2 * Alchemy Semi Au1000 IrDA driver
4 * Copyright 2001 MontaVista Software Inc.
5 * Author: MontaVista Software, Inc.
6 * ppopov@mvista.com or source@mvista.com
8 * This program is free software; you can distribute it and/or modify it
9 * under the terms of the GNU General Public License (Version 2) as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/init.h>
24 #include <linux/errno.h>
25 #include <linux/netdevice.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/interrupt.h>
30 #include <linux/bitops.h>
34 #include <asm/au1000.h>
35 #if defined(CONFIG_MIPS_PB1000) || defined(CONFIG_MIPS_PB1100)
36 #include <asm/pb1000.h>
37 #elif defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
38 #include <asm/db1x00.h>
40 #error au1k_ir: unsupported board
43 #include <net/irda/irda.h>
44 #include <net/irda/irmod.h>
45 #include <net/irda/wrapper.h>
46 #include <net/irda/irda_device.h>
47 #include "au1000_ircc.h"
49 static int au1k_irda_net_init(struct net_device
*);
50 static int au1k_irda_start(struct net_device
*);
51 static int au1k_irda_stop(struct net_device
*dev
);
52 static int au1k_irda_hard_xmit(struct sk_buff
*, struct net_device
*);
53 static int au1k_irda_rx(struct net_device
*);
54 static void au1k_irda_interrupt(int, void *);
55 static void au1k_tx_timeout(struct net_device
*);
56 static int au1k_irda_ioctl(struct net_device
*, struct ifreq
*, int);
57 static int au1k_irda_set_speed(struct net_device
*dev
, int speed
);
59 static void *dma_alloc(size_t, dma_addr_t
*);
60 static void dma_free(void *, size_t);
62 static int qos_mtt_bits
= 0x07; /* 1 ms or more */
63 static struct net_device
*ir_devs
[NUM_IR_IFF
];
64 static char version
[] __devinitdata
=
65 "au1k_ircc:1.2 ppopov@mvista.com\n";
67 #define RUN_AT(x) (jiffies + (x))
69 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
70 static BCSR
* const bcsr
= (BCSR
*)0xAE000000;
73 static DEFINE_SPINLOCK(ir_lock
);
76 * IrDA peripheral bug. You have to read the register
77 * twice to get the right value.
79 u32
read_ir_reg(u32 addr
)
87 * Buffer allocation/deallocation routines. The buffer descriptor returned
88 * has the virtual and dma address of a buffer suitable for
89 * both, receive and transmit operations.
91 static db_dest_t
*GetFreeDB(struct au1k_private
*aup
)
97 aup
->pDBfree
= pDB
->pnext
;
102 static void ReleaseDB(struct au1k_private
*aup
, db_dest_t
*pDB
)
104 db_dest_t
*pDBfree
= aup
->pDBfree
;
106 pDBfree
->pnext
= pDB
;
112 DMA memory allocation, derived from pci_alloc_consistent.
113 However, the Au1000 data cache is coherent (when programmed
114 so), therefore we return KSEG0 address, not KSEG1.
