staging: most: remove struct device core driver
[linux/fpc-iii.git] / mm / hmm.c
blobd379cb6496aef9b9f40b7f49d970351c4abce36d
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2013 Red Hat Inc.
5 * Authors: Jérôme Glisse <jglisse@redhat.com>
6 */
7 /*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
29 struct hmm_vma_walk {
30 struct hmm_range *range;
31 struct dev_pagemap *pgmap;
32 unsigned long last;
33 unsigned int flags;
36 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
37 bool write_fault, uint64_t *pfn)
39 unsigned int flags = FAULT_FLAG_REMOTE;
40 struct hmm_vma_walk *hmm_vma_walk = walk->private;
41 struct hmm_range *range = hmm_vma_walk->range;
42 struct vm_area_struct *vma = walk->vma;
43 vm_fault_t ret;
45 if (!vma)
46 goto err;
48 if (hmm_vma_walk->flags & HMM_FAULT_ALLOW_RETRY)
49 flags |= FAULT_FLAG_ALLOW_RETRY;
50 if (write_fault)
51 flags |= FAULT_FLAG_WRITE;
53 ret = handle_mm_fault(vma, addr, flags);
54 if (ret & VM_FAULT_RETRY) {
55 /* Note, handle_mm_fault did up_read(&mm->mmap_sem)) */
56 return -EAGAIN;
58 if (ret & VM_FAULT_ERROR)
59 goto err;
61 return -EBUSY;
63 err:
64 *pfn = range->values[HMM_PFN_ERROR];
65 return -EFAULT;
68 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
69 struct hmm_range *range, enum hmm_pfn_value_e value)
71 uint64_t *pfns = range->pfns;
72 unsigned long i;
74 i = (addr - range->start) >> PAGE_SHIFT;
75 for (; addr < end; addr += PAGE_SIZE, i++)
76 pfns[i] = range->values[value];
78 return 0;
82 * hmm_vma_walk_hole_() - handle a range lacking valid pmd or pte(s)
83 * @addr: range virtual start address (inclusive)
84 * @end: range virtual end address (exclusive)
85 * @fault: should we fault or not ?
86 * @write_fault: write fault ?
87 * @walk: mm_walk structure
88 * Return: 0 on success, -EBUSY after page fault, or page fault error
90 * This function will be called whenever pmd_none() or pte_none() returns true,
91 * or whenever there is no page directory covering the virtual address range.
93 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
94 bool fault, bool write_fault,
95 struct mm_walk *walk)
97 struct hmm_vma_walk *hmm_vma_walk = walk->private;
98 struct hmm_range *range = hmm_vma_walk->range;
99 uint64_t *pfns = range->pfns;
100 unsigned long i;
102 hmm_vma_walk->last = addr;
103 i = (addr - range->start) >> PAGE_SHIFT;
105 if (write_fault && walk->vma && !(walk->vma->vm_flags & VM_WRITE))
106 return -EPERM;
108 for (; addr < end; addr += PAGE_SIZE, i++) {
109 pfns[i] = range->values[HMM_PFN_NONE];
110 if (fault || write_fault) {
111 int ret;
113 ret = hmm_vma_do_fault(walk, addr, write_fault,
114 &pfns[i]);
115 if (ret != -EBUSY)
116 return ret;
120 return (fault || write_fault) ? -EBUSY : 0;
123 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
124 uint64_t pfns, uint64_t cpu_flags,
125 bool *fault, bool *write_fault)
127 struct hmm_range *range = hmm_vma_walk->range;
129 if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT)
130 return;
133 * So we not only consider the individual per page request we also
134 * consider the default flags requested for the range. The API can
135 * be used 2 ways. The first one where the HMM user coalesces
136 * multiple page faults into one request and sets flags per pfn for
137 * those faults. The second one where the HMM user wants to pre-
138 * fault a range with specific flags. For the latter one it is a
139 * waste to have the user pre-fill the pfn arrays with a default
140 * flags value.
