1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 #include <linux/pci.h>
31 #include <linux/netdevice.h>
33 #include "e1000_mac.h"
37 static s32
igb_set_default_fc(struct e1000_hw
*hw
);
38 static s32
igb_set_fc_watermarks(struct e1000_hw
*hw
);
40 static s32
igb_read_pcie_cap_reg(struct e1000_hw
*hw
, u32 reg
, u16
*value
)
42 struct igb_adapter
*adapter
= hw
->back
;
45 cap_offset
= pci_find_capability(adapter
->pdev
, PCI_CAP_ID_EXP
);
47 return -E1000_ERR_CONFIG
;
49 pci_read_config_word(adapter
->pdev
, cap_offset
+ reg
, value
);
55 * igb_get_bus_info_pcie - Get PCIe bus information
56 * @hw: pointer to the HW structure
58 * Determines and stores the system bus information for a particular
59 * network interface. The following bus information is determined and stored:
60 * bus speed, bus width, type (PCIe), and PCIe function.
62 s32
igb_get_bus_info_pcie(struct e1000_hw
*hw
)
64 struct e1000_bus_info
*bus
= &hw
->bus
;
69 bus
->type
= e1000_bus_type_pci_express
;
70 bus
->speed
= e1000_bus_speed_2500
;
72 ret_val
= igb_read_pcie_cap_reg(hw
,
76 bus
->width
= e1000_bus_width_unknown
;
78 bus
->width
= (enum e1000_bus_width
)((pcie_link_status
&
79 PCIE_LINK_WIDTH_MASK
) >>
80 PCIE_LINK_WIDTH_SHIFT
);
82 reg
= rd32(E1000_STATUS
);
83 bus
->func
= (reg
& E1000_STATUS_FUNC_MASK
) >> E1000_STATUS_FUNC_SHIFT
;
89 * igb_clear_vfta - Clear VLAN filter table
90 * @hw: pointer to the HW structure
92 * Clears the register array which contains the VLAN filter table by
93 * setting all the values to 0.
95 void igb_clear_vfta(struct e1000_hw
*hw
)
99 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
100 array_wr32(E1000_VFTA
, offset
, 0);
106 * igb_write_vfta - Write value to VLAN filter table
107 * @hw: pointer to the HW structure
108 * @offset: register offset in VLAN filter table
109 * @value: register value written to VLAN filter table
111 * Writes value at the given offset in the register array which stores
112 * the VLAN filter table.
114 void igb_write_vfta(struct e1000_hw
*hw
, u32 offset
, u32 value
)
116 array_wr32(E1000_VFTA
, offset
, value
);
121 * igb_vfta_set - enable or disable vlan in VLAN filter table
122 * @hw: pointer to the HW structure
123 * @vid: VLAN id to add or remove
124 * @add: if true add filter, if false remove
126 * Sets or clears a bit in the VLAN filter table array based on VLAN id
127 * and if we are adding or removing the filter
129 s32
igb_vfta_set(struct e1000_hw
*hw
, u32 vid
, bool add
)
131 u32 index
= (vid
>> E1000_VFTA_ENTRY_SHIFT
) & E1000_VFTA_ENTRY_MASK
;
132 u32 mask
= 1 << (vid
& E1000_VFTA_ENTRY_BIT_SHIFT_MASK
);
133 u32 vfta
= array_rd32(E1000_VFTA
, index
);
136 /* bit was set/cleared before we started */
137 if ((!!(vfta
& mask
)) == add
) {
138 ret_val
= -E1000_ERR_CONFIG
;
146 igb_write_vfta(hw
, index
, vfta
);
152 * igb_check_alt_mac_addr - Check for alternate MAC addr
153 * @hw: pointer to the HW structure
155 * Checks the nvm for an alternate MAC address. An alternate MAC address
156 * can be setup by pre-boot software and must be treated like a permanent
157 * address and must override the actual permanent MAC address. If an
158 * alternate MAC address is fopund it is saved in the hw struct and
159 * prgrammed into RAR0 and the cuntion returns success, otherwise the
160 * fucntion returns an error.
