well. But not if get_block() returned an error.
2295 if (!PageError(page
))
2296 SetPageUptodate(page
);
2301 /* Stage two: lock the buffers */
2302 for (i
= 0; i
< nr
; i
++) {
2305 mark_buffer_async_read(bh
);
2309 * Stage 3: start the IO. Check for uptodateness
2310 * inside the buffer lock in case another process reading
2311 * the underlying blockdev brought it uptodate (the sct fix).
2313 for (i
= 0; i
< nr
; i
++) {
2315 if (buffer_uptodate(bh
))
2316 end_buffer_async_read(bh
, 1);
2318 submit_bh(REQ_OP_READ
, 0, bh
);
2322 EXPORT_SYMBOL(block_read_full_page
);
2324 /* utility function for filesystems that need to do work on expanding
2325 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2326 * deal with the hole.
2328 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2330 struct address_space
*mapping
= inode
->i_mapping
;
2335 err
= inode_newsize_ok(inode
, size
);
2339 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2340 AOP_FLAG_UNINTERRUPTIBLE
|AOP_FLAG_CONT_EXPAND
,
2345 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2351 EXPORT_SYMBOL(generic_cont_expand_simple
);
2353 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2354 loff_t pos
, loff_t
*bytes
)
2356 struct inode
*inode
= mapping
->host
;
2357 unsigned blocksize
= 1 << inode
->i_blkbits
;
2360 pgoff_t index
, curidx
;
2362 unsigned zerofrom
, offset
, len
;
2365 index
= pos
>> PAGE_SHIFT
;
2366 offset
= pos
& ~PAGE_MASK
;
2368 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_SHIFT
)) {
2369 zerofrom
= curpos
& ~PAGE_MASK
;
2370 if (zerofrom
& (blocksize
-1)) {
2371 *bytes
|= (blocksize
-1);
2374 len
= PAGE_SIZE
- zerofrom
;
2376 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2377 AOP_FLAG_UNINTERRUPTIBLE
,
2381 zero_user(page
, zerofrom
, len
);
2382 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2389 balance_dirty_pages_ratelimited(mapping
);
2391 if (unlikely(fatal_signal_pending(current
))) {
2397 /* page covers the boundary, find the boundary offset */
2398 if (index
== curidx
) {
2399 zerofrom
= curpos
& ~PAGE_MASK
;
2400 /* if we will expand the thing last block will be filled */
2401 if (offset
<= zerofrom
) {
2404 if (zerofrom
& (blocksize
-1)) {
2405 *bytes
|= (blocksize
-1);
2408 len
= offset
- zerofrom
;
2410 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2411 AOP_FLAG_UNINTERRUPTIBLE
,
2415 zero_user(page
, zerofrom
, len
);
2416 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2428 * For moronic filesystems that do not allow holes in file.
2429 * We may have to extend the file.
2431 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2432 loff_t pos
, unsigned len
, unsigned flags
,
2433 struct page
**pagep
, void **fsdata
,
2434 get_block_t
*get_block
, loff_t
*bytes
)
2436 struct inode
*inode
= mapping
->host
;
2437 unsigned blocksize
= 1 << inode
->i_blkbits
;
2441 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2445 zerofrom
= *bytes
& ~PAGE_MASK
;
2446 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2447 *bytes
|= (blocksize
-1);
2451 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2453 EXPORT_SYMBOL(cont_write_begin
);
2455 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2457 struct inode
*inode
= page
->mapping
->host
;
2458 __block_commit_write(inode
,page
,from
,to
);
2461 EXPORT_SYMBOL(block_commit_write
);
2464 * block_page_mkwrite() is not allowed to change the file size as it gets
2465 * called from a page fault handler when a page is first dirtied. Hence we must
2466 * be careful to check for EOF conditions here. We set the page up correctly
2467 * for a written page which means we get ENOSPC checking when writing into
2468 * holes and correct delalloc and unwritten extent mapping on filesystems that
2469 * support these features.
2471 * We are not allowed to take the i_mutex here so we have to play games to
2472 * protect against truncate races as the page could now be beyond EOF. Because
2473 * truncate writes the inode size before removing pages, once we have the
2474 * page lock we can determine safely if the page is beyond EOF. If it is not
2475 * beyond EOF, then the page is guaranteed safe against truncation until we
2478 * Direct callers of this function should protect against filesystem freezing
2479 * using sb_start_pagefault() - sb_end_pagefault() functions.