142 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
144 /* We aren't ask to do anything ... */
145 if (!(pfns & range->flags[HMM_PFN_VALID]))
146 return;
147 /* If this is device memory then only fault if explicitly requested */
148 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
149 /* Do we fault on device memory ? */
150 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
151 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
152 *fault = true;
154 return;
157 /* If CPU page table is not valid then we need to fault */
158 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
159 /* Need to write fault ? */
160 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
161 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
162 *write_fault = true;
163 *fault = true;
167 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
168 const uint64_t *pfns, unsigned long npages,
169 uint64_t cpu_flags, bool *fault,
170 bool *write_fault)
172 unsigned long i;
174 if (hmm_vma_walk->flags & HMM_FAULT_SNAPSHOT) {
175 *fault = *write_fault = false;
176 return;
179 *fault = *write_fault = false;
180 for (i = 0; i < npages; ++i) {
181 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
182 fault, write_fault);
183 if ((*write_fault))
184 return;
188 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
189 struct mm_walk *walk)
191 struct hmm_vma_walk *hmm_vma_walk = walk->private;
192 struct hmm_range *range = hmm_vma_walk->range;
193 bool fault, write_fault;
194 unsigned long i, npages;
195 uint64_t *pfns;
197 i = (addr - range->start) >> PAGE_SHIFT;
198 npages = (end - addr) >> PAGE_SHIFT;
199 pfns = &range->pfns[i];
200 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
201 0, &fault, &write_fault);
202 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
205 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
207 if (pmd_protnone(pmd))
208 return 0;
209 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
210 range->flags[HMM_PFN_WRITE] :
211 range->flags[HMM_PFN_VALID];
214 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
215 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
216 unsigned long end, uint64_t *pfns, pmd_t pmd)
218 struct hmm_vma_walk *hmm_vma_walk = walk->private;
219 struct hmm_range *range = hmm_vma_walk->range;
220 unsigned long pfn, npages, i;
221 bool fault, write_fault;
222 uint64_t cpu_flags;
224 npages = (end - addr) >> PAGE_SHIFT;
225 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
226 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
227 &fault, &write_fault);
229 if (pmd_protnone(pmd) || fault || write_fault)
230 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
232 pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
233 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
234 if (pmd_devmap(pmd)) {
235 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
236 hmm_vma_walk->pgmap);
237 if (unlikely(!hmm_vma_walk->pgmap))
238 return -EBUSY;
240 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
242 if (hmm_vma_walk->pgmap) {
243 put_dev_pagemap(hmm_vma_walk->pgmap);
244 hmm_vma_walk->pgmap = NULL;
246 hmm_vma_walk->last = end;
247 return 0;
249 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
250 /* stub to allow the code below to compile */
251 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
252 unsigned long end, uint64_t *pfns, pmd_t pmd);
253 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
255 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
257 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
258 return 0;
259 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
260 range->flags[HMM_PFN_WRITE] :
261 range->flags[HMM_PFN_VALID];
264 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
265 unsigned long end, pmd_t *pmdp, pte_t *ptep,
266 uint64_t *pfn)
268 struct hmm_vma_walk *hmm_vma_walk = walk->private;
269 struct hmm_range *range = hmm_vma_walk->range;
270 bool fault, write_fault;
271 uint64_t cpu_flags;
272 pte_t pte = *ptep;
273 uint64_t orig_pfn = *pfn;
275 *pfn = range->values[HMM_PFN_NONE];
276 fault = write_fault = false;
278 if (pte_none(pte)) {
279 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
280 &fault, &write_fault);
281 if (fault || write_fault)
282 goto fault;
283 return 0;
286 if (!pte_present(pte)) {
287 swp_entry_t entry = pte_to_swp_entry(pte);
289 if (!non_swap_entry(entry)) {
290 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
291 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
292 &fault, &write_fault);
293 if (fault || write_fault)
294 goto fault;
295 return 0;
299 * This is a special swap entry, ignore migration, use
300 * device and report anything else as error.
