1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
39 char stat_string
[ETH_GSTRING_LEN
];
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats
[] = {
47 { "rx_packets", E1000_STAT(stats
.gprc
) },
48 { "tx_packets", E1000_STAT(stats
.gptc
) },
49 { "rx_bytes", E1000_STAT(stats
.gorc
) },
50 { "tx_bytes", E1000_STAT(stats
.gotc
) },
51 { "rx_broadcast", E1000_STAT(stats
.bprc
) },
52 { "tx_broadcast", E1000_STAT(stats
.bptc
) },
53 { "rx_multicast", E1000_STAT(stats
.mprc
) },
54 { "tx_multicast", E1000_STAT(stats
.mptc
) },
55 { "rx_errors", E1000_STAT(net_stats
.rx_errors
) },
56 { "tx_errors", E1000_STAT(net_stats
.tx_errors
) },
57 { "tx_dropped", E1000_STAT(net_stats
.tx_dropped
) },
58 { "multicast", E1000_STAT(stats
.mprc
) },
59 { "collisions", E1000_STAT(stats
.colc
) },
60 { "rx_length_errors", E1000_STAT(net_stats
.rx_length_errors
) },
61 { "rx_over_errors", E1000_STAT(net_stats
.rx_over_errors
) },
62 { "rx_crc_errors", E1000_STAT(stats
.crcerrs
) },
63 { "rx_frame_errors", E1000_STAT(net_stats
.rx_frame_errors
) },
64 { "rx_no_buffer_count", E1000_STAT(stats
.rnbc
) },
65 { "rx_missed_errors", E1000_STAT(stats
.mpc
) },
66 { "tx_aborted_errors", E1000_STAT(stats
.ecol
) },
67 { "tx_carrier_errors", E1000_STAT(stats
.tncrs
) },
68 { "tx_fifo_errors", E1000_STAT(net_stats
.tx_fifo_errors
) },
69 { "tx_heartbeat_errors", E1000_STAT(net_stats
.tx_heartbeat_errors
) },
70 { "tx_window_errors", E1000_STAT(stats
.latecol
) },
71 { "tx_abort_late_coll", E1000_STAT(stats
.latecol
) },
72 { "tx_deferred_ok", E1000_STAT(stats
.dc
) },
73 { "tx_single_coll_ok", E1000_STAT(stats
.scc
) },
74 { "tx_multi_coll_ok", E1000_STAT(stats
.mcc
) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count
) },
76 { "tx_restart_queue", E1000_STAT(restart_queue
) },
77 { "rx_long_length_errors", E1000_STAT(stats
.roc
) },
78 { "rx_short_length_errors", E1000_STAT(stats
.ruc
) },
79 { "rx_align_errors", E1000_STAT(stats
.algnerrc
) },
80 { "tx_tcp_seg_good", E1000_STAT(stats
.tsctc
) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats
.tsctfc
) },
82 { "rx_flow_control_xon", E1000_STAT(stats
.xonrxc
) },
83 { "rx_flow_control_xoff", E1000_STAT(stats
.xoffrxc
) },
84 { "tx_flow_control_xon", E1000_STAT(stats
.xontxc
) },
85 { "tx_flow_control_xoff", E1000_STAT(stats
.xofftxc
) },
86 { "rx_long_byte_count", E1000_STAT(stats
.gorc
) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good
) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err
) },
89 { "rx_header_split", E1000_STAT(rx_hdr_split
) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed
) },
91 { "tx_smbus", E1000_STAT(stats
.mgptc
) },
92 { "rx_smbus", E1000_STAT(stats
.mgprc
) },
93 { "dropped_smbus", E1000_STAT(stats
.mgpdc
) },
94 { "rx_dma_failed", E1000_STAT(rx_dma_failed
) },
95 { "tx_dma_failed", E1000_STAT(tx_dma_failed
) },
98 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test
[][ETH_GSTRING_LEN
] = {
101 "Register test (offline)", "Eeprom test (offline)",
102 "Interrupt test (offline)", "Loopback test (offline)",
103 "Link test (on/offline)"
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
107 static int e1000_get_settings(struct net_device
*netdev
,
108 struct ethtool_cmd
*ecmd
)
110 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
111 struct e1000_hw
*hw
= &adapter
->hw
;
114 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
116 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
117 SUPPORTED_10baseT_Full
|
118 SUPPORTED_100baseT_Half
|
119 SUPPORTED_100baseT_Full
|
120 SUPPORTED_1000baseT_Full
|
123 if (hw
->phy
.type
== e1000_phy_ife
)
124 ecmd
->supported
&= ~SUPPORTED_1000baseT_Full
;
125 ecmd
->advertising
= ADVERTISED_TP
;
127 if (hw
->mac
.autoneg
== 1) {
128 ecmd
->advertising
|= ADVERTISED_Autoneg
;
129 /* the e1000 autoneg seems to match ethtool nicely */
130 ecmd
->advertising
|= hw
->phy
.autoneg_advertised
;
133 ecmd
->port
= PORT_TP
;
134 ecmd
->phy_address
= hw
->phy
.addr
;
135 ecmd
->transceiver
= XCVR_INTERNAL
;
138 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
142 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
146 ecmd
->port
= PORT_FIBRE
;
147 ecmd
->transceiver
= XCVR_EXTERNAL
;
150 status
= er32(STATUS
);
151 if (status
& E1000_STATUS_LU
) {
152 if (status
& E1000_STATUS_SPEED_1000
)
154 else if (status
& E1000_STATUS_SPEED_100
)
159 if (status
& E1000_STATUS_FD
)
160 ecmd
->duplex
= DUPLEX_FULL
;
162 ecmd
->duplex
= DUPLEX_HALF
;
168 ecmd
->autoneg
= ((hw
->phy
.media_type
== e1000_media_type_fiber
) ||
169 hw
->mac
.autoneg
) ? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
173 static u32
e1000_get_link(struct net_device
*netdev
)
175 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
177 return e1000_has_link(adapter
);
180 static int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u16 spddplx
)
182 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
186 /* Fiber NICs only allow 1000 gbps Full duplex */
187 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
188 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
189 e_err("Unsupported Speed/Duplex configuration\n");
194 case SPEED_10
+ DUPLEX_HALF
:
195 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
197 case SPEED_10
+ DUPLEX_FULL
:
198 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
200 case SPEED_100
+ DUPLEX_HALF
:
201 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
203 case SPEED_100
+ DUPLEX_FULL
:
204 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
206 case SPEED_1000
+ DUPLEX_FULL
:
208 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
210 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
212 e_err("Unsupported Speed/Duplex configuration\n");
218 static int e1000_set_settings(struct net_device
*netdev
,
219 struct ethtool_cmd
*ecmd
)
221 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
222 struct e1000_hw
*hw
= &adapter
->hw
;
225 * When SoL/IDER sessions are active, autoneg/speed/duplex
228 if (e1000_check_reset_block(hw
)) {
229 e_err("Cannot change link characteristics when SoL/IDER is "
234 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
237 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
239 if (hw
->phy
.media_type
== e1000_media_type_fiber
)
240 hw
->phy
.autoneg_advertised
= ADVERTISED_1000baseT_Full
|
244 hw
->phy
.autoneg_advertised
= ecmd
->advertising
|
247 ecmd
->advertising
= hw
->phy
.autoneg_advertised
;
248 if (adapter
->fc_autoneg
)
249 hw
->fc
.requested_mode
= e1000_fc_default
;
251 if (e1000_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
)) {
252 clear_bit(__E1000_RESETTING
, &adapter
->state
);
259 if (netif_running(adapter
->netdev
)) {
260 e1000e_down(adapter
);
263 e1000e_reset(adapter
);
266 clear_bit(__E1000_RESETTING
, &adapter
->state
);
270 static void e1000_get_pauseparam(struct net_device
*netdev
,
271 struct ethtool_pauseparam
*pause
)
273 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
274 struct e1000_hw
*hw
= &adapter
->hw
;
277 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
279 if (hw
->fc
.current_mode
== e1000_fc_rx_pause
) {
281 } else if (hw
->fc
.current_mode
== e1000_fc_tx_pause
) {
283 } else if (hw
->fc
.current_mode
== e1000_fc_full
) {
289 static int e1000_set_pauseparam(struct net_device
*netdev
,
290 struct ethtool_pauseparam
*pause
)
292 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
293 struct e1000_hw
*hw
= &adapter
->hw
;
296 adapter
->fc_autoneg
= pause
->autoneg
;
298 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
301 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
302 hw
->fc
.requested_mode
= e1000_fc_default
;
303 if (netif_running(adapter
->netdev
)) {
304 e1000e_down(adapter
);
307 e1000e_reset(adapter
);
310 if (pause
->rx_pause
&& pause
->tx_pause
)
311 hw
->fc
.requested_mode
= e1000_fc_full
;
312 else if (pause
->rx_pause
&& !pause
->tx_pause
)
313 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
314 else if (!pause
->rx_pause
&& pause
->tx_pause
)
315 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
316 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
317 hw
->fc
.requested_mode
= e1000_fc_none
;
319 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
321 retval
= ((hw
->phy
.media_type
== e1000_media_type_fiber
) ?