162 s32
igb_check_alt_mac_addr(struct e1000_hw
*hw
)
166 u16 offset
, nvm_alt_mac_addr_offset
, nvm_data
;
167 u8 alt_mac_addr
[ETH_ALEN
];
169 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_ALT_MAC_ADDR_PTR
, 1,
170 &nvm_alt_mac_addr_offset
);
172 hw_dbg("NVM Read Error\n");
176 if (nvm_alt_mac_addr_offset
== 0xFFFF) {
177 ret_val
= -(E1000_NOT_IMPLEMENTED
);
181 if (hw
->bus
.func
== E1000_FUNC_1
)
182 nvm_alt_mac_addr_offset
+= ETH_ALEN
/sizeof(u16
);
184 for (i
= 0; i
< ETH_ALEN
; i
+= 2) {
185 offset
= nvm_alt_mac_addr_offset
+ (i
>> 1);
186 ret_val
= hw
->nvm
.ops
.read(hw
, offset
, 1, &nvm_data
);
188 hw_dbg("NVM Read Error\n");
192 alt_mac_addr
[i
] = (u8
)(nvm_data
& 0xFF);
193 alt_mac_addr
[i
+ 1] = (u8
)(nvm_data
>> 8);
196 /* if multicast bit is set, the alternate address will not be used */
197 if (alt_mac_addr
[0] & 0x01) {
198 ret_val
= -(E1000_NOT_IMPLEMENTED
);
202 for (i
= 0; i
< ETH_ALEN
; i
++)
203 hw
->mac
.addr
[i
] = hw
->mac
.perm_addr
[i
] = alt_mac_addr
[i
];
205 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.perm_addr
, 0);
212 * igb_rar_set - Set receive address register
213 * @hw: pointer to the HW structure
214 * @addr: pointer to the receive address
215 * @index: receive address array register
217 * Sets the receive address array register at index to the address passed
220 void igb_rar_set(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
222 u32 rar_low
, rar_high
;
225 * HW expects these in little endian so we reverse the byte order
226 * from network order (big endian) to little endian
228 rar_low
= ((u32
) addr
[0] |
229 ((u32
) addr
[1] << 8) |
230 ((u32
) addr
[2] << 16) | ((u32
) addr
[3] << 24));
232 rar_high
= ((u32
) addr
[4] | ((u32
) addr
[5] << 8));
234 /* If MAC address zero, no need to set the AV bit */
235 if (rar_low
|| rar_high
)
236 rar_high
|= E1000_RAH_AV
;
238 wr32(E1000_RAL(index
), rar_low
);
239 wr32(E1000_RAH(index
), rar_high
);
243 * igb_mta_set - Set multicast filter table address
244 * @hw: pointer to the HW structure
245 * @hash_value: determines the MTA register and bit to set
247 * The multicast table address is a register array of 32-bit registers.
248 * The hash_value is used to determine what register the bit is in, the
249 * current value is read, the new bit is OR'd in and the new value is
250 * written back into the register.
252 void igb_mta_set(struct e1000_hw
*hw
, u32 hash_value
)
254 u32 hash_bit
, hash_reg
, mta
;
257 * The MTA is a register array of 32-bit registers. It is
258 * treated like an array of (32*mta_reg_count) bits. We want to
259 * set bit BitArray[hash_value]. So we figure out what register
260 * the bit is in, read it, OR in the new bit, then write
261 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
262 * mask to bits 31:5 of the hash value which gives us the
263 * register we're modifying. The hash bit within that register
264 * is determined by the lower 5 bits of the hash value.
266 hash_reg
= (hash_value
>> 5) & (hw
->mac
.mta_reg_count
- 1);
267 hash_bit
= hash_value
& 0x1F;
269 mta
= array_rd32(E1000_MTA
, hash_reg
);
271 mta
|= (1 << hash_bit
);
273 array_wr32(E1000_MTA
, hash_reg
, mta
);
278 * igb_hash_mc_addr - Generate a multicast hash value
279 * @hw: pointer to the HW structure
280 * @mc_addr: pointer to a multicast address
282 * Generates a multicast address hash value which is used to determine
283 * the multicast filter table array address and new table value. See
286 u32
igb_hash_mc_addr(struct e1000_hw
*hw
, u8
*mc_addr
)
288 u32 hash_value
, hash_mask
;
291 /* Register count multiplied by bits per register */
292 hash_mask
= (hw
->mac
.mta_reg_count
* 32) - 1;
295 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
296 * where 0xFF would still fall within the hash mask.
298 while (hash_mask
>> bit_shift
!= 0xFF)
302 * The portion of the address that is used for the hash table
303 * is determined by the mc_filter_type setting.
304 * The algorithm is such that there is a total of 8 bits of shifting.
305 * The bit_shift for a mc_filter_type of 0 represents the number of
306 * left-shifts where the MSB of mc_addr[5] would still fall within
307 * the hash_mask. Case 0 does this exactly. Since there are a total
308 * of 8 bits of shifting, then mc_addr[4] will shift right the
309 * remaining number of bits. Thus 8 - bit_shift. The rest of the
310 * cases are a variation of this algorithm...essentially raising the
311 * number of bits to shift mc_addr[5] left, while still keeping the
312 * 8-bit shifting total.
314 * For example, given the following Destination MAC Address and an
315 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
316 * we can see that the bit_shift for case 0 is 4. These are the hash
317 * values resulting from each mc_filter_type...
318 * [0] [1] [2] [3] [4] [5]
322 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
323 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
324 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
325 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
327 switch (hw
->mac
.mc_filter_type
) {
342 hash_value
= hash_mask
& (((mc_addr
[4] >> (8 - bit_shift
)) |
343 (((u16
) mc_addr
[5]) << bit_shift
)));
349 * igb_clear_hw_cntrs_base - Clear base hardware counters
350 * @hw: pointer to the HW structure
352 * Clears the base hardware counters by reading the counter registers.