116 static void *dma_alloc(size_t size
, dma_addr_t
* dma_handle
)
119 int gfp
= GFP_ATOMIC
| GFP_DMA
;
121 ret
= (void *) __get_free_pages(gfp
, get_order(size
));
124 memset(ret
, 0, size
);
125 *dma_handle
= virt_to_bus(ret
);
126 ret
= (void *)KSEG0ADDR(ret
);
132 static void dma_free(void *vaddr
, size_t size
)
134 vaddr
= (void *)KSEG0ADDR(vaddr
);
135 free_pages((unsigned long) vaddr
, get_order(size
));
140 setup_hw_rings(struct au1k_private
*aup
, u32 rx_base
, u32 tx_base
)
143 for (i
=0; i
<NUM_IR_DESC
; i
++) {
144 aup
->rx_ring
[i
] = (volatile ring_dest_t
*)
145 (rx_base
+ sizeof(ring_dest_t
)*i
);
147 for (i
=0; i
<NUM_IR_DESC
; i
++) {
148 aup
->tx_ring
[i
] = (volatile ring_dest_t
*)
149 (tx_base
+ sizeof(ring_dest_t
)*i
);
153 static int au1k_irda_init(void)
155 static unsigned version_printed
= 0;
156 struct au1k_private
*aup
;
157 struct net_device
*dev
;
160 if (version_printed
++ == 0) printk(version
);
162 dev
= alloc_irdadev(sizeof(struct au1k_private
));
166 dev
->irq
= AU1000_IRDA_RX_INT
; /* TX has its own interrupt */
167 err
= au1k_irda_net_init(dev
);
170 err
= register_netdev(dev
);
174 printk(KERN_INFO
"IrDA: Registered device %s\n", dev
->name
);
178 aup
= netdev_priv(dev
);
179 dma_free((void *)aup
->db
[0].vaddr
,
180 MAX_BUF_SIZE
* 2*NUM_IR_DESC
);
181 dma_free((void *)aup
->rx_ring
[0],
182 2 * MAX_NUM_IR_DESC
*(sizeof(ring_dest_t
)));
183 kfree(aup
->rx_buff
.head
);
189 static int au1k_irda_init_iobuf(iobuff_t
*io
, int size
)
191 io
->head
= kmalloc(size
, GFP_KERNEL
);
192 if (io
->head
!= NULL
) {
194 io
->in_frame
= FALSE
;
195 io
->state
= OUTSIDE_FRAME
;
198 return io
->head
? 0 : -ENOMEM
;
201 static int au1k_irda_net_init(struct net_device
*dev
)
203 struct au1k_private
*aup
= netdev_priv(dev
);
204 int i
, retval
= 0, err
;
205 db_dest_t
*pDB
, *pDBfree
;
208 err
= au1k_irda_init_iobuf(&aup
->rx_buff
, 14384);
212 dev
->open
= au1k_irda_start
;
213 dev
->hard_start_xmit
= au1k_irda_hard_xmit
;
214 dev
->stop
= au1k_irda_stop
;
215 dev
->do_ioctl
= au1k_irda_ioctl
;
216 dev
->tx_timeout
= au1k_tx_timeout
;
218 irda_init_max_qos_capabilies(&aup
->qos
);
220 /* The only value we must override it the baudrate */
221 aup
->qos
.baud_rate
.bits
= IR_9600
|IR_19200
|IR_38400
|IR_57600
|
222 IR_115200
|IR_576000
|(IR_4000000
<< 8);
224 aup
->qos
.min_turn_time
.bits
= qos_mtt_bits
;
225 irda_qos_bits_to_value(&aup
->qos
);
229 /* Tx ring follows rx ring + 512 bytes */
230 /* we need a 1k aligned buffer */
231 aup
->rx_ring
[0] = (ring_dest_t
*)
232 dma_alloc(2*MAX_NUM_IR_DESC
*(sizeof(ring_dest_t
)), &temp
);
233 if (!aup
->rx_ring
[0])
236 /* allocate the data buffers */
238 (void *)dma_alloc(MAX_BUF_SIZE
* 2*NUM_IR_DESC
, &temp
);
239 if (!aup
->db
[0].vaddr
)
242 setup_hw_rings(aup
, (u32
)aup
->rx_ring
[0], (u32
)aup
->rx_ring
[0] + 512);