322 hw
->mac
.ops
.setup_link(hw
) : e1000e_force_mac_fc(hw
));
325 clear_bit(__E1000_RESETTING
, &adapter
->state
);
329 static u32
e1000_get_rx_csum(struct net_device
*netdev
)
331 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
332 return (adapter
->flags
& FLAG_RX_CSUM_ENABLED
);
335 static int e1000_set_rx_csum(struct net_device
*netdev
, u32 data
)
337 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
340 adapter
->flags
|= FLAG_RX_CSUM_ENABLED
;
342 adapter
->flags
&= ~FLAG_RX_CSUM_ENABLED
;
344 if (netif_running(netdev
))
345 e1000e_reinit_locked(adapter
);
347 e1000e_reset(adapter
);
351 static u32
e1000_get_tx_csum(struct net_device
*netdev
)
353 return ((netdev
->features
& NETIF_F_HW_CSUM
) != 0);
356 static int e1000_set_tx_csum(struct net_device
*netdev
, u32 data
)
359 netdev
->features
|= NETIF_F_HW_CSUM
;
361 netdev
->features
&= ~NETIF_F_HW_CSUM
;
366 static int e1000_set_tso(struct net_device
*netdev
, u32 data
)
368 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
371 netdev
->features
|= NETIF_F_TSO
;
372 netdev
->features
|= NETIF_F_TSO6
;
374 netdev
->features
&= ~NETIF_F_TSO
;
375 netdev
->features
&= ~NETIF_F_TSO6
;
378 e_info("TSO is %s\n", data
? "Enabled" : "Disabled");
379 adapter
->flags
|= FLAG_TSO_FORCE
;
383 static u32
e1000_get_msglevel(struct net_device
*netdev
)
385 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
386 return adapter
->msg_enable
;
389 static void e1000_set_msglevel(struct net_device
*netdev
, u32 data
)
391 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
392 adapter
->msg_enable
= data
;
395 static int e1000_get_regs_len(struct net_device
*netdev
)
397 #define E1000_REGS_LEN 32 /* overestimate */
398 return E1000_REGS_LEN
* sizeof(u32
);
401 static void e1000_get_regs(struct net_device
*netdev
,
402 struct ethtool_regs
*regs
, void *p
)
404 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
405 struct e1000_hw
*hw
= &adapter
->hw
;
410 memset(p
, 0, E1000_REGS_LEN
* sizeof(u32
));
412 pci_read_config_byte(adapter
->pdev
, PCI_REVISION_ID
, &revision_id
);
414 regs
->version
= (1 << 24) | (revision_id
<< 16) | adapter
->pdev
->device
;
416 regs_buff
[0] = er32(CTRL
);
417 regs_buff
[1] = er32(STATUS
);
419 regs_buff
[2] = er32(RCTL
);
420 regs_buff
[3] = er32(RDLEN
);
421 regs_buff
[4] = er32(RDH
);
422 regs_buff
[5] = er32(RDT
);
423 regs_buff
[6] = er32(RDTR
);
425 regs_buff
[7] = er32(TCTL
);
426 regs_buff
[8] = er32(TDLEN
);
427 regs_buff
[9] = er32(TDH
);
428 regs_buff
[10] = er32(TDT
);
429 regs_buff
[11] = er32(TIDV
);
431 regs_buff
[12] = adapter
->hw
.phy
.type
; /* PHY type (IGP=1, M88=0) */
433 /* ethtool doesn't use anything past this point, so all this
434 * code is likely legacy junk for apps that may or may not
436 if (hw
->phy
.type
== e1000_phy_m88
) {
437 e1e_rphy(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
438 regs_buff
[13] = (u32
)phy_data
; /* cable length */
439 regs_buff
[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
440 regs_buff
[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
441 regs_buff
[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
442 e1e_rphy(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
443 regs_buff
[17] = (u32
)phy_data
; /* extended 10bt distance */
444 regs_buff
[18] = regs_buff
[13]; /* cable polarity */
445 regs_buff
[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
446 regs_buff
[20] = regs_buff
[17]; /* polarity correction */
447 /* phy receive errors */
448 regs_buff
[22] = adapter
->phy_stats
.receive_errors
;
449 regs_buff
[23] = regs_buff
[13]; /* mdix mode */
451 regs_buff
[21] = 0; /* was idle_errors */
452 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_data
);
453 regs_buff
[24] = (u32
)phy_data
; /* phy local receiver status */
454 regs_buff
[25] = regs_buff
[24]; /* phy remote receiver status */
457 static int e1000_get_eeprom_len(struct net_device
*netdev
)
459 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
460 return adapter
->hw
.nvm
.word_size
* 2;
463 static int e1000_get_eeprom(struct net_device
*netdev
,
464 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
466 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
467 struct e1000_hw
*hw
= &adapter
->hw
;
474 if (eeprom
->len
== 0)
477 eeprom
->magic
= adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16);
479 first_word
= eeprom
->offset
>> 1;
480 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
482 eeprom_buff
= kmalloc(sizeof(u16
) *
483 (last_word
- first_word
+ 1), GFP_KERNEL
);
487 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
) {
488 ret_val
= e1000_read_nvm(hw
, first_word
,
489 last_word
- first_word
+ 1,
492 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
493 ret_val
= e1000_read_nvm(hw
, first_word
+ i
, 1,
501 /* a read error occurred, throw away the result */
502 memset(eeprom_buff
, 0xff, sizeof(eeprom_buff
));
504 /* Device's eeprom is always little-endian, word addressable */
505 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
506 le16_to_cpus(&eeprom_buff
[i
]);
509 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1), eeprom
->len
);
515 static int e1000_set_eeprom(struct net_device
*netdev
,
516 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
518 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
519 struct e1000_hw
*hw
= &adapter
->hw
;
528 if (eeprom
->len
== 0)
531 if (eeprom
->magic
!= (adapter
->pdev
->vendor
| (adapter
->pdev
->device
<< 16)))
534 if (adapter
->flags
& FLAG_READ_ONLY_NVM
)
537 max_len
= hw
->nvm
.word_size
* 2;
539 first_word
= eeprom
->offset
>> 1;
540 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
541 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
545 ptr
= (void *)eeprom_buff
;
547 if (eeprom
->offset
& 1) {
548 /* need read/modify/write of first changed EEPROM word */
549 /* only the second byte of the word is being modified */
550 ret_val
= e1000_read_nvm(hw
, first_word
, 1, &eeprom_buff
[0]);