354 void igb_clear_hw_cntrs_base(struct e1000_hw
*hw
)
358 temp
= rd32(E1000_CRCERRS
);
359 temp
= rd32(E1000_SYMERRS
);
360 temp
= rd32(E1000_MPC
);
361 temp
= rd32(E1000_SCC
);
362 temp
= rd32(E1000_ECOL
);
363 temp
= rd32(E1000_MCC
);
364 temp
= rd32(E1000_LATECOL
);
365 temp
= rd32(E1000_COLC
);
366 temp
= rd32(E1000_DC
);
367 temp
= rd32(E1000_SEC
);
368 temp
= rd32(E1000_RLEC
);
369 temp
= rd32(E1000_XONRXC
);
370 temp
= rd32(E1000_XONTXC
);
371 temp
= rd32(E1000_XOFFRXC
);
372 temp
= rd32(E1000_XOFFTXC
);
373 temp
= rd32(E1000_FCRUC
);
374 temp
= rd32(E1000_GPRC
);
375 temp
= rd32(E1000_BPRC
);
376 temp
= rd32(E1000_MPRC
);
377 temp
= rd32(E1000_GPTC
);
378 temp
= rd32(E1000_GORCL
);
379 temp
= rd32(E1000_GORCH
);
380 temp
= rd32(E1000_GOTCL
);
381 temp
= rd32(E1000_GOTCH
);
382 temp
= rd32(E1000_RNBC
);
383 temp
= rd32(E1000_RUC
);
384 temp
= rd32(E1000_RFC
);
385 temp
= rd32(E1000_ROC
);
386 temp
= rd32(E1000_RJC
);
387 temp
= rd32(E1000_TORL
);
388 temp
= rd32(E1000_TORH
);
389 temp
= rd32(E1000_TOTL
);
390 temp
= rd32(E1000_TOTH
);
391 temp
= rd32(E1000_TPR
);
392 temp
= rd32(E1000_TPT
);
393 temp
= rd32(E1000_MPTC
);
394 temp
= rd32(E1000_BPTC
);
398 * igb_check_for_copper_link - Check for link (Copper)
399 * @hw: pointer to the HW structure
401 * Checks to see of the link status of the hardware has changed. If a
402 * change in link status has been detected, then we read the PHY registers
403 * to get the current speed/duplex if link exists.
405 s32
igb_check_for_copper_link(struct e1000_hw
*hw
)
407 struct e1000_mac_info
*mac
= &hw
->mac
;
412 * We only want to go out to the PHY registers to see if Auto-Neg
413 * has completed and/or if our link status has changed. The
414 * get_link_status flag is set upon receiving a Link Status
415 * Change or Rx Sequence Error interrupt.
417 if (!mac
->get_link_status
) {
423 * First we want to see if the MII Status Register reports
424 * link. If so, then we want to get the current speed/duplex
427 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
432 goto out
; /* No link detected */
434 mac
->get_link_status
= false;
437 * Check if there was DownShift, must be checked
438 * immediately after link-up
440 igb_check_downshift(hw
);
443 * If we are forcing speed/duplex, then we simply return since
444 * we have already determined whether we have link or not.
447 ret_val
= -E1000_ERR_CONFIG
;
452 * Auto-Neg is enabled. Auto Speed Detection takes care
453 * of MAC speed/duplex configuration. So we only need to
454 * configure Collision Distance in the MAC.
456 igb_config_collision_dist(hw
);
459 * Configure Flow Control now that Auto-Neg has completed.
460 * First, we need to restore the desired flow control
461 * settings because we may have had to re-autoneg with a
462 * different link partner.
464 ret_val
= igb_config_fc_after_link_up(hw
);
466 hw_dbg("Error configuring flow control\n");
473 * igb_setup_link - Setup flow control and link settings
474 * @hw: pointer to the HW structure
476 * Determines which flow control settings to use, then configures flow
477 * control. Calls the appropriate media-specific link configuration
478 * function. Assuming the adapter has a valid link partner, a valid link
479 * should be established. Assumes the hardware has previously been reset
480 * and the transmitter and receiver are not enabled.
482 s32
igb_setup_link(struct e1000_hw
*hw
)
487 * In the case of the phy reset being blocked, we already have a link.
488 * We do not need to set it up again.
490 if (igb_check_reset_block(hw
))
493 ret_val
= igb_set_default_fc(hw
);
498 * We want to save off the original Flow Control configuration just
499 * in case we get disconnected and then reconnected into a different
500 * hub or switch with different Flow Control capabilities.
502 hw
->fc
.original_type
= hw
->fc
.type
;
504 hw_dbg("After fix-ups FlowControl is now = %x\n", hw
->fc
.type
);
506 /* Call the necessary media_type subroutine to configure the link. */
507 ret_val
= hw
->mac
.ops
.setup_physical_interface(hw
);
512 * Initialize the flow control address, type, and PAUSE timer
513 * registers to their default values. This is done even if flow
514 * control is disabled, because it does not hurt anything to
515 * initialize these registers.