2481 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2482 get_block_t get_block
)
2484 struct page
*page
= vmf
->page
;
2485 struct inode
*inode
= file_inode(vma
->vm_file
);
2491 size
= i_size_read(inode
);
2492 if ((page
->mapping
!= inode
->i_mapping
) ||
2493 (page_offset(page
) > size
)) {
2494 /* We overload EFAULT to mean page got truncated */
2499 /* page is wholly or partially inside EOF */
2500 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
2501 end
= size
& ~PAGE_MASK
;
2505 ret
= __block_write_begin(page
, 0, end
, get_block
);
2507 ret
= block_commit_write(page
, 0, end
);
2509 if (unlikely(ret
< 0))
2511 set_page_dirty(page
);
2512 wait_for_stable_page(page
);
2518 EXPORT_SYMBOL(block_page_mkwrite
);
2521 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2522 * immediately, while under the page lock. So it needs a special end_io
2523 * handler which does not touch the bh after unlocking it.
2525 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2527 __end_buffer_read_notouch(bh
, uptodate
);
2531 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2532 * the page (converting it to circular linked list and taking care of page
2535 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2537 struct buffer_head
*bh
;
2539 BUG_ON(!PageLocked(page
));
2541 spin_lock(&page
->mapping
->private_lock
);
2544 if (PageDirty(page
))
2545 set_buffer_dirty(bh
);
2546 if (!bh
->b_this_page
)
2547 bh
->b_this_page
= head
;
2548 bh
= bh
->b_this_page
;
2549 } while (bh
!= head
);
2550 attach_page_buffers(page
, head
);
2551 spin_unlock(&page
->mapping
->private_lock
);
2555 * On entry, the page is fully not uptodate.
2556 * On exit the page is fully uptodate in the areas outside (from,to)
2557 * The filesystem needs to handle block truncation upon failure.
2559 int nobh_write_begin(struct address_space
*mapping
,
2560 loff_t pos
, unsigned len
, unsigned flags
,
2561 struct page
**pagep
, void **fsdata
,
2562 get_block_t
*get_block
)
2564 struct inode
*inode
= mapping
->host
;
2565 const unsigned blkbits
= inode
->i_blkbits
;
2566 const unsigned blocksize
= 1 << blkbits
;
2567 struct buffer_head
*head
, *bh
;
2571 unsigned block_in_page
;
2572 unsigned block_start
, block_end
;
2573 sector_t block_in_file
;
2576 int is_mapped_to_disk
= 1;
2578 index
= pos
>> PAGE_SHIFT
;
2579 from
= pos
& (PAGE_SIZE
- 1);
2582 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2588 if (page_has_buffers(page
)) {
2589 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2595 if (PageMappedToDisk(page
))
2599 * Allocate buffers so that we can keep track of state, and potentially
2600 * attach them to the page if an error occurs. In the common case of
2601 * no error, they will just be freed again without ever being attached
2602 * to the page (which is all OK, because we're under the page lock).
2604 * Be careful: the buffer linked list is a NULL terminated one, rather
2605 * than the circular one we're used to.
2607 head
= alloc_page_buffers(page
, blocksize
, 0);
2613 block_in_file
= (sector_t
)page
->index
<< (PAGE_SHIFT
- blkbits
);
2616 * We loop across all blocks in the page, whether or not they are
2617 * part of the affected region. This is so we can discover if the
2618 * page is fully mapped-to-disk.
2620 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2621 block_start
< PAGE_SIZE
;
2622 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2625 block_end
= block_start
+ blocksize
;
2628 if (block_start
>= to
)
2630 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2634 if (!buffer_mapped(bh
))
2635 is_mapped_to_disk
= 0;
2637 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
2638 if (PageUptodate(page
)) {
2639 set_buffer_uptodate(bh
);
2642 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2643 zero_user_segments(page
, block_start
, from
,
2647 if (buffer_uptodate(bh
))
2648 continue; /* reiserfs does this */
2649 if (block_start
< from
|| block_end
> to
) {
2651 bh
->b_end_io
= end_buffer_read_nobh
;
2652 submit_bh(REQ_OP_READ
, 0, bh
);
2659 * The page is locked, so these buffers are protected from
2660 * any VM or truncate activity. Hence we don't need to care
2661 * for the buffer_head refcounts.