553 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0))
554 /* need read/modify/write of last changed EEPROM word */
555 /* only the first byte of the word is being modified */
556 ret_val
= e1000_read_nvm(hw
, last_word
, 1,
557 &eeprom_buff
[last_word
- first_word
]);
562 /* Device's eeprom is always little-endian, word addressable */
563 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
564 le16_to_cpus(&eeprom_buff
[i
]);
566 memcpy(ptr
, bytes
, eeprom
->len
);
568 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
569 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
571 ret_val
= e1000_write_nvm(hw
, first_word
,
572 last_word
- first_word
+ 1, eeprom_buff
);
578 * Update the checksum over the first part of the EEPROM if needed
579 * and flush shadow RAM for applicable controllers
581 if ((first_word
<= NVM_CHECKSUM_REG
) ||
582 (hw
->mac
.type
== e1000_82574
) || (hw
->mac
.type
== e1000_82573
))
583 ret_val
= e1000e_update_nvm_checksum(hw
);
590 static void e1000_get_drvinfo(struct net_device
*netdev
,
591 struct ethtool_drvinfo
*drvinfo
)
593 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
594 char firmware_version
[32];
596 strncpy(drvinfo
->driver
, e1000e_driver_name
, 32);
597 strncpy(drvinfo
->version
, e1000e_driver_version
, 32);
600 * EEPROM image version # is reported as firmware version # for
603 sprintf(firmware_version
, "%d.%d-%d",
604 (adapter
->eeprom_vers
& 0xF000) >> 12,
605 (adapter
->eeprom_vers
& 0x0FF0) >> 4,
606 (adapter
->eeprom_vers
& 0x000F));
608 strncpy(drvinfo
->fw_version
, firmware_version
, 32);
609 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
610 drvinfo
->regdump_len
= e1000_get_regs_len(netdev
);
611 drvinfo
->eedump_len
= e1000_get_eeprom_len(netdev
);
614 static void e1000_get_ringparam(struct net_device
*netdev
,
615 struct ethtool_ringparam
*ring
)
617 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
618 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
619 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
621 ring
->rx_max_pending
= E1000_MAX_RXD
;
622 ring
->tx_max_pending
= E1000_MAX_TXD
;
623 ring
->rx_mini_max_pending
= 0;
624 ring
->rx_jumbo_max_pending
= 0;
625 ring
->rx_pending
= rx_ring
->count
;
626 ring
->tx_pending
= tx_ring
->count
;
627 ring
->rx_mini_pending
= 0;
628 ring
->rx_jumbo_pending
= 0;
631 static int e1000_set_ringparam(struct net_device
*netdev
,
632 struct ethtool_ringparam
*ring
)
634 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
635 struct e1000_ring
*tx_ring
, *tx_old
;
636 struct e1000_ring
*rx_ring
, *rx_old
;
639 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
642 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
645 if (netif_running(adapter
->netdev
))
646 e1000e_down(adapter
);
648 tx_old
= adapter
->tx_ring
;
649 rx_old
= adapter
->rx_ring
;
652 tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
656 * use a memcpy to save any previously configured
657 * items like napi structs from having to be
660 memcpy(tx_ring
, tx_old
, sizeof(struct e1000_ring
));
662 rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
665 memcpy(rx_ring
, rx_old
, sizeof(struct e1000_ring
));
667 adapter
->tx_ring
= tx_ring
;
668 adapter
->rx_ring
= rx_ring
;
670 rx_ring
->count
= max(ring
->rx_pending
, (u32
)E1000_MIN_RXD
);
671 rx_ring
->count
= min(rx_ring
->count
, (u32
)(E1000_MAX_RXD
));
672 rx_ring
->count
= ALIGN(rx_ring
->count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
674 tx_ring
->count
= max(ring
->tx_pending
, (u32
)E1000_MIN_TXD
);
675 tx_ring
->count
= min(tx_ring
->count
, (u32
)(E1000_MAX_TXD
));
676 tx_ring
->count
= ALIGN(tx_ring
->count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
678 if (netif_running(adapter
->netdev
)) {
679 /* Try to get new resources before deleting old */
680 err
= e1000e_setup_rx_resources(adapter
);
683 err
= e1000e_setup_tx_resources(adapter
);
688 * restore the old in order to free it,
689 * then add in the new
691 adapter
->rx_ring
= rx_old
;
692 adapter
->tx_ring
= tx_old
;
693 e1000e_free_rx_resources(adapter
);
694 e1000e_free_tx_resources(adapter
);
697 adapter
->rx_ring
= rx_ring
;
698 adapter
->tx_ring
= tx_ring
;
699 err
= e1000e_up(adapter
);
704 clear_bit(__E1000_RESETTING
, &adapter
->state
);
707 e1000e_free_rx_resources(adapter
);
709 adapter
->rx_ring
= rx_old
;
710 adapter
->tx_ring
= tx_old
;
717 clear_bit(__E1000_RESETTING
, &adapter
->state
);
721 static bool reg_pattern_test(struct e1000_adapter
*adapter
, u64
*data
,
722 int reg
, int offset
, u32 mask
, u32 write
)
725 static const u32 test
[] =
726 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
727 for (pat
= 0; pat
< ARRAY_SIZE(test
); pat
++) {
728 E1000_WRITE_REG_ARRAY(&adapter
->hw
, reg
, offset
,
729 (test
[pat
] & write
));
730 val
= E1000_READ_REG_ARRAY(&adapter
->hw
, reg
, offset
);
731 if (val
!= (test
[pat
] & write
& mask
)) {
732 e_err("pattern test reg %04X failed: got 0x%08X "
733 "expected 0x%08X\n", reg
+ offset
, val
,
734 (test
[pat
] & write
& mask
));
742 static bool reg_set_and_check(struct e1000_adapter
*adapter
, u64
*data
,
743 int reg
, u32 mask
, u32 write
)
746 __ew32(&adapter
->hw
, reg
, write
& mask
);
747 val
= __er32(&adapter
->hw
, reg
);
748 if ((write
& mask
) != (val
& mask
)) {
749 e_err("set/check reg %04X test failed: got 0x%08X "
750 "expected 0x%08X\n", reg
, (val
& mask
), (write
& mask
));
756 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
758 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
761 #define REG_PATTERN_TEST(reg, mask, write) \
762 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
764 #define REG_SET_AND_CHECK(reg, mask, write) \
766 if (reg_set_and_check(adapter, data, reg, mask, write)) \
770 static int e1000_reg_test(struct e1000_adapter
*adapter
, u64
*data
)
772 struct e1000_hw
*hw
= &adapter
->hw
;
773 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
781 * The status register is Read Only, so a write should fail.