246 for (i
=0; i
<(2*NUM_IR_DESC
); i
++) {
247 pDB
->pnext
= pDBfree
;
250 (u32
*)((unsigned)aup
->db
[0].vaddr
+ MAX_BUF_SIZE
*i
);
251 pDB
->dma_addr
= (dma_addr_t
)virt_to_bus(pDB
->vaddr
);
254 aup
->pDBfree
= pDBfree
;
256 /* attach a data buffer to each descriptor */
257 for (i
=0; i
<NUM_IR_DESC
; i
++) {
258 pDB
= GetFreeDB(aup
);
260 aup
->rx_ring
[i
]->addr_0
= (u8
)(pDB
->dma_addr
& 0xff);
261 aup
->rx_ring
[i
]->addr_1
= (u8
)((pDB
->dma_addr
>>8) & 0xff);
262 aup
->rx_ring
[i
]->addr_2
= (u8
)((pDB
->dma_addr
>>16) & 0xff);
263 aup
->rx_ring
[i
]->addr_3
= (u8
)((pDB
->dma_addr
>>24) & 0xff);
264 aup
->rx_db_inuse
[i
] = pDB
;
266 for (i
=0; i
<NUM_IR_DESC
; i
++) {
267 pDB
= GetFreeDB(aup
);
269 aup
->tx_ring
[i
]->addr_0
= (u8
)(pDB
->dma_addr
& 0xff);
270 aup
->tx_ring
[i
]->addr_1
= (u8
)((pDB
->dma_addr
>>8) & 0xff);
271 aup
->tx_ring
[i
]->addr_2
= (u8
)((pDB
->dma_addr
>>16) & 0xff);
272 aup
->tx_ring
[i
]->addr_3
= (u8
)((pDB
->dma_addr
>>24) & 0xff);
273 aup
->tx_ring
[i
]->count_0
= 0;
274 aup
->tx_ring
[i
]->count_1
= 0;
275 aup
->tx_ring
[i
]->flags
= 0;
276 aup
->tx_db_inuse
[i
] = pDB
;
279 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
281 bcsr
->resets
&= ~BCSR_RESETS_IRDA_MODE_MASK
;
282 bcsr
->resets
|= BCSR_RESETS_IRDA_MODE_FULL
;
289 dma_free((void *)aup
->rx_ring
[0],
290 2 * MAX_NUM_IR_DESC
*(sizeof(ring_dest_t
)));
292 kfree(aup
->rx_buff
.head
);
294 printk(KERN_ERR
"au1k_init_module failed. Returns %d\n", retval
);
299 static int au1k_init(struct net_device
*dev
)
301 struct au1k_private
*aup
= netdev_priv(dev
);
306 /* bring the device out of reset */
307 control
= 0xe; /* coherent, clock enable, one half system clock */
309 #ifndef CONFIG_CPU_LITTLE_ENDIAN
316 for (i
=0; i
<NUM_IR_DESC
; i
++) {
317 aup
->rx_ring
[i
]->flags
= AU_OWN
;
320 writel(control
, IR_INTERFACE_CONFIG
);
323 writel(read_ir_reg(IR_ENABLE
) & ~0x8000, IR_ENABLE
); /* disable PHY */
326 writel(MAX_BUF_SIZE
, IR_MAX_PKT_LEN
);
328 ring_address
= (u32
)virt_to_phys((void *)aup
->rx_ring
[0]);
329 writel(ring_address
>> 26, IR_RING_BASE_ADDR_H
);
330 writel((ring_address
>> 10) & 0xffff, IR_RING_BASE_ADDR_L
);
332 writel(RING_SIZE_64
<<8 | RING_SIZE_64
<<12, IR_RING_SIZE
);
334 writel(1<<2 | IR_ONE_PIN
, IR_CONFIG_2
); /* 48MHz */
335 writel(0, IR_RING_ADDR_CMPR
);
337 au1k_irda_set_speed(dev
, 9600);
341 static int au1k_irda_start(struct net_device
*dev
)
345 struct au1k_private
*aup
= netdev_priv(dev
);
347 if ((retval
= au1k_init(dev
))) {
348 printk(KERN_ERR
"%s: error in au1k_init\n", dev
->name
);
352 if ((retval
= request_irq(AU1000_IRDA_TX_INT
, &au1k_irda_interrupt
,
353 0, dev
->name
, dev
))) {
354 printk(KERN_ERR
"%s: unable to get IRQ %d\n",
355 dev
->name
, dev
->irq
);
358 if ((retval
= request_irq(AU1000_IRDA_RX_INT
, &au1k_irda_interrupt
,
359 0, dev
->name
