1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2 * auto carrier detecting ethernet driver. Also known as the
3 * "Happy Meal Ethernet" found on SunSwift SBUS cards.
5 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6 * 2006, 2008 David S. Miller (davem@davemloft.net)
9 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10 * - port to non-sparc architectures. Tested only on x86 and
11 * only currently works with QFE PCI cards.
12 * - ability to specify the MAC address at module load time by passing this
13 * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
36 #include <linux/bitops.h>
37 #include <linux/dma-mapping.h>
39 #include <asm/system.h>
42 #include <asm/byteorder.h>
46 #include <linux/of_device.h>
47 #include <asm/idprom.h>
48 #include <asm/openprom.h>
49 #include <asm/oplib.h>
51 #include <asm/auxio.h>
53 #include <asm/uaccess.h>
55 #include <asm/pgtable.h>
59 #include <linux/pci.h>
64 #define DRV_NAME "sunhme"
65 #define DRV_VERSION "3.10"
66 #define DRV_RELDATE "August 26, 2008"
67 #define DRV_AUTHOR "David S. Miller (davem@davemloft.net)"
69 static char version
[] =
70 DRV_NAME
".c:v" DRV_VERSION
" " DRV_RELDATE
" " DRV_AUTHOR
"\n";
72 MODULE_VERSION(DRV_VERSION
);
73 MODULE_AUTHOR(DRV_AUTHOR
);
74 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
75 MODULE_LICENSE("GPL");
77 static int macaddr
[6];
79 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
80 module_param_array(macaddr
, int, NULL
, 0);
81 MODULE_PARM_DESC(macaddr
, "Happy Meal MAC address to set");
84 static struct quattro
*qfe_sbus_list
;
88 static struct quattro
*qfe_pci_list
;
98 struct hme_tx_logent
{
102 #define TXLOG_ACTION_IRQ 0x01
103 #define TXLOG_ACTION_TXMIT 0x02
104 #define TXLOG_ACTION_TBUSY 0x04
105 #define TXLOG_ACTION_NBUFS 0x08
108 #define TX_LOG_LEN 128
109 static struct hme_tx_logent tx_log
[TX_LOG_LEN
];
110 static int txlog_cur_entry
;
111 static __inline__
void tx_add_log(struct happy_meal
*hp
, unsigned int a
, unsigned int s
)
113 struct hme_tx_logent
*tlp
;
116 local_irq_save(flags
);
117 tlp
= &tx_log
[txlog_cur_entry
];
118 tlp
->tstamp
= (unsigned int)jiffies
;
119 tlp
->tx_new
= hp
->tx_new
;
120 tlp
->tx_old
= hp
->tx_old
;
123 txlog_cur_entry
= (txlog_cur_entry
+ 1) & (TX_LOG_LEN
- 1);
124 local_irq_restore(flags
);
126 static __inline__
void tx_dump_log(void)
130 this = txlog_cur_entry
;
131 for (i
= 0; i
< TX_LOG_LEN
; i
++) {
132 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i
,
134 tx_log
[this].tx_new
, tx_log
[this].tx_old
,
135 tx_log
[this].action
, tx_log
[this].status
);
136 this = (this + 1) & (TX_LOG_LEN
- 1);
139 static __inline__
void tx_dump_ring(struct happy_meal
*hp
)
141 struct hmeal_init_block
*hb
= hp
->happy_block
;
142 struct happy_meal_txd
*tp
= &hb
->happy_meal_txd
[0];
145 for (i
= 0; i
< TX_RING_SIZE
; i
+=4) {
146 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
148 le32_to_cpu(tp
[i
].tx_flags
), le32_to_cpu(tp
[i
].tx_addr
),
149 le32_to_cpu(tp
[i
+ 1].tx_flags
), le32_to_cpu(tp
[i
+ 1].tx_addr
),
150 le32_to_cpu(tp
[i
+ 2].tx_flags
), le32_to_cpu(tp
[i
+ 2].tx_addr
),
151 le32_to_cpu(tp
[i
+ 3].tx_flags
), le32_to_cpu(tp
[i
+ 3].tx_addr
));
155 #define tx_add_log(hp, a, s) do { } while(0)
156 #define tx_dump_log() do { } while(0)
157 #define tx_dump_ring(hp) do { } while(0)
161 #define HMD(x) printk x
166 /* #define AUTO_SWITCH_DEBUG */
168 #ifdef AUTO_SWITCH_DEBUG
169 #define ASD(x) printk x
174 #define DEFAULT_IPG0 16 /* For lance-mode only */
175 #define DEFAULT_IPG1 8 /* For all modes */
176 #define DEFAULT_IPG2 4 /* For all modes */
177 #define DEFAULT_JAMSIZE 4 /* Toe jam */
179 /* NOTE: In the descriptor writes one _must_ write the address
180 * member _first_. The card must not be allowed to see
181 * the updated descriptor flags until the address is
182 * correct. I've added a write memory barrier between
183 * the two stores so that I can sleep well at night... -DaveM
186 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
187 static void sbus_hme_write32(void __iomem
*reg
, u32 val
)
189 sbus_writel(val
, reg
);
192 static u32
sbus_hme_read32(void __iomem
*reg
)
194 return sbus_readl(reg
);
197 static void sbus_hme_write_rxd(struct happy_meal_rxd
*rxd
, u32 flags
, u32 addr
)
199 rxd
->rx_addr
= (__force hme32
)addr
;
201 rxd
->rx_flags
= (__force hme32
)flags
;
204 static void sbus_hme_write_txd(struct happy_meal_txd
*txd
, u32 flags
, u32 addr
)
206 txd
->tx_addr
= (__force hme32
)addr
;
208 txd
->tx_flags
= (__force hme32
)flags
;
211 static u32
sbus_hme_read_desc32(hme32
*p
)
213 return (__force u32
)*p
;
216 static void pci_hme_write32(void __iomem
*reg
, u32 val
)
221 static u32
pci_hme_read32(void __iomem
*reg
)
226 static void pci_hme_write_rxd(struct happy_meal_rxd
*rxd
, u32 flags
, u32 addr
)
228 rxd
->rx_addr
= (__force hme32
)cpu_to_le32(addr
);
230 rxd
->rx_flags
= (__force hme32
)cpu_to_le32(flags
);
233 static void pci_hme_write_txd(struct happy_meal_txd
*txd
, u32 flags
, u32 addr
)
235 txd
->tx_addr
= (__force hme32
)cpu_to_le32(addr
);
237 txd
->tx_flags
= (__force hme32
)cpu_to_le32(flags
);
240 static u32
pci_hme_read_desc32(hme32
*p
)
242 return le32_to_cpup((__le32
*)p
);
245 #define hme_write32(__hp, __reg, __val) \
246 ((__hp)->write32((__reg), (__val)))
247 #define hme_read32(__hp, __reg) \
248 ((__hp)->read32(__reg))
249 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
250 ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
251 #define hme_write_txd(__hp, __txd, __flags, __addr) \
252 ((__hp)->write_txd((__txd), (__flags), (__addr)))
253 #define hme_read_desc32(__hp, __p) \
254 ((__hp)->read_desc32(__p))
255 #define hme_dma_map(__hp, __ptr, __size, __dir) \
256 ((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
257 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
258 ((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
259 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
260 ((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
261 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
262 ((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
265 /* SBUS only compilation */
266 #define hme_write32(__hp, __reg, __val) \
267 sbus_writel((__val), (__reg))
268 #define hme_read32(__hp, __reg) \
270 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
271 do { (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
273 (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
275 #define hme_write_txd(__hp, __txd, __flags, __addr) \
276 do { (__txd)->tx_addr = (__force hme32)(u32)(__addr); \
278 (__txd)->tx_flags = (__force hme32)(u32)(__flags); \
280 #define hme_read_desc32(__hp, __p) ((__force u32)(hme32)*(__p))
281 #define hme_dma_map(__hp, __ptr, __size, __dir) \
282 dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
283 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
284 dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
285 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
286 dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
287 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
288 dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
290 /* PCI only compilation */
291 #define hme_write32(__hp, __reg, __val) \
292 writel((__val), (__reg))
293 #define hme_read32(__hp, __reg) \
295 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
296 do { (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
298 (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
300 #define hme_write_txd(__hp, __txd, __flags, __addr) \
301 do { (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
303 (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
305 static inline u32
hme_read_desc32(struct happy_meal
*hp
, hme32
*p
)
307 return le32_to_cpup((__le32
*)p
);
309 #define hme_dma_map(__hp, __ptr, __size, __dir) \
310 pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
311 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
312 pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
313 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
314 pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
315 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
316 pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
321 /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */
322 static void BB_PUT_BIT(struct happy_meal
*hp
, void __iomem
*tregs
, int bit
)
324 hme_write32(hp
, tregs
+ TCVR_BBDATA
, bit
);
325 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 0);
326 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 1);
330 static u32
BB_GET_BIT(struct happy_meal
*hp
, void __iomem
*tregs
, int internal
)
334 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 0);
335 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 1);
336 ret
= hme_read32(hp
, tregs
+ TCVR_CFG
);
338 ret
&= TCV_CFG_MDIO0
;
340 ret
&= TCV_CFG_MDIO1
;
346 static u32
BB_GET_BIT2(struct happy_meal
*hp
, void __iomem
*tregs
, int internal
)
350 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 0);
352 retval
= hme_read32(hp
, tregs
+ TCVR_CFG
);
354 retval
&= TCV_CFG_MDIO0
;
356 retval
&= TCV_CFG_MDIO1
;
357 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 1);
362 #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */
364 static int happy_meal_bb_read(struct happy_meal
*hp
,
365 void __iomem
*tregs
, int reg
)
371 ASD(("happy_meal_bb_read: reg=%d ", reg
));
373 /* Enable the MIF BitBang outputs. */
374 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 1);
376 /* Force BitBang into the idle state. */
377 for (i
= 0; i
< 32; i
++)
378 BB_PUT_BIT(hp
, tregs
, 1);
380 /* Give it the read sequence. */
381 BB_PUT_BIT(hp
, tregs
, 0);
382 BB_PUT_BIT(hp
, tregs
, 1);
383 BB_PUT_BIT(hp
, tregs
, 1);
384 BB_PUT_BIT(hp
, tregs
, 0);
386 /* Give it the PHY address. */
387 tmp
= hp
->paddr
& 0xff;
388 for (i
= 4; i
>= 0; i
--)
389 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
391 /* Tell it what register we want to read. */
393 for (i
= 4; i
>= 0; i
--)
394 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
396 /* Close down the MIF BitBang outputs. */
397 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 0);
399 /* Now read in the value. */
400 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
401 for (i
= 15; i
>= 0; i
--)
402 retval
|= BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
403 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
404 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
405 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
406 ASD(("value=%x\n", retval
));
410 static void happy_meal_bb_write(struct happy_meal
*hp
,
411 void __iomem
*tregs
, int reg
,
412 unsigned short value
)
417 ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg
, value
));
419 /* Enable the MIF BitBang outputs. */
420 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 1);
422 /* Force BitBang into the idle state. */
423 for (i
= 0; i
< 32; i
++)
424 BB_PUT_BIT(hp
, tregs
, 1);
426 /* Give it write sequence. */
427 BB_PUT_BIT(hp
, tregs
, 0);
428 BB_PUT_BIT(hp
, tregs
, 1);
429 BB_PUT_BIT(hp
, tregs
, 0);
430 BB_PUT_BIT(hp
, tregs
, 1);
432 /* Give it the PHY address. */
433 tmp
= (hp
->paddr
& 0xff);
434 for (i
= 4; i
>= 0; i
--)
435 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
437 /* Tell it what register we will be writing. */
439 for (i
= 4; i
>= 0; i
--)
440 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
442 /* Tell it to become ready for the bits. */
443 BB_PUT_BIT(hp
, tregs
, 1);
444 BB_PUT_BIT(hp
, tregs
, 0);
446 for (i
= 15; i
>= 0; i
--)
447 BB_PUT_BIT(hp
, tregs
, ((value
>> i
) & 1));
449 /* Close down the MIF BitBang outputs. */
450 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 0);
453 #define TCVR_READ_TRIES 16
455 static int happy_meal_tcvr_read(struct happy_meal
*hp
,
456 void __iomem
*tregs
, int reg
)
458 int tries
= TCVR_READ_TRIES
;
461 ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg
));
462 if (hp
->tcvr_type
== none
) {
463 ASD(("no transceiver, value=TCVR_FAILURE\n"));
467 if (!(hp
->happy_flags
& HFLAG_FENABLE
)) {
468 ASD(("doing bit bang\n"));
469 return happy_meal_bb_read(hp
, tregs
, reg
);
472 hme_write32(hp
, tregs
+ TCVR_FRAME
,
473 (FRAME_READ
| (hp
->paddr
<< 23) | ((reg
& 0xff) << 18)));
474 while (!(hme_read32(hp
, tregs
+ TCVR_FRAME
) & 0x10000) && --tries
)
477 printk(KERN_ERR
"happy meal: Aieee, transceiver MIF read bolixed\n");
480 retval
= hme_read32(hp
, tregs
+ TCVR_FRAME
) & 0xffff;
481 ASD(("value=%04x\n", retval
));
485 #define TCVR_WRITE_TRIES 16
487 static void happy_meal_tcvr_write(struct happy_meal
*hp
,
488 void __iomem
*tregs
, int reg
,
489 unsigned short value
)
491 int tries
= TCVR_WRITE_TRIES
;
493 ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg
, value
));
495 /* Welcome to Sun Microsystems, can I take your order please? */
496 if (!(hp
->happy_flags
& HFLAG_FENABLE
)) {
497 happy_meal_bb_write(hp
, tregs
, reg
, value
);
501 /* Would you like fries with that? */
502 hme_write32(hp
, tregs
+ TCVR_FRAME
,
503 (FRAME_WRITE
| (hp
->paddr
<< 23) |
504 ((reg
& 0xff) << 18) | (value
& 0xffff)));
505 while (!(hme_read32(hp
, tregs
+ TCVR_FRAME
) & 0x10000) && --tries
)
510 printk(KERN_ERR
"happy meal: Aieee, transceiver MIF write bolixed\n");
512 /* Fifty-two cents is your change, have a nice day. */
515 /* Auto negotiation. The scheme is very simple. We have a timer routine
516 * that keeps watching the auto negotiation process as it progresses.