782 * Some bits that get toggled are ignored.
785 /* there are several bits on newer hardware that are r/w */
788 case e1000_80003es2lan
:
804 before
= er32(STATUS
);
805 value
= (er32(STATUS
) & toggle
);
806 ew32(STATUS
, toggle
);
807 after
= er32(STATUS
) & toggle
;
808 if (value
!= after
) {
809 e_err("failed STATUS register test got: 0x%08X expected: "
810 "0x%08X\n", after
, value
);
814 /* restore previous status */
815 ew32(STATUS
, before
);
817 if (!(adapter
->flags
& FLAG_IS_ICH
)) {
818 REG_PATTERN_TEST(E1000_FCAL
, 0xFFFFFFFF, 0xFFFFFFFF);
819 REG_PATTERN_TEST(E1000_FCAH
, 0x0000FFFF, 0xFFFFFFFF);
820 REG_PATTERN_TEST(E1000_FCT
, 0x0000FFFF, 0xFFFFFFFF);
821 REG_PATTERN_TEST(E1000_VET
, 0x0000FFFF, 0xFFFFFFFF);
824 REG_PATTERN_TEST(E1000_RDTR
, 0x0000FFFF, 0xFFFFFFFF);
825 REG_PATTERN_TEST(E1000_RDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
826 REG_PATTERN_TEST(E1000_RDLEN
, 0x000FFF80, 0x000FFFFF);
827 REG_PATTERN_TEST(E1000_RDH
, 0x0000FFFF, 0x0000FFFF);
828 REG_PATTERN_TEST(E1000_RDT
, 0x0000FFFF, 0x0000FFFF);
829 REG_PATTERN_TEST(E1000_FCRTH
, 0x0000FFF8, 0x0000FFF8);
830 REG_PATTERN_TEST(E1000_FCTTV
, 0x0000FFFF, 0x0000FFFF);
831 REG_PATTERN_TEST(E1000_TIPG
, 0x3FFFFFFF, 0x3FFFFFFF);
832 REG_PATTERN_TEST(E1000_TDBAH
, 0xFFFFFFFF, 0xFFFFFFFF);
833 REG_PATTERN_TEST(E1000_TDLEN
, 0x000FFF80, 0x000FFFFF);
835 REG_SET_AND_CHECK(E1000_RCTL
, 0xFFFFFFFF, 0x00000000);
837 before
= ((adapter
->flags
& FLAG_IS_ICH
) ? 0x06C3B33E : 0x06DFB3FE);
838 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0x003FFFFB);
839 REG_SET_AND_CHECK(E1000_TCTL
, 0xFFFFFFFF, 0x00000000);
841 REG_SET_AND_CHECK(E1000_RCTL
, before
, 0xFFFFFFFF);
842 REG_PATTERN_TEST(E1000_RDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
843 if (!(adapter
->flags
& FLAG_IS_ICH
))
844 REG_PATTERN_TEST(E1000_TXCW
, 0xC000FFFF, 0x0000FFFF);
845 REG_PATTERN_TEST(E1000_TDBAL
, 0xFFFFFFF0, 0xFFFFFFFF);
846 REG_PATTERN_TEST(E1000_TIDV
, 0x0000FFFF, 0x0000FFFF);
847 for (i
= 0; i
< mac
->rar_entry_count
; i
++)
848 REG_PATTERN_TEST_ARRAY(E1000_RA
, ((i
<< 1) + 1),
849 ((mac
->type
== e1000_ich10lan
) ?
850 0x8007FFFF : 0x8003FFFF),
853 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
854 REG_PATTERN_TEST_ARRAY(E1000_MTA
, i
, 0xFFFFFFFF, 0xFFFFFFFF);
860 static int e1000_eeprom_test(struct e1000_adapter
*adapter
, u64
*data
)
867 /* Read and add up the contents of the EEPROM */
868 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
869 if ((e1000_read_nvm(&adapter
->hw
, i
, 1, &temp
)) < 0) {
876 /* If Checksum is not Correct return error else test passed */
877 if ((checksum
!= (u16
) NVM_SUM
) && !(*data
))
883 static irqreturn_t
e1000_test_intr(int irq
, void *data
)
885 struct net_device
*netdev
= (struct net_device
*) data
;
886 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
887 struct e1000_hw
*hw
= &adapter
->hw
;
889 adapter
->test_icr
|= er32(ICR
);
894 static int e1000_intr_test(struct e1000_adapter
*adapter
, u64
*data
)
896 struct net_device
*netdev
= adapter
->netdev
;
897 struct e1000_hw
*hw
= &adapter
->hw
;
900 u32 irq
= adapter
->pdev
->irq
;
903 int int_mode
= E1000E_INT_MODE_LEGACY
;
907 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
908 if (adapter
->int_mode
== E1000E_INT_MODE_MSIX
) {
909 int_mode
= adapter
->int_mode
;
910 e1000e_reset_interrupt_capability(adapter
);
911 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
912 e1000e_set_interrupt_capability(adapter
);
914 /* Hook up test interrupt handler just for this test */
915 if (!request_irq(irq
, &e1000_test_intr
, IRQF_PROBE_SHARED
, netdev
->name
,
918 } else if (request_irq(irq
, &e1000_test_intr
, IRQF_SHARED
,
919 netdev
->name
, netdev
)) {
924 e_info("testing %s interrupt\n", (shared_int
? "shared" : "unshared"));
926 /* Disable all the interrupts */
927 ew32(IMC
, 0xFFFFFFFF);
930 /* Test each interrupt */
931 for (i
= 0; i
< 10; i
++) {
932 /* Interrupt to test */
935 if (adapter
->flags
& FLAG_IS_ICH
) {
937 case E1000_ICR_RXSEQ
:
940 if (adapter
->hw
.mac
.type
== e1000_ich8lan
||
941 adapter
->hw
.mac
.type
== e1000_ich9lan
)
951 * Disable the interrupt to be reported in
952 * the cause register and then force the same
953 * interrupt and see if one gets posted. If
954 * an interrupt was posted to the bus, the
957 adapter
->test_icr
= 0;
962 if (adapter
->test_icr
& mask
) {
969 * Enable the interrupt to be reported in
970 * the cause register and then force the same
971 * interrupt and see if one gets posted. If
972 * an interrupt was not posted to the bus, the
975 adapter
->test_icr
= 0;
980 if (!(adapter
->test_icr
& mask
)) {
987 * Disable the other interrupts to be reported in
988 * the cause register and then force the other
989 * interrupts and see if any get posted. If
990 * an interrupt was posted to the bus, the
993 adapter
->test_icr
= 0;
994 ew32(IMC
, ~mask
& 0x00007FFF);
995 ew32(ICS
, ~mask
& 0x00007FFF);
998 if (adapter
->test_icr
) {
1005 /* Disable all the interrupts */
1006 ew32(IMC
, 0xFFFFFFFF);
1009 /* Unhook test interrupt handler */
1010 free_irq(irq
, netdev
);
1013 if (int_mode
== E1000E_INT_MODE_MSIX
) {
1014 e1000e_reset_interrupt_capability(adapter
);
1015 adapter
->int_mode
= int_mode
;
1016 e1000e_set_interrupt_capability(adapter
);
1022 static void e1000_free_desc_rings(struct e1000_adapter
*adapter
)
1024 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1025 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1026 struct pci_dev
*pdev
= adapter
->pdev
;
1029 if (tx_ring
->desc
&& tx_ring
->buffer_info
) {
1030 for (i
= 0; i
< tx_ring
->count
; i
++) {
1031 if (tx_ring
->buffer_info
[i
].dma
)
1032 pci_unmap_single(pdev
,
1033 tx_ring
->buffer_info
[i
].dma
,
1034 tx_ring
->buffer_info
[i
].length
,
1036 if (tx_ring
->buffer_info
[i
].skb
)
1037 dev_kfree_skb(tx_ring
->buffer_info
[i
].skb
);
1041 if (rx_ring
->desc
&& rx_ring
