1 // SPDX-License-Identifier: GPL-2.0-only
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
34 #define NUMA_STATS_THRESHOLD (U16_MAX - 2)
37 int sysctl_vm_numa_stat
= ENABLE_NUMA_STAT
;
39 /* zero numa counters within a zone */
40 static void zero_zone_numa_counters(struct zone
*zone
)
44 for (item
= 0; item
< NR_VM_NUMA_STAT_ITEMS
; item
++) {
45 atomic_long_set(&zone
->vm_numa_stat
[item
], 0);
46 for_each_online_cpu(cpu
)
47 per_cpu_ptr(zone
->pageset
, cpu
)->vm_numa_stat_diff
[item
]
52 /* zero numa counters of all the populated zones */
53 static void zero_zones_numa_counters(void)
57 for_each_populated_zone(zone
)
58 zero_zone_numa_counters(zone
);
61 /* zero global numa counters */
62 static void zero_global_numa_counters(void)
66 for (item
= 0; item
< NR_VM_NUMA_STAT_ITEMS
; item
++)
67 atomic_long_set(&vm_numa_stat
[item
], 0);
70 static void invalid_numa_statistics(void)
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
76 static DEFINE_MUTEX(vm_numa_stat_lock
);
78 int sysctl_vm_numa_stat_handler(struct ctl_table
*table
, int write
,
79 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
83 mutex_lock(&vm_numa_stat_lock
);
85 oldval
= sysctl_vm_numa_stat
;
86 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
90 if (oldval
== sysctl_vm_numa_stat
)
92 else if (sysctl_vm_numa_stat
== ENABLE_NUMA_STAT
) {
93 static_branch_enable(&vm_numa_stat_key
);
94 pr_info("enable numa statistics\n");
96 static_branch_disable(&vm_numa_stat_key
);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
102 mutex_unlock(&vm_numa_stat_lock
);
107 #ifdef CONFIG_VM_EVENT_COUNTERS
108 DEFINE_PER_CPU(struct vm_event_state
, vm_event_states
) = {{0}};
109 EXPORT_PER_CPU_SYMBOL(vm_event_states
);
111 static void sum_vm_events(unsigned long *ret
)
116 memset(ret
, 0, NR_VM_EVENT_ITEMS
* sizeof(unsigned long));
118 for_each_online_cpu(cpu
) {
119 struct vm_event_state
*this = &per_cpu(vm_event_states
, cpu
);
121 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++)
122 ret
[i
] += this->event
[i
];
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
131 void all_vm_events(unsigned long *ret
)
137 EXPORT_SYMBOL_GPL(all_vm_events
);
140 * Fold the foreign cpu events into our own.
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
145 void vm_events_fold_cpu(int cpu
)
147 struct vm_event_state
*fold_state
= &per_cpu(vm_event_states
, cpu
);
150 for (i
= 0; i
< NR_VM_EVENT_ITEMS
; i
++) {
151 count_vm_events(i
, fold_state
->event
[i
]);
152 fold_state
->event
[i
] = 0;
156 #endif /* CONFIG_VM_EVENT_COUNTERS */
159 * Manage combined zone based / global counters
161 * vm_stat contains the global counters
163 atomic_long_t vm_zone_stat
[NR_VM_ZONE_STAT_ITEMS
] __cacheline_aligned_in_smp
;
164 atomic_long_t vm_numa_stat
[NR_VM_NUMA_STAT_ITEMS
] __cacheline_aligned_in_smp
;
165 atomic_long_t vm_node_stat
[NR_VM_NODE_STAT_ITEMS
] __cacheline_aligned_in_smp
;
166 EXPORT_SYMBOL(vm_zone_stat
);
167 EXPORT_SYMBOL(vm_numa_stat
);
168 EXPORT_SYMBOL(vm_node_stat
);
172 int calculate_pressure_threshold(struct zone
*zone
)
175 int watermark_distance
;
178 * As vmstats are not up to date, there is drift between the estimated
179 * and real values. For high thresholds and a high number of CPUs, it
180 * is possible for the min watermark to be breached while the estimated
181 * value looks fine. The pressure threshold is a reduced value such
182 * that even the maximum amount of drift will not accidentally breach
185 watermark_distance
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
186 threshold
= max(1, (int)(watermark_distance
/ num_online_cpus()));
189 * Maximum threshold is 125
191 threshold
= min(125, threshold
);
196 int calculate_normal_threshold(struct zone
*zone
)
199 int mem
; /* memory in 128 MB units */
202 * The threshold scales with the number of processors and the amount
203 * of memory per zone. More memory means that we can defer updates for
204 * longer, more processors could lead to more contention.
205 * fls() is used to have a cheap way of logarithmic scaling.
207 * Some sample thresholds:
209 * Threshold Processors (fls) Zonesize fls(mem+1)
210 * ------------------------------------------------------------------
227 * 125 1024 10 8-16 GB 8
228 * 125 1024 10 16-32 GB 9
231 mem
= zone_managed_pages(zone
) >> (27 - PAGE_SHIFT
);
233 threshold
= 2 * fls(num_online_cpus()) * (1 + fls(mem
));
236 * Maximum threshold is 125
238 threshold
= min(125, threshold
);
244 * Refresh the thresholds for each zone.
246 void refresh_zone_stat_thresholds(void)
248 struct pglist_data
*pgdat
;
253 /* Zero current pgdat thresholds */
254 for_each_online_pgdat(pgdat
) {
255 for_each_online_cpu(cpu
) {
256 per_cpu_ptr(pgdat
->per_cpu_nodestats
, cpu
)->stat_threshold
= 0;
260 for_each_populated_zone(zone
) {
261 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
262 unsigned long max_drift
, tolerate_drift
;
264 threshold
= calculate_normal_threshold(zone
);
266 for_each_online_cpu(cpu
) {
269 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
272 /* Base nodestat threshold on the largest populated zone. */
273 pgdat_threshold
= per_cpu_ptr(pgdat
->per_cpu_nodestats
, cpu
)->stat_threshold
;
274 per_cpu_ptr(pgdat
->per_cpu_nodestats
, cpu
)->stat_threshold
275 = max(threshold
, pgdat_threshold
);
279 * Only set percpu_drift_mark if there is a danger that
280 * NR_FREE_PAGES reports the low watermark is ok when in fact
281 * the min watermark could be breached by an allocation
283 tolerate_drift
= low_wmark_pages(zone
) - min_wmark_pages(zone
);
284 max_drift
= num_online_cpus() * threshold
;
285 if (max_drift
> tolerate_drift
)
286 zone
->percpu_drift_mark
= high_wmark_pages(zone
) +
291 void set_pgdat_percpu_threshold(pg_data_t
*pgdat
,
292 int (*calculate_pressure
)(struct zone
*))
299 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
300 zone
= &pgdat
->node_zones
[i
];
301 if (!zone
->percpu_drift_mark
)
304 threshold
= (*calculate_pressure
)(zone
);
305 for_each_online_cpu(cpu
)
306 per_cpu_ptr(zone
->pageset
, cpu
)->stat_threshold
312 * For use when we know that interrupts are disabled,
313 * or when we know that preemption is disabled and that
314 * particular counter cannot be updated from interrupt context.