517 * The DP83840 is first told to start doing it's thing, we set up the time
518 * and place the timer state machine in it's initial state.
520 * Here the timer peeks at the DP83840 status registers at each click to see
521 * if the auto negotiation has completed, we assume here that the DP83840 PHY
522 * will time out at some point and just tell us what (didn't) happen. For
523 * complete coverage we only allow so many of the ticks at this level to run,
524 * when this has expired we print a warning message and try another strategy.
525 * This "other" strategy is to force the interface into various speed/duplex
526 * configurations and we stop when we see a link-up condition before the
527 * maximum number of "peek" ticks have occurred.
529 * Once a valid link status has been detected we configure the BigMAC and
530 * the rest of the Happy Meal to speak the most efficient protocol we could
531 * get a clean link for. The priority for link configurations, highest first
533 * 100 Base-T Full Duplex
534 * 100 Base-T Half Duplex
535 * 10 Base-T Full Duplex
536 * 10 Base-T Half Duplex
538 * We start a new timer now, after a successful auto negotiation status has
539 * been detected. This timer just waits for the link-up bit to get set in
540 * the BMCR of the DP83840. When this occurs we print a kernel log message
541 * describing the link type in use and the fact that it is up.
543 * If a fatal error of some sort is signalled and detected in the interrupt
544 * service routine, and the chip is reset, or the link is ifconfig'd down
545 * and then back up, this entire process repeats itself all over again.
547 static int try_next_permutation(struct happy_meal
*hp
, void __iomem
*tregs
)
549 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
551 /* Downgrade from full to half duplex. Only possible
554 if (hp
->sw_bmcr
& BMCR_FULLDPLX
) {
555 hp
->sw_bmcr
&= ~(BMCR_FULLDPLX
);
556 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
560 /* Downgrade from 100 to 10. */
561 if (hp
->sw_bmcr
& BMCR_SPEED100
) {
562 hp
->sw_bmcr
&= ~(BMCR_SPEED100
);
563 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
567 /* We've tried everything. */
571 static void display_link_mode(struct happy_meal
*hp
, void __iomem
*tregs
)
573 printk(KERN_INFO
"%s: Link is up using ", hp
->dev
->name
);
574 if (hp
->tcvr_type
== external
)
578 printk("transceiver at ");
579 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, tregs
, MII_LPA
);
580 if (hp
->sw_lpa
& (LPA_100HALF
| LPA_100FULL
)) {
581 if (hp
->sw_lpa
& LPA_100FULL
)
582 printk("100Mb/s, Full Duplex.\n");
584 printk("100Mb/s, Half Duplex.\n");
586 if (hp
->sw_lpa
& LPA_10FULL
)
587 printk("10Mb/s, Full Duplex.\n");
589 printk("10Mb/s, Half Duplex.\n");
593 static void display_forced_link_mode(struct happy_meal
*hp
, void __iomem
*tregs
)
595 printk(KERN_INFO
"%s: Link has been forced up using ", hp
->dev
->name
);
596 if (hp
->tcvr_type
== external
)
600 printk("transceiver at ");
601 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
602 if (hp
->sw_bmcr
& BMCR_SPEED100
)
606 if (hp
->sw_bmcr
& BMCR_FULLDPLX
)
607 printk("Full Duplex.\n");
609 printk("Half Duplex.\n");
612 static int set_happy_link_modes(struct happy_meal
*hp
, void __iomem
*tregs
)
616 /* All we care about is making sure the bigmac tx_cfg has a
617 * proper duplex setting.
619 if (hp
->timer_state
== arbwait
) {
620 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, tregs
, MII_LPA
);
621 if (!(hp
->sw_lpa
& (LPA_10HALF
| LPA_10FULL
| LPA_100HALF
| LPA_100FULL
)))
623 if (hp
->sw_lpa
& LPA_100FULL
)
625 else if (hp
->sw_lpa
& LPA_100HALF
)
627 else if (hp
->sw_lpa
& LPA_10FULL
)
632 /* Forcing a link mode. */
633 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
634 if (hp
->sw_bmcr
& BMCR_FULLDPLX
)
640 /* Before changing other bits in the tx_cfg register, and in
641 * general any of other the TX config registers too, you
644 * 2) Poll with reads until that bit reads back as zero
645 * 3) Make TX configuration changes
646 * 4) Set Enable once more
648 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
649 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) &
650 ~(BIGMAC_TXCFG_ENABLE
));
651 while (hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) & BIGMAC_TXCFG_ENABLE
)
654 hp
->happy_flags
|= HFLAG_FULL
;
655 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
656 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) |
657 BIGMAC_TXCFG_FULLDPLX
);
659 hp
->happy_flags
&= ~(HFLAG_FULL
);
660 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
661 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) &
662 ~(BIGMAC_TXCFG_FULLDPLX
));
664 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
665 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) |
666 BIGMAC_TXCFG_ENABLE
);
672 static int happy_meal_init(struct happy_meal
*hp
);
674 static int is_lucent_phy(struct happy_meal
*hp
)
676 void __iomem
*tregs
= hp
->tcvregs
;
677 unsigned short mr2
, mr3
;
680 mr2
= happy_meal_tcvr_read(hp
, tregs
, 2);
681 mr3
= happy_meal_tcvr_read(hp
, tregs
, 3);
682 if ((mr2
& 0xffff) == 0x0180 &&
683 ((mr3
& 0xffff) >> 10) == 0x1d)
689 static void happy_meal_timer(unsigned long data
)
691 struct happy_meal
*hp
= (struct happy_meal
*) data
;
692 void __iomem
*tregs
= hp
->tcvregs
;
693 int restart_timer
= 0;
695 spin_lock_irq(&hp
->happy_lock
);
698 switch(hp
->timer_state
) {
700 /* Only allow for 5 ticks, thats 10 seconds and much too
701 * long to wait for arbitration to complete.
703 if (hp
->timer_ticks
>= 10) {
704 /* Enter force mode. */
706 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
707 printk(KERN_NOTICE
"%s: Auto-Negotiation unsuccessful, trying force link mode\n",
709 hp
->sw_bmcr
= BMCR_SPEED100
;
710 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
712 if (!is_lucent_phy(hp
)) {
713 /* OK, seems we need do disable the transceiver for the first
714 * tick to make sure we get an accurate link state at the
717 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
, DP83840_CSCONFIG
);
718 hp
->sw_csconfig
&= ~(CSCONFIG_TCVDISAB
);
719 happy_meal_tcvr_write(hp
, tregs
, DP83840_CSCONFIG
, hp
->sw_csconfig
);
721 hp
->timer_state
= ltrywait
;
725 /* Anything interesting happen? */
726 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
727 if (hp
->sw_bmsr
& BMSR_ANEGCOMPLETE
) {
730 /* Just what we've been waiting for... */
731 ret
= set_happy_link_modes(hp
, tregs
);
733 /* Ooops, something bad happened, go to force
736 * XXX Broken hubs which don't support 802.3u
737 * XXX auto-negotiation make this happen as well.
742 /* Success, at least so far, advance our state engine. */
743 hp
->timer_state
= lupwait
;
752 /* Auto negotiation was successful and we are awaiting a
753 * link up status. I have decided to let this timer run
754 * forever until some sort of error is signalled, reporting
755 * a message to the user at 10 second intervals.
757 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
758 if (hp
->sw_bmsr
& BMSR_LSTATUS
) {
759 /* Wheee, it's up, display the link mode in use and put
760 * the timer to sleep.
762 display_link_mode(hp
, tregs
);
763 hp
->timer_state
= asleep
;
766 if (hp
->timer_ticks
>= 10) {
767 printk(KERN_NOTICE
"%s: Auto negotiation successful, link still "
768 "not completely up.\n", hp
->dev
->name
);
778 /* Making the timeout here too long can make it take
779 * annoyingly long to attempt all of the link mode
780 * permutations, but then again this is essentially
781 * error recovery code for the most part.
783 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
784 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
, DP83840_CSCONFIG
);
785 if (hp
->timer_ticks
== 1) {
786 if (!is_lucent_phy(hp
)) {
787 /* Re-enable transceiver, we'll re-enable the transceiver next
788 * tick, then check link state on the following tick.
790 hp
->sw_csconfig
|= CSCONFIG_TCVDISAB
;
791 happy_meal_tcvr_write(hp
, tregs
,
792 DP83840_CSCONFIG
, hp
->sw_csconfig
);
797 if (hp
->timer_ticks
== 2) {
798 if (!is_lucent_phy(hp
)) {
799 hp
->sw_csconfig
&= ~(CSCONFIG_TCVDISAB
);
800 happy_meal_tcvr_write(hp
, tregs
,
801 DP83840_CSCONFIG
, hp
->sw_csconfig
);
806 if (hp
->sw_bmsr
& BMSR_LSTATUS
) {
807 /* Force mode selection success. */
808 display_forced_link_mode(hp
, tregs
);
809 set_happy_link_modes(hp
, tregs
); /* XXX error? then what? */
810 hp
->timer_state
= asleep
;
813 if (hp
->timer_ticks
>= 4) { /* 6 seconds or so... */
816 ret
= try_next_permutation(hp
, tregs
);
818 /* Aieee, tried them all, reset the
819 * chip and try all over again.