->buffer_info
) {
1042 for (i
= 0; i
< rx_ring
->count
; i
++) {
1043 if (rx_ring
->buffer_info
[i
].dma
)
1044 pci_unmap_single(pdev
,
1045 rx_ring
->buffer_info
[i
].dma
,
1046 2048, PCI_DMA_FROMDEVICE
);
1047 if (rx_ring
->buffer_info
[i
].skb
)
1048 dev_kfree_skb(rx_ring
->buffer_info
[i
].skb
);
1052 if (tx_ring
->desc
) {
1053 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1055 tx_ring
->desc
= NULL
;
1057 if (rx_ring
->desc
) {
1058 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1060 rx_ring
->desc
= NULL
;
1063 kfree(tx_ring
->buffer_info
);
1064 tx_ring
->buffer_info
= NULL
;
1065 kfree(rx_ring
->buffer_info
);
1066 rx_ring
->buffer_info
= NULL
;
1069 static int e1000_setup_desc_rings(struct e1000_adapter
*adapter
)
1071 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1072 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1073 struct pci_dev
*pdev
= adapter
->pdev
;
1074 struct e1000_hw
*hw
= &adapter
->hw
;
1079 /* Setup Tx descriptor ring and Tx buffers */
1081 if (!tx_ring
->count
)
1082 tx_ring
->count
= E1000_DEFAULT_TXD
;
1084 tx_ring
->buffer_info
= kcalloc(tx_ring
->count
,
1085 sizeof(struct e1000_buffer
),
1087 if (!(tx_ring
->buffer_info
)) {
1092 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1093 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1094 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
1095 &tx_ring
->dma
, GFP_KERNEL
);
1096 if (!tx_ring
->desc
) {
1100 tx_ring
->next_to_use
= 0;
1101 tx_ring
->next_to_clean
= 0;
1103 ew32(TDBAL
, ((u64
) tx_ring
->dma
& 0x00000000FFFFFFFF));
1104 ew32(TDBAH
, ((u64
) tx_ring
->dma
>> 32));
1105 ew32(TDLEN
, tx_ring
->count
* sizeof(struct e1000_tx_desc
));
1108 ew32(TCTL
, E1000_TCTL_PSP
| E1000_TCTL_EN
| E1000_TCTL_MULR
|
1109 E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
|
1110 E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
);
1112 for (i
= 0; i
< tx_ring
->count
; i
++) {
1113 struct e1000_tx_desc
*tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1114 struct sk_buff
*skb
;
1115 unsigned int skb_size
= 1024;
1117 skb
= alloc_skb(skb_size
, GFP_KERNEL
);
1122 skb_put(skb
, skb_size
);
1123 tx_ring
->buffer_info
[i
].skb
= skb
;
1124 tx_ring
->buffer_info
[i
].length
= skb
->len
;
1125 tx_ring
->buffer_info
[i
].dma
=
1126 pci_map_single(pdev
, skb
->data
, skb
->len
,
1128 if (pci_dma_mapping_error(pdev
, tx_ring
->buffer_info
[i
].dma
)) {
1132 tx_desc
->buffer_addr
= cpu_to_le64(tx_ring
->buffer_info
[i
].dma
);
1133 tx_desc
->lower
.data
= cpu_to_le32(skb
->len
);
1134 tx_desc
->lower
.data
|= cpu_to_le32(E1000_TXD_CMD_EOP
|
1135 E1000_TXD_CMD_IFCS
|
1137 tx_desc
->upper
.data
= 0;
1140 /* Setup Rx descriptor ring and Rx buffers */
1142 if (!rx_ring
->count
)
1143 rx_ring
->count
= E1000_DEFAULT_RXD
;
1145 rx_ring
->buffer_info
= kcalloc(rx_ring
->count
,
1146 sizeof(struct e1000_buffer
),
1148 if (!(rx_ring
->buffer_info
)) {
1153 rx_ring
->size
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
1154 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
1155 &rx_ring
->dma
, GFP_KERNEL
);
1156 if (!rx_ring
->desc
) {
1160 rx_ring
->next_to_use
= 0;
1161 rx_ring
->next_to_clean
= 0;
1164 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1165 ew32(RDBAL
, ((u64
) rx_ring
->dma
& 0xFFFFFFFF));
1166 ew32(RDBAH
, ((u64
) rx_ring
->dma
>> 32));
1167 ew32(RDLEN
, rx_ring
->size
);
1170 rctl
= E1000_RCTL_EN
| E1000_RCTL_BAM
| E1000_RCTL_SZ_2048
|
1171 E1000_RCTL_UPE
| E1000_RCTL_MPE
| E1000_RCTL_LPE
|
1172 E1000_RCTL_SBP
| E1000_RCTL_SECRC
|
1173 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1174 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1177 for (i
= 0; i
< rx_ring
->count
; i
++) {
1178 struct e1000_rx_desc
*rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
1179 struct sk_buff
*skb
;
1181 skb
= alloc_skb(2048 + NET_IP_ALIGN
, GFP_KERNEL
);
1186 skb_reserve(skb
, NET_IP_ALIGN
);
1187 rx_ring
->buffer_info
[i
].skb
= skb
;
1188 rx_ring
->buffer_info
[i
].dma
=
1189 pci_map_single(pdev
, skb
->data
, 2048,
1190 PCI_DMA_FROMDEVICE
);
1191 if (pci_dma_mapping_error(pdev
, rx_ring
->buffer_info
[i
].dma
)) {
1195 rx_desc
->buffer_addr
=
1196 cpu_to_le64(rx_ring
->buffer_info
[i
].dma
);
1197 memset(skb
->data
, 0x00, skb
->len
);
1203 e1000_free_desc_rings(adapter
);
1207 static void e1000_phy_disable_receiver(struct e1000_adapter
*adapter
)
1209 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1210 e1e_wphy(&adapter
->hw
, 29, 0x001F);
1211 e1e_wphy(&adapter
->hw
, 30, 0x8FFC);
1212 e1e_wphy(&adapter
->hw
, 29, 0x001A);
1213 e1e_wphy(&adapter
->hw
, 30, 0x8FF0);
1216 static int e1000_integrated_phy_loopback(struct e1000_adapter
*adapter
)
1218 struct e1000_hw
*hw
= &adapter
->hw
;
1223 hw
->mac
.autoneg
= 0;
1225 if (hw
->phy
.type
== e1000_phy_m88
) {
1226 /* Auto-MDI/MDIX Off */
1227 e1e_wphy(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1228 /* reset to update Auto-MDI/MDIX */
1229 e1e_wphy(hw
, PHY_CONTROL
, 0x9140);
1231 e1e_wphy(hw
, PHY_CONTROL
, 0x8140);
1232 } else if (hw
->phy
.type
== e1000_phy_gg82563
)
1233 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x1CC);
1235 ctrl_reg
= er32(CTRL
);
1237 switch (hw
->phy
.type
) {
1239 /* force 100, set loopback */
1240 e1e_wphy(hw
, PHY_CONTROL
, 0x6100);
1242 /* Now set up the MAC to the same speed/duplex as the PHY. */
1243 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1244 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1245 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1246 E1000_CTRL_SPD_100
|/* Force Speed to 100 */
1247 E1000_CTRL_FD
); /* Force Duplex to FULL */
1250 /* Set Default MAC Interface speed to 1GB */
1251 e1e_rphy(hw
, PHY_REG(2, 21), &phy_reg
);
1254 e1e_wphy(hw
, PHY_REG(2, 21), phy_reg
);
1255 /* Assert SW reset for above settings to take effect */
1256 e1000e_commit_phy(hw
);
1258 /* Force Full Duplex */