302 if (is_device_private_entry(entry)) {
303 cpu_flags = range->flags[HMM_PFN_VALID] |
304 range->flags[HMM_PFN_DEVICE_PRIVATE];
305 cpu_flags |= is_write_device_private_entry(entry) ?
306 range->flags[HMM_PFN_WRITE] : 0;
307 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
308 &fault, &write_fault);
309 if (fault || write_fault)
310 goto fault;
311 *pfn = hmm_device_entry_from_pfn(range,
312 swp_offset(entry));
313 *pfn |= cpu_flags;
314 return 0;
317 if (is_migration_entry(entry)) {
318 if (fault || write_fault) {
319 pte_unmap(ptep);
320 hmm_vma_walk->last = addr;
321 migration_entry_wait(walk->mm, pmdp, addr);
322 return -EBUSY;
324 return 0;
327 /* Report error for everything else */
328 *pfn = range->values[HMM_PFN_ERROR];
329 return -EFAULT;
330 } else {
331 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
332 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
333 &fault, &write_fault);
336 if (fault || write_fault)
337 goto fault;
339 if (pte_devmap(pte)) {
340 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
341 hmm_vma_walk->pgmap);
342 if (unlikely(!hmm_vma_walk->pgmap))
343 return -EBUSY;
344 } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
345 if (!is_zero_pfn(pte_pfn(pte))) {
346 *pfn = range->values[HMM_PFN_SPECIAL];
347 return -EFAULT;
350 * Since each architecture defines a struct page for the zero
351 * page, just fall through and treat it like a normal page.
355 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
356 return 0;
358 fault:
359 if (hmm_vma_walk->pgmap) {
360 put_dev_pagemap(hmm_vma_walk->pgmap);
361 hmm_vma_walk->pgmap = NULL;
363 pte_unmap(ptep);
364 /* Fault any virtual address we were asked to fault */
365 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
368 static int hmm_vma_walk_pmd(pmd_t *pmdp,
369 unsigned long start,
370 unsigned long end,
371 struct mm_walk *walk)
373 struct hmm_vma_walk *hmm_vma_walk = walk->private;
374 struct hmm_range *range = hmm_vma_walk->range;
375 uint64_t *pfns = range->pfns;
376 unsigned long addr = start, i;
377 pte_t *ptep;
378 pmd_t pmd;
380 again:
381 pmd = READ_ONCE(*pmdp);
382 if (pmd_none(pmd))
383 return hmm_vma_walk_hole(start, end, walk);
385 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
386 bool fault, write_fault;
387 unsigned long npages;
388 uint64_t *pfns;
390 i = (addr - range->start) >> PAGE_SHIFT;
391 npages = (end - addr) >> PAGE_SHIFT;
392 pfns = &range->pfns[i];
394 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
395 0, &fault, &write_fault);
396 if (fault || write_fault) {
397 hmm_vma_walk->last = addr;
398 pmd_migration_entry_wait(walk->mm, pmdp);
399 return -EBUSY;
401 return 0;
402 } else if (!pmd_present(pmd))
403 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
405 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
407 * No need to take pmd_lock here, even if some other thread
408 * is splitting the huge pmd we will get that event through
409 * mmu_notifier callback.
411 * So just read pmd value and check again it's a transparent
412 * huge or device mapping one and compute corresponding pfn
413 * values.
415 pmd = pmd_read_atomic(pmdp);
416 barrier();
417 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
418 goto again;
420 i = (addr - range->start) >> PAGE_SHIFT;
421 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
425 * We have handled all the valid cases above ie either none, migration,
426 * huge or transparent huge. At this point either it is a valid pmd
427 * entry pointing to pte directory or it is a bad pmd that will not
428 * recover.