517 hw_dbg("Initializing the Flow Control address, type and timer regs\n");
518 wr32(E1000_FCT
, FLOW_CONTROL_TYPE
);
519 wr32(E1000_FCAH
, FLOW_CONTROL_ADDRESS_HIGH
);
520 wr32(E1000_FCAL
, FLOW_CONTROL_ADDRESS_LOW
);
522 wr32(E1000_FCTTV
, hw
->fc
.pause_time
);
524 ret_val
= igb_set_fc_watermarks(hw
);
531 * igb_config_collision_dist - Configure collision distance
532 * @hw: pointer to the HW structure
534 * Configures the collision distance to the default value and is used
535 * during link setup. Currently no func pointer exists and all
536 * implementations are handled in the generic version of this function.
538 void igb_config_collision_dist(struct e1000_hw
*hw
)
542 tctl
= rd32(E1000_TCTL
);
544 tctl
&= ~E1000_TCTL_COLD
;
545 tctl
|= E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
;
547 wr32(E1000_TCTL
, tctl
);
552 * igb_set_fc_watermarks - Set flow control high/low watermarks
553 * @hw: pointer to the HW structure
555 * Sets the flow control high/low threshold (watermark) registers. If
556 * flow control XON frame transmission is enabled, then set XON frame
557 * tansmission as well.
559 static s32
igb_set_fc_watermarks(struct e1000_hw
*hw
)
562 u32 fcrtl
= 0, fcrth
= 0;
565 * Set the flow control receive threshold registers. Normally,
566 * these registers will be set to a default threshold that may be
567 * adjusted later by the driver's runtime code. However, if the
568 * ability to transmit pause frames is not enabled, then these
569 * registers will be set to 0.
571 if (hw
->fc
.type
& e1000_fc_tx_pause
) {
573 * We need to set up the Receive Threshold high and low water
574 * marks as well as (optionally) enabling the transmission of
577 fcrtl
= hw
->fc
.low_water
;
579 fcrtl
|= E1000_FCRTL_XONE
;
581 fcrth
= hw
->fc
.high_water
;
583 wr32(E1000_FCRTL
, fcrtl
);
584 wr32(E1000_FCRTH
, fcrth
);
590 * igb_set_default_fc - Set flow control default values
591 * @hw: pointer to the HW structure
593 * Read the EEPROM for the default values for flow control and store the
596 static s32
igb_set_default_fc(struct e1000_hw
*hw
)
602 * Read and store word 0x0F of the EEPROM. This word contains bits
603 * that determine the hardware's default PAUSE (flow control) mode,
604 * a bit that determines whether the HW defaults to enabling or
605 * disabling auto-negotiation, and the direction of the
606 * SW defined pins. If there is no SW over-ride of the flow
607 * control setting, then the variable hw->fc will
608 * be initialized based on a value in the EEPROM.
610 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL2_REG
, 1, &nvm_data
);
613 hw_dbg("NVM Read Error\n");
617 if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) == 0)
618 hw
->fc
.type
= e1000_fc_none
;
619 else if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) ==
621 hw
->fc
.type
= e1000_fc_tx_pause
;
623 hw
->fc
.type
= e1000_fc_full
;
630 * igb_force_mac_fc - Force the MAC's flow control settings
631 * @hw: pointer to the HW structure
633 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
634 * device control register to reflect the adapter settings. TFCE and RFCE
635 * need to be explicitly set by software when a copper PHY is used because
636 * autonegotiation is managed by the PHY rather than the MAC. Software must
637 * also configure these bits when link is forced on a fiber connection.
639 s32
igb_force_mac_fc(struct e1000_hw
*hw
)
644 ctrl
= rd32(E1000_CTRL
);
647 * Because we didn't get link via the internal auto-negotiation
648 * mechanism (we either forced link or we got link via PHY
649 * auto-neg), we have to manually enable/disable transmit an
650 * receive flow control.
652 * The "Case" statement below enables/disable flow control
653 * according to the "hw->fc.type" parameter.
655 * The possible values of the "fc" parameter are:
656 * 0: Flow control is completely disabled
657 * 1: Rx flow control is enabled (we can receive pause
658 * frames but not send pause frames).
659 * 2: Tx flow control is enabled (we can send pause frames
660 * frames but we do not receive pause frames).
661 * 3: Both Rx and TX flow control (symmetric) is enabled.
662 * other: No other values should be possible at this point.
664 hw_dbg("hw->fc.type = %u\n", hw
->fc
.type
);
666 switch (hw
->fc
.type
) {
668 ctrl
&= (~(E1000_CTRL_TFCE
| E1000_CTRL_RFCE
));
670 case e1000_fc_rx_pause
:
671 ctrl
&= (~E1000_CTRL_TFCE
);
672 ctrl
|= E1000_CTRL_RFCE
;
674 case e1000_fc_tx_pause
:
675 ctrl
&= (~E1000_CTRL_RFCE
);
676 ctrl
|= E1000_CTRL_TFCE
;
679 ctrl
|= (E1000_CTRL_TFCE
| E1000_CTRL_RFCE
);
682 hw_dbg("Flow control param set incorrectly\n");
683 ret_val
= -E1000_ERR_CONFIG
;
687 wr32(E1000_CTRL
, ctrl
);
694 * igb_config_fc_after_link_up - Configures flow control after link
695 * @hw: pointer to the HW structure
697 * Checks the status of auto-negotiation after link up to ensure that the
698 * speed and duplex were not forced. If the link needed to be forced, then
699 * flow control needs to be forced also. If auto-negotiation is enabled
700 * and did not fail, then we configure flow control based on our link
703 s32
igb_config_fc_after_link_up(struct e1000_hw
*hw
)
705 struct e1000_mac_info
*mac
= &hw
->mac
;
707 u16 mii_status_reg
, mii_nway_adv_reg
, mii_nway_lp_ability_reg
;
711 * Check for the case where we have fiber media and auto-neg failed
712 * so we had to force link. In this case, we need to force the
713 * configuration of the MAC to match the "fc" parameter.