822 /* Let the user know... */
823 printk(KERN_NOTICE
"%s: Link down, cable problem?\n",
826 ret
= happy_meal_init(hp
);
829 printk(KERN_ERR
"%s: Error, cannot re-init the "
830 "Happy Meal.\n", hp
->dev
->name
);
834 if (!is_lucent_phy(hp
)) {
835 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
,
837 hp
->sw_csconfig
|= CSCONFIG_TCVDISAB
;
838 happy_meal_tcvr_write(hp
, tregs
,
839 DP83840_CSCONFIG
, hp
->sw_csconfig
);
851 /* Can't happens.... */
852 printk(KERN_ERR
"%s: Aieee, link timer is asleep but we got one anyways!\n",
856 hp
->timer_state
= asleep
; /* foo on you */
861 hp
->happy_timer
.expires
= jiffies
+ ((12 * HZ
)/10); /* 1.2 sec. */
862 add_timer(&hp
->happy_timer
);
866 spin_unlock_irq(&hp
->happy_lock
);
869 #define TX_RESET_TRIES 32
870 #define RX_RESET_TRIES 32
872 /* hp->happy_lock must be held */
873 static void happy_meal_tx_reset(struct happy_meal
*hp
, void __iomem
*bregs
)
875 int tries
= TX_RESET_TRIES
;
877 HMD(("happy_meal_tx_reset: reset, "));
879 /* Would you like to try our SMCC Delux? */
880 hme_write32(hp
, bregs
+ BMAC_TXSWRESET
, 0);
881 while ((hme_read32(hp
, bregs
+ BMAC_TXSWRESET
) & 1) && --tries
)
884 /* Lettuce, tomato, buggy hardware (no extra charge)? */
886 printk(KERN_ERR
"happy meal: Transceiver BigMac ATTACK!");
892 /* hp->happy_lock must be held */
893 static void happy_meal_rx_reset(struct happy_meal
*hp
, void __iomem
*bregs
)
895 int tries
= RX_RESET_TRIES
;
897 HMD(("happy_meal_rx_reset: reset, "));
899 /* We have a special on GNU/Viking hardware bugs today. */
900 hme_write32(hp
, bregs
+ BMAC_RXSWRESET
, 0);
901 while ((hme_read32(hp
, bregs
+ BMAC_RXSWRESET
) & 1) && --tries
)
904 /* Will that be all? */
906 printk(KERN_ERR
"happy meal: Receiver BigMac ATTACK!");
908 /* Don't forget your vik_1137125_wa. Have a nice day. */
912 #define STOP_TRIES 16
914 /* hp->happy_lock must be held */
915 static void happy_meal_stop(struct happy_meal
*hp
, void __iomem
*gregs
)
917 int tries
= STOP_TRIES
;
919 HMD(("happy_meal_stop: reset, "));
921 /* We're consolidating our STB products, it's your lucky day. */
922 hme_write32(hp
, gregs
+ GREG_SWRESET
, GREG_RESET_ALL
);
923 while (hme_read32(hp
, gregs
+ GREG_SWRESET
) && --tries
)
926 /* Come back next week when we are "Sun Microelectronics". */
928 printk(KERN_ERR
"happy meal: Fry guys.");
930 /* Remember: "Different name, same old buggy as shit hardware." */
934 /* hp->happy_lock must be held */
935 static void happy_meal_get_counters(struct happy_meal
*hp
, void __iomem
*bregs
)
937 struct net_device_stats
*stats
= &hp
->net_stats
;
939 stats
->rx_crc_errors
+= hme_read32(hp
, bregs
+ BMAC_RCRCECTR
);
940 hme_write32(hp
, bregs
+ BMAC_RCRCECTR
, 0);
942 stats
->rx_frame_errors
+= hme_read32(hp
, bregs
+ BMAC_UNALECTR
);
943 hme_write32(hp
, bregs
+ BMAC_UNALECTR
, 0);
945 stats
->rx_length_errors
+= hme_read32(hp
, bregs
+ BMAC_GLECTR
);
946 hme_write32(hp
, bregs
+ BMAC_GLECTR
, 0);
948 stats
->tx_aborted_errors
+= hme_read32(hp
, bregs
+ BMAC_EXCTR
);
951 (hme_read32(hp
, bregs
+ BMAC_EXCTR
) +
952 hme_read32(hp
, bregs
+ BMAC_LTCTR
));
953 hme_write32(hp
, bregs
+ BMAC_EXCTR
, 0);
954 hme_write32(hp
, bregs
+ BMAC_LTCTR
, 0);
957 /* hp->happy_lock must be held */
958 static void happy_meal_poll_stop(struct happy_meal
*hp
, void __iomem
*tregs
)
960 ASD(("happy_meal_poll_stop: "));
962 /* If polling disabled or not polling already, nothing to do. */
963 if ((hp
->happy_flags
& (HFLAG_POLLENABLE
| HFLAG_POLL
)) !=
964 (HFLAG_POLLENABLE
| HFLAG_POLL
)) {
965 HMD(("not polling, return\n"));
969 /* Shut up the MIF. */
970 ASD(("were polling, mif ints off, "));
971 hme_write32(hp
, tregs
+ TCVR_IMASK
, 0xffff);
973 /* Turn off polling. */
974 ASD(("polling off, "));
975 hme_write32(hp
, tregs
+ TCVR_CFG
,
976 hme_read32(hp
, tregs
+ TCVR_CFG
) & ~(TCV_CFG_PENABLE
));
978 /* We are no longer polling. */
979 hp
->happy_flags
&= ~(HFLAG_POLL
);
981 /* Let the bits set. */
986 /* Only Sun can take such nice parts and fuck up the programming interface
987 * like this. Good job guys...
989 #define TCVR_RESET_TRIES 16 /* It should reset quickly */
990 #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */
992 /* hp->happy_lock must be held */
993 static int happy_meal_tcvr_reset(struct happy_meal
*hp
, void __iomem
*tregs
)
996 int result
, tries
= TCVR_RESET_TRIES
;
998 tconfig
= hme_read32(hp
, tregs
+ TCVR_CFG
);
999 ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig
));
1000 if (hp
->tcvr_type
== external
) {
1002 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
& ~(TCV_CFG_PSELECT
));
1003 hp
->tcvr_type
= internal
;
1004 hp
->paddr
= TCV_PADDR_ITX
;
1006 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
,
1007 (BMCR_LOOPBACK
|BMCR_PDOWN
|BMCR_ISOLATE
));
1008 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1009 if (result
== TCVR_FAILURE
) {
1010 ASD(("phyread_fail>\n"));
1013 ASD(("phyread_ok,PSELECT>"));
1014 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
| TCV_CFG_PSELECT
);
1015 hp
->tcvr_type
= external
;
1016 hp
->paddr
= TCV_PADDR_ETX
;
1018 if (tconfig
& TCV_CFG_MDIO1
) {
1019 ASD(("internal<PSELECT,"));
1020 hme_write32(hp
, tregs
+ TCVR_CFG
, (tconfig
| TCV_CFG_PSELECT
));
1022 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
,
1023 (BMCR_LOOPBACK
|BMCR_PDOWN
|BMCR_ISOLATE
));
1024 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1025 if (result
== TCVR_FAILURE
) {
1026 ASD(("phyread_fail>\n"));
1029 ASD(("phyread_ok,~PSELECT>"));
1030 hme_write32(hp
, tregs
+ TCVR_CFG
, (tconfig
& ~(TCV_CFG_PSELECT
)));
1031 hp
->tcvr_type
= internal
;
1032 hp
->paddr
= TCV_PADDR_ITX
;
1036 ASD(("BMCR_RESET "));
1037 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, BMCR_RESET
);
1040 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1041 if (result
== TCVR_FAILURE
)
1043 hp
->sw_bmcr
= result
;
1044 if (!(result
& BMCR_RESET
))
1049 ASD(("BMCR RESET FAILED!\n"));
1052 ASD(("RESET_OK\n"));
1054 /* Get fresh copies of the PHY registers. */
1055 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
1056 hp
->sw_physid1
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID1
);
1057 hp
->sw_physid2
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID2
);
1058 hp
->sw_advertise
= happy_meal_tcvr_read(hp
, tregs
, MII_ADVERTISE
);
1061 hp
->sw_bmcr
&= ~(BMCR_ISOLATE
);
1062 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1064 tries
= TCVR_UNISOLATE_TRIES
;
1066 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1067 if (result
== TCVR_FAILURE
)
1069 if (!(result
& BMCR_ISOLATE
))
1074 ASD((" FAILED!\n"));
1077 ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1078 if (!is_lucent_phy(hp
)) {
1079 result
= happy_meal_tcvr_read(hp
, tregs
,
1081 happy_meal_tcvr_write(hp
, tregs
,
1082 DP83840_CSCONFIG
, (result
| CSCONFIG_DFBYPASS
));
1087 /* Figure out whether we have an internal or external transceiver.
1089 * hp->happy_lock must be held
1091 static void happy_meal_transceiver_check(struct happy_meal
*hp
, void __iomem
*tregs
)
1093 unsigned long tconfig
= hme_read32(hp
, tregs
+ TCVR_CFG
);
1095 ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig
));
1096 if (hp
->happy_flags
& HFLAG_POLL
) {
1097 /* If we are polling, we must stop to get the transceiver type. */
1098 ASD(("<polling> "));
1099 if (hp
->tcvr_type
== internal
) {
1100 if (tconfig
& TCV_CFG_MDIO1
) {
1101 ASD(("<internal> <poll stop> "));
1102 happy_meal_poll_stop(hp
, tregs
);
1103 hp
->paddr
= TCV_PADDR_ETX
;
1104 hp
->tcvr_type
= external
;
1105 ASD(("<external>\n"));
1106 tconfig
&= ~(TCV_CFG_PENABLE
);
1107 tconfig
|= TCV_CFG_PSELECT
;
1108 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
);
1111 if (hp
->tcvr_type
== external
) {
1112 ASD(("<external> "));
1113 if (!(hme_read32(hp
, tregs
+ TCVR_STATUS
) >> 16)) {
1114 ASD(("<poll stop> "));
1115 happy_meal_poll_stop(hp
, tregs
);
1116 hp
->paddr
= TCV_PADDR_ITX
;
1117 hp
->tcvr_type
= internal
;
1118 ASD(("<internal>\n"));
1119 hme_write32(hp
, tregs
+ TCVR_CFG
,
1120 hme_read32(hp
, tregs
+ TCVR_CFG
) &
1121 ~(TCV_CFG_PSELECT
));
1129 u32 reread
= hme_read32(hp
, tregs
+ TCVR_CFG
);
1131 /* Else we can just work off of the MDIO bits. */
1132 ASD(("<not polling> "));
1133 if (reread
& TCV_CFG_MDIO1
) {
1134 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
| TCV_CFG_PSELECT
);
1135 hp
->paddr
= TCV_PADDR_ETX
;
1136 hp
->tcvr_type
= external
;
1137 ASD(("<external>\n"));
1139 if (reread
& TCV_CFG_MDIO0
) {
1140 hme_write32(hp
, tregs
+ TCVR_CFG
,
1141 tconfig
& ~(TCV_CFG_PSELECT
));
1142 hp
->paddr
= TCV_PADDR_ITX
;
1143 hp
->tcvr_type
= internal
;
1144 ASD(("<internal>\n"));
1146 printk(KERN_ERR
"happy meal: Transceiver and a coke please.");
1147 hp
->tcvr_type
= none
; /* Grrr... */
1154 /* The receive ring buffers are a bit tricky to get right. Here goes...
1156 * The buffers we dma into must be 64 byte aligned. So we use a special
1157 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1160 * We use skb_reserve() to align the data block we get in the skb. We
1161 * also program the etxregs->cfg register to use an offset of 2. This
1162 * imperical constant plus the ethernet header size will always leave
1163 * us with a nicely aligned ip header once we pass things up to the
1166 * The numbers work out to:
1168 * Max ethernet frame size 1518
1169 * Ethernet header size 14
1170 * Happy Meal base offset 2
1172 * Say a skb data area is at 0xf001b010, and its size alloced is
1173 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1175 * First our alloc_skb() routine aligns the data base to a 64 byte
1176 * boundary. We now have 0xf001b040 as our skb data address. We
1177 * plug this into the receive descriptor address.