2663 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2665 if (!buffer_uptodate(bh
))
2672 if (is_mapped_to_disk
)
2673 SetPageMappedToDisk(page
);
2675 *fsdata
= head
; /* to be released by nobh_write_end */
2682 * Error recovery is a bit difficult. We need to zero out blocks that
2683 * were newly allocated, and dirty them to ensure they get written out.
2684 * Buffers need to be attached to the page at this point, otherwise
2685 * the handling of potential IO errors during writeout would be hard
2686 * (could try doing synchronous writeout, but what if that fails too?)
2688 attach_nobh_buffers(page
, head
);
2689 page_zero_new_buffers(page
, from
, to
);
2698 EXPORT_SYMBOL(nobh_write_begin
);
2700 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2701 loff_t pos
, unsigned len
, unsigned copied
,
2702 struct page
*page
, void *fsdata
)
2704 struct inode
*inode
= page
->mapping
->host
;
2705 struct buffer_head
*head
= fsdata
;
2706 struct buffer_head
*bh
;
2707 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2709 if (unlikely(copied
< len
) && head
)
2710 attach_nobh_buffers(page
, head
);
2711 if (page_has_buffers(page
))
2712 return generic_write_end(file
, mapping
, pos
, len
,
2713 copied
, page
, fsdata
);
2715 SetPageUptodate(page
);
2716 set_page_dirty(page
);
2717 if (pos
+copied
> inode
->i_size
) {
2718 i_size_write(inode
, pos
+copied
);
2719 mark_inode_dirty(inode
);
2727 head
= head
->b_this_page
;
2728 free_buffer_head(bh
);
2733 EXPORT_SYMBOL(nobh_write_end
);
2736 * nobh_writepage() - based on block_full_write_page() except
2737 * that it tries to operate without attaching bufferheads to
2740 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2741 struct writeback_control
*wbc
)
2743 struct inode
* const inode
= page
->mapping
->host
;
2744 loff_t i_size
= i_size_read(inode
);
2745 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2749 /* Is the page fully inside i_size? */
2750 if (page
->index
< end_index
)
2753 /* Is the page fully outside i_size? (truncate in progress) */
2754 offset
= i_size
& (PAGE_SIZE
-1);
2755 if (page
->index
>= end_index
+1 || !offset
) {
2757 * The page may have dirty, unmapped buffers. For example,
2758 * they may have been added in ext3_writepage(). Make them
2759 * freeable here, so the page does not leak.
2762 /* Not really sure about this - do we need this ? */
2763 if (page
->mapping
->a_ops
->invalidatepage
)
2764 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2767 return 0; /* don't care */
2771 * The page straddles i_size. It must be zeroed out on each and every
2772 * writepage invocation because it may be mmapped. "A file is mapped
2773 * in multiples of the page size. For a file that is not a multiple of
2774 * the page size, the remaining memory is zeroed when mapped, and
2775 * writes to that region are not written out to the file."