316 void __mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
319 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
320 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
324 x
= delta
+ __this_cpu_read(*p
);
326 t
= __this_cpu_read(pcp
->stat_threshold
);
328 if (unlikely(x
> t
|| x
< -t
)) {
329 zone_page_state_add(x
, zone
, item
);
332 __this_cpu_write(*p
, x
);
334 EXPORT_SYMBOL(__mod_zone_page_state
);
336 void __mod_node_page_state(struct pglist_data
*pgdat
, enum node_stat_item item
,
339 struct per_cpu_nodestat __percpu
*pcp
= pgdat
->per_cpu_nodestats
;
340 s8 __percpu
*p
= pcp
->vm_node_stat_diff
+ item
;
344 x
= delta
+ __this_cpu_read(*p
);
346 t
= __this_cpu_read(pcp
->stat_threshold
);
348 if (unlikely(x
> t
|| x
< -t
)) {
349 node_page_state_add(x
, pgdat
, item
);
352 __this_cpu_write(*p
, x
);
354 EXPORT_SYMBOL(__mod_node_page_state
);
357 * Optimized increment and decrement functions.
359 * These are only for a single page and therefore can take a struct page *
360 * argument instead of struct zone *. This allows the inclusion of the code
361 * generated for page_zone(page) into the optimized functions.
363 * No overflow check is necessary and therefore the differential can be
364 * incremented or decremented in place which may allow the compilers to
365 * generate better code.
366 * The increment or decrement is known and therefore one boundary check can
369 * NOTE: These functions are very performance sensitive. Change only
372 * Some processors have inc/dec instructions that are atomic vs an interrupt.
373 * However, the code must first determine the differential location in a zone
374 * based on the processor number and then inc/dec the counter. There is no
375 * guarantee without disabling preemption that the processor will not change
376 * in between and therefore the atomicity vs. interrupt cannot be exploited
377 * in a useful way here.
379 void __inc_zone_state(struct zone
*zone
, enum zone_stat_item item
)
381 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
382 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
385 v
= __this_cpu_inc_return(*p
);
386 t
= __this_cpu_read(pcp
->stat_threshold
);
387 if (unlikely(v
> t
)) {
388 s8 overstep
= t
>> 1;
390 zone_page_state_add(v
+ overstep
, zone
, item
);
391 __this_cpu_write(*p
, -overstep
);
395 void __inc_node_state(struct pglist_data
*pgdat
, enum node_stat_item item
)
397 struct per_cpu_nodestat __percpu
*pcp
= pgdat
->per_cpu_nodestats
;
398 s8 __percpu
*p
= pcp
->vm_node_stat_diff
+ item
;
401 v
= __this_cpu_inc_return(*p
);
402 t
= __this_cpu_read(pcp
->stat_threshold
);
403 if (unlikely(v
> t
)) {
404 s8 overstep
= t
>> 1;
406 node_page_state_add(v
+ overstep
, pgdat
, item
);
407 __this_cpu_write(*p
, -overstep
);
411 void __inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
413 __inc_zone_state(page_zone(page
), item
);
415 EXPORT_SYMBOL(__inc_zone_page_state
);
417 void __inc_node_page_state(struct page
*page
, enum node_stat_item item
)
419 __inc_node_state(page_pgdat(page
), item
);
421 EXPORT_SYMBOL(__inc_node_page_state
);
423 void __dec_zone_state(struct zone
*zone
, enum zone_stat_item item
)
425 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
426 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
429 v
= __this_cpu_dec_return(*p
);
430 t
= __this_cpu_read(pcp
->stat_threshold
);
431 if (unlikely(v
< - t
)) {
432 s8 overstep
= t
>> 1;
434 zone_page_state_add(v
- overstep
, zone
, item
);
435 __this_cpu_write(*p
, overstep
);
439 void __dec_node_state(struct pglist_data
*pgdat
, enum node_stat_item item
)
441 struct per_cpu_nodestat __percpu
*pcp
= pgdat
->per_cpu_nodestats
;
442 s8 __percpu
*p
= pcp
->vm_node_stat_diff
+ item
;
445 v
= __this_cpu_dec_return(*p
);
446 t
= __this_cpu_read(pcp
->stat_threshold
);
447 if (unlikely(v
< - t
)) {
448 s8 overstep
= t
>> 1;
450 node_page_state_add(v
- overstep
, pgdat
, item
);
451 __this_cpu_write(*p
, overstep
);
455 void __dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
457 __dec_zone_state(page_zone(page
), item
);
459 EXPORT_SYMBOL(__dec_zone_page_state
);
461 void __dec_node_page_state(struct page
*page
, enum node_stat_item item
)
463 __dec_node_state(page_pgdat(page
), item
);
465 EXPORT_SYMBOL(__dec_node_page_state
);
467 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
469 * If we have cmpxchg_local support then we do not need to incur the overhead
470 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
472 * mod_state() modifies the zone counter state through atomic per cpu
475 * Overstep mode specifies how overstep should handled:
477 * 1 Overstepping half of threshold
478 * -1 Overstepping minus half of threshold
480 static inline void mod_zone_state(struct zone
*zone
,
481 enum zone_stat_item item
, long delta
, int overstep_mode
)
483 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
484 s8 __percpu
*p
= pcp
->vm_stat_diff
+ item
;
488 z
= 0; /* overflow to zone counters */
491 * The fetching of the stat_threshold is racy. We may apply
492 * a counter threshold to the wrong the cpu if we get
493 * rescheduled while executing here. However, the next
494 * counter update will apply the threshold again and
495 * therefore bring the counter under the threshold again.
497 * Most of the time the thresholds are the same anyways
498 * for all cpus in a zone.
500 t
= this_cpu_read(pcp
->stat_threshold
);
502 o
= this_cpu_read(*p
);
505 if (n
> t
|| n
< -t
) {
506 int os
= overstep_mode
* (t
>> 1) ;
508 /* Overflow must be added to zone counters */
512 } while (this_cpu_cmpxchg(*p
, o
, n
) != o
);
515 zone_page_state_add(z
, zone
, item
);
518 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
521 mod_zone_state(zone
, item
, delta
, 0);
523 EXPORT_SYMBOL(mod_zone_page_state
);
525 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
527 mod_zone_state(page_zone(page
), item
, 1, 1);
529 EXPORT_SYMBOL(inc_zone_page_state
);
531 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
533 mod_zone_state(page_zone(page
), item
, -1, -1);
535 EXPORT_SYMBOL(dec_zone_page_state
);
537 static inline void mod_node_state(struct pglist_data
*pgdat
,
538 enum node_stat_item item
, int delta
, int overstep_mode
)
540 struct per_cpu_nodestat __percpu
*pcp
= pgdat
->per_cpu_nodestats
;
541 s8 __percpu
*p
= pcp
->vm_node_stat_diff
+ item
;
545 z
= 0; /* overflow to node counters */
548 * The fetching of the stat_threshold is racy. We may apply
549 * a counter threshold to the wrong the cpu if we get
550 * rescheduled while executing here. However, the next
551 * counter update will apply the threshold again and
552 * therefore bring the counter under the threshold again.