1179 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1180 * So now the data we will end up looking at starts at 0xf001b042. When
1181 * the packet arrives, we will check out the size received and subtract
1182 * this from the skb->length. Then we just pass the packet up to the
1183 * protocols as is, and allocate a new skb to replace this slot we have
1184 * just received from.
1186 * The ethernet layer will strip the ether header from the front of the
1187 * skb we just sent to it, this leaves us with the ip header sitting
1188 * nicely aligned at 0xf001b050. Also, for tcp and udp packets the
1189 * Happy Meal has even checksummed the tcp/udp data for us. The 16
1190 * bit checksum is obtained from the low bits of the receive descriptor
1193 * skb->csum = rxd->rx_flags & 0xffff;
1194 * skb->ip_summed = CHECKSUM_COMPLETE;
1196 * before sending off the skb to the protocols, and we are good as gold.
1198 static void happy_meal_clean_rings(struct happy_meal
*hp
)
1202 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1203 if (hp
->rx_skbs
[i
] != NULL
) {
1204 struct sk_buff
*skb
= hp
->rx_skbs
[i
];
1205 struct happy_meal_rxd
*rxd
;
1208 rxd
= &hp
->happy_block
->happy_meal_rxd
[i
];
1209 dma_addr
= hme_read_desc32(hp
, &rxd
->rx_addr
);
1210 dma_unmap_single(hp
->dma_dev
, dma_addr
,
1211 RX_BUF_ALLOC_SIZE
, DMA_FROM_DEVICE
);
1212 dev_kfree_skb_any(skb
);
1213 hp
->rx_skbs
[i
] = NULL
;
1217 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1218 if (hp
->tx_skbs
[i
] != NULL
) {
1219 struct sk_buff
*skb
= hp
->tx_skbs
[i
];
1220 struct happy_meal_txd
*txd
;
1224 hp
->tx_skbs
[i
] = NULL
;
1226 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1227 txd
= &hp
->happy_block
->happy_meal_txd
[i
];
1228 dma_addr
= hme_read_desc32(hp
, &txd
->tx_addr
);
1229 dma_unmap_single(hp
->dma_dev
, dma_addr
,
1230 (hme_read_desc32(hp
, &txd
->tx_flags
)
1234 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1238 dev_kfree_skb_any(skb
);
1243 /* hp->happy_lock must be held */
1244 static void happy_meal_init_rings(struct happy_meal
*hp
)
1246 struct hmeal_init_block
*hb
= hp
->happy_block
;
1247 struct net_device
*dev
= hp
->dev
;
1250 HMD(("happy_meal_init_rings: counters to zero, "));
1251 hp
->rx_new
= hp
->rx_old
= hp
->tx_new
= hp
->tx_old
= 0;
1253 /* Free any skippy bufs left around in the rings. */
1255 happy_meal_clean_rings(hp
);
1257 /* Now get new skippy bufs for the receive ring. */
1258 HMD(("init rxring, "));
1259 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1260 struct sk_buff
*skb
;
1262 skb
= happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE
, GFP_ATOMIC
);
1264 hme_write_rxd(hp
, &hb
->happy_meal_rxd
[i
], 0, 0);
1267 hp
->rx_skbs
[i
] = skb
;
1270 /* Because we reserve afterwards. */
1271 skb_put(skb
, (ETH_FRAME_LEN
+ RX_OFFSET
+ 4));
1272 hme_write_rxd(hp
, &hb
->happy_meal_rxd
[i
],
1273 (RXFLAG_OWN
| ((RX_BUF_ALLOC_SIZE
- RX_OFFSET
) << 16)),
1274 dma_map_single(hp
->dma_dev
, skb
->data
, RX_BUF_ALLOC_SIZE
,
1276 skb_reserve(skb
, RX_OFFSET
);
1279 HMD(("init txring, "));
1280 for (i
= 0; i
< TX_RING_SIZE
; i
++)
1281 hme_write_txd(hp
, &hb
->happy_meal_txd
[i
], 0, 0);
1286 /* hp->happy_lock must be held */
1287 static void happy_meal_begin_auto_negotiation(struct happy_meal
*hp
,
1288 void __iomem
*tregs
,
1289 struct ethtool_cmd
*ep
)
1293 /* Read all of the registers we are interested in now. */
1294 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
1295 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1296 hp
->sw_physid1
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID1
);
1297 hp
->sw_physid2
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID2
);
1299 /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1301 hp
->sw_advertise
= happy_meal_tcvr_read(hp
, tregs
, MII_ADVERTISE
);
1302 if (ep
== NULL
|| ep
->autoneg
== AUTONEG_ENABLE
) {
1303 /* Advertise everything we can support. */
1304 if (hp
->sw_bmsr
& BMSR_10HALF
)
1305 hp
->sw_advertise
|= (ADVERTISE_10HALF
);
1307 hp
->sw_advertise
&= ~(ADVERTISE_10HALF
);
1309 if (hp
->sw_bmsr
& BMSR_10FULL
)
1310 hp
->sw_advertise
|= (ADVERTISE_10FULL
);
1312 hp
->sw_advertise
&= ~(ADVERTISE_10FULL
);
1313 if (hp
->sw_bmsr
& BMSR_100HALF
)
1314 hp
->sw_advertise
|= (ADVERTISE_100HALF
);
1316 hp
->sw_advertise
&= ~(ADVERTISE_100HALF
);
1317 if (hp
->sw_bmsr
& BMSR_100FULL
)
1318 hp
->sw_advertise
|= (ADVERTISE_100FULL
);
1320 hp
->sw_advertise
&= ~(ADVERTISE_100FULL
);
1321 happy_meal_tcvr_write(hp
, tregs
, MII_ADVERTISE
, hp
->sw_advertise
);
1323 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1324 * XXX and this is because the DP83840 does not support it, changes
1325 * XXX would need to be made to the tx/rx logic in the driver as well
1326 * XXX so I completely skip checking for it in the BMSR for now.
1329 #ifdef AUTO_SWITCH_DEBUG
1330 ASD(("%s: Advertising [ ", hp
->dev
->name
));
1331 if (hp
->sw_advertise
& ADVERTISE_10HALF
)
1333 if (hp
->sw_advertise
& ADVERTISE_10FULL
)
1335 if (hp
->sw_advertise
& ADVERTISE_100HALF
)
1337 if (hp
->sw_advertise
& ADVERTISE_100FULL
)
1341 /* Enable Auto-Negotiation, this is usually on already... */
1342 hp
->sw_bmcr
|= BMCR_ANENABLE
;
1343 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1345 /* Restart it to make sure it is going. */
1346 hp
->sw_bmcr
|= BMCR_ANRESTART
;
1347 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1349 /* BMCR_ANRESTART self clears when the process has begun. */
1351 timeout
= 64; /* More than enough. */
1353 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1354 if (!(hp
->sw_bmcr
& BMCR_ANRESTART
))
1355 break; /* got it. */
1359 printk(KERN_ERR
"%s: Happy Meal would not start auto negotiation "
1360 "BMCR=0x%04x\n", hp
->dev
->name
, hp
->sw_bmcr
);
1361 printk(KERN_NOTICE
"%s: Performing force link detection.\n",
1365 hp
->timer_state
= arbwait
;
1369 /* Force the link up, trying first a particular mode.
1370 * Either we are here at the request of ethtool or
1371 * because the Happy Meal would not start to autoneg.
1374 /* Disable auto-negotiation in BMCR, enable the duplex and
1375 * speed setting, init the timer state machine, and fire it off.
1377 if (ep
== NULL
|| ep
->autoneg
== AUTONEG_ENABLE
) {
1378 hp
->sw_bmcr
= BMCR_SPEED100
;
1380 if (ep
->speed
== SPEED_100
)
1381 hp
->sw_bmcr
= BMCR_SPEED100
;
1384 if (ep
->duplex
== DUPLEX_FULL
)
1385 hp
->sw_bmcr
|= BMCR_FULLDPLX
;
1387 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1389 if (!is_lucent_phy(hp
)) {
1390 /* OK, seems we need do disable the transceiver for the first
1391 * tick to make sure we get an accurate link state at the
1394 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
,
1396 hp
->sw_csconfig
&= ~(CSCONFIG_TCVDISAB
);
1397 happy_meal_tcvr_write(hp
, tregs
, DP83840_CSCONFIG
,
1400 hp
->timer_state
= ltrywait
;
1403 hp
->timer_ticks
= 0;
1404 hp
->happy_timer
.expires
= jiffies
+ (12 * HZ
)/10; /* 1.2 sec. */
1405 hp
->happy_timer
.data
= (unsigned long) hp
;
1406 hp
->happy_timer
.function
= &happy_meal_timer
;
1407 add_timer(&hp
->happy_timer
);
1410 /* hp->happy_lock must be held */
1411 static int happy_meal_init(struct happy_meal
*hp
)
1413 void __iomem
*gregs
= hp
->gregs
;
1414 void __iomem
*etxregs
= hp
->etxregs
;
1415 void __iomem
*erxregs
= hp
->erxregs
;
1416 void __iomem
*bregs
= hp
->bigmacregs
;
1417 void __iomem
*tregs
= hp
->tcvregs
;
1419 unsigned char *e
= &hp
->dev
->dev_addr
[0];
1421 /* If auto-negotiation timer is running, kill it. */
1422 del_timer(&hp
->happy_timer
);
1424 HMD(("happy_meal_init: happy_flags[%08x] ",
1426 if (!(hp
->happy_flags
& HFLAG_INIT
)) {
1427 HMD(("set HFLAG_INIT, "));
1428 hp
->happy_flags
|= HFLAG_INIT
;
1429 happy_meal_get_counters(hp
, bregs
);
1433 HMD(("to happy_meal_poll_stop\n"));
1434 happy_meal_poll_stop(hp
, tregs
);
1436 /* Stop transmitter and receiver. */
1437 HMD(("happy_meal_init: to happy_meal_stop\n"));
1438 happy_meal_stop(hp
, gregs
);
1440 /* Alloc and reset the tx/rx descriptor chains. */
1441 HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1442 happy_meal_init_rings(hp
);
1444 /* Shut up the MIF. */
1445 HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1446 hme_read32(hp
, tregs
+ TCVR_IMASK
)));
1447 hme_write32(hp
, tregs
+ TCVR_IMASK
, 0xffff);
1449 /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1450 if (hp
->happy_flags
& HFLAG_FENABLE
) {
1451 HMD(("use frame old[%08x], ",
1452 hme_read32(hp
, tregs
+ TCVR_CFG
)));
1453 hme_write32(hp
, tregs
+ TCVR_CFG
,
1454 hme_read32(hp
, tregs
+ TCVR_CFG
) & ~(TCV_CFG_BENABLE
));
1456 HMD(("use bitbang old[%08x], ",
1457 hme_read32(hp
, tregs
+ TCVR_CFG
)));
1458 hme_write32(hp
, tregs
+ TCVR_CFG
,
1459 hme_read32(hp
, tregs
+ TCVR_CFG
) | TCV_CFG_BENABLE
);
1462 /* Check the state of the transceiver. */
1463 HMD(("to happy_meal_transceiver_check\n"));
1464 happy_meal_transceiver_check(hp
, tregs
);
1466 /* Put the Big Mac into a sane state. */
1467 HMD(("happy_meal_init: "));
1468 switch(hp
->tcvr_type
) {
1470 /* Cannot operate if we don't know the transceiver type! */
1471 HMD(("AAIEEE no transceiver type, EAGAIN"));
1475 /* Using the MII buffers. */
1476 HMD(("internal, using MII, "));
1477 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, 0);
1481 /* Not using the MII, disable it. */
1482 HMD(("external, disable MII, "));
1483 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, BIGMAC_XCFG_MIIDISAB
);
1487 if (happy_meal_tcvr_reset(hp
, tregs
))
1490 /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1491 HMD(("tx/rx reset, "));
1492 happy_meal_tx_reset(hp
, bregs
);
1493 happy_meal_rx_reset(hp
, bregs
);
1495 /* Set jam size and inter-packet gaps to reasonable defaults. */
1496 HMD(("jsize/ipg1/ipg2, "));
1497 hme_write32(hp
, bregs
+ BMAC_JSIZE
, DEFAULT_JAMSIZE
);
1498 hme_write32(hp
, bregs
+ BMAC_IGAP1
, DEFAULT_IPG1
);
1499 hme_write32(hp
, bregs
+ BMAC_IGAP2
, DEFAULT_IPG2
);
1501 /* Load up the MAC address and random seed. */
1502 HMD(("rseed/macaddr, "));
1504 /* The docs recommend to use the 10LSB of our MAC here. */
1505 hme_write32(hp
, bregs
+ BMAC_RSEED
, ((e
[5] | e
[4]<<8)&0x3ff));
1507 hme_write32(hp
, bregs
+ BMAC_MACADDR2
, ((e
[4] << 8) | e
[5]));
1508 hme_write32(hp
, bregs
+ BMAC_MACADDR1
, ((e
[2] << 8) | e
[3]));
1509 hme_write32(hp
, bregs
+ BMAC_MACADDR0
, ((e
[0] << 8) | e
[1]));
1512 if ((hp
->dev
->flags
& IFF_ALLMULTI
) ||
1513 (hp
->dev
->mc_count
> 64)) {
1514 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, 0xffff);
1515 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, 0xffff);
1516 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, 0xffff);
1517 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, 0xffff);
1518 } else if ((hp
->dev
->flags
& IFF_PROMISC
) == 0) {
1520 struct dev_mc_list
*dmi
= hp
->dev
->mc_list
;
1525 for (i
= 0; i
< 4; i
++)
1528 for (i
= 0; i
< hp
->dev
->mc_count
; i
++) {
1529 addrs
= dmi
->dmi_addr
;
1535 crc
= ether_crc_le(6, addrs
);
1537 hash_table
[crc
>> 4] |= 1 << (crc
& 0xf);
1539 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, hash_table
[0]);
1540 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, hash_table
[1]);
1541 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, hash_table
[2]);
1542 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, hash_table
[3]);
1544 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, 0);
1545 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, 0);
1546 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, 0);
1547 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, 0);
1550 /* Set the RX and TX ring ptrs. */
1551 HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1552 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0)),
1553 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_txd
, 0))));
1554 hme_write32(hp
, erxregs
+ ERX_RING
,
1555 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0)));
1556 hme_write32(hp
, etxregs
+ ETX_RING
,
1557 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_txd
, 0)));
1559 /* Parity issues in the ERX unit of some HME revisions can cause some
1560 * registers to not be written unless their parity is even. Detect such
1561 * lost writes and simply rewrite with a low bit set (which will be ignored
1562 * since the rxring needs to be 2K aligned).