1259 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1260 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x000C);
1261 /* Set Link Up (in force link) */
1262 e1e_rphy(hw
, PHY_REG(776, 16), &phy_reg
);
1263 e1e_wphy(hw
, PHY_REG(776, 16), phy_reg
| 0x0040);
1265 e1e_rphy(hw
, PHY_REG(769, 16), &phy_reg
);
1266 e1e_wphy(hw
, PHY_REG(769, 16), phy_reg
| 0x0040);
1267 /* Set Early Link Enable */
1268 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1269 e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| 0x0400);
1272 /* force 1000, set loopback */
1273 e1e_wphy(hw
, PHY_CONTROL
, 0x4140);
1276 /* Now set up the MAC to the same speed/duplex as the PHY. */
1277 ctrl_reg
= er32(CTRL
);
1278 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1279 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1280 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1281 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1282 E1000_CTRL_FD
); /* Force Duplex to FULL */
1284 if (adapter
->flags
& FLAG_IS_ICH
)
1285 ctrl_reg
|= E1000_CTRL_SLU
; /* Set Link Up */
1288 if (hw
->phy
.media_type
== e1000_media_type_copper
&&
1289 hw
->phy
.type
== e1000_phy_m88
) {
1290 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1293 * Set the ILOS bit on the fiber Nic if half duplex link is
1296 stat_reg
= er32(STATUS
);
1297 if ((stat_reg
& E1000_STATUS_FD
) == 0)
1298 ctrl_reg
|= (E1000_CTRL_ILOS
| E1000_CTRL_SLU
);
1301 ew32(CTRL
, ctrl_reg
);
1304 * Disable the receiver on the PHY so when a cable is plugged in, the
1305 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1307 if (hw
->phy
.type
== e1000_phy_m88
)
1308 e1000_phy_disable_receiver(adapter
);
1315 static int e1000_set_82571_fiber_loopback(struct e1000_adapter
*adapter
)
1317 struct e1000_hw
*hw
= &adapter
->hw
;
1318 u32 ctrl
= er32(CTRL
);
1321 /* special requirements for 82571/82572 fiber adapters */
1324 * jump through hoops to make sure link is up because serdes
1325 * link is hardwired up
1327 ctrl
|= E1000_CTRL_SLU
;
1330 /* disable autoneg */
1335 link
= (er32(STATUS
) & E1000_STATUS_LU
);
1338 /* set invert loss of signal */
1340 ctrl
|= E1000_CTRL_ILOS
;
1345 * special write to serdes control register to enable SerDes analog
1348 #define E1000_SERDES_LB_ON 0x410
1349 ew32(SCTL
, E1000_SERDES_LB_ON
);
1355 /* only call this for fiber/serdes connections to es2lan */
1356 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter
*adapter
)
1358 struct e1000_hw
*hw
= &adapter
->hw
;
1359 u32 ctrlext
= er32(CTRL_EXT
);
1360 u32 ctrl
= er32(CTRL
);
1363 * save CTRL_EXT to restore later, reuse an empty variable (unused
1364 * on mac_type 80003es2lan)
1366 adapter
->tx_fifo_head
= ctrlext
;
1368 /* clear the serdes mode bits, putting the device into mac loopback */
1369 ctrlext
&= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
;
1370 ew32(CTRL_EXT
, ctrlext
);
1372 /* force speed to 1000/FD, link up */
1373 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1374 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
|
1375 E1000_CTRL_SPD_1000
| E1000_CTRL_FD
);
1378 /* set mac loopback */
1380 ctrl
|= E1000_RCTL_LBM_MAC
;
1383 /* set testing mode parameters (no need to reset later) */
1384 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1385 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1387 (KMRNCTRLSTA_OPMODE
| KMRNCTRLSTA_OPMODE_1GB_FD_GMII
));
1392 static int e1000_setup_loopback_test(struct e1000_adapter
*adapter
)
1394 struct e1000_hw
*hw
= &adapter
->hw
;
1397 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1398 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1399 switch (hw
->mac
.type
) {
1400 case e1000_80003es2lan
:
1401 return e1000_set_es2lan_mac_loopback(adapter
);
1405 return e1000_set_82571_fiber_loopback(adapter
);
1409 rctl
|= E1000_RCTL_LBM_TCVR
;
1413 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1414 return e1000_integrated_phy_loopback(adapter
);
1420 static void e1000_loopback_cleanup(struct e1000_adapter
*adapter
)
1422 struct e1000_hw
*hw
= &adapter
->hw
;
1427 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1430 switch (hw
->mac
.type
) {
1431 case e1000_80003es2lan
:
1432 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1433 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1434 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1435 ew32(CTRL_EXT
, adapter
->tx_fifo_head
);
1436 adapter
->tx_fifo_head
= 0;
1441 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1442 hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1443 #define E1000_SERDES_LB_OFF 0x400
1444 ew32(SCTL
, E1000_SERDES_LB_OFF
);
1450 hw
->mac
.autoneg
= 1;
1451 if (hw
->phy
.type
== e1000_phy_gg82563
)
1452 e1e_wphy(hw
, GG82563_PHY_KMRN_MODE_CTRL
, 0x180);
1453 e1e_rphy(hw
, PHY_CONTROL
, &phy_reg
);
1454 if (phy_reg
& MII_CR_LOOPBACK
) {
1455 phy_reg
&= ~MII_CR_LOOPBACK
;
1456 e1e_wphy(hw
, PHY_CONTROL
, phy_reg
);
1457 e1000e_commit_phy(hw
);
1463 static void e1000_create_lbtest_frame(struct sk_buff
*skb
,
1464 unsigned int frame_size
)
1466 memset(skb
->data
, 0xFF, frame_size
);
1468 memset(&skb
->data
[frame_size
/ 2], 0xAA, frame_size
/ 2 - 1);
1469 memset(&skb
->data
[frame_size
/ 2 + 10], 0xBE, 1);
1470 memset(&skb
->data
[frame_size
/ 2 + 12], 0xAF, 1);
1473 static int e1000_check_lbtest_frame(struct sk_buff
*skb
,
1474 unsigned int frame_size
)
1477 if (*(skb
->data
+ 3) == 0xFF)
1478 if ((*(skb
->data
+ frame_size
/ 2 + 10) == 0xBE) &&
1479 (*(skb
->data
+ frame_size
/ 2 + 12) == 0xAF))
1484 static int e1000_run_loopback_test(struct e1000_adapter
*adapter
)
1486 struct e1000_ring
*tx_ring
= &adapter
->test_tx_ring
;
1487 struct e1000_ring
*rx_ring
= &adapter
->test_rx_ring
;
1488 struct pci_dev
*pdev
= adapter
->pdev
;
1489 struct e1000_hw
*hw
= &adapter
->hw
;
1496 ew32(RDT
, rx_ring
->count
- 1);
1499 * Calculate the loop count based on the largest descriptor ring