, dev
))) {
360 free_irq(AU1000_IRDA_TX_INT
, dev
);
361 printk(KERN_ERR
"%s: unable to get IRQ %d\n",
362 dev
->name
, dev
->irq
);
366 /* Give self a hardware name */
367 sprintf(hwname
, "Au1000 SIR/FIR");
368 aup
->irlap
= irlap_open(dev
, &aup
->qos
, hwname
);
369 netif_start_queue(dev
);
371 writel(read_ir_reg(IR_CONFIG_2
) | 1<<8, IR_CONFIG_2
); /* int enable */
373 aup
->timer
.expires
= RUN_AT((3*HZ
));
374 aup
->timer
.data
= (unsigned long)dev
;
378 static int au1k_irda_stop(struct net_device
*dev
)
380 struct au1k_private
*aup
= netdev_priv(dev
);
382 /* disable interrupts */
383 writel(read_ir_reg(IR_CONFIG_2
) & ~(1<<8), IR_CONFIG_2
);
384 writel(0, IR_CONFIG_1
);
385 writel(0, IR_INTERFACE_CONFIG
); /* disable clock */
389 irlap_close(aup
->irlap
);
393 netif_stop_queue(dev
);
394 del_timer(&aup
->timer
);
396 /* disable the interrupt */
397 free_irq(AU1000_IRDA_TX_INT
, dev
);
398 free_irq(AU1000_IRDA_RX_INT
, dev
);
402 static void __exit
au1k_irda_exit(void)
404 struct net_device
*dev
= ir_devs
[0];
405 struct au1k_private
*aup
= netdev_priv(dev
);
407 unregister_netdev(dev
);
409 dma_free((void *)aup
->db
[0].vaddr
,
410 MAX_BUF_SIZE
* 2*NUM_IR_DESC
);
411 dma_free((void *)aup
->rx_ring
[0],
412 2 * MAX_NUM_IR_DESC
*(sizeof(ring_dest_t
)));
413 kfree(aup
->rx_buff
.head
);
419 update_tx_stats(struct net_device
*dev
, u32 status
, u32 pkt_len
)
421 struct au1k_private
*aup
= netdev_priv(dev
);
422 struct net_device_stats
*ps
= &aup
->stats
;
425 ps
->tx_bytes
+= pkt_len
;
427 if (status
& IR_TX_ERROR
) {
429 ps
->tx_aborted_errors
++;
434 static void au1k_tx_ack(struct net_device
*dev
)
436 struct au1k_private
*aup
= netdev_priv(dev
);
437 volatile ring_dest_t
*ptxd
;
439 ptxd
= aup
->tx_ring
[aup
->tx_tail
];
440 while (!(ptxd
->flags
& AU_OWN
) && (aup
->tx_tail
!= aup
->tx_head
)) {
441 update_tx_stats(dev
, ptxd
->flags
,
442 ptxd
->count_1
<<8 | ptxd
->count_0
);
447 aup
->tx_tail
= (aup
->tx_tail
+ 1) & (NUM_IR_DESC
- 1);
448 ptxd
= aup
->tx_ring
[aup
->tx_tail
];
452 netif_wake_queue(dev
);
456 if (aup
->tx_tail
== aup
->tx_head
) {
458 au1k_irda_set_speed(dev
, aup
->newspeed
);
462 writel(read_ir_reg(IR_CONFIG_1
) & ~IR_TX_ENABLE
,
465 writel(read_ir_reg(IR_CONFIG_1
) | IR_RX_ENABLE
,
467 writel(0, IR_RING_PROMPT
);
475 * Au1000 transmit routine.
477 static int au1k_irda_hard_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
479 struct au1k_private
*aup
= netdev_priv(dev
);
480 int speed
= irda_get_next_speed(skb
);
481 volatile ring_dest_t
*ptxd
;
487 if (speed
!= aup
->speed
&& speed
!= -1) {
488 aup
->newspeed
= speed
;
491 if ((skb
->len
== 0) && (aup
->newspeed
)) {
492 if (aup
->tx_tail
== aup
->tx_head
) {
493 au1k_irda_set_speed(dev
, speed
);
500 ptxd
= aup
->tx_ring
[aup
->tx_head
];
503 if (flags
& AU_OWN
) {
504 printk(KERN_DEBUG
"%s: tx_full\n", dev