554 * Most of the time the thresholds are the same anyways
555 * for all cpus in a node.
557 t
= this_cpu_read(pcp
->stat_threshold
);
559 o
= this_cpu_read(*p
);
562 if (n
> t
|| n
< -t
) {
563 int os
= overstep_mode
* (t
>> 1) ;
565 /* Overflow must be added to node counters */
569 } while (this_cpu_cmpxchg(*p
, o
, n
) != o
);
572 node_page_state_add(z
, pgdat
, item
);
575 void mod_node_page_state(struct pglist_data
*pgdat
, enum node_stat_item item
,
578 mod_node_state(pgdat
, item
, delta
, 0);
580 EXPORT_SYMBOL(mod_node_page_state
);
582 void inc_node_state(struct pglist_data
*pgdat
, enum node_stat_item item
)
584 mod_node_state(pgdat
, item
, 1, 1);
587 void inc_node_page_state(struct page
*page
, enum node_stat_item item
)
589 mod_node_state(page_pgdat(page
), item
, 1, 1);
591 EXPORT_SYMBOL(inc_node_page_state
);
593 void dec_node_page_state(struct page
*page
, enum node_stat_item item
)
595 mod_node_state(page_pgdat(page
), item
, -1, -1);
597 EXPORT_SYMBOL(dec_node_page_state
);
600 * Use interrupt disable to serialize counter updates
602 void mod_zone_page_state(struct zone
*zone
, enum zone_stat_item item
,
607 local_irq_save(flags
);
608 __mod_zone_page_state(zone
, item
, delta
);
609 local_irq_restore(flags
);
611 EXPORT_SYMBOL(mod_zone_page_state
);
613 void inc_zone_page_state(struct page
*page
, enum zone_stat_item item
)
618 zone
= page_zone(page
);
619 local_irq_save(flags
);
620 __inc_zone_state(zone
, item
);
621 local_irq_restore(flags
);
623 EXPORT_SYMBOL(inc_zone_page_state
);
625 void dec_zone_page_state(struct page
*page
, enum zone_stat_item item
)
629 local_irq_save(flags
);
630 __dec_zone_page_state(page
, item
);
631 local_irq_restore(flags
);
633 EXPORT_SYMBOL(dec_zone_page_state
);
635 void inc_node_state(struct pglist_data
*pgdat
, enum node_stat_item item
)
639 local_irq_save(flags
);
640 __inc_node_state(pgdat
, item
);
641 local_irq_restore(flags
);
643 EXPORT_SYMBOL(inc_node_state
);
645 void mod_node_page_state(struct pglist_data
*pgdat
, enum node_stat_item item
,
650 local_irq_save(flags
);
651 __mod_node_page_state(pgdat
, item
, delta
);
652 local_irq_restore(flags
);
654 EXPORT_SYMBOL(mod_node_page_state
);
656 void inc_node_page_state(struct page
*page
, enum node_stat_item item
)
659 struct pglist_data
*pgdat
;
661 pgdat
= page_pgdat(page
);
662 local_irq_save(flags
);
663 __inc_node_state(pgdat
, item
);
664 local_irq_restore(flags
);
666 EXPORT_SYMBOL(inc_node_page_state
);
668 void dec_node_page_state(struct page
*page
, enum node_stat_item item
)
672 local_irq_save(flags
);
673 __dec_node_page_state(page
, item
);
674 local_irq_restore(flags
);
676 EXPORT_SYMBOL(dec_node_page_state
);
680 * Fold a differential into the global counters.
681 * Returns the number of counters updated.
684 static int fold_diff(int *zone_diff
, int *numa_diff
, int *node_diff
)
689 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
691 atomic_long_add(zone_diff
[i
], &vm_zone_stat
[i
]);
695 for (i
= 0; i
< NR_VM_NUMA_STAT_ITEMS
; i
++)
697 atomic_long_add(numa_diff
[i
], &vm_numa_stat
[i
]);
701 for (i
= 0; i
< NR_VM_NODE_STAT_ITEMS
; i
++)
703 atomic_long_add(node_diff
[i
], &vm_node_stat
[i
]);
709 static int fold_diff(int *zone_diff
, int *node_diff
)
714 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
716 atomic_long_add(zone_diff
[i
], &vm_zone_stat
[i
]);
720 for (i
= 0; i
< NR_VM_NODE_STAT_ITEMS
; i
++)
722 atomic_long_add(node_diff
[i
], &vm_node_stat
[i
]);
727 #endif /* CONFIG_NUMA */
730 * Update the zone counters for the current cpu.
732 * Note that refresh_cpu_vm_stats strives to only access
733 * node local memory. The per cpu pagesets on remote zones are placed
734 * in the memory local to the processor using that pageset. So the
735 * loop over all zones will access a series of cachelines local to
738 * The call to zone_page_state_add updates the cachelines with the
739 * statistics in the remote zone struct as well as the global cachelines
740 * with the global counters. These could cause remote node cache line
741 * bouncing and will have to be only done when necessary.
743 * The function returns the number of global counters updated.
745 static int refresh_cpu_vm_stats(bool do_pagesets
)
747 struct pglist_data
*pgdat
;
750 int global_zone_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
752 int global_numa_diff
[NR_VM_NUMA_STAT_ITEMS
] = { 0, };
754 int global_node_diff
[NR_VM_NODE_STAT_ITEMS
] = { 0, };
757 for_each_populated_zone(zone
) {
758 struct per_cpu_pageset __percpu
*p
= zone
->pageset
;
760 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++) {
763 v
= this_cpu_xchg(p
->vm_stat_diff
[i
], 0);
766 atomic_long_add(v
, &zone
->vm_stat
[i
]);
767 global_zone_diff
[i
] += v
;
769 /* 3 seconds idle till flush */
770 __this_cpu_write(p
->expire
, 3);
775 for (i
= 0; i
< NR_VM_NUMA_STAT_ITEMS
; i
++) {
778 v
= this_cpu_xchg(p
->vm_numa_stat_diff
[i
], 0);
781 atomic_long_add(v
, &zone
->vm_numa_stat
[i
]);
782 global_numa_diff
[i
] += v
;
783 __this_cpu_write(p
->expire
, 3);
790 * Deal with draining the remote pageset of this
793 * Check if there are pages remaining in this pageset
794 * if not then there is nothing to expire.
796 if (!__this_cpu_read(p
->expire
) ||
797 !__this_cpu_read(p
->pcp
.count
))
801 * We never drain zones local to this processor.