715 if (mac
->autoneg_failed
) {
716 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
717 hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
718 ret_val
= igb_force_mac_fc(hw
);
720 if (hw
->phy
.media_type
== e1000_media_type_copper
)
721 ret_val
= igb_force_mac_fc(hw
);
725 hw_dbg("Error forcing flow control settings\n");
730 * Check for the case where we have copper media and auto-neg is
731 * enabled. In this case, we need to check and see if Auto-Neg
732 * has completed, and if so, how the PHY and link partner has
733 * flow control configured.
735 if ((hw
->phy
.media_type
== e1000_media_type_copper
) && mac
->autoneg
) {
737 * Read the MII Status Register and check to see if AutoNeg
738 * has completed. We read this twice because this reg has
739 * some "sticky" (latched) bits.
741 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
,
745 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
,
750 if (!(mii_status_reg
& MII_SR_AUTONEG_COMPLETE
)) {
751 hw_dbg("Copper PHY and Auto Neg "
752 "has not completed.\n");
757 * The AutoNeg process has completed, so we now need to
758 * read both the Auto Negotiation Advertisement
759 * Register (Address 4) and the Auto_Negotiation Base
760 * Page Ability Register (Address 5) to determine how
761 * flow control was negotiated.
763 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_AUTONEG_ADV
,
767 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_LP_ABILITY
,
768 &mii_nway_lp_ability_reg
);
773 * Two bits in the Auto Negotiation Advertisement Register
774 * (Address 4) and two bits in the Auto Negotiation Base
775 * Page Ability Register (Address 5) determine flow control
776 * for both the PHY and the link partner. The following
777 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
778 * 1999, describes these PAUSE resolution bits and how flow
779 * control is determined based upon these settings.
780 * NOTE: DC = Don't Care
782 * LOCAL DEVICE | LINK PARTNER
783 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
784 *-------|---------|-------|---------|--------------------
785 * 0 | 0 | DC | DC | e1000_fc_none
786 * 0 | 1 | 0 | DC | e1000_fc_none
787 * 0 | 1 | 1 | 0 | e1000_fc_none
788 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
789 * 1 | 0 | 0 | DC | e1000_fc_none
790 * 1 | DC | 1 | DC | e1000_fc_full
791 * 1 | 1 | 0 | 0 | e1000_fc_none
792 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
794 * Are both PAUSE bits set to 1? If so, this implies
795 * Symmetric Flow Control is enabled at both ends. The
796 * ASM_DIR bits are irrelevant per the spec.
798 * For Symmetric Flow Control:
800 * LOCAL DEVICE | LINK PARTNER
801 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
802 *-------|---------|-------|---------|--------------------
803 * 1 | DC | 1 | DC | E1000_fc_full
806 if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
807 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
)) {
809 * Now we need to check if the user selected RX ONLY
810 * of pause frames. In this case, we had to advertise
811 * FULL flow control because we could not advertise RX
812 * ONLY. Hence, we must now check to see if we need to
813 * turn OFF the TRANSMISSION of PAUSE frames.
815 if (hw
->fc
.original_type
== e1000_fc_full
) {
816 hw
->fc
.type
= e1000_fc_full
;
817 hw_dbg("Flow Control = FULL.\r\n");
819 hw
->fc
.type
= e1000_fc_rx_pause
;
820 hw_dbg("Flow Control = "
821 "RX PAUSE frames only.\r\n");
825 * For receiving PAUSE frames ONLY.
827 * LOCAL DEVICE | LINK PARTNER
828 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
829 *-------|---------|-------|---------|--------------------
830 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
832 else if (!(mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
833 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
834 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
835 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
836 hw
->fc
.type
= e1000_fc_tx_pause
;
837 hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
840 * For transmitting PAUSE frames ONLY.
842 * LOCAL DEVICE | LINK PARTNER
843 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
844 *-------|---------|-------|---------|--------------------
845 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
847 else if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
848 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
849 !(mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
850 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
851 hw
->fc
.type
= e1000_fc_rx_pause
;
852 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
855 * Per the IEEE spec, at this point flow control should be
856 * disabled. However, we want to consider that we could
857 * be connected to a legacy switch that doesn't advertise
858 * desired flow control, but can be forced on the link
859 * partner. So if we advertised no flow control, that is
860 * what we will resolve to. If we advertised some kind of
861 * receive capability (Rx Pause Only or Full Flow Control)
862 * and the link partner advertised none, we will configure
863 * ourselves to enable Rx Flow Control only. We can do
864 * this safely for two reasons: If the link partner really
865 * didn't want flow control enabled, and we enable Rx, no
866 * harm done since we won't be receiving any PAUSE frames
867 * anyway. If the intent on the link partner was to have
868 * flow control enabled, then by us enabling RX only, we
869 * can at least receive pause frames and process them.