430 if (pmd_bad(pmd))
431 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
433 ptep = pte_offset_map(pmdp, addr);
434 i = (addr - range->start) >> PAGE_SHIFT;
435 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
436 int r;
438 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
439 if (r) {
440 /* hmm_vma_handle_pte() did unmap pte directory */
441 hmm_vma_walk->last = addr;
442 return r;
445 if (hmm_vma_walk->pgmap) {
447 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
448 * so that we can leverage get_dev_pagemap() optimization which
449 * will not re-take a reference on a pgmap if we already have
450 * one.
452 put_dev_pagemap(hmm_vma_walk->pgmap);
453 hmm_vma_walk->pgmap = NULL;
455 pte_unmap(ptep - 1);
457 hmm_vma_walk->last = addr;
458 return 0;
461 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
462 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
463 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
465 if (!pud_present(pud))
466 return 0;
467 return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
468 range->flags[HMM_PFN_WRITE] :
469 range->flags[HMM_PFN_VALID];
472 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
473 struct mm_walk *walk)
475 struct hmm_vma_walk *hmm_vma_walk = walk->private;
476 struct hmm_range *range = hmm_vma_walk->range;
477 unsigned long addr = start, next;
478 pmd_t *pmdp;
479 pud_t pud;
480 int ret;
482 again:
483 pud = READ_ONCE(*pudp);
484 if (pud_none(pud))
485 return hmm_vma_walk_hole(start, end, walk);
487 if (pud_huge(pud) && pud_devmap(pud)) {
488 unsigned long i, npages, pfn;
489 uint64_t *pfns, cpu_flags;
490 bool fault, write_fault;
492 if (!pud_present(pud))
493 return hmm_vma_walk_hole(start, end, walk);
495 i = (addr - range->start) >> PAGE_SHIFT;
496 npages = (end - addr) >> PAGE_SHIFT;
497 pfns = &range->pfns[i];
499 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
500 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
501 cpu_flags, &fault, &write_fault);
502 if (fault || write_fault)
503 return hmm_vma_walk_hole_(addr, end, fault,
504 write_fault, walk);
506 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
507 for (i = 0; i < npages; ++i, ++pfn) {
508 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
509 hmm_vma_walk->pgmap);
510 if (unlikely(!hmm_vma_walk->pgmap))
511 return -EBUSY;
512 pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
513 cpu_flags;
515 if (hmm_vma_walk->pgmap) {
516 put_dev_pagemap(hmm_vma_walk->pgmap);
517 hmm_vma_walk->pgmap = NULL;
519 hmm_vma_walk->last = end;
520 return 0;
523 split_huge_pud(walk->vma, pudp, addr);
524 if (pud_none(*pudp))
525 goto again;
527 pmdp = pmd_offset(pudp, addr);
528 do {
529 next = pmd_addr_end(addr, end);
530 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
531 if (ret)
532 return ret;
533 } while (pmdp++, addr = next, addr != end);
535 return 0;
537 #else
538 #define hmm_vma_walk_pud NULL
539 #endif
541 #ifdef CONFIG_HUGETLB_PAGE
542 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
543 unsigned long start, unsigned long end,
544 struct mm_walk *walk)
546 unsigned long addr = start, i, pfn;
547 struct hmm_vma_walk *hmm_vma_walk = walk->private;
548 struct hmm_range *range = hmm_vma_walk->range;
549 struct vm_area_struct *vma = walk->vma;
550 uint64_t orig_pfn, cpu_flags;
551 bool fault, write_fault;
552 spinlock_t *ptl;
553 pte_t entry;
554 int ret = 0;
556 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
557 entry = huge_ptep_get(pte);
559 i = (start - range->start) >> PAGE_SHIFT;
560 orig_pfn = range->pfns[i];
561 range->pfns[i] = range->values[HMM_PFN_NONE];
562 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
563 fault = write_fault = false;
564 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
565 &fault, &write_fault);
566 if (fault || write_fault) {
567 ret = -ENOENT;
568 goto unlock;
571 pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
572 for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
573 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
574 cpu_flags;
575 hmm_vma_walk->last = end;
577 unlock:
578 spin_unlock(ptl);
580 if (ret == -ENOENT)
581 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
583 return ret;
585 #else
586 #define hmm_vma_walk_hugetlb_entry NULL
587 #endif /* CONFIG_HUGETLB_PAGE */
589 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
590 struct mm_walk *walk)
592 struct hmm_vma_walk *hmm_vma_walk = walk->private;
593 struct hmm_range *range = hmm_vma_walk->range;
594 struct vm_area_struct *vma = walk->vma;
597 * Skip vma ranges that don't have struct page backing them or
598 * map I/O devices directly.