1500 * The idea is to wrap the largest ring a number of times using 64
1501 * send/receive pairs during each loop
1504 if (rx_ring
->count
<= tx_ring
->count
)
1505 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1507 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1511 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1512 for (i
= 0; i
< 64; i
++) { /* send the packets */
1513 e1000_create_lbtest_frame(tx_ring
->buffer_info
[k
].skb
,
1515 pci_dma_sync_single_for_device(pdev
,
1516 tx_ring
->buffer_info
[k
].dma
,
1517 tx_ring
->buffer_info
[k
].length
,
1520 if (k
== tx_ring
->count
)
1525 time
= jiffies
; /* set the start time for the receive */
1527 do { /* receive the sent packets */
1528 pci_dma_sync_single_for_cpu(pdev
,
1529 rx_ring
->buffer_info
[l
].dma
, 2048,
1530 PCI_DMA_FROMDEVICE
);
1532 ret_val
= e1000_check_lbtest_frame(
1533 rx_ring
->buffer_info
[l
].skb
, 1024);
1537 if (l
== rx_ring
->count
)
1540 * time + 20 msecs (200 msecs on 2.4) is more than
1541 * enough time to complete the receives, if it's
1542 * exceeded, break and error off
1544 } while ((good_cnt
< 64) && !time_after(jiffies
, time
+ 20));
1545 if (good_cnt
!= 64) {
1546 ret_val
= 13; /* ret_val is the same as mis-compare */
1549 if (jiffies
>= (time
+ 20)) {
1550 ret_val
= 14; /* error code for time out error */
1553 } /* end loop count loop */
1557 static int e1000_loopback_test(struct e1000_adapter
*adapter
, u64
*data
)
1560 * PHY loopback cannot be performed if SoL/IDER
1561 * sessions are active
1563 if (e1000_check_reset_block(&adapter
->hw
)) {
1564 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1569 *data
= e1000_setup_desc_rings(adapter
);
1573 *data
= e1000_setup_loopback_test(adapter
);
1577 *data
= e1000_run_loopback_test(adapter
);
1578 e1000_loopback_cleanup(adapter
);
1581 e1000_free_desc_rings(adapter
);
1586 static int e1000_link_test(struct e1000_adapter
*adapter
, u64
*data
)
1588 struct e1000_hw
*hw
= &adapter
->hw
;
1591 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1593 hw
->mac
.serdes_has_link
= false;
1596 * On some blade server designs, link establishment
1597 * could take as long as 2-3 minutes
1600 hw
->mac
.ops
.check_for_link(hw
);
1601 if (hw
->mac
.serdes_has_link
)
1604 } while (i
++ < 3750);
1608 hw
->mac
.ops
.check_for_link(hw
);
1609 if (hw
->mac
.autoneg
)
1612 if (!(er32(STATUS
) &
1619 static int e1000e_get_sset_count(struct net_device
*netdev
, int sset
)
1623 return E1000_TEST_LEN
;
1625 return E1000_STATS_LEN
;
1631 static void e1000_diag_test(struct net_device
*netdev
,
1632 struct ethtool_test
*eth_test
, u64
*data
)
1634 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1635 u16 autoneg_advertised
;
1636 u8 forced_speed_duplex
;
1638 bool if_running
= netif_running(netdev
);
1640 set_bit(__E1000_TESTING
, &adapter
->state
);
1641 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1644 /* save speed, duplex, autoneg settings */
1645 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
1646 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
1647 autoneg
= adapter
->hw
.mac
.autoneg
;
1649 e_info("offline testing starting\n");
1652 * Link test performed before hardware reset so autoneg doesn't
1653 * interfere with test result
1655 if (e1000_link_test(adapter
, &data
[4]))
1656 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1659 /* indicate we're in test mode */
1662 e1000e_reset(adapter
);
1664 if (e1000_reg_test(adapter
, &data
[0]))
1665 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1667 e1000e_reset(adapter
);
1668 if (e1000_eeprom_test(adapter
, &data
[1]))
1669 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1671 e1000e_reset(adapter
);
1672 if (e1000_intr_test(adapter
, &data
[2]))
1673 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1675 e1000e_reset(adapter
);
1676 /* make sure the phy is powered up */
1677 e1000e_power_up_phy(adapter
);
1678 if (e1000_loopback_test(adapter
, &data
[3]))
1679 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1681 /* restore speed, duplex, autoneg settings */
1682 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
1683 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
1684 adapter
->hw
.mac
.autoneg
= autoneg
;
1686 /* force this routine to wait until autoneg complete/timeout */
1687 adapter
->hw
.phy
.autoneg_wait_to_complete
= 1;
1688 e1000e_reset(adapter
);
1689 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
1691 clear_bit(__E1000_TESTING
, &adapter
->state
);
1695 e_info("online testing starting\n");
1697 if (e1000_link_test(adapter
, &data
[4]))
1698 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1700 /* Online tests aren't run; pass by default */
1706 clear_bit(__E1000_TESTING
, &adapter
->state
);
1708 msleep_interruptible(4 * 1000);
1711 static void e1000_get_wol(struct net_device
*netdev
,
1712 struct ethtool_wolinfo
*wol
)
1714 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1719 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1720 !device_can_wakeup(&adapter
->pdev
->dev
))
1723 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1724 WAKE_BCAST
| WAKE_MAGIC
|
1725 WAKE_PHY
| WAKE_ARP
;
1727 /* apply any specific unsupported masks here */
1728 if (adapter
->flags
& FLAG_NO_WAKE_UCAST
) {
1729 wol
->supported
&= ~WAKE_UCAST
;
1731 if (adapter
->wol
& E1000_WUFC_EX
)
1732 e_err("Interface does not support directed (unicast) "
1733 "frame wake-up packets\n");
1736 if (adapter
->wol
& E1000_WUFC_EX
)
1737 wol
->wolopts
|= WAKE_UCAST
;
1738 if (adapter
->wol
& E1000_WUFC_MC
)
1739 wol
->wolopts
|= WAKE_MCAST
;
1740 if (adapter
->wol
& E1000_WUFC_BC
)
1741 wol
->wolopts
|= WAKE_BCAST
;
1742 if (adapter
->wol
& E1000_WUFC_MAG
)
1743 wol
->wolopts
|= WAKE_MAGIC
;
1744 if (adapter
->wol
& E1000_WUFC_LNKC
)
1745 wol
->wolopts
|= WAKE_PHY
;
1746 if (adapter
->wol
& E1000_WUFC_ARP
)
1747 wol