870 * This is a good idea because in most cases, since we are
871 * predominantly a server NIC, more times than not we will
872 * be asked to delay transmission of packets than asking
873 * our link partner to pause transmission of frames.
875 else if ((hw
->fc
.original_type
== e1000_fc_none
||
876 hw
->fc
.original_type
== e1000_fc_tx_pause
) ||
877 hw
->fc
.strict_ieee
) {
878 hw
->fc
.type
= e1000_fc_none
;
879 hw_dbg("Flow Control = NONE.\r\n");
881 hw
->fc
.type
= e1000_fc_rx_pause
;
882 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
886 * Now we need to do one last check... If we auto-
887 * negotiated to HALF DUPLEX, flow control should not be
888 * enabled per IEEE 802.3 spec.
890 ret_val
= hw
->mac
.ops
.get_speed_and_duplex(hw
, &speed
, &duplex
);
892 hw_dbg("Error getting link speed and duplex\n");
896 if (duplex
== HALF_DUPLEX
)
897 hw
->fc
.type
= e1000_fc_none
;
900 * Now we call a subroutine to actually force the MAC
901 * controller to use the correct flow control settings.
903 ret_val
= igb_force_mac_fc(hw
);
905 hw_dbg("Error forcing flow control settings\n");
915 * igb_get_speed_and_duplex_copper - Retreive current speed/duplex
916 * @hw: pointer to the HW structure
917 * @speed: stores the current speed
918 * @duplex: stores the current duplex
920 * Read the status register for the current speed/duplex and store the current
921 * speed and duplex for copper connections.
923 s32
igb_get_speed_and_duplex_copper(struct e1000_hw
*hw
, u16
*speed
,
928 status
= rd32(E1000_STATUS
);
929 if (status
& E1000_STATUS_SPEED_1000
) {
931 hw_dbg("1000 Mbs, ");
932 } else if (status
& E1000_STATUS_SPEED_100
) {
940 if (status
& E1000_STATUS_FD
) {
941 *duplex
= FULL_DUPLEX
;
942 hw_dbg("Full Duplex\n");
944 *duplex
= HALF_DUPLEX
;
945 hw_dbg("Half Duplex\n");
952 * igb_get_hw_semaphore - Acquire hardware semaphore
953 * @hw: pointer to the HW structure
955 * Acquire the HW semaphore to access the PHY or NVM
957 s32
igb_get_hw_semaphore(struct e1000_hw
*hw
)
961 s32 timeout
= hw
->nvm
.word_size
+ 1;
964 /* Get the SW semaphore */
965 while (i
< timeout
) {
966 swsm
= rd32(E1000_SWSM
);
967 if (!(swsm
& E1000_SWSM_SMBI
))
975 hw_dbg("Driver can't access device - SMBI bit is set.\n");
976 ret_val
= -E1000_ERR_NVM
;
980 /* Get the FW semaphore. */
981 for (i
= 0; i
< timeout
; i
++) {
982 swsm
= rd32(E1000_SWSM
);
983 wr32(E1000_SWSM
, swsm
| E1000_SWSM_SWESMBI
);
985 /* Semaphore acquired if bit latched */
986 if (rd32(E1000_SWSM
) & E1000_SWSM_SWESMBI
)
993 /* Release semaphores */
994 igb_put_hw_semaphore(hw
);
995 hw_dbg("Driver can't access the NVM\n");
996 ret_val
= -E1000_ERR_NVM
;
1005 * igb_put_hw_semaphore - Release hardware semaphore
1006 * @hw: pointer to the HW structure
1008 * Release hardware semaphore used to access the PHY or NVM
1010 void igb_put_hw_semaphore(struct e1000_hw
*hw
)
1014 swsm
= rd32(E1000_SWSM
);
1016 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
1018 wr32(E1000_SWSM
, swsm
);
1022 * igb_get_auto_rd_done - Check for auto read completion
1023 * @hw: pointer to the HW structure
1025 * Check EEPROM for Auto Read done bit.
1027 s32
igb_get_auto_rd_done(struct e1000_hw
*hw
)
1033 while (i
< AUTO_READ_DONE_TIMEOUT
) {
1034 if (rd32(E1000_EECD
) & E1000_EECD_AUTO_RD
)
1040 if (i
== AUTO_READ_DONE_TIMEOUT
) {
1041 hw_dbg("Auto read by HW from NVM has not completed.\n");
1042 ret_val
= -E1000_ERR_RESET
;
1051 * igb_valid_led_default - Verify a valid default LED config
1052 * @hw: pointer to the HW structure
1053 * @data: pointer to the NVM (EEPROM)
1055 * Read the EEPROM for the current default LED configuration. If the
1056 * LED configuration is not valid, set to a valid LED configuration.