2777 zero_user_segment(page
, offset
, PAGE_SIZE
);
2779 ret
= mpage_writepage(page
, get_block
, wbc
);
2781 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2782 end_buffer_async_write
);
2785 EXPORT_SYMBOL(nobh_writepage
);
2787 int nobh_truncate_page(struct address_space
*mapping
,
2788 loff_t from
, get_block_t
*get_block
)
2790 pgoff_t index
= from
>> PAGE_SHIFT
;
2791 unsigned offset
= from
& (PAGE_SIZE
-1);
2794 unsigned length
, pos
;
2795 struct inode
*inode
= mapping
->host
;
2797 struct buffer_head map_bh
;
2800 blocksize
= 1 << inode
->i_blkbits
;
2801 length
= offset
& (blocksize
- 1);
2803 /* Block boundary? Nothing to do */
2807 length
= blocksize
- length
;
2808 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2810 page
= grab_cache_page(mapping
, index
);
2815 if (page_has_buffers(page
)) {
2819 return block_truncate_page(mapping
, from
, get_block
);
2822 /* Find the buffer that contains "offset" */
2824 while (offset
>= pos
) {
2829 map_bh
.b_size
= blocksize
;
2831 err
= get_block(inode
, iblock
, &map_bh
, 0);
2834 /* unmapped? It's a hole - nothing to do */
2835 if (!buffer_mapped(&map_bh
))
2838 /* Ok, it's mapped. Make sure it's up-to-date */
2839 if (!PageUptodate(page
)) {
2840 err
= mapping
->a_ops
->readpage(NULL
, page
);
2846 if (!PageUptodate(page
)) {
2850 if (page_has_buffers(page
))
2853 zero_user(page
, offset
, length
);
2854 set_page_dirty(page
);
2863 EXPORT_SYMBOL(nobh_truncate_page
);
2865 int block_truncate_page(struct address_space
*mapping
,
2866 loff_t from
, get_block_t
*get_block
)
2868 pgoff_t index
= from
>> PAGE_SHIFT
;
2869 unsigned offset
= from
& (PAGE_SIZE
-1);
2872 unsigned length
, pos
;
2873 struct inode
*inode
= mapping
->host
;
2875 struct buffer_head
*bh
;
2878 blocksize
= 1 << inode
->i_blkbits
;
2879 length
= offset
& (blocksize
- 1);
2881 /* Block boundary? Nothing to do */
2885 length
= blocksize
- length
;
2886 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2888 page
= grab_cache_page(mapping
, index
);
2893 if (!page_has_buffers(page
))
2894 create_empty_buffers(page
, blocksize
, 0);
2896 /* Find the buffer that contains "offset" */
2897 bh
= page_buffers(page
);
2899 while (offset
>= pos
) {
2900 bh
= bh
->b_this_page
;
2906 if (!buffer_mapped(bh
)) {
2907 WARN_ON(bh
->b_size
!= blocksize
);
2908 err
= get_block(inode
, iblock
, bh
, 0);
2911 /* unmapped? It's a hole - nothing to do */
2912 if (!buffer_mapped(bh
))
2916 /* Ok, it's mapped. Make sure it's up-to-date */
2917 if (PageUptodate(page
))
2918 set_buffer_uptodate(bh
);
2920 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2922 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2924 /* Uhhuh. Read error. Complain and punt. */
2925 if (!buffer_uptodate(bh
))
2929 zero_user(page
, offset
, length
);
2930 mark_buffer_dirty(bh
);
2939 EXPORT_SYMBOL(block_truncate_page
);
2942 * The generic ->writepage function for buffer-backed address_spaces
2944 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2945 struct writeback_control
*wbc
)
2947 struct inode
* const inode
= page
->mapping
->host
;
2948 loff_t i_size
= i_size_read(inode
);
2949 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2952 /* Is the page fully inside i_size? */
2953 if (page
->index
< end_index
)
2954 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2955 end_buffer_async_write
);
2957 /* Is the page fully outside i_size? (truncate in progress) */
2958 offset
= i_size
& (PAGE_SIZE
-1);
2959 if (page
->index
>= end_index
+1 || !offset
) {
2961 * The page may have dirty, unmapped buffers. For example,
2962 * they may have been added in ext3_writepage(). Make them
2963 * freeable here, so the page does not leak.
2965 do_invalidatepage(page
, 0, PAGE_SIZE
);
2967 return 0; /* don't care */
2971 * The page straddles i_size. It must be zeroed out on each and every
2972 * writepage invocation because it may be mmapped. "A file is mapped
2973 * in multiples of the page size. For a file that is not a multiple of
2974 * the page size, the remaining memory is zeroed when mapped, and
2975 * writes to that region are not written out to the file."
2977 zero_user_segment(page
, offset
, PAGE_SIZE
);
2978 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2979 end_buffer_async_write
);
2981 EXPORT_SYMBOL(block_write_full_page
);
2983 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2984 get_block_t
*get_block
)
2986 struct buffer_head tmp
;
2987 struct inode
*inode
= mapping
->host
;
2990 tmp
.b_size
= 1 << inode
->i_blkbits
;
2991 get_block(inode
, block
, &tmp
, 0);
2992 return tmp
.b_blocknr
;
2994 EXPORT_SYMBOL(generic_block_bmap
);
2996 static void end_bio_bh_io_sync(struct bio
*bio
)
2998 struct buffer_head
*bh
= bio
->bi_private
;
3000 if (unlikely(bio_flagged(bio
, BIO_QUIET
)))
3001 set_bit(BH_Quiet
, &bh
->b_state
);
3003 bh
->b_end_io(bh
, !bio
->bi_error
);
3008 * This allows us to do IO even on the odd last sectors
3009 * of a device, even if the block size is some multiple
3010 * of the physical sector size.