->wolopts
|= WAKE_ARP
;
1750 static int e1000_set_wol(struct net_device
*netdev
,
1751 struct ethtool_wolinfo
*wol
)
1753 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1755 if (wol
->wolopts
& WAKE_MAGICSECURE
)
1758 if (!(adapter
->flags
& FLAG_HAS_WOL
) ||
1759 !device_can_wakeup(&adapter
->pdev
->dev
))
1760 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1762 /* these settings will always override what we currently have */
1765 if (wol
->wolopts
& WAKE_UCAST
)
1766 adapter
->wol
|= E1000_WUFC_EX
;
1767 if (wol
->wolopts
& WAKE_MCAST
)
1768 adapter
->wol
|= E1000_WUFC_MC
;
1769 if (wol
->wolopts
& WAKE_BCAST
)
1770 adapter
->wol
|= E1000_WUFC_BC
;
1771 if (wol
->wolopts
& WAKE_MAGIC
)
1772 adapter
->wol
|= E1000_WUFC_MAG
;
1773 if (wol
->wolopts
& WAKE_PHY
)
1774 adapter
->wol
|= E1000_WUFC_LNKC
;
1775 if (wol
->wolopts
& WAKE_ARP
)
1776 adapter
->wol
|= E1000_WUFC_ARP
;
1778 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1783 /* toggle LED 4 times per second = 2 "blinks" per second */
1784 #define E1000_ID_INTERVAL (HZ/4)
1786 /* bit defines for adapter->led_status */
1787 #define E1000_LED_ON 0
1789 static void e1000_led_blink_callback(unsigned long data
)
1791 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
1793 if (test_and_change_bit(E1000_LED_ON
, &adapter
->led_status
))
1794 adapter
->hw
.mac
.ops
.led_off(&adapter
->hw
);
1796 adapter
->hw
.mac
.ops
.led_on(&adapter
->hw
);
1798 mod_timer(&adapter
->blink_timer
, jiffies
+ E1000_ID_INTERVAL
);
1801 static int e1000_phys_id(struct net_device
*netdev
, u32 data
)
1803 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1804 struct e1000_hw
*hw
= &adapter
->hw
;
1809 if ((hw
->phy
.type
== e1000_phy_ife
) ||
1810 (hw
->mac
.type
== e1000_82574
)) {
1811 if (!adapter
->blink_timer
.function
) {
1812 init_timer(&adapter
->blink_timer
);
1813 adapter
->blink_timer
.function
=
1814 e1000_led_blink_callback
;
1815 adapter
->blink_timer
.data
= (unsigned long) adapter
;
1817 mod_timer(&adapter
->blink_timer
, jiffies
);
1818 msleep_interruptible(data
* 1000);
1819 del_timer_sync(&adapter
->blink_timer
);
1820 if (hw
->phy
.type
== e1000_phy_ife
)
1821 e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
1823 e1000e_blink_led(hw
);
1824 msleep_interruptible(data
* 1000);
1827 hw
->mac
.ops
.led_off(hw
);
1828 clear_bit(E1000_LED_ON
, &adapter
->led_status
);
1829 hw
->mac
.ops
.cleanup_led(hw
);
1834 static int e1000_get_coalesce(struct net_device
*netdev
,
1835 struct ethtool_coalesce
*ec
)
1837 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1839 if (adapter
->itr_setting
<= 3)
1840 ec
->rx_coalesce_usecs
= adapter
->itr_setting
;
1842 ec
->rx_coalesce_usecs
= 1000000 / adapter
->itr_setting
;
1847 static int e1000_set_coalesce(struct net_device
*netdev
,
1848 struct ethtool_coalesce
*ec
)
1850 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1851 struct e1000_hw
*hw
= &adapter
->hw
;
1853 if ((ec
->rx_coalesce_usecs
> E1000_MAX_ITR_USECS
) ||
1854 ((ec
->rx_coalesce_usecs
> 3) &&
1855 (ec
->rx_coalesce_usecs
< E1000_MIN_ITR_USECS
)) ||
1856 (ec
->rx_coalesce_usecs
== 2))
1859 if (ec
->rx_coalesce_usecs
<= 3) {
1860 adapter
->itr
= 20000;
1861 adapter
->itr_setting
= ec
->rx_coalesce_usecs
;
1863 adapter
->itr
= (1000000 / ec
->rx_coalesce_usecs
);
1864 adapter
->itr_setting
= adapter
->itr
& ~3;
1867 if (adapter
->itr_setting
!= 0)
1868 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1875 static int e1000_nway_reset(struct net_device
*netdev
)
1877 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1878 if (netif_running(netdev
))
1879 e1000e_reinit_locked(adapter
);
1883 static void e1000_get_ethtool_stats(struct net_device
*netdev
,
1884 struct ethtool_stats
*stats
,
1887 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1890 e1000e_update_stats(adapter
);
1891 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1892 char *p
= (char *)adapter
+e1000_gstrings_stats
[i
].stat_offset
;
1893 data
[i
] = (e1000_gstrings_stats
[i
].sizeof_stat
==
1894 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
1898 static void e1000_get_strings(struct net_device
*netdev
, u32 stringset
,
1904 switch (stringset
) {
1906 memcpy(data
, *e1000_gstrings_test
, sizeof(e1000_gstrings_test
));
1909 for (i
= 0; i
< E1000_GLOBAL_STATS_LEN
; i
++) {
1910 memcpy(p
, e1000_gstrings_stats
[i
].stat_string
,
1912 p
+= ETH_GSTRING_LEN
;
1918 static const struct ethtool_ops e1000_ethtool_ops
= {
1919 .get_settings
= e1000_get_settings
,
1920 .set_settings
= e1000_set_settings
,
1921 .get_drvinfo
= e1000_get_drvinfo
,
1922 .get_regs_len
= e1000_get_regs_len
,
1923 .get_regs
= e1000_get_regs
,
1924 .get_wol
= e1000_get_wol
,
1925 .set_wol
= e1000_set_wol
,
1926 .get_msglevel
= e1000_get_msglevel
,
1927 .set_msglevel
= e1000_set_msglevel
,
1928 .nway_reset
= e1000_nway_reset
,
1929 .get_link
= e1000_get_link
,
1930 .get_eeprom_len
= e1000_get_eeprom_len
,
1931 .get_eeprom
= e1000_get_eeprom
,
1932 .set_eeprom
= e1000_set_eeprom
,
1933 .get_ringparam
= e1000_get_ringparam
,
1934 .set_ringparam
= e1000_set_ringparam
,
1935 .get_pauseparam
= e1000_get_pauseparam
,
1936 .set_pauseparam
= e1000_set_pauseparam
,
1937 .get_rx_csum
= e1000_get_rx_csum
,
1938 .set_rx_csum
= e1000_set_rx_csum
,
1939 .get_tx_csum
= e1000_get_tx_csum
,
1940 .set_tx_csum
= e1000_set_tx_csum
,
1941 .get_sg
= ethtool_op_get_sg
,
1942 .set_sg
= ethtool_op_set_sg
,
1943 .get_tso
= ethtool_op_get_tso
,
1944 .set_tso
= e1000_set_tso
,
1945 .self_test
= e1000_diag_test
,
1946 .get_strings
= e1000_get_strings
,
1947 .phys_id
= e1000_phys_id
,
1948 .get_ethtool_stats
= e1000_get_ethtool_stats
,
1949 .get_sset_count
= e1000e_get_sset_count
,
1950 .get_coalesce
= e1000_get_coalesce
,
1951 .set_coalesce
= e1000_set_coalesce
,
1954 void e1000e_set_ethtool_ops(struct net_device
*netdev
)
1956 SET_ETHTOOL_OPS(netdev
, &e1000_ethtool_ops
);