803 if (zone_to_nid(zone
) == numa_node_id()) {
804 __this_cpu_write(p
->expire
, 0);
808 if (__this_cpu_dec_return(p
->expire
))
811 if (__this_cpu_read(p
->pcp
.count
)) {
812 drain_zone_pages(zone
, this_cpu_ptr(&p
->pcp
));
819 for_each_online_pgdat(pgdat
) {
820 struct per_cpu_nodestat __percpu
*p
= pgdat
->per_cpu_nodestats
;
822 for (i
= 0; i
< NR_VM_NODE_STAT_ITEMS
; i
++) {
825 v
= this_cpu_xchg(p
->vm_node_stat_diff
[i
], 0);
827 atomic_long_add(v
, &pgdat
->vm_stat
[i
]);
828 global_node_diff
[i
] += v
;
834 changes
+= fold_diff(global_zone_diff
, global_numa_diff
,
837 changes
+= fold_diff(global_zone_diff
, global_node_diff
);
843 * Fold the data for an offline cpu into the global array.
844 * There cannot be any access by the offline cpu and therefore
845 * synchronization is simplified.
847 void cpu_vm_stats_fold(int cpu
)
849 struct pglist_data
*pgdat
;
852 int global_zone_diff
[NR_VM_ZONE_STAT_ITEMS
] = { 0, };
854 int global_numa_diff
[NR_VM_NUMA_STAT_ITEMS
] = { 0, };
856 int global_node_diff
[NR_VM_NODE_STAT_ITEMS
] = { 0, };
858 for_each_populated_zone(zone
) {
859 struct per_cpu_pageset
*p
;
861 p
= per_cpu_ptr(zone
->pageset
, cpu
);
863 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
864 if (p
->vm_stat_diff
[i
]) {
867 v
= p
->vm_stat_diff
[i
];
868 p
->vm_stat_diff
[i
] = 0;
869 atomic_long_add(v
, &zone
->vm_stat
[i
]);
870 global_zone_diff
[i
] += v
;
874 for (i
= 0; i
< NR_VM_NUMA_STAT_ITEMS
; i
++)
875 if (p
->vm_numa_stat_diff
[i
]) {
878 v
= p
->vm_numa_stat_diff
[i
];
879 p
->vm_numa_stat_diff
[i
] = 0;
880 atomic_long_add(v
, &zone
->vm_numa_stat
[i
]);
881 global_numa_diff
[i
] += v
;
886 for_each_online_pgdat(pgdat
) {
887 struct per_cpu_nodestat
*p
;
889 p
= per_cpu_ptr(pgdat
->per_cpu_nodestats
, cpu
);
891 for (i
= 0; i
< NR_VM_NODE_STAT_ITEMS
; i
++)
892 if (p
->vm_node_stat_diff
[i
]) {
895 v
= p
->vm_node_stat_diff
[i
];
896 p
->vm_node_stat_diff
[i
] = 0;
897 atomic_long_add(v
, &pgdat
->vm_stat
[i
]);
898 global_node_diff
[i
] += v
;
903 fold_diff(global_zone_diff
, global_numa_diff
, global_node_diff
);
905 fold_diff(global_zone_diff
, global_node_diff
);
910 * this is only called if !populated_zone(zone), which implies no other users of
911 * pset->vm_stat_diff[] exsist.
913 void drain_zonestat(struct zone
*zone
, struct per_cpu_pageset
*pset
)
917 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
918 if (pset
->vm_stat_diff
[i
]) {
919 int v
= pset
->vm_stat_diff
[i
];
920 pset
->vm_stat_diff
[i
] = 0;
921 atomic_long_add(v
, &zone
->vm_stat
[i
]);
922 atomic_long_add(v
, &vm_zone_stat
[i
]);
926 for (i
= 0; i
< NR_VM_NUMA_STAT_ITEMS
; i
++)
927 if (pset
->vm_numa_stat_diff
[i
]) {
928 int v
= pset
->vm_numa_stat_diff
[i
];
930 pset
->vm_numa_stat_diff
[i
] = 0;
931 atomic_long_add(v
, &zone
->vm_numa_stat
[i
]);
932 atomic_long_add(v
, &vm_numa_stat
[i
]);
939 void __inc_numa_state(struct zone
*zone
,
940 enum numa_stat_item item
)
942 struct per_cpu_pageset __percpu
*pcp
= zone
->pageset
;
943 u16 __percpu
*p
= pcp
->vm_numa_stat_diff
+ item
;
946 v
= __this_cpu_inc_return(*p
);
948 if (unlikely(v
> NUMA_STATS_THRESHOLD
)) {
949 zone_numa_state_add(v
, zone
, item
);
950 __this_cpu_write(*p
, 0);
955 * Determine the per node value of a stat item. This function
956 * is called frequently in a NUMA machine, so try to be as
957 * frugal as possible.
959 unsigned long sum_zone_node_page_state(int node
,
960 enum zone_stat_item item
)
962 struct zone
*zones
= NODE_DATA(node
)->node_zones
;
964 unsigned long count
= 0;
966 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
967 count
+= zone_page_state(zones
+ i
, item
);
973 * Determine the per node value of a numa stat item. To avoid deviation,
974 * the per cpu stat number in vm_numa_stat_diff[] is also included.
976 unsigned long sum_zone_numa_state(int node
,
977 enum numa_stat_item item
)
979 struct zone
*zones
= NODE_DATA(node
)->node_zones
;
981 unsigned long count
= 0;
983 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
984 count
+= zone_numa_state_snapshot(zones
+ i
, item
);
990 * Determine the per node value of a stat item.
992 unsigned long node_page_state(struct pglist_data
*pgdat
,
993 enum node_stat_item item
)
995 long x
= atomic_long_read(&pgdat
->vm_stat
[item
]);
1004 #ifdef CONFIG_COMPACTION
1006 struct contig_page_info
{
1007 unsigned long free_pages
;
1008 unsigned long free_blocks_total
;
1009 unsigned long free_blocks_suitable
;
1013 * Calculate the number of free pages in a zone, how many contiguous
1014 * pages are free and how many are large enough to satisfy an allocation of
1015 * the target size. Note that this function makes no attempt to estimate
1016 * how many suitable free blocks there *might* be if MOVABLE pages were
1017 * migrated. Calculating that is possible, but expensive and can be
1018 * figured out from userspace
1020 static void fill_contig_page_info(struct zone
*zone
,
1021 unsigned int suitable_order
,
1022 struct contig_page_info
*info
)
1026 info
->free_pages
= 0;
1027 info
->free_blocks_total
= 0;
1028 info
->free_blocks_suitable
= 0;
1030 for (order
= 0; order
< MAX_ORDER
; order
++) {
1031 unsigned long blocks
;
1033 /* Count number of free blocks */
1034 blocks
= zone
->free_area
[order
].nr_free
;
1035 info
->free_blocks_total
+= blocks
;
1037 /* Count free base pages */
1038 info
->free_pages
+= blocks
<< order
;
1040 /* Count the suitable free blocks */
1041 if (order
>= suitable_order
)
1042 info
->free_blocks_suitable
+= blocks
<<
1043 (order
- suitable_order
);
1048 * A fragmentation index only makes sense if an allocation of a requested
1049 * size would fail. If that is true, the fragmentation index indicates
1050 * whether external fragmentation or a lack of memory was the problem.