3012 * We'll just truncate the bio to the size of the device,
3013 * and clear the end of the buffer head manually.
3015 * Truly out-of-range accesses will turn into actual IO
3016 * errors, this only handles the "we need to be able to
3017 * do IO at the final sector" case.
3019 void guard_bio_eod(int op
, struct bio
*bio
)
3022 struct bio_vec
*bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
3023 unsigned truncated_bytes
;
3025 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
3030 * If the *whole* IO is past the end of the device,
3031 * let it through, and the IO layer will turn it into
3034 if (unlikely(bio
->bi_iter
.bi_sector
>= maxsector
))
3037 maxsector
-= bio
->bi_iter
.bi_sector
;
3038 if (likely((bio
->bi_iter
.bi_size
>> 9) <= maxsector
))
3041 /* Uhhuh. We've got a bio that straddles the device size! */
3042 truncated_bytes
= bio
->bi_iter
.bi_size
- (maxsector
<< 9);
3044 /* Truncate the bio.. */
3045 bio
->bi_iter
.bi_size
-= truncated_bytes
;
3046 bvec
->bv_len
-= truncated_bytes
;
3048 /* ..and clear the end of the buffer for reads */
3049 if (op
== REQ_OP_READ
) {
3050 zero_user(bvec
->bv_page
, bvec
->bv_offset
+ bvec
->bv_len
,
3055 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
3056 unsigned long bio_flags
, struct writeback_control
*wbc
)
3060 BUG_ON(!buffer_locked(bh
));
3061 BUG_ON(!buffer_mapped(bh
));
3062 BUG_ON(!bh
->b_end_io
);
3063 BUG_ON(buffer_delay(bh
));
3064 BUG_ON(buffer_unwritten(bh
));
3067 * Only clear out a write error when rewriting
3069 if (test_set_buffer_req(bh
) && (op
== REQ_OP_WRITE
))
3070 clear_buffer_write_io_error(bh
);
3073 * from here on down, it's all bio -- do the initial mapping,
3074 * submit_bio -> generic_make_request may further map this bio around
3076 bio
= bio_alloc(GFP_NOIO
, 1);
3079 wbc_init_bio(wbc
, bio
);
3080 wbc_account_io(wbc
, bh
->b_page
, bh
->b_size
);
3083 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
3084 bio
->bi_bdev
= bh
->b_bdev
;
3086 bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
3087 BUG_ON(bio
->bi_iter
.bi_size
!= bh
->b_size
);
3089 bio
->bi_end_io
= end_bio_bh_io_sync
;
3090 bio
->bi_private
= bh
;
3091 bio
->bi_flags
|= bio_flags
;
3093 /* Take care of bh's that straddle the end of the device */
3094 guard_bio_eod(op
, bio
);
3096 if (buffer_meta(bh
))
3097 op_flags
|= REQ_META
;
3098 if (buffer_prio(bh
))
3099 op_flags
|= REQ_PRIO
;
3100 bio_set_op_attrs(bio
, op
, op_flags
);
3106 int _submit_bh(int op
, int op_flags
, struct buffer_head
*bh
,
3107 unsigned long bio_flags
)
3109 return submit_bh_wbc(op
, op_flags
, bh
, bio_flags
, NULL
);
3111 EXPORT_SYMBOL_GPL(_submit_bh
);
3113 int submit_bh(int op
, int op_flags
, struct buffer_head
*bh
)
3115 return submit_bh_wbc(op
, op_flags
, bh
, 0, NULL
);
3117 EXPORT_SYMBOL(submit_bh
);
3120 * ll_rw_block: low-level access to block devices (DEPRECATED)
3121 * @op: whether to %READ or %WRITE
3122 * @op_flags: rq_flag_bits
3123 * @nr: number of &struct buffer_heads in the array
3124 * @bhs: array of pointers to &struct buffer_head
3126 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3127 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3128 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3131 * This function drops any buffer that it cannot get a lock on (with the
3132 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3133 * request, and any buffer that appears to be up-to-date when doing read
3134 * request. Further it marks as clean buffers that are processed for
3135 * writing (the buffer cache won't assume that they are actually clean
3136 * until the buffer gets unlocked).