1058 static s32
igb_valid_led_default(struct e1000_hw
*hw
, u16
*data
)
1062 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1064 hw_dbg("NVM Read Error\n");
1068 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
)
1069 *data
= ID_LED_DEFAULT
;
1077 * @hw: pointer to the HW structure
1080 s32
igb_id_led_init(struct e1000_hw
*hw
)
1082 struct e1000_mac_info
*mac
= &hw
->mac
;
1084 const u32 ledctl_mask
= 0x000000FF;
1085 const u32 ledctl_on
= E1000_LEDCTL_MODE_LED_ON
;
1086 const u32 ledctl_off
= E1000_LEDCTL_MODE_LED_OFF
;
1088 const u16 led_mask
= 0x0F;
1090 ret_val
= igb_valid_led_default(hw
, &data
);
1094 mac
->ledctl_default
= rd32(E1000_LEDCTL
);
1095 mac
->ledctl_mode1
= mac
->ledctl_default
;
1096 mac
->ledctl_mode2
= mac
->ledctl_default
;
1098 for (i
= 0; i
< 4; i
++) {
1099 temp
= (data
>> (i
<< 2)) & led_mask
;
1101 case ID_LED_ON1_DEF2
:
1102 case ID_LED_ON1_ON2
:
1103 case ID_LED_ON1_OFF2
:
1104 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1105 mac
->ledctl_mode1
|= ledctl_on
<< (i
<< 3);
1107 case ID_LED_OFF1_DEF2
:
1108 case ID_LED_OFF1_ON2
:
1109 case ID_LED_OFF1_OFF2
:
1110 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1111 mac
->ledctl_mode1
|= ledctl_off
<< (i
<< 3);
1118 case ID_LED_DEF1_ON2
:
1119 case ID_LED_ON1_ON2
:
1120 case ID_LED_OFF1_ON2
:
1121 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1122 mac
->ledctl_mode2
|= ledctl_on
<< (i
<< 3);
1124 case ID_LED_DEF1_OFF2
:
1125 case ID_LED_ON1_OFF2
:
1126 case ID_LED_OFF1_OFF2
:
1127 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1128 mac
->ledctl_mode2
|= ledctl_off
<< (i
<< 3);
1141 * igb_cleanup_led - Set LED config to default operation
1142 * @hw: pointer to the HW structure
1144 * Remove the current LED configuration and set the LED configuration
1145 * to the default value, saved from the EEPROM.
1147 s32
igb_cleanup_led(struct e1000_hw
*hw
)
1149 wr32(E1000_LEDCTL
, hw
->mac
.ledctl_default
);
1154 * igb_blink_led - Blink LED
1155 * @hw: pointer to the HW structure
1157 * Blink the led's which are set to be on.
1159 s32
igb_blink_led(struct e1000_hw
*hw
)
1161 u32 ledctl_blink
= 0;
1164 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1165 /* always blink LED0 for PCI-E fiber */
1166 ledctl_blink
= E1000_LEDCTL_LED0_BLINK
|
1167 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED0_MODE_SHIFT
);
1170 * set the blink bit for each LED that's "on" (0x0E)
1173 ledctl_blink
= hw
->mac
.ledctl_mode2
;
1174 for (i
= 0; i
< 4; i
++)
1175 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1176 E1000_LEDCTL_MODE_LED_ON
)
1177 ledctl_blink
|= (E1000_LEDCTL_LED0_BLINK
<<
1181 wr32(E1000_LEDCTL
, ledctl_blink
);
1187 * igb_led_off - Turn LED off
1188 * @hw: pointer to the HW structure
1192 s32
igb_led_off(struct e1000_hw
*hw
)
1196 switch (hw
->phy
.media_type
) {
1197 case e1000_media_type_fiber
:
1198 ctrl
= rd32(E1000_CTRL
);
1199 ctrl
|= E1000_CTRL_SWDPIN0
;
1200 ctrl
|= E1000_CTRL_SWDPIO0
;
1201 wr32(E1000_CTRL
, ctrl
);
1203 case e1000_media_type_copper
:
1204 wr32(E1000_LEDCTL
, hw
->mac
.ledctl_mode1
);
1214 * igb_disable_pcie_master - Disables PCI-express master access
1215 * @hw: pointer to the HW structure
1217 * Returns 0 (0) if successful, else returns -10
1218 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1219 * the master requests to be disabled.
1221 * Disables PCI-Express master access and verifies there are no pending
1224 s32
igb_disable_pcie_master(struct e1000_hw
*hw
)
1227 s32 timeout
= MASTER_DISABLE_TIMEOUT
;
1230 if (hw
->bus
.type
!= e1000_bus_type_pci_express
)
1233 ctrl
= rd32(E1000_CTRL
);
1234 ctrl
|= E1000_CTRL_GIO_MASTER_DISABLE
;
1235 wr32(E1000_CTRL
, ctrl
);
1238 if (!(rd32(E1000_STATUS
) &
1239 E1000_STATUS_GIO_MASTER_ENABLE
))
1246 hw_dbg("Master requests are pending.\n");
1247 ret_val
= -E1000_ERR_MASTER_REQUESTS_PENDING
;
1256 * igb_reset_adaptive - Reset Adaptive Interframe Spacing
1257 * @hw: pointer to the HW structure
1259 * Reset the Adaptive Interframe Spacing throttle to default values.