1051 * The value can be used to determine if page reclaim or compaction
1054 static int __fragmentation_index(unsigned int order
, struct contig_page_info
*info
)
1056 unsigned long requested
= 1UL << order
;
1058 if (WARN_ON_ONCE(order
>= MAX_ORDER
))
1061 if (!info
->free_blocks_total
)
1064 /* Fragmentation index only makes sense when a request would fail */
1065 if (info
->free_blocks_suitable
)
1069 * Index is between 0 and 1 so return within 3 decimal places
1071 * 0 => allocation would fail due to lack of memory
1072 * 1 => allocation would fail due to fragmentation
1074 return 1000 - div_u64( (1000+(div_u64(info
->free_pages
* 1000ULL, requested
))), info
->free_blocks_total
);
1077 /* Same as __fragmentation index but allocs contig_page_info on stack */
1078 int fragmentation_index(struct zone
*zone
, unsigned int order
)
1080 struct contig_page_info info
;
1082 fill_contig_page_info(zone
, order
, &info
);
1083 return __fragmentation_index(order
, &info
);
1087 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1088 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1089 #ifdef CONFIG_ZONE_DMA
1090 #define TEXT_FOR_DMA(xx) xx "_dma",
1092 #define TEXT_FOR_DMA(xx)
1095 #ifdef CONFIG_ZONE_DMA32
1096 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1098 #define TEXT_FOR_DMA32(xx)
1101 #ifdef CONFIG_HIGHMEM
1102 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1104 #define TEXT_FOR_HIGHMEM(xx)
1107 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1108 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1110 const char * const vmstat_text
[] = {
1111 /* enum zone_stat_item countes */
1113 "nr_zone_inactive_anon",
1114 "nr_zone_active_anon",
1115 "nr_zone_inactive_file",
1116 "nr_zone_active_file",
1117 "nr_zone_unevictable",
1118 "nr_zone_write_pending",
1120 "nr_page_table_pages",
1123 #if IS_ENABLED(CONFIG_ZSMALLOC)
1128 /* enum numa_stat_item counters */
1138 /* enum node_stat_item counters */
1144 "nr_slab_reclaimable",
1145 "nr_slab_unreclaimable",
1149 "workingset_refault",
1150 "workingset_activate",
1151 "workingset_restore",
1152 "workingset_nodereclaim",
1158 "nr_writeback_temp",
1160 "nr_shmem_hugepages",
1161 "nr_shmem_pmdmapped",
1162 "nr_file_hugepages",
1163 "nr_file_pmdmapped",
1164 "nr_anon_transparent_hugepages",
1167 "nr_vmscan_immediate_reclaim",
1170 "nr_kernel_misc_reclaimable",
1172 /* enum writeback_stat_item counters */
1173 "nr_dirty_threshold",
1174 "nr_dirty_background_threshold",
1176 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1177 /* enum vm_event_item counters */
1183 TEXTS_FOR_ZONES("pgalloc")
1184 TEXTS_FOR_ZONES("allocstall")
1185 TEXTS_FOR_ZONES("pgskip")
1201 "pgscan_direct_throttle",
1204 "zone_reclaim_failed",
1208 "kswapd_inodesteal",
1209 "kswapd_low_wmark_hit_quickly",
1210 "kswapd_high_wmark_hit_quickly",
1219 #ifdef CONFIG_NUMA_BALANCING
1221 "numa_huge_pte_updates",
1223 "numa_hint_faults_local",
1224 "numa_pages_migrated",
1226 #ifdef CONFIG_MIGRATION
1227 "pgmigrate_success",
1230 #ifdef CONFIG_COMPACTION
1231 "compact_migrate_scanned",
1232 "compact_free_scanned",
1237 "compact_daemon_wake",
1238 "compact_daemon_migrate_scanned",
1239 "compact_daemon_free_scanned",
1242 #ifdef CONFIG_HUGETLB_PAGE
1243 "htlb_buddy_alloc_success",
1244 "htlb_buddy_alloc_fail",
1246 "unevictable_pgs_culled",
1247 "unevictable_pgs_scanned",
1248 "unevictable_pgs_rescued",
1249 "unevictable_pgs_mlocked",
1250 "unevictable_pgs_munlocked",
1251 "unevictable_pgs_cleared",
1252 "unevictable_pgs_stranded",
1254 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1256 "thp_fault_fallback",
1257 "thp_collapse_alloc",
1258 "thp_collapse_alloc_failed",
1262 "thp_split_page_failed",
1263 "thp_deferred_split_page",
1265 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1268 "thp_zero_page_alloc",
1269 "thp_zero_page_alloc_failed",
1271 "thp_swpout_fallback",
1273 #ifdef CONFIG_MEMORY_BALLOON
1276 #ifdef CONFIG_BALLOON_COMPACTION
1279 #endif /* CONFIG_MEMORY_BALLOON */
1280 #ifdef CONFIG_DEBUG_TLBFLUSH
1281 "nr_tlb_remote_flush",
1282 "nr_tlb_remote_flush_received",
1283 "nr_tlb_local_flush_all",
1284 "nr_tlb_local_flush_one",
1285 #endif /* CONFIG_DEBUG_TLBFLUSH */
1287 #ifdef CONFIG_DEBUG_VM_VMACACHE
1288 "vmacache_find_calls",
1289 "vmacache_find_hits",
1295 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1297 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1299 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1300 defined(CONFIG_PROC_FS)
1301 static void *frag_start(struct seq_file
*m
, loff_t
*pos
)
1306 for (pgdat
= first_online_pgdat();
1308 pgdat
= next_online_pgdat(pgdat
))
1314 static void *frag_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1316 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1319 return next_online_pgdat(pgdat
);
1322 static void frag_stop(struct seq_file
*m
, void *arg
)
1327 * Walk zones in a node and print using a callback.
1328 * If @assert_populated is true, only use callback for zones that are populated.
1330 static void walk_zones_in_node(struct seq_file
*m
, pg_data_t
*pgdat
,
1331 bool assert_populated
, bool nolock
,
1332 void (*print
)(struct seq_file
*m
, pg_data_t
*, struct zone
*))
1335 struct zone
*node_zones
= pgdat
->node_zones
;
1336 unsigned long flags
;
1338 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
1339 if (assert_populated
&& !populated_zone(zone
))
1343 spin_lock_irqsave(&zone
->lock
, flags
);
1344 print(m
, pgdat
, zone
);
1346 spin_unlock_irqrestore(&zone
->lock
, flags
);
1351 #ifdef CONFIG_PROC_FS
1352 static void frag_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
1357 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
1358 for (order
= 0; order
< MAX_ORDER
; ++order
)
1359 seq_printf(m
, "%6lu ", zone
->free_area
[order
].nr_free
);
1364 * This walks the free areas for each zone.