3138 * ll_rw_block sets b_end_io to simple completion handler that marks
3139 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3142 * All of the buffers must be for the same device, and must also be a
3143 * multiple of the current approved size for the device.
3145 void ll_rw_block(int op
, int op_flags
, int nr
, struct buffer_head
*bhs
[])
3149 for (i
= 0; i
< nr
; i
++) {
3150 struct buffer_head
*bh
= bhs
[i
];
3152 if (!trylock_buffer(bh
))
3155 if (test_clear_buffer_dirty(bh
)) {
3156 bh
->b_end_io
= end_buffer_write_sync
;
3158 submit_bh(op
, op_flags
, bh
);
3162 if (!buffer_uptodate(bh
)) {
3163 bh
->b_end_io
= end_buffer_read_sync
;
3165 submit_bh(op
, op_flags
, bh
);
3172 EXPORT_SYMBOL(ll_rw_block
);
3174 void write_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3177 if (!test_clear_buffer_dirty(bh
)) {
3181 bh
->b_end_io
= end_buffer_write_sync
;
3183 submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3185 EXPORT_SYMBOL(write_dirty_buffer
);
3188 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3189 * and then start new I/O and then wait upon it. The caller must have a ref on
3192 int __sync_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3196 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3198 if (test_clear_buffer_dirty(bh
)) {
3200 bh
->b_end_io
= end_buffer_write_sync
;
3201 ret
= submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3203 if (!ret
&& !buffer_uptodate(bh
))
3210 EXPORT_SYMBOL(__sync_dirty_buffer
);
3212 int sync_dirty_buffer(struct buffer_head
*bh
)
3214 return __sync_dirty_buffer(bh
, WRITE_SYNC
);
3216 EXPORT_SYMBOL(sync_dirty_buffer
);
3219 * try_to_free_buffers() checks if all the buffers on this particular page
3220 * are unused, and releases them if so.
3222 * Exclusion against try_to_free_buffers may be obtained by either
3223 * locking the page or by holding its mapping's private_lock.
3225 * If the page is dirty but all the buffers are clean then we need to
3226 * be sure to mark the page clean as well. This is because the page
3227 * may be against a block device, and a later reattachment of buffers
3228 * to a dirty page will set *all* buffers dirty. Which would corrupt
3229 * filesystem data on the same device.
3231 * The same applies to regular filesystem pages: if all the buffers are
3232 * clean then we set the page clean and proceed. To do that, we require
3233 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3236 * try_to_free_buffers() is non-blocking.
3238 static inline int buffer_busy(struct buffer_head
*bh
)
3240 return atomic_read(&bh
->b_count
) |
3241 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3245 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3247 struct buffer_head
*head
= page_buffers(page
);
3248 struct buffer_head
*bh
;
3252 if (buffer_write_io_error(bh
) && page
->mapping
)
3253 set_bit(AS_EIO
, &page
->mapping
->flags
);
3254 if (buffer_busy(bh
))
3256 bh
= bh
->b_this_page
;
3257 } while (bh
!= head
);
3260 struct buffer_head
*next
= bh
->b_this_page
;
3262 if (bh
->b_assoc_map
)
3263 __remove_assoc_queue(bh
);
3265 } while (bh
!= head
);
3266 *buffers_to_free
= head
;
3267 __clear_page_buffers(page
);
3273 int try_to_free_buffers(struct page
*page
)
3275 struct address_space
* const mapping
= page
->mapping
;
3276 struct buffer_head
*buffers_to_free
= NULL
;
3279 BUG_ON(!PageLocked(page
));
3280 if (PageWriteback(page
))
3283 if (mapping
== NULL
) { /* can this still happen? */
3284 ret
= drop_buffers(page
, &buffers_to_free
);
3288 spin_lock(&mapping
->private_lock
);
3289 ret
= drop_buffers(page
, &buffers_to_free
);
3292 * If the filesystem writes its buffers by hand (eg ext3)
3293 * then we can have clean buffers against a dirty page. We
3294 * clean the page here; otherwise the VM will never notice
3295 * that the filesystem did any IO at all.