->name
);
505 netif_stop_queue(dev
);
509 else if (((aup
->tx_head
+ 1) & (NUM_IR_DESC
- 1)) == aup
->tx_tail
) {
510 printk(KERN_DEBUG
"%s: tx_full\n", dev
->name
);
511 netif_stop_queue(dev
);
516 pDB
= aup
->tx_db_inuse
[aup
->tx_head
];
519 if (read_ir_reg(IR_RX_BYTE_CNT
) != 0) {
520 printk("tx warning: rx byte cnt %x\n",
521 read_ir_reg(IR_RX_BYTE_CNT
));
525 if (aup
->speed
== 4000000) {
527 skb_copy_from_linear_data(skb
, pDB
->vaddr
, skb
->len
);
528 ptxd
->count_0
= skb
->len
& 0xff;
529 ptxd
->count_1
= (skb
->len
>> 8) & 0xff;
534 len
= async_wrap_skb(skb
, (u8
*)pDB
->vaddr
, MAX_BUF_SIZE
);
535 ptxd
->count_0
= len
& 0xff;
536 ptxd
->count_1
= (len
>> 8) & 0xff;
537 ptxd
->flags
|= IR_DIS_CRC
;
538 au_writel(au_readl(0xae00000c) & ~(1<<13), 0xae00000c);
540 ptxd
->flags
|= AU_OWN
;
543 writel(read_ir_reg(IR_CONFIG_1
) | IR_TX_ENABLE
, IR_CONFIG_1
);
544 writel(0, IR_RING_PROMPT
);
548 aup
->tx_head
= (aup
->tx_head
+ 1) & (NUM_IR_DESC
- 1);
549 dev
->trans_start
= jiffies
;
555 update_rx_stats(struct net_device
*dev
, u32 status
, u32 count
)
557 struct au1k_private
*aup
= netdev_priv(dev
);
558 struct net_device_stats
*ps
= &aup
->stats
;
562 if (status
& IR_RX_ERROR
) {
564 if (status
& (IR_PHY_ERROR
|IR_FIFO_OVER
))
565 ps
->rx_missed_errors
++;
566 if (status
& IR_MAX_LEN
)
567 ps
->rx_length_errors
++;
568 if (status
& IR_CRC_ERROR
)
572 ps
->rx_bytes
+= count
;
576 * Au1000 receive routine.
578 static int au1k_irda_rx(struct net_device
*dev
)
580 struct au1k_private
*aup
= netdev_priv(dev
);
582 volatile ring_dest_t
*prxd
;
586 prxd
= aup
->rx_ring
[aup
->rx_head
];
589 while (!(flags
& AU_OWN
)) {
590 pDB
= aup
->rx_db_inuse
[aup
->rx_head
];
591 count
= prxd
->count_1
<<8 | prxd
->count_0
;
592 if (!(flags
& IR_RX_ERROR
)) {
594 update_rx_stats(dev
, flags
, count
);
595 skb
=alloc_skb(count
+1,GFP_ATOMIC
);
597 aup
->netdev
->stats
.rx_dropped
++;
601 if (aup
->speed
== 4000000)
604 skb_put(skb
, count
-2);
605 skb_copy_to_linear_data(skb
, pDB
->vaddr
, count
- 2);
607 skb_reset_mac_header(skb
);
608 skb
->protocol
= htons(ETH_P_IRDA
);
613 prxd
->flags
|= AU_OWN
;
614 aup
->rx_head
= (aup
->rx_head
+ 1) & (NUM_IR_DESC
- 1);
615 writel(0, IR_RING_PROMPT
);
618 /* next descriptor */
619 prxd
= aup
->rx_ring
[aup
->rx_head
];
627 static irqreturn_t
au1k_irda_interrupt(int dummy
, void *dev_id
)
629 struct net_device
*dev
= dev_id
;
631 writel(0, IR_INT_CLEAR
); /* ack irda interrupts */
641 * The Tx ring has been full longer than the watchdog timeout
642 * value. The transmitter must be hung?
644 static void au1k_tx_timeout(struct net_device
*dev
)
647 struct au1k_private
*aup
= netdev_priv(dev
);
649 printk(KERN_ERR
"%s: tx timeout\n", dev
->name
);
652 au1k_irda_set_speed(dev
, speed
);
654 netif_wake_queue(dev
);
659 * Set the IrDA communications speed.