1366 static int frag_show(struct seq_file
*m
, void *arg
)
1368 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1369 walk_zones_in_node(m
, pgdat
, true, false, frag_show_print
);
1373 static void pagetypeinfo_showfree_print(struct seq_file
*m
,
1374 pg_data_t
*pgdat
, struct zone
*zone
)
1378 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++) {
1379 seq_printf(m
, "Node %4d, zone %8s, type %12s ",
1382 migratetype_names
[mtype
]);
1383 for (order
= 0; order
< MAX_ORDER
; ++order
) {
1384 unsigned long freecount
= 0;
1385 struct free_area
*area
;
1386 struct list_head
*curr
;
1387 bool overflow
= false;
1389 area
= &(zone
->free_area
[order
]);
1391 list_for_each(curr
, &area
->free_list
[mtype
]) {
1393 * Cap the free_list iteration because it might
1394 * be really large and we are under a spinlock
1395 * so a long time spent here could trigger a
1396 * hard lockup detector. Anyway this is a
1397 * debugging tool so knowing there is a handful
1398 * of pages of this order should be more than
1401 if (++freecount
>= 100000) {
1406 seq_printf(m
, "%s%6lu ", overflow
? ">" : "", freecount
);
1407 spin_unlock_irq(&zone
->lock
);
1409 spin_lock_irq(&zone
->lock
);
1415 /* Print out the free pages at each order for each migatetype */
1416 static int pagetypeinfo_showfree(struct seq_file
*m
, void *arg
)
1419 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1422 seq_printf(m
, "%-43s ", "Free pages count per migrate type at order");
1423 for (order
= 0; order
< MAX_ORDER
; ++order
)
1424 seq_printf(m
, "%6d ", order
);
1427 walk_zones_in_node(m
, pgdat
, true, false, pagetypeinfo_showfree_print
);
1432 static void pagetypeinfo_showblockcount_print(struct seq_file
*m
,
1433 pg_data_t
*pgdat
, struct zone
*zone
)
1437 unsigned long start_pfn
= zone
->zone_start_pfn
;
1438 unsigned long end_pfn
= zone_end_pfn(zone
);
1439 unsigned long count
[MIGRATE_TYPES
] = { 0, };
1441 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
1444 page
= pfn_to_online_page(pfn
);
1448 /* Watch for unexpected holes punched in the memmap */
1449 if (!memmap_valid_within(pfn
, page
, zone
))
1452 if (page_zone(page
) != zone
)
1455 mtype
= get_pageblock_migratetype(page
);
1457 if (mtype
< MIGRATE_TYPES
)
1462 seq_printf(m
, "Node %d, zone %8s ", pgdat
->node_id
, zone
->name
);
1463 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
1464 seq_printf(m
, "%12lu ", count
[mtype
]);
1468 /* Print out the number of pageblocks for each migratetype */
1469 static int pagetypeinfo_showblockcount(struct seq_file
*m
, void *arg
)
1472 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1474 seq_printf(m
, "\n%-23s", "Number of blocks type ");
1475 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
1476 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
1478 walk_zones_in_node(m
, pgdat
, true, false,
1479 pagetypeinfo_showblockcount_print
);
1485 * Print out the number of pageblocks for each migratetype that contain pages
1486 * of other types. This gives an indication of how well fallbacks are being
1487 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1488 * to determine what is going on
1490 static void pagetypeinfo_showmixedcount(struct seq_file
*m
, pg_data_t
*pgdat
)
1492 #ifdef CONFIG_PAGE_OWNER
1495 if (!static_branch_unlikely(&page_owner_inited
))
1498 drain_all_pages(NULL
);
1500 seq_printf(m
, "\n%-23s", "Number of mixed blocks ");
1501 for (mtype
= 0; mtype
< MIGRATE_TYPES
; mtype
++)
1502 seq_printf(m
, "%12s ", migratetype_names
[mtype
]);
1505 walk_zones_in_node(m
, pgdat
, true, true,
1506 pagetypeinfo_showmixedcount_print
);
1507 #endif /* CONFIG_PAGE_OWNER */
1511 * This prints out statistics in relation to grouping pages by mobility.
1512 * It is expensive to collect so do not constantly read the file.
1514 static int pagetypeinfo_show(struct seq_file
*m
, void *arg
)
1516 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1518 /* check memoryless node */
1519 if (!node_state(pgdat
->node_id
, N_MEMORY
))
1522 seq_printf(m
, "Page block order: %d\n", pageblock_order
);
1523 seq_printf(m
, "Pages per block: %lu\n", pageblock_nr_pages
);
1525 pagetypeinfo_showfree(m
, pgdat
);
1526 pagetypeinfo_showblockcount(m
, pgdat
);
1527 pagetypeinfo_showmixedcount(m
, pgdat
);
1532 static const struct seq_operations fragmentation_op
= {
1533 .start
= frag_start
,
1539 static const struct seq_operations pagetypeinfo_op
= {
1540 .start
= frag_start
,
1543 .show
= pagetypeinfo_show
,
1546 static bool is_zone_first_populated(pg_data_t
*pgdat
, struct zone
*zone
)
1550 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1551 struct zone
*compare
= &pgdat
->node_zones
[zid
];
1553 if (populated_zone(compare
))
1554 return zone
== compare
;
1560 static void zoneinfo_show_print(struct seq_file
*m
, pg_data_t
*pgdat
,
1564 seq_printf(m
, "Node %d, zone %8s", pgdat
->node_id
, zone
->name
);
1565 if (is_zone_first_populated(pgdat
, zone
)) {
1566 seq_printf(m
, "\n per-node stats");
1567 for (i
= 0; i
< NR_VM_NODE_STAT_ITEMS
; i
++) {
1568 seq_printf(m
, "\n %-12s %lu", node_stat_name(i
),
1569 node_page_state(pgdat
, i
));
1580 zone_page_state(zone
, NR_FREE_PAGES
),
1581 min_wmark_pages(zone
),
1582 low_wmark_pages(zone
),
1583 high_wmark_pages(zone
),
1584 zone
->spanned_pages
,
1585 zone
->present_pages
,
1586 zone_managed_pages(zone
));
1589 "\n protection: (%ld",
1590 zone
->lowmem_reserve
[0]);
1591 for (i
= 1; i
< ARRAY_SIZE(zone
->lowmem_reserve
); i
++)
1592 seq_printf(m
, ", %ld", zone
->lowmem_reserve
[i
]);
1595 /* If unpopulated, no other information is useful */
1596 if (!populated_zone(zone
)) {
1601 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1602 seq_printf(m
, "\n %-12s %lu", zone_stat_name(i
),
1603 zone_page_state(zone
, i
));
1606 for (i
= 0; i
< NR_VM_NUMA_STAT_ITEMS
; i
++)
1607 seq_printf(m
, "\n %-12s %lu", numa_stat_name(i
),
1608 zone_numa_state_snapshot(zone
, i
));
1611 seq_printf(m
, "\n pagesets");
1612 for_each_online_cpu(i
) {
1613 struct per_cpu_pageset
*pageset
;
1615 pageset