1261 void igb_reset_adaptive(struct e1000_hw
*hw
)
1263 struct e1000_mac_info
*mac
= &hw
->mac
;
1265 if (!mac
->adaptive_ifs
) {
1266 hw_dbg("Not in Adaptive IFS mode!\n");
1270 if (!mac
->ifs_params_forced
) {
1271 mac
->current_ifs_val
= 0;
1272 mac
->ifs_min_val
= IFS_MIN
;
1273 mac
->ifs_max_val
= IFS_MAX
;
1274 mac
->ifs_step_size
= IFS_STEP
;
1275 mac
->ifs_ratio
= IFS_RATIO
;
1278 mac
->in_ifs_mode
= false;
1285 * igb_update_adaptive - Update Adaptive Interframe Spacing
1286 * @hw: pointer to the HW structure
1288 * Update the Adaptive Interframe Spacing Throttle value based on the
1289 * time between transmitted packets and time between collisions.
1291 void igb_update_adaptive(struct e1000_hw
*hw
)
1293 struct e1000_mac_info
*mac
= &hw
->mac
;
1295 if (!mac
->adaptive_ifs
) {
1296 hw_dbg("Not in Adaptive IFS mode!\n");
1300 if ((mac
->collision_delta
* mac
->ifs_ratio
) > mac
->tx_packet_delta
) {
1301 if (mac
->tx_packet_delta
> MIN_NUM_XMITS
) {
1302 mac
->in_ifs_mode
= true;
1303 if (mac
->current_ifs_val
< mac
->ifs_max_val
) {
1304 if (!mac
->current_ifs_val
)
1305 mac
->current_ifs_val
= mac
->ifs_min_val
;
1307 mac
->current_ifs_val
+=
1310 mac
->current_ifs_val
);
1314 if (mac
->in_ifs_mode
&&
1315 (mac
->tx_packet_delta
<= MIN_NUM_XMITS
)) {
1316 mac
->current_ifs_val
= 0;
1317 mac
->in_ifs_mode
= false;
1326 * igb_validate_mdi_setting - Verify MDI/MDIx settings
1327 * @hw: pointer to the HW structure
1329 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1330 * set, which is forced to MDI mode only.
1332 s32
igb_validate_mdi_setting(struct e1000_hw
*hw
)
1336 if (!hw
->mac
.autoneg
&& (hw
->phy
.mdix
== 0 || hw
->phy
.mdix
== 3)) {
1337 hw_dbg("Invalid MDI setting detected\n");
1339 ret_val
= -E1000_ERR_CONFIG
;
1348 * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
1349 * @hw: pointer to the HW structure
1350 * @reg: 32bit register offset such as E1000_SCTL
1351 * @offset: register offset to write to
1352 * @data: data to write at register offset
1354 * Writes an address/data control type register. There are several of these
1355 * and they all have the format address << 8 | data and bit 31 is polled for
1358 s32
igb_write_8bit_ctrl_reg(struct e1000_hw
*hw
, u32 reg
,
1359 u32 offset
, u8 data
)
1361 u32 i
, regvalue
= 0;
1364 /* Set up the address and data */
1365 regvalue
= ((u32
)data
) | (offset
<< E1000_GEN_CTL_ADDRESS_SHIFT
);
1366 wr32(reg
, regvalue
);
1368 /* Poll the ready bit to see if the MDI read completed */
1369 for (i
= 0; i
< E1000_GEN_POLL_TIMEOUT
; i
++) {
1371 regvalue
= rd32(reg
);
1372 if (regvalue
& E1000_GEN_CTL_READY
)
1375 if (!(regvalue
& E1000_GEN_CTL_READY
)) {
1376 hw_dbg("Reg %08x did not indicate ready\n", reg
);
1377 ret_val
= -E1000_ERR_PHY
;
1386 * igb_enable_mng_pass_thru - Enable processing of ARP's
1387 * @hw: pointer to the HW structure
1389 * Verifies the hardware needs to allow ARPs to be processed by the host.
1391 bool igb_enable_mng_pass_thru(struct e1000_hw
*hw
)
1395 bool ret_val
= false;
1397 if (!hw
->mac
.asf_firmware_present
)
1400 manc
= rd32(E1000_MANC
);
1402 if (!(manc
& E1000_MANC_RCV_TCO_EN
) ||
1403 !(manc
& E1000_MANC_EN_MAC_ADDR_FILTER
))
1406 if (hw
->mac
.arc_subsystem_valid
) {
1407 fwsm
= rd32(E1000_FWSM
);
1408 factps
= rd32(E1000_FACTPS
);
1410 if (!(factps
& E1000_FACTPS_MNGCG
) &&
1411 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
1412 (e1000_mng_mode_pt
<< E1000_FWSM_MODE_SHIFT
))) {
1417 if ((manc
& E1000_MANC_SMBUS_EN
) &&
1418 !(manc
& E1000_MANC_ASF_EN
)) {