1564 if (hme_read32(hp
, erxregs
+ ERX_RING
) !=
1565 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0)))
1566 hme_write32(hp
, erxregs
+ ERX_RING
,
1567 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0))
1570 /* Set the supported burst sizes. */
1571 HMD(("happy_meal_init: old[%08x] bursts<",
1572 hme_read32(hp
, gregs
+ GREG_CFG
)));
1574 #ifndef CONFIG_SPARC
1575 /* It is always PCI and can handle 64byte bursts. */
1576 hme_write32(hp
, gregs
+ GREG_CFG
, GREG_CFG_BURST64
);
1578 if ((hp
->happy_bursts
& DMA_BURST64
) &&
1579 ((hp
->happy_flags
& HFLAG_PCI
) != 0
1581 || sbus_can_burst64()
1584 u32 gcfg
= GREG_CFG_BURST64
;
1586 /* I have no idea if I should set the extended
1587 * transfer mode bit for Cheerio, so for now I
1591 if ((hp
->happy_flags
& HFLAG_PCI
) == 0) {
1592 struct of_device
*op
= hp
->happy_dev
;
1593 if (sbus_can_dma_64bit()) {
1594 sbus_set_sbus64(&op
->dev
,
1596 gcfg
|= GREG_CFG_64BIT
;
1602 hme_write32(hp
, gregs
+ GREG_CFG
, gcfg
);
1603 } else if (hp
->happy_bursts
& DMA_BURST32
) {
1605 hme_write32(hp
, gregs
+ GREG_CFG
, GREG_CFG_BURST32
);
1606 } else if (hp
->happy_bursts
& DMA_BURST16
) {
1608 hme_write32(hp
, gregs
+ GREG_CFG
, GREG_CFG_BURST16
);
1611 hme_write32(hp
, gregs
+ GREG_CFG
, 0);
1613 #endif /* CONFIG_SPARC */
1615 /* Turn off interrupts we do not want to hear. */
1616 HMD((", enable global interrupts, "));
1617 hme_write32(hp
, gregs
+ GREG_IMASK
,
1618 (GREG_IMASK_GOTFRAME
| GREG_IMASK_RCNTEXP
|
1619 GREG_IMASK_SENTFRAME
| GREG_IMASK_TXPERR
));
1621 /* Set the transmit ring buffer size. */
1622 HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE
,
1623 hme_read32(hp
, etxregs
+ ETX_RSIZE
)));
1624 hme_write32(hp
, etxregs
+ ETX_RSIZE
, (TX_RING_SIZE
>> ETX_RSIZE_SHIFT
) - 1);
1626 /* Enable transmitter DVMA. */
1627 HMD(("tx dma enable old[%08x], ",
1628 hme_read32(hp
, etxregs
+ ETX_CFG
)));
1629 hme_write32(hp
, etxregs
+ ETX_CFG
,
1630 hme_read32(hp
, etxregs
+ ETX_CFG
) | ETX_CFG_DMAENABLE
);
1632 /* This chip really rots, for the receiver sometimes when you
1633 * write to its control registers not all the bits get there
1634 * properly. I cannot think of a sane way to provide complete
1635 * coverage for this hardware bug yet.
1637 HMD(("erx regs bug old[%08x]\n",
1638 hme_read32(hp
, erxregs
+ ERX_CFG
)));
1639 hme_write32(hp
, erxregs
+ ERX_CFG
, ERX_CFG_DEFAULT(RX_OFFSET
));
1640 regtmp
= hme_read32(hp
, erxregs
+ ERX_CFG
);
1641 hme_write32(hp
, erxregs
+ ERX_CFG
, ERX_CFG_DEFAULT(RX_OFFSET
));
1642 if (hme_read32(hp
, erxregs
+ ERX_CFG
) != ERX_CFG_DEFAULT(RX_OFFSET
)) {
1643 printk(KERN_ERR
"happy meal: Eieee, rx config register gets greasy fries.\n");
1644 printk(KERN_ERR
"happy meal: Trying to set %08x, reread gives %08x\n",
1645 ERX_CFG_DEFAULT(RX_OFFSET
), regtmp
);
1646 /* XXX Should return failure here... */
1649 /* Enable Big Mac hash table filter. */
1650 HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1651 hme_read32(hp
, bregs
+ BMAC_RXCFG
)));
1652 rxcfg
= BIGMAC_RXCFG_HENABLE
| BIGMAC_RXCFG_REJME
;
1653 if (hp
->dev
->flags
& IFF_PROMISC
)
1654 rxcfg
|= BIGMAC_RXCFG_PMISC
;
1655 hme_write32(hp
, bregs
+ BMAC_RXCFG
, rxcfg
);
1657 /* Let the bits settle in the chip. */
1660 /* Ok, configure the Big Mac transmitter. */
1661 HMD(("BIGMAC init, "));
1663 if (hp
->happy_flags
& HFLAG_FULL
)
1664 regtmp
|= BIGMAC_TXCFG_FULLDPLX
;
1666 /* Don't turn on the "don't give up" bit for now. It could cause hme
1667 * to deadlock with the PHY if a Jabber occurs.
1669 hme_write32(hp
, bregs
+ BMAC_TXCFG
, regtmp
/*| BIGMAC_TXCFG_DGIVEUP*/);
1671 /* Give up after 16 TX attempts. */
1672 hme_write32(hp
, bregs
+ BMAC_ALIMIT
, 16);
1674 /* Enable the output drivers no matter what. */
1675 regtmp
= BIGMAC_XCFG_ODENABLE
;
1677 /* If card can do lance mode, enable it. */
1678 if (hp
->happy_flags
& HFLAG_LANCE
)
1679 regtmp
|= (DEFAULT_IPG0
<< 5) | BIGMAC_XCFG_LANCE
;
1681 /* Disable the MII buffers if using external transceiver. */
1682 if (hp
->tcvr_type
== external
)
1683 regtmp
|= BIGMAC_XCFG_MIIDISAB
;
1685 HMD(("XIF config old[%08x], ",
1686 hme_read32(hp
, bregs
+ BMAC_XIFCFG
)));
1687 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, regtmp
);
1689 /* Start things up. */
1690 HMD(("tx old[%08x] and rx [%08x] ON!\n",
1691 hme_read32(hp
, bregs
+ BMAC_TXCFG
),
1692 hme_read32(hp
, bregs
+ BMAC_RXCFG
)));
1694 /* Set larger TX/RX size to allow for 802.1q */
1695 hme_write32(hp
, bregs
+ BMAC_TXMAX
, ETH_FRAME_LEN
+ 8);
1696 hme_write32(hp
, bregs
+ BMAC_RXMAX
, ETH_FRAME_LEN
+ 8);
1698 hme_write32(hp
, bregs
+ BMAC_TXCFG
,
1699 hme_read32(hp
, bregs
+ BMAC_TXCFG
) | BIGMAC_TXCFG_ENABLE
);
1700 hme_write32(hp
, bregs
+ BMAC_RXCFG
,
1701 hme_read32(hp
, bregs
+ BMAC_RXCFG
) | BIGMAC_RXCFG_ENABLE
);
1703 /* Get the autonegotiation started, and the watch timer ticking. */
1704 happy_meal_begin_auto_negotiation(hp
, tregs
, NULL
);
1710 /* hp->happy_lock must be held */
1711 static void happy_meal_set_initial_advertisement(struct happy_meal
*hp
)
1713 void __iomem
*tregs
= hp
->tcvregs
;
1714 void __iomem
*bregs
= hp
->bigmacregs
;
1715 void __iomem
*gregs
= hp
->gregs
;
1717 happy_meal_stop(hp
, gregs
);
1718 hme_write32(hp
, tregs
+ TCVR_IMASK
, 0xffff);
1719 if (hp
->happy_flags
& HFLAG_FENABLE
)
1720 hme_write32(hp
, tregs
+ TCVR_CFG
,
1721 hme_read32(hp
, tregs
+ TCVR_CFG
) & ~(TCV_CFG_BENABLE
));
1723 hme_write32(hp
, tregs
+ TCVR_CFG
,
1724 hme_read32(hp
, tregs
+ TCVR_CFG
) | TCV_CFG_BENABLE
);
1725 happy_meal_transceiver_check(hp
, tregs
);
1726 switch(hp
->tcvr_type
) {
1730 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, 0);
1733 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, BIGMAC_XCFG_MIIDISAB
);
1736 if (happy_meal_tcvr_reset(hp
, tregs
))
1739 /* Latch PHY registers as of now. */
1740 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
1741 hp
->sw_advertise
= happy_meal_tcvr_read(hp
, tregs
, MII_ADVERTISE
);
1743 /* Advertise everything we can support. */
1744 if (hp
->sw_bmsr
& BMSR_10HALF
)
1745 hp
->sw_advertise
|= (ADVERTISE_10HALF
);
1747 hp
->sw_advertise
&= ~(ADVERTISE_10HALF
);
1749 if (hp
->sw_bmsr
& BMSR_10FULL
)
1750 hp
->sw_advertise
|= (ADVERTISE_10FULL
);
1752 hp
->sw_advertise
&= ~(ADVERTISE_10FULL
);
1753 if (hp
->sw_bmsr
& BMSR_100HALF
)
1754 hp
->sw_advertise
|= (ADVERTISE_100HALF
);
1756 hp
->sw_advertise
&= ~(ADVERTISE_100HALF
);
1757 if (hp
->sw_bmsr
& BMSR_100FULL
)
1758 hp
->sw_advertise
|= (ADVERTISE_100FULL
);
1760 hp
->sw_advertise
&= ~(ADVERTISE_100FULL
);
1762 /* Update the PHY advertisement register. */
1763 happy_meal_tcvr_write(hp
, tregs
, MII_ADVERTISE
, hp
->sw_advertise
);
1766 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1767 * the hardware, so we cannot re-read it and get a correct value.