= per_cpu_ptr(zone
->pageset
, i
);
1624 pageset
->pcp
.batch
);
1626 seq_printf(m
, "\n vm stats threshold: %d",
1627 pageset
->stat_threshold
);
1631 "\n node_unreclaimable: %u"
1632 "\n start_pfn: %lu",
1633 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
,
1634 zone
->zone_start_pfn
);
1639 * Output information about zones in @pgdat. All zones are printed regardless
1640 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1641 * set of all zones and userspace would not be aware of such zones if they are
1642 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1644 static int zoneinfo_show(struct seq_file
*m
, void *arg
)
1646 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
1647 walk_zones_in_node(m
, pgdat
, false, false, zoneinfo_show_print
);
1651 static const struct seq_operations zoneinfo_op
= {
1652 .start
= frag_start
, /* iterate over all zones. The same as in
1656 .show
= zoneinfo_show
,
1659 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1660 NR_VM_NUMA_STAT_ITEMS + \
1661 NR_VM_NODE_STAT_ITEMS + \
1662 NR_VM_WRITEBACK_STAT_ITEMS + \
1663 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1664 NR_VM_EVENT_ITEMS : 0))
1666 static void *vmstat_start(struct seq_file
*m
, loff_t
*pos
)
1671 if (*pos
>= NR_VMSTAT_ITEMS
)
1674 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text
) < NR_VMSTAT_ITEMS
);
1675 v
= kmalloc_array(NR_VMSTAT_ITEMS
, sizeof(unsigned long), GFP_KERNEL
);
1678 return ERR_PTR(-ENOMEM
);
1679 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++)
1680 v
[i
] = global_zone_page_state(i
);
1681 v
+= NR_VM_ZONE_STAT_ITEMS
;
1684 for (i
= 0; i
< NR_VM_NUMA_STAT_ITEMS
; i
++)
1685 v
[i
] = global_numa_state(i
);
1686 v
+= NR_VM_NUMA_STAT_ITEMS
;
1689 for (i
= 0; i
< NR_VM_NODE_STAT_ITEMS
; i
++)
1690 v
[i
] = global_node_page_state(i
);
1691 v
+= NR_VM_NODE_STAT_ITEMS
;
1693 global_dirty_limits(v
+ NR_DIRTY_BG_THRESHOLD
,
1694 v
+ NR_DIRTY_THRESHOLD
);
1695 v
+= NR_VM_WRITEBACK_STAT_ITEMS
;
1697 #ifdef CONFIG_VM_EVENT_COUNTERS
1699 v
[PGPGIN
] /= 2; /* sectors -> kbytes */
1702 return (unsigned long *)m
->private + *pos
;
1705 static void *vmstat_next(struct seq_file
*m
, void *arg
, loff_t
*pos
)
1708 if (*pos
>= NR_VMSTAT_ITEMS
)
1710 return (unsigned long *)m
->private + *pos
;
1713 static int vmstat_show(struct seq_file
*m
, void *arg
)
1715 unsigned long *l
= arg
;
1716 unsigned long off
= l
- (unsigned long *)m
->private;
1718 seq_puts(m
, vmstat_text
[off
]);
1719 seq_put_decimal_ull(m
, " ", *l
);
1724 static void vmstat_stop(struct seq_file
*m
, void *arg
)
1730 static const struct seq_operations vmstat_op
= {
1731 .start
= vmstat_start
,
1732 .next
= vmstat_next
,
1733 .stop
= vmstat_stop
,
1734 .show
= vmstat_show
,
1736 #endif /* CONFIG_PROC_FS */
1739 static DEFINE_PER_CPU(struct delayed_work
, vmstat_work
);
1740 int sysctl_stat_interval __read_mostly
= HZ
;
1742 #ifdef CONFIG_PROC_FS
1743 static void refresh_vm_stats(struct work_struct
*work
)
1745 refresh_cpu_vm_stats(true);
1748 int vmstat_refresh(struct ctl_table
*table
, int write
,
1749 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1756 * The regular update, every sysctl_stat_interval, may come later
1757 * than expected: leaving a significant amount in per_cpu buckets.
1758 * This is particularly misleading when checking a quantity of HUGE
1759 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1760 * which can equally be echo'ed to or cat'ted from (by root),
1761 * can be used to update the stats just before reading them.
1763 * Oh, and since global_zone_page_state() etc. are so careful to hide
1764 * transiently negative values, report an error here if any of
1765 * the stats is negative, so we know to go looking for imbalance.
1767 err
= schedule_on_each_cpu(refresh_vm_stats
);
1770 for (i
= 0; i
< NR_VM_ZONE_STAT_ITEMS
; i
++) {
1771 val
= atomic_long_read(&vm_zone_stat
[i
]);
1773 pr_warn("%s: %s %ld\n",
1774 __func__
, zone_stat_name(i
), val
);
1779 for (i
= 0; i
< NR_VM_NUMA_STAT_ITEMS
; i
++) {
1780 val
= atomic_long_read(&vm_numa_stat
[i
]);
1782 pr_warn("%s: %s %ld\n",
1783 __func__
, numa_stat_name(i
), val
);
1796 #endif /* CONFIG_PROC_FS */
1798 static void vmstat_update(struct work_struct
*w
)
1800 if (refresh_cpu_vm_stats(true)) {
1802 * Counters were updated so we expect more updates
1803 * to occur in the future. Keep on running the
1804 * update worker thread.
1806 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq
,
1807 this_cpu_ptr(&vmstat_work
),
1808 round_jiffies_relative(sysctl_stat_interval
));
1813 * Switch off vmstat processing and then fold all the remaining differentials
1814 * until the diffs stay at zero. The function is used by NOHZ and can only be
1815 * invoked when tick processing is not active.
1818 * Check if the diffs for a certain cpu indicate that
1819 * an update is needed.
1821 static bool need_update(int cpu
)
1825 for_each_populated_zone(zone
) {
1826 struct per_cpu_pageset
*p
= per_cpu_ptr(zone
->pageset
, cpu
);
1828 BUILD_BUG_ON(sizeof(p
->vm_stat_diff
[0]) != 1);
1830 BUILD_BUG_ON(sizeof(p
->vm_numa_stat_diff
[0]) != 2);
1834 * The fast way of checking if there are any vmstat diffs.
1836 if (memchr_inv(p
->vm_stat_diff
, 0, NR_VM_ZONE_STAT_ITEMS
*
1837 sizeof(p
->vm_stat_diff
[0])))
1840 if (memchr_inv(p
->vm_numa_stat_diff
, 0, NR_VM_NUMA_STAT_ITEMS
*
1841 sizeof(p
->vm_numa_stat_diff
[0])))
1849 * Switch off vmstat processing and then fold all the remaining differentials
1850 * until the diffs stay at zero. The function is used by NOHZ and can only be
1851 * invoked when tick processing is not active.
1853 void quiet_vmstat(void)
1855 if (system_state
!= SYSTEM_RUNNING
)
1858 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work
)))
1861 if (!need_update(smp_processor_id()))
1865 * Just refresh counters and do not care about the pending delayed
1866 * vmstat_update. It doesn't fire that often to matter and canceling
1867 * it would be too expensive from this path.
1868 * vmstat_shepherd will take care about that for us.