3297 * Also, during truncate, discard_buffer will have marked all
3298 * the page's buffers clean. We discover that here and clean
3301 * private_lock must be held over this entire operation in order
3302 * to synchronise against __set_page_dirty_buffers and prevent the
3303 * dirty bit from being lost.
3306 cancel_dirty_page(page
);
3307 spin_unlock(&mapping
->private_lock
);
3309 if (buffers_to_free
) {
3310 struct buffer_head
*bh
= buffers_to_free
;
3313 struct buffer_head
*next
= bh
->b_this_page
;
3314 free_buffer_head(bh
);
3316 } while (bh
!= buffers_to_free
);
3320 EXPORT_SYMBOL(try_to_free_buffers
);
3323 * There are no bdflush tunables left. But distributions are
3324 * still running obsolete flush daemons, so we terminate them here.
3326 * Use of bdflush() is deprecated and will be removed in a future kernel.
3327 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3329 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3331 static int msg_count
;
3333 if (!capable(CAP_SYS_ADMIN
))
3336 if (msg_count
< 5) {
3339 "warning: process `%s' used the obsolete bdflush"
3340 " system call\n", current
->comm
);
3341 printk(KERN_INFO
"Fix your initscripts?\n");
3350 * Buffer-head allocation
3352 static struct kmem_cache
*bh_cachep __read_mostly
;
3355 * Once the number of bh's in the machine exceeds this level, we start
3356 * stripping them in writeback.
3358 static unsigned long max_buffer_heads
;
3360 int buffer_heads_over_limit
;
3362 struct bh_accounting
{
3363 int nr
; /* Number of live bh's */
3364 int ratelimit
; /* Limit cacheline bouncing */
3367 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3369 static void recalc_bh_state(void)
3374 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3376 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3377 for_each_online_cpu(i
)
3378 tot
+= per_cpu(bh_accounting
, i
).nr
;
3379 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3382 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3384 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3386 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3388 __this_cpu_inc(bh_accounting
.nr
);
3394 EXPORT_SYMBOL(alloc_buffer_head
);
3396 void free_buffer_head(struct buffer_head
*bh
)
3398 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3399 kmem_cache_free(bh_cachep
, bh
);
3401 __this_cpu_dec(bh_accounting
.nr
);
3405 EXPORT_SYMBOL(free_buffer_head
);
3407 static void buffer_exit_cpu(int cpu
)
3410 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3412 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3416 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3417 per_cpu(bh_accounting
, cpu
).nr
= 0;
3420 static int buffer_cpu_notify(struct notifier_block
*self
,
3421 unsigned long action
, void *hcpu
)
3423 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
3424 buffer_exit_cpu((unsigned long)hcpu
);
3429 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3430 * @bh: struct buffer_head
3432 * Return true if the buffer is up-to-date and false,
3433 * with the buffer locked, if not.
3435 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3437 if (!buffer_uptodate(bh
)) {
3439 if (!buffer_uptodate(bh
))
3445 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3448 * bh_submit_read - Submit a locked buffer for reading
3449 * @bh: struct buffer_head
3451 * Returns zero on success and -EIO on error.
3453 int bh_submit_read(struct buffer_head
*bh
)
3455 BUG_ON(!buffer_locked(bh
));
3457 if (buffer_uptodate(bh
)) {
3463 bh
->b_end_io
= end_buffer_read_sync
;
3464 submit_bh(REQ_OP_READ
, 0, bh
);
3466 if (buffer_uptodate(bh
))
3470 EXPORT_SYMBOL(bh_submit_read
);
3472 void __init
buffer_init(void)
3474 unsigned long nrpages
;
3476 bh_cachep
= kmem_cache_create("buffer_head",
3477 sizeof(struct buffer_head
), 0,
3478 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3483 * Limit the bh occupancy to 10% of ZONE_NORMAL
3485 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3486 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3487 hotcpu_notifier(buffer_cpu_notify
, 0);