1769 * hp->happy_lock must be held
1771 static int happy_meal_is_not_so_happy(struct happy_meal
*hp
, u32 status
)
1775 /* Only print messages for non-counter related interrupts. */
1776 if (status
& (GREG_STAT_STSTERR
| GREG_STAT_TFIFO_UND
|
1777 GREG_STAT_MAXPKTERR
| GREG_STAT_RXERR
|
1778 GREG_STAT_RXPERR
| GREG_STAT_RXTERR
| GREG_STAT_EOPERR
|
1779 GREG_STAT_MIFIRQ
| GREG_STAT_TXEACK
| GREG_STAT_TXLERR
|
1780 GREG_STAT_TXPERR
| GREG_STAT_TXTERR
| GREG_STAT_SLVERR
|
1782 printk(KERN_ERR
"%s: Error interrupt for happy meal, status = %08x\n",
1783 hp
->dev
->name
, status
);
1785 if (status
& GREG_STAT_RFIFOVF
) {
1786 /* Receive FIFO overflow is harmless and the hardware will take
1787 care of it, just some packets are lost. Who cares. */
1788 printk(KERN_DEBUG
"%s: Happy Meal receive FIFO overflow.\n", hp
->dev
->name
);
1791 if (status
& GREG_STAT_STSTERR
) {
1792 /* BigMAC SQE link test failed. */
1793 printk(KERN_ERR
"%s: Happy Meal BigMAC SQE test failed.\n", hp
->dev
->name
);
1797 if (status
& GREG_STAT_TFIFO_UND
) {
1798 /* Transmit FIFO underrun, again DMA error likely. */
1799 printk(KERN_ERR
"%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1804 if (status
& GREG_STAT_MAXPKTERR
) {
1805 /* Driver error, tried to transmit something larger
1806 * than ethernet max mtu.
1808 printk(KERN_ERR
"%s: Happy Meal MAX Packet size error.\n", hp
->dev
->name
);
1812 if (status
& GREG_STAT_NORXD
) {
1813 /* This is harmless, it just means the system is
1814 * quite loaded and the incoming packet rate was
1815 * faster than the interrupt handler could keep up
1818 printk(KERN_INFO
"%s: Happy Meal out of receive "
1819 "descriptors, packet dropped.\n",
1823 if (status
& (GREG_STAT_RXERR
|GREG_STAT_RXPERR
|GREG_STAT_RXTERR
)) {
1824 /* All sorts of DMA receive errors. */
1825 printk(KERN_ERR
"%s: Happy Meal rx DMA errors [ ", hp
->dev
->name
);
1826 if (status
& GREG_STAT_RXERR
)
1827 printk("GenericError ");
1828 if (status
& GREG_STAT_RXPERR
)
1829 printk("ParityError ");
1830 if (status
& GREG_STAT_RXTERR
)
1831 printk("RxTagBotch ");
1836 if (status
& GREG_STAT_EOPERR
) {
1837 /* Driver bug, didn't set EOP bit in tx descriptor given
1838 * to the happy meal.
1840 printk(KERN_ERR
"%s: EOP not set in happy meal transmit descriptor!\n",
1845 if (status
& GREG_STAT_MIFIRQ
) {
1846 /* MIF signalled an interrupt, were we polling it? */
1847 printk(KERN_ERR
"%s: Happy Meal MIF interrupt.\n", hp
->dev
->name
);
1851 (GREG_STAT_TXEACK
|GREG_STAT_TXLERR
|GREG_STAT_TXPERR
|GREG_STAT_TXTERR
)) {
1852 /* All sorts of transmit DMA errors. */
1853 printk(KERN_ERR
"%s: Happy Meal tx DMA errors [ ", hp
->dev
->name
);
1854 if (status
& GREG_STAT_TXEACK
)
1855 printk("GenericError ");
1856 if (status
& GREG_STAT_TXLERR
)
1857 printk("LateError ");
1858 if (status
& GREG_STAT_TXPERR
)
1859 printk("ParityErro ");
1860 if (status
& GREG_STAT_TXTERR
)
1861 printk("TagBotch ");
1866 if (status
& (GREG_STAT_SLVERR
|GREG_STAT_SLVPERR
)) {
1867 /* Bus or parity error when cpu accessed happy meal registers
1868 * or it's internal FIFO's. Should never see this.
1870 printk(KERN_ERR
"%s: Happy Meal register access SBUS slave (%s) error.\n",
1872 (status
& GREG_STAT_SLVPERR
) ? "parity" : "generic");
1877 printk(KERN_NOTICE
"%s: Resetting...\n", hp
->dev
->name
);
1878 happy_meal_init(hp
);
1884 /* hp->happy_lock must be held */
1885 static void happy_meal_mif_interrupt(struct happy_meal
*hp
)
1887 void __iomem
*tregs
= hp
->tcvregs
;
1889 printk(KERN_INFO
"%s: Link status change.\n", hp
->dev
->name
);
1890 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1891 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, tregs
, MII_LPA
);
1893 /* Use the fastest transmission protocol possible. */
1894 if (hp
->sw_lpa
& LPA_100FULL
) {
1895 printk(KERN_INFO
"%s: Switching to 100Mbps at full duplex.", hp
->dev
->name
);
1896 hp
->sw_bmcr
|= (BMCR_FULLDPLX
| BMCR_SPEED100
);
1897 } else if (hp
->sw_lpa
& LPA_100HALF
) {
1898 printk(KERN_INFO
"%s: Switching to 100MBps at half duplex.", hp
->dev
->name
);
1899 hp
->sw_bmcr
|= BMCR_SPEED100
;
1900 } else if (hp
->sw_lpa
& LPA_10FULL
) {
1901 printk(KERN_INFO
"%s: Switching to 10MBps at full duplex.", hp
->dev
->name
);
1902 hp
->sw_bmcr
|= BMCR_FULLDPLX
;
1904 printk(KERN_INFO
"%s: Using 10Mbps at half duplex.", hp
->dev
->name
);
1906 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1908 /* Finally stop polling and shut up the MIF. */
1909 happy_meal_poll_stop(hp
, tregs
);
1913 #define TXD(x) printk x
1918 /* hp->happy_lock must be held */
1919 static void happy_meal_tx(struct happy_meal
*hp
)
1921 struct happy_meal_txd
*txbase
= &hp
->happy_block
->happy_meal_txd
[0];
1922 struct happy_meal_txd
*this;
1923 struct net_device
*dev
= hp
->dev
;
1928 while (elem
!= hp
->tx_new
) {
1929 struct sk_buff
*skb
;
1930 u32 flags
, dma_addr
, dma_len
;
1933 TXD(("[%d]", elem
));
1934 this = &txbase
[elem
];
1935 flags
= hme_read_desc32(hp
, &this->tx_flags
);
1936 if (flags
& TXFLAG_OWN
)
1938 skb
= hp
->tx_skbs
[elem
];
1939 if (skb_shinfo(skb
)->nr_frags
) {
1942 last
= elem
+ skb_shinfo(skb
)->nr_frags
;
1943 last
&= (TX_RING_SIZE
- 1);
1944 flags
= hme_read_desc32(hp
, &txbase
[last
].tx_flags
);
1945 if (flags
& TXFLAG_OWN
)
1948 hp
->tx_skbs
[elem
] = NULL
;
1949 hp
->net_stats
.tx_bytes
+= skb
->len
;
1951 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1952 dma_addr
= hme_read_desc32(hp
, &this->tx_addr
);
1953 dma_len
= hme_read_desc32(hp
, &this->tx_flags
);
1955 dma_len
&= TXFLAG_SIZE
;
1956 dma_unmap_single(hp
->dma_dev
, dma_addr
, dma_len
, DMA_TO_DEVICE
);
1958 elem
= NEXT_TX(elem
);
1959 this = &txbase
[elem
];
1962 dev_kfree_skb_irq(skb
);
1963 hp
->net_stats
.tx_packets
++;
1968 if (netif_queue_stopped(dev
) &&
1969 TX_BUFFS_AVAIL(hp
) > (MAX_SKB_FRAGS
+ 1))
1970 netif_wake_queue(dev
);
1974 #define RXD(x) printk x
1979 /* Originally I used to handle the allocation failure by just giving back just
1980 * that one ring buffer to the happy meal. Problem is that usually when that
1981 * condition is triggered, the happy meal expects you to do something reasonable
1982 * with all of the packets it has DMA'd in. So now I just drop the entire
1983 * ring when we cannot get a new skb and give them all back to the happy meal,
1984 * maybe things will be "happier" now.