1870 refresh_cpu_vm_stats(false);
1874 * Shepherd worker thread that checks the
1875 * differentials of processors that have their worker
1876 * threads for vm statistics updates disabled because of
1879 static void vmstat_shepherd(struct work_struct
*w
);
1881 static DECLARE_DEFERRABLE_WORK(shepherd
, vmstat_shepherd
);
1883 static void vmstat_shepherd(struct work_struct
*w
)
1888 /* Check processors whose vmstat worker threads have been disabled */
1889 for_each_online_cpu(cpu
) {
1890 struct delayed_work
*dw
= &per_cpu(vmstat_work
, cpu
);
1892 if (!delayed_work_pending(dw
) && need_update(cpu
))
1893 queue_delayed_work_on(cpu
, mm_percpu_wq
, dw
, 0);
1897 schedule_delayed_work(&shepherd
,
1898 round_jiffies_relative(sysctl_stat_interval
));
1901 static void __init
start_shepherd_timer(void)
1905 for_each_possible_cpu(cpu
)
1906 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work
, cpu
),
1909 schedule_delayed_work(&shepherd
,
1910 round_jiffies_relative(sysctl_stat_interval
));
1913 static void __init
init_cpu_node_state(void)
1917 for_each_online_node(node
) {
1918 if (cpumask_weight(cpumask_of_node(node
)) > 0)
1919 node_set_state(node
, N_CPU
);
1923 static int vmstat_cpu_online(unsigned int cpu
)
1925 refresh_zone_stat_thresholds();
1926 node_set_state(cpu_to_node(cpu
), N_CPU
);
1930 static int vmstat_cpu_down_prep(unsigned int cpu
)
1932 cancel_delayed_work_sync(&per_cpu(vmstat_work
, cpu
));
1936 static int vmstat_cpu_dead(unsigned int cpu
)
1938 const struct cpumask
*node_cpus
;
1941 node
= cpu_to_node(cpu
);
1943 refresh_zone_stat_thresholds();
1944 node_cpus
= cpumask_of_node(node
);
1945 if (cpumask_weight(node_cpus
) > 0)
1948 node_clear_state(node
, N_CPU
);
1954 struct workqueue_struct
*mm_percpu_wq
;
1956 void __init
init_mm_internals(void)
1958 int ret __maybe_unused
;
1960 mm_percpu_wq
= alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM
, 0);
1963 ret
= cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD
, "mm/vmstat:dead",
1964 NULL
, vmstat_cpu_dead
);
1966 pr_err("vmstat: failed to register 'dead' hotplug state\n");
1968 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
, "mm/vmstat:online",
1970 vmstat_cpu_down_prep
);
1972 pr_err("vmstat: failed to register 'online' hotplug state\n");
1975 init_cpu_node_state();
1978 start_shepherd_timer();
1980 #ifdef CONFIG_PROC_FS
1981 proc_create_seq("buddyinfo", 0444, NULL
, &fragmentation_op
);
1982 proc_create_seq("pagetypeinfo", 0400, NULL
, &pagetypeinfo_op
);
1983 proc_create_seq("vmstat", 0444, NULL
, &vmstat_op
);
1984 proc_create_seq("zoneinfo", 0444, NULL
, &zoneinfo_op
);
1988 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1991 * Return an index indicating how much of the available free memory is
1992 * unusable for an allocation of the requested size.
1994 static int unusable_free_index(unsigned int order
,
1995 struct contig_page_info
*info
)
1997 /* No free memory is interpreted as all free memory is unusable */
1998 if (info
->free_pages
== 0)
2002 * Index should be a value between 0 and 1. Return a value to 3
2005 * 0 => no fragmentation
2006 * 1 => high fragmentation
2008 return div_u64((info
->free_pages
- (info
->free_blocks_suitable
<< order
)) * 1000ULL, info
->free_pages
);
2012 static void unusable_show_print(struct seq_file
*m
,
2013 pg_data_t
*pgdat
, struct zone
*zone
)
2017 struct contig_page_info info
;
2019 seq_printf(m
, "Node %d, zone %8s ",
2022 for (order
= 0; order
< MAX_ORDER
; ++order
) {
2023 fill_contig_page_info(zone
, order
, &info
);
2024 index
= unusable_free_index(order
, &info
);
2025 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
2032 * Display unusable free space index
2034 * The unusable free space index measures how much of the available free
2035 * memory cannot be used to satisfy an allocation of a given size and is a
2036 * value between 0 and 1. The higher the value, the more of free memory is
2037 * unusable and by implication, the worse the external fragmentation is. This
2038 * can be expressed as a percentage by multiplying by 100.
2040 static int unusable_show(struct seq_file
*m
, void *arg
)
2042 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2044 /* check memoryless node */
2045 if (!node_state(pgdat
->node_id
, N_MEMORY
))
2048 walk_zones_in_node(m
, pgdat
, true, false, unusable_show_print
);
2053 static const struct seq_operations unusable_op
= {
2054 .start
= frag_start
,
2057 .show
= unusable_show
,
2060 static int unusable_open(struct inode
*inode
, struct file
*file
)
2062 return seq_open(file
, &unusable_op
);
2065 static const struct file_operations unusable_file_ops
= {
2066 .open
= unusable_open
,
2068 .llseek
= seq_lseek
,
2069 .release
= seq_release
,
2072 static void extfrag_show_print(struct seq_file
*m
,
2073 pg_data_t
*pgdat
, struct zone
*zone
)
2078 /* Alloc on stack as interrupts are disabled for zone walk */
2079 struct contig_page_info info
;
2081 seq_printf(m
, "Node %d, zone %8s ",
2084 for (order
= 0; order
< MAX_ORDER
; ++order
) {
2085 fill_contig_page_info(zone
, order
, &info
);
2086 index
= __fragmentation_index(order
, &info
);
2087 seq_printf(m
, "%d.%03d ", index
/ 1000, index
% 1000);
2094 * Display fragmentation index for orders that allocations would fail for
2096 static int extfrag_show(struct seq_file
*m
, void *arg
)
2098 pg_data_t
*pgdat
= (pg_data_t
*)arg
;
2100 walk_zones_in_node(m
, pgdat
, true, false, extfrag_show_print
);
2105 static const struct seq_operations extfrag_op
= {
2106 .start
= frag_start
,
2109 .show
= extfrag_show
,
2112 static int extfrag_open(struct inode
*inode
, struct file
*file
)
2114 return seq_open(file
, &extfrag_op
);
2117 static const struct file_operations extfrag_file_ops
= {
2118 .open
= extfrag_open
,
2120 .llseek
= seq_lseek
,
2121 .release
= seq_release
,
2124 static int __init
extfrag_debug_init(void)
2126 struct dentry
*extfrag_debug_root
;
2128 extfrag_debug_root
= debugfs_create_dir("extfrag", NULL
);
2130 debugfs_create_file("unusable_index", 0444, extfrag_debug_root
, NULL
,
2131 &unusable_file_ops
);
2133 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root
, NULL
,
2139 module_init(extfrag_debug_init
);