600 if (vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP))
601 return -EFAULT;
604 * If the vma does not allow read access, then assume that it does not
605 * allow write access either. HMM does not support architectures
606 * that allow write without read.
608 if (!(vma->vm_flags & VM_READ)) {
609 bool fault, write_fault;
612 * Check to see if a fault is requested for any page in the
613 * range.
615 hmm_range_need_fault(hmm_vma_walk, range->pfns +
616 ((start - range->start) >> PAGE_SHIFT),
617 (end - start) >> PAGE_SHIFT,
618 0, &fault, &write_fault);
619 if (fault || write_fault)
620 return -EFAULT;
622 hmm_pfns_fill(start, end, range, HMM_PFN_NONE);
623 hmm_vma_walk->last = end;
625 /* Skip this vma and continue processing the next vma. */
626 return 1;
629 return 0;
632 static const struct mm_walk_ops hmm_walk_ops = {
633 .pud_entry = hmm_vma_walk_pud,
634 .pmd_entry = hmm_vma_walk_pmd,
635 .pte_hole = hmm_vma_walk_hole,
636 .hugetlb_entry = hmm_vma_walk_hugetlb_entry,
637 .test_walk = hmm_vma_walk_test,
641 * hmm_range_fault - try to fault some address in a virtual address range
642 * @range: range being faulted
643 * @flags: HMM_FAULT_* flags
645 * Return: the number of valid pages in range->pfns[] (from range start
646 * address), which may be zero. On error one of the following status codes
647 * can be returned:
649 * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma
650 * (e.g., device file vma).
651 * -ENOMEM: Out of memory.
652 * -EPERM: Invalid permission (e.g., asking for write and range is read
653 * only).
654 * -EAGAIN: A page fault needs to be retried and mmap_sem was dropped.
655 * -EBUSY: The range has been invalidated and the caller needs to wait for
656 * the invalidation to finish.
657 * -EFAULT: Invalid (i.e., either no valid vma or it is illegal to access
658 * that range) number of valid pages in range->pfns[] (from
659 * range start address).
661 * This is similar to a regular CPU page fault except that it will not trigger
662 * any memory migration if the memory being faulted is not accessible by CPUs
663 * and caller does not ask for migration.
665 * On error, for one virtual address in the range, the function will mark the
666 * corresponding HMM pfn entry with an error flag.
668 long hmm_range_fault(struct hmm_range *range, unsigned int flags)
670 struct hmm_vma_walk hmm_vma_walk = {
671 .range = range,
672 .last = range->start,
673 .flags = flags,
675 struct mm_struct *mm = range->notifier->mm;
676 int ret;
678 lockdep_assert_held(&mm->mmap_sem);
680 do {
681 /* If range is no longer valid force retry. */
682 if (mmu_interval_check_retry(range->notifier,
683 range->notifier_seq))
684 return -EBUSY;
685 ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
686 &hmm_walk_ops, &hmm_vma_walk);
687 } while (ret == -EBUSY);
689 if (ret)
690 return ret;
691 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
693 EXPORT_SYMBOL(hmm_range_fault);