1986 * hp->happy_lock must be held
1988 static void happy_meal_rx(struct happy_meal
*hp
, struct net_device
*dev
)
1990 struct happy_meal_rxd
*rxbase
= &hp
->happy_block
->happy_meal_rxd
[0];
1991 struct happy_meal_rxd
*this;
1992 int elem
= hp
->rx_new
, drops
= 0;
1996 this = &rxbase
[elem
];
1997 while (!((flags
= hme_read_desc32(hp
, &this->rx_flags
)) & RXFLAG_OWN
)) {
1998 struct sk_buff
*skb
;
1999 int len
= flags
>> 16;
2000 u16 csum
= flags
& RXFLAG_CSUM
;
2001 u32 dma_addr
= hme_read_desc32(hp
, &this->rx_addr
);
2003 RXD(("[%d ", elem
));
2005 /* Check for errors. */
2006 if ((len
< ETH_ZLEN
) || (flags
& RXFLAG_OVERFLOW
)) {
2007 RXD(("ERR(%08x)]", flags
));
2008 hp
->net_stats
.rx_errors
++;
2010 hp
->net_stats
.rx_length_errors
++;
2011 if (len
& (RXFLAG_OVERFLOW
>> 16)) {
2012 hp
->net_stats
.rx_over_errors
++;
2013 hp
->net_stats
.rx_fifo_errors
++;
2016 /* Return it to the Happy meal. */
2018 hp
->net_stats
.rx_dropped
++;
2019 hme_write_rxd(hp
, this,
2020 (RXFLAG_OWN
|((RX_BUF_ALLOC_SIZE
-RX_OFFSET
)<<16)),
2024 skb
= hp
->rx_skbs
[elem
];
2025 if (len
> RX_COPY_THRESHOLD
) {
2026 struct sk_buff
*new_skb
;
2028 /* Now refill the entry, if we can. */
2029 new_skb
= happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE
, GFP_ATOMIC
);
2030 if (new_skb
== NULL
) {
2034 dma_unmap_single(hp
->dma_dev
, dma_addr
, RX_BUF_ALLOC_SIZE
, DMA_FROM_DEVICE
);
2035 hp
->rx_skbs
[elem
] = new_skb
;
2037 skb_put(new_skb
, (ETH_FRAME_LEN
+ RX_OFFSET
+ 4));
2038 hme_write_rxd(hp
, this,
2039 (RXFLAG_OWN
|((RX_BUF_ALLOC_SIZE
-RX_OFFSET
)<<16)),
2040 dma_map_single(hp
->dma_dev
, new_skb
->data
, RX_BUF_ALLOC_SIZE
,
2042 skb_reserve(new_skb
, RX_OFFSET
);
2044 /* Trim the original skb for the netif. */
2047 struct sk_buff
*copy_skb
= dev_alloc_skb(len
+ 2);
2049 if (copy_skb
== NULL
) {
2054 skb_reserve(copy_skb
, 2);
2055 skb_put(copy_skb
, len
);
2056 dma_sync_single_for_cpu(hp
->dma_dev
, dma_addr
, len
, DMA_FROM_DEVICE
);
2057 skb_copy_from_linear_data(skb
, copy_skb
->data
, len
);
2058 dma_sync_single_for_device(hp
->dma_dev
, dma_addr
, len
, DMA_FROM_DEVICE
);
2059 /* Reuse original ring buffer. */
2060 hme_write_rxd(hp
, this,
2061 (RXFLAG_OWN
|((RX_BUF_ALLOC_SIZE
-RX_OFFSET
)<<16)),
2067 /* This card is _fucking_ hot... */
2068 skb
->csum
= csum_unfold(~(__force __sum16
)htons(csum
));
2069 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2071 RXD(("len=%d csum=%4x]", len
, csum
));
2072 skb
->protocol
= eth_type_trans(skb
, dev
);
2075 hp
->net_stats
.rx_packets
++;
2076 hp
->net_stats
.rx_bytes
+= len
;
2078 elem
= NEXT_RX(elem
);
2079 this = &rxbase
[elem
];
2083 printk(KERN_INFO
"%s: Memory squeeze, deferring packet.\n", hp
->dev
->name
);
2087 static irqreturn_t
happy_meal_interrupt(int irq
, void *dev_id
)
2089 struct net_device
*dev
= dev_id
;
2090 struct happy_meal
*hp
= netdev_priv(dev
);
2091 u32 happy_status
= hme_read32(hp
, hp
->gregs
+ GREG_STAT
);
2093 HMD(("happy_meal_interrupt: status=%08x ", happy_status
));
2095 spin_lock(&hp
->happy_lock
);
2097 if (happy_status
& GREG_STAT_ERRORS
) {
2099 if (happy_meal_is_not_so_happy(hp
, /* un- */ happy_status
))
2103 if (happy_status
& GREG_STAT_MIFIRQ
) {
2105 happy_meal_mif_interrupt(hp
);
2108 if (happy_status
& GREG_STAT_TXALL
) {
2113 if (happy_status
& GREG_STAT_RXTOHOST
) {
2115 happy_meal_rx(hp
, dev
);
2120 spin_unlock(&hp
->happy_lock
);
2126 static irqreturn_t
quattro_sbus_interrupt(int irq
, void *cookie
)
2128 struct quattro
*qp
= (struct quattro
*) cookie
;
2131 for (i
= 0; i
< 4; i
++) {
2132 struct net_device
*dev
= qp
->happy_meals
[i
];
2133 struct happy_meal
*hp
= netdev_priv(dev
);
2134 u32 happy_status
= hme_read32(hp
, hp
->gregs
+ GREG_STAT
);
2136 HMD(("quattro_interrupt: status=%08x ", happy_status
));
2138 if (!(happy_status
& (GREG_STAT_ERRORS
|
2141 GREG_STAT_RXTOHOST
)))
2144 spin_lock(&hp
->happy_lock
);
2146 if (happy_status
& GREG_STAT_ERRORS
) {
2148 if (happy_meal_is_not_so_happy(hp
, happy_status
))
2152 if (happy_status
& GREG_STAT_MIFIRQ
) {
2154 happy_meal_mif_interrupt(hp
);
2157 if (happy_status
& GREG_STAT_TXALL
) {
2162 if (happy_status
& GREG_STAT_RXTOHOST
) {
2164 happy_meal_rx(hp
, dev
);
2168 spin_unlock(&hp
->happy_lock
);
2176 static int happy_meal_open(struct net_device
*dev
)
2178 struct happy_meal
*hp
= netdev_priv(dev
);
2181 HMD(("happy_meal_open: "));
2183 /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2184 * into a single source which we register handling at probe time.
2186 if ((hp
->happy_flags
& (HFLAG_QUATTRO
|HFLAG_PCI
)) != HFLAG_QUATTRO
) {
2187 if (request_irq(dev
->irq
, &happy_meal_interrupt
,
2188 IRQF_SHARED
, dev
->name
, (void *)dev
)) {
2190 printk(KERN_ERR
"happy_meal(SBUS): Can't order irq %d to go.\n",
2197 HMD(("to happy_meal_init\n"));
2199 spin_lock_irq(&hp
->happy_lock
);
2200 res
= happy_meal_init(hp
);
2201 spin_unlock_irq(&hp
->happy_lock
);
2203 if (res
&& ((hp
->happy_flags
& (HFLAG_QUATTRO
|HFLAG_PCI
)) != HFLAG_QUATTRO
))
2204 free_irq(dev
->irq
, dev
);
2208 static int happy_meal_close(struct net_device
*dev
)
2210 struct happy_meal
*hp
= netdev_priv(dev
);
2212 spin_lock_irq(&hp
->happy_lock
);
2213 happy_meal_stop(hp
, hp
->gregs
);
2214 happy_meal_clean_rings(hp
);
2216 /* If auto-negotiation timer is running, kill it. */
2217 del_timer(&hp
->happy_timer
);
2219 spin_unlock_irq(&hp
->happy_lock
);
2221 /* On Quattro QFE cards, all hme interrupts are concentrated
2222 * into a single source which we register handling at probe
2223 * time and never unregister.
2225 if ((hp
->happy_flags
& (HFLAG_QUATTRO
|HFLAG_PCI
)) != HFLAG_QUATTRO
)
2226 free_irq(dev
->irq
, dev
);
2232 #define SXD(x) printk x
2237 static void happy_meal_tx_timeout(struct net_device
*dev
)
2239 struct happy_meal
*hp
= netdev_priv(dev
);
2241 printk (KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
2243 printk (KERN_ERR
"%s: Happy Status %08x TX[%08x:%08x]\n", dev
->name
,
2244 hme_read32(hp
, hp
->gregs
+ GREG_STAT
),
2245 hme_read32(hp
, hp
->etxregs
+ ETX_CFG
),
2246 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
));
2248 spin_lock_irq(&hp
->happy_lock
);
2249 happy_meal_init(hp
);
2250 spin_unlock_irq(&hp
->happy_lock
);
2252 netif_wake_queue(dev
);
2255 static int happy_meal_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2257 struct happy_meal
*hp
= netdev_priv(dev
);
2261 tx_flags
= TXFLAG_OWN
;
2262 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2263 const u32 csum_start_off
= skb_transport_offset(skb
);
2264 const u32 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
2266 tx_flags
= (TXFLAG_OWN
| TXFLAG_CSENABLE
|
2267 ((csum_start_off
<< 14) & TXFLAG_CSBUFBEGIN
) |
2268 ((csum_stuff_off
<< 20) & TXFLAG_CSLOCATION
));
2271 spin_lock_irq(&hp
->happy_lock
);
2273 if (TX_BUFFS_AVAIL(hp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
2274 netif_stop_queue(dev
);
2275 spin_unlock_irq(&hp
->happy_lock
);
2276 printk(KERN_ERR
"%s: BUG! Tx Ring full when queue awake!\n",
2282 SXD(("SX<l[%d]e[%d]>", len
, entry
));
2283 hp
->tx_skbs
[entry
] = skb
;
2285 if (skb_shinfo(skb
)->nr_frags
== 0) {
2289 mapping
= dma_map_single(hp
->dma_dev
, skb
->data
, len
, DMA_TO_DEVICE
);
2290 tx_flags
|= (TXFLAG_SOP
| TXFLAG_EOP
);
2291 hme_write_txd(hp
, &hp
->happy_block
->happy_meal_txd
[entry
],
2292 (tx_flags
| (len
& TXFLAG_SIZE
)),
2294 entry
= NEXT_TX(entry
);
2296 u32 first_len
, first_mapping
;
2297 int frag
, first_entry
= entry
;
2299 /* We must give this initial chunk to the device last.
2300 * Otherwise we could race with the device.
2302 first_len
= skb_headlen(skb
);
2303 first_mapping
= dma_map_single(hp
->dma_dev
, skb
->data
, first_len
,
2305 entry
= NEXT_TX(entry
);
2307 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
2308 skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
2309 u32 len
, mapping
, this_txflags
;
2311 len
= this_frag
->size
;
2312 mapping
= dma_map_page(hp
->dma_dev
, this_frag
->page
,
2313 this_frag
->page_offset
, len
,
2315 this_txflags
= tx_flags
;
2316 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
2317 this_txflags
|= TXFLAG_EOP
;
2318 hme_write_txd(hp
, &hp
->happy_block
->happy_meal_txd
[entry
],
2319 (this_txflags
| (len
& TXFLAG_SIZE
)),
2321 entry
= NEXT_TX(entry
);
2323 hme_write_txd(hp
, &hp
->happy_block
->happy_meal_txd
[first_entry
],
2324 (tx_flags
| TXFLAG_SOP
| (first_len
& TXFLAG_SIZE
)),
2330 if (TX_BUFFS_AVAIL(hp
) <= (MAX_SKB_FRAGS
+ 1))
2331 netif_stop_queue(dev
);
2334 hme_write32(hp
, hp
->etxregs
+ ETX_PENDING
, ETX_TP_DMAWAKEUP
);
2336 spin_unlock_irq(&hp
->happy_lock
);
2338 dev
->trans_start
= jiffies
;
2340 tx_add_log(hp
, TXLOG_ACTION_TXMIT
, 0);
2344 static struct net_device_stats
*happy_meal_get_stats(struct net_device
*dev
)
2346 struct happy_meal
*hp
= netdev_priv(dev
);
2348 spin_lock_irq(&hp
->happy_lock
);
2349 happy_meal_get_counters(hp
, hp
->bigmacregs
);
2350 spin_unlock_irq(&hp
->happy_lock
);
2352 return &hp
->net_stats
;
2355 static void happy_meal_set_multicast(struct net_device
*dev
)
2357 struct happy_meal
*hp
= netdev_priv(dev
);
2358 void __iomem
*bregs
= hp
->bigmacregs
;
2359 struct dev_mc_list
*dmi
= dev
->mc_list
;
2364 spin_lock_irq(&hp
->happy_lock
);
2366 if ((dev
->flags
& IFF_ALLMULTI
) || (dev
->mc_count
> 64)) {
2367 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, 0xffff);
2368 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, 0xffff);
2369 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, 0xffff);
2370 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, 0xffff);
2371 } else if (dev
->flags
& IFF_PROMISC
) {
2372 hme_write32(hp
, bregs
+ BMAC_RXCFG
,
2373 hme_read32(hp
, bregs
+ BMAC_RXCFG
) | BIGMAC_RXCFG_PMISC
);
2377 for (i
= 0; i
< 4; i
++)
2380 for (i
= 0; i
< dev
->mc_count
; i
++) {
2381 addrs
= dmi
->dmi_addr
;
2387 crc
= ether_crc_le(6, addrs
);
2389 hash_table
[crc
>> 4] |= 1 << (crc
& 0xf);
2391 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, hash_table
[0]);
2392 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, hash_table
[1]);
2393 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, hash_table
[2]);
2394 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, hash_table
[3]);
2397 spin_unlock_irq(&hp
->happy_lock
);
2400 /* Ethtool support... */
2401 static int hme_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2403 struct happy_meal
*hp
= netdev_priv(dev
);
2406 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2407 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2408 SUPPORTED_Autoneg
| SUPPORTED_TP
| SUPPORTED_MII
);
2410 /* XXX hardcoded stuff for now */
2411 cmd
->port
= PORT_TP
; /* XXX no MII support */
2412 cmd
->transceiver
= XCVR_INTERNAL
; /* XXX no external xcvr support */
2413 cmd
->phy_address
= 0; /* XXX fixed PHYAD */
2415 /* Record PHY settings. */
2416 spin_lock_irq(&hp
->happy_lock
);
2417 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, hp
->tcvregs
, MII_BMCR
);
2418 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, hp
->tcvregs
, MII_LPA
);
2419 spin_unlock_irq(&hp
->happy_lock
);
2421 if (hp
->sw_bmcr
& BMCR_ANENABLE
) {
2422 cmd
->autoneg
= AUTONEG_ENABLE
;
2424 (hp
->sw_lpa
& (LPA_100HALF
| LPA_100FULL
)) ?