662 au1k_irda_set_speed(struct net_device
*dev
, int speed
)
665 struct au1k_private
*aup
= netdev_priv(dev
);
667 int ret
= 0, timeout
= 10, i
;
668 volatile ring_dest_t
*ptxd
;
669 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
670 unsigned long irda_resets
;
673 if (speed
== aup
->speed
)
676 spin_lock_irqsave(&ir_lock
, flags
);
678 /* disable PHY first */
679 writel(read_ir_reg(IR_ENABLE
) & ~0x8000, IR_ENABLE
);
682 writel(read_ir_reg(IR_CONFIG_1
) & ~(IR_RX_ENABLE
|IR_TX_ENABLE
),
685 while (read_ir_reg(IR_ENABLE
) & (IR_RX_STATUS
| IR_TX_STATUS
)) {
688 printk(KERN_ERR
"%s: rx/tx disable timeout\n",
695 writel(read_ir_reg(IR_CONFIG_1
) & ~IR_DMA_ENABLE
, IR_CONFIG_1
);
699 * After we disable tx/rx. the index pointers
702 aup
->tx_head
= aup
->tx_tail
= aup
->rx_head
= 0;
703 for (i
=0; i
<NUM_IR_DESC
; i
++) {
704 ptxd
= aup
->tx_ring
[i
];
710 for (i
=0; i
<NUM_IR_DESC
; i
++) {
711 ptxd
= aup
->rx_ring
[i
];
714 ptxd
->flags
= AU_OWN
;
717 if (speed
== 4000000) {
718 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
719 bcsr
->resets
|= BCSR_RESETS_FIR_SEL
;
720 #else /* Pb1000 and Pb1100 */
721 writel(1<<13, CPLD_AUX1
);
725 #if defined(CONFIG_MIPS_DB1000) || defined(CONFIG_MIPS_DB1100)
726 bcsr
->resets
&= ~BCSR_RESETS_FIR_SEL
;
727 #else /* Pb1000 and Pb1100 */
728 writel(readl(CPLD_AUX1
) & ~(1<<13), CPLD_AUX1
);
734 writel(11<<10 | 12<<5, IR_WRITE_PHY_CONFIG
);
735 writel(IR_SIR_MODE
, IR_CONFIG_1
);
738 writel(5<<10 | 12<<5, IR_WRITE_PHY_CONFIG
);
739 writel(IR_SIR_MODE
, IR_CONFIG_1
);
742 writel(2<<10 | 12<<5, IR_WRITE_PHY_CONFIG
);
743 writel(IR_SIR_MODE
, IR_CONFIG_1
);
746 writel(1<<10 | 12<<5, IR_WRITE_PHY_CONFIG
);
747 writel(IR_SIR_MODE
, IR_CONFIG_1
);
750 writel(12<<5, IR_WRITE_PHY_CONFIG
);
751 writel(IR_SIR_MODE
, IR_CONFIG_1
);
754 writel(0xF, IR_WRITE_PHY_CONFIG
);
755 writel(IR_FIR
|IR_DMA_ENABLE
|IR_RX_ENABLE
, IR_CONFIG_1
);
758 printk(KERN_ERR
"%s unsupported speed %x\n", dev
->name
, speed
);
764 writel(read_ir_reg(IR_ENABLE
) | 0x8000, IR_ENABLE
);
767 control
= read_ir_reg(IR_ENABLE
);
768 writel(0, IR_RING_PROMPT
);
771 if (control
& (1<<14)) {
772 printk(KERN_ERR
"%s: configuration error\n", dev
->name
);
775 if (control
& (1<<11))
776 printk(KERN_DEBUG
"%s Valid SIR config\n", dev
->name
);
777 if (control
& (1<<12))
778 printk(KERN_DEBUG
"%s Valid MIR config\n", dev
->name
);
779 if (control
& (1<<13))
780 printk(KERN_DEBUG
"%s Valid FIR config\n", dev
->name
);
781 if (control
& (1<<10))
782 printk(KERN_DEBUG
"%s TX enabled\n", dev
->name
);
783 if (control
& (1<<9))
784 printk(KERN_DEBUG
"%s RX enabled\n", dev
->name
);
787 spin_unlock_irqrestore(&ir_lock
, flags
);
792 au1k_irda_ioctl(struct net_device
*dev
, struct ifreq
*ifreq
, int cmd
)
794 struct if_irda_req
*rq
= (struct if_irda_req
*)ifreq
;
795 struct au1k_private
*aup
= netdev_priv(dev
);
796 int ret
= -EOPNOTSUPP
;
800 if (capable(CAP_NET_ADMIN
)) {
802 * We are unable to set the speed if the
803 * device is not running.
806 ret
= au1k_irda_set_speed(dev
,
809 printk(KERN_ERR
"%s ioctl: !netif_running\n",
818 if (capable(CAP_NET_ADMIN
)) {
819 irda_device_set_media_busy(dev
, TRUE
);
825 rq
->ifr_receiving
= 0;
833 MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>");
834 MODULE_DESCRIPTION("Au1000 IrDA Device Driver");
836 module_init(au1k_irda_init
);
837 module_exit(au1k_irda_exit
);