2425 SPEED_100
: SPEED_10
;
2426 if (cmd
->speed
== SPEED_100
)
2428 (hp
->sw_lpa
& (LPA_100FULL
)) ?
2429 DUPLEX_FULL
: DUPLEX_HALF
;
2432 (hp
->sw_lpa
& (LPA_10FULL
)) ?
2433 DUPLEX_FULL
: DUPLEX_HALF
;
2435 cmd
->autoneg
= AUTONEG_DISABLE
;
2437 (hp
->sw_bmcr
& BMCR_SPEED100
) ?
2438 SPEED_100
: SPEED_10
;
2440 (hp
->sw_bmcr
& BMCR_FULLDPLX
) ?
2441 DUPLEX_FULL
: DUPLEX_HALF
;
2446 static int hme_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2448 struct happy_meal
*hp
= netdev_priv(dev
);
2450 /* Verify the settings we care about. */
2451 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
2452 cmd
->autoneg
!= AUTONEG_DISABLE
)
2454 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
2455 ((cmd
->speed
!= SPEED_100
&&
2456 cmd
->speed
!= SPEED_10
) ||
2457 (cmd
->duplex
!= DUPLEX_HALF
&&
2458 cmd
->duplex
!= DUPLEX_FULL
)))
2461 /* Ok, do it to it. */
2462 spin_lock_irq(&hp
->happy_lock
);
2463 del_timer(&hp
->happy_timer
);
2464 happy_meal_begin_auto_negotiation(hp
, hp
->tcvregs
, cmd
);
2465 spin_unlock_irq(&hp
->happy_lock
);
2470 static void hme_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2472 struct happy_meal
*hp
= netdev_priv(dev
);
2474 strcpy(info
->driver
, "sunhme");
2475 strcpy(info
->version
, "2.02");
2476 if (hp
->happy_flags
& HFLAG_PCI
) {
2477 struct pci_dev
*pdev
= hp
->happy_dev
;
2478 strcpy(info
->bus_info
, pci_name(pdev
));
2482 const struct linux_prom_registers
*regs
;
2483 struct of_device
*op
= hp
->happy_dev
;
2484 regs
= of_get_property(op
->node
, "regs", NULL
);
2486 sprintf(info
->bus_info
, "SBUS:%d",
2492 static u32
hme_get_link(struct net_device
*dev
)
2494 struct happy_meal
*hp
= netdev_priv(dev
);
2496 spin_lock_irq(&hp
->happy_lock
);
2497 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, hp
->tcvregs
, MII_BMCR
);
2498 spin_unlock_irq(&hp
->happy_lock
);
2500 return (hp
->sw_bmsr
& BMSR_LSTATUS
);
2503 static const struct ethtool_ops hme_ethtool_ops
= {
2504 .get_settings
= hme_get_settings
,
2505 .set_settings
= hme_set_settings
,
2506 .get_drvinfo
= hme_get_drvinfo
,
2507 .get_link
= hme_get_link
,
2510 static int hme_version_printed
;
2513 /* Given a happy meal sbus device, find it's quattro parent.
2514 * If none exist, allocate and return a new one.
2516 * Return NULL on failure.
2518 static struct quattro
* __devinit
quattro_sbus_find(struct of_device
*child
)
2520 struct device
*parent
= child
->dev
.parent
;
2521 struct of_device
*op
;
2524 op
= to_of_device(parent
);
2525 qp
= dev_get_drvdata(&op
->dev
);
2529 qp
= kmalloc(sizeof(struct quattro
), GFP_KERNEL
);
2533 for (i
= 0; i
< 4; i
++)
2534 qp
->happy_meals
[i
] = NULL
;
2536 qp
->quattro_dev
= child
;
2537 qp
->next
= qfe_sbus_list
;
2540 dev_set_drvdata(&op
->dev
, qp
);
2545 /* After all quattro cards have been probed, we call these functions
2546 * to register the IRQ handlers for the cards that have been
2547 * successfully probed and skip the cards that failed to initialize
2549 static int __init
quattro_sbus_register_irqs(void)
2553 for (qp
= qfe_sbus_list
; qp
!= NULL
; qp
= qp
->next
) {
2554 struct of_device
*op
= qp
->quattro_dev
;
2555 int err
, qfe_slot
, skip
= 0;
2557 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++) {
2558 if (!qp
->happy_meals
[qfe_slot
])
2564 err
= request_irq(op
->irqs
[0],
2565 quattro_sbus_interrupt
,
2566 IRQF_SHARED
, "Quattro",
2569 printk(KERN_ERR
"Quattro HME: IRQ registration "
2570 "error %d.\n", err
);
2578 static void quattro_sbus_free_irqs(void)
2582 for (qp
= qfe_sbus_list
; qp
!= NULL
; qp
= qp
->next
) {
2583 struct of_device
*op
= qp
->quattro_dev
;
2584 int qfe_slot
, skip
= 0;
2586 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++) {
2587 if (!qp
->happy_meals
[qfe_slot
])
2593 free_irq(op
->irqs
[0], qp
);
2596 #endif /* CONFIG_SBUS */
2599 static struct quattro
* __devinit
quattro_pci_find(struct pci_dev
*pdev
)
2601 struct pci_dev
*bdev
= pdev
->bus
->self
;
2604 if (!bdev
) return NULL
;
2605 for (qp
= qfe_pci_list
; qp
!= NULL
; qp
= qp
->next
) {
2606 struct pci_dev
*qpdev
= qp
->quattro_dev
;
2611 qp
= kmalloc(sizeof(struct quattro
), GFP_KERNEL
);
2615 for (i
= 0; i
< 4; i
++)
2616 qp
->happy_meals
[i
] = NULL
;
2618 qp
->quattro_dev
= bdev
;
2619 qp
->next
= qfe_pci_list
;
2622 /* No range tricks necessary on PCI. */
2627 #endif /* CONFIG_PCI */
2629 static const struct net_device_ops hme_netdev_ops
= {
2630 .ndo_open
= happy_meal_open
,
2631 .ndo_stop
= happy_meal_close
,
2632 .ndo_start_xmit
= happy_meal_start_xmit
,
2633 .ndo_tx_timeout
= happy_meal_tx_timeout
,
2634 .ndo_get_stats
= happy_meal_get_stats
,
2635 .ndo_set_multicast_list
= happy_meal_set_multicast
,
2636 .ndo_change_mtu
= eth_change_mtu
,
2637 .ndo_set_mac_address
= eth_mac_addr
,
2638 .ndo_validate_addr
= eth_validate_addr
,
2642 static int __devinit
happy_meal_sbus_probe_one(struct of_device
*op
, int is_qfe
)
2644 struct device_node
*dp
= op
->node
, *sbus_dp
;
2645 struct quattro
*qp
= NULL
;
2646 struct happy_meal
*hp
;
2647 struct net_device
*dev
;
2648 int i
, qfe_slot
= -1;
2651 sbus_dp
= to_of_device(op
->dev
.parent
)->node
;
2653 /* We can match PCI devices too, do not accept those here. */
2654 if (strcmp(sbus_dp
->name
, "sbus"))
2658 qp
= quattro_sbus_find(op
);
2661 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++)
2662 if (qp
->happy_meals
[qfe_slot
] == NULL
)
2669 dev
= alloc_etherdev(sizeof(struct happy_meal
));
2672 SET_NETDEV_DEV(dev
, &op
->dev
);
2674 if (hme_version_printed
++ == 0)
2675 printk(KERN_INFO
"%s", version
);
2677 /* If user did not specify a MAC address specifically, use
2678 * the Quattro local-mac-address property...
2680 for (i
= 0; i
< 6; i
++) {
2681 if (macaddr
[i
] != 0)
2684 if (i
< 6) { /* a mac address was given */
2685 for (i
= 0; i
< 6; i
++)
2686 dev
->dev_addr
[i
] = macaddr
[i
];
2689 const unsigned char *addr
;
2692 addr
= of_get_property(dp
, "local-mac-address", &len
);
2694 if (qfe_slot
!= -1 && addr
&& len
== 6)
2695 memcpy(dev
->dev_addr
, addr
, 6);
2697 memcpy(dev
->dev_addr
, idprom
->id_ethaddr
, 6);
2700 hp
= netdev_priv(dev
);
2703 hp
->dma_dev
= &op
->dev
;
2705 spin_lock_init(&hp
->happy_lock
);
2709 hp
->qfe_parent
= qp
;
2710 hp
->qfe_ent
= qfe_slot
;
2711 qp
->happy_meals
[qfe_slot
] = dev
;
2714 hp
->gregs
= of_ioremap(&op
->resource
[0], 0,
2715 GREG_REG_SIZE
, "HME Global Regs");
2717 printk(KERN_ERR
"happymeal: Cannot map global registers.\n");
2718 goto err_out_free_netdev
;
2721 hp
->etxregs
= of_ioremap(&op
->resource
[1], 0,
2722 ETX_REG_SIZE
, "HME TX Regs");
2724 printk(KERN_ERR
"happymeal: Cannot map MAC TX registers.\n");
2725 goto err_out_iounmap
;
2728 hp
->erxregs
= of_ioremap(&op
->resource
[2], 0,
2729 ERX_REG_SIZE
, "HME RX Regs");
2731 printk(KERN_ERR
"happymeal: Cannot map MAC RX registers.\n");
2732 goto err_out_iounmap
;
2735 hp
->bigmacregs
= of_ioremap(&op
->resource
[3], 0,
2736 BMAC_REG_SIZE
, "HME BIGMAC Regs");
2737 if (!hp
->bigmacregs
) {
2738 printk(KERN_ERR
"happymeal: Cannot map BIGMAC registers.\n");
2739 goto err_out_iounmap
;
2742 hp
->tcvregs
= of_ioremap(&op
->resource
[4], 0,
2743 TCVR_REG_SIZE
, "HME Tranceiver Regs");
2745 printk(KERN_ERR
"happymeal: Cannot map TCVR registers.\n");
2746 goto err_out_iounmap
;
2749 hp
->hm_revision
= of_getintprop_default(dp
, "hm-rev", 0xff);
2750 if (hp
->hm_revision
== 0xff)
2751 hp
->hm_revision
= 0xa0;
2753 /* Now enable the feature flags we can. */
2754 if (hp
->hm_revision
== 0x20 || hp
->hm_revision
== 0x21)
2755 hp
->happy_flags
= HFLAG_20_21
;
2756 else if (hp
->hm_revision
!= 0xa0)
2757 hp
->happy_flags
= HFLAG_NOT_A0
;
2760 hp
->happy_flags
|= HFLAG_QUATTRO
;
2762 /* Get the supported DVMA burst sizes from our Happy SBUS. */
2763 hp
->happy_bursts
= of_getintprop_default(sbus_dp
,
2764 "burst-sizes", 0x00);
2766 hp
->happy_block
= dma_alloc_coherent(hp
->dma_dev
,
2771 if (!hp
->happy_block
) {
2772 printk(KERN_ERR
"happymeal: Cannot allocate descriptors.\n");
2773 goto err_out_iounmap
;
2776 /* Force check of the link first time we are brought up. */
2779 /* Force timer state to 'asleep' with count of zero. */
2780 hp
->timer_state
= asleep
;
2781 hp
->timer_ticks
= 0;
2783 init_timer(&hp
->happy_timer
);
2786 dev
->netdev_ops
= &hme_netdev_ops
;
2787 dev
->watchdog_timeo
= 5*HZ
;
2788 dev
->ethtool_ops
= &hme_ethtool_ops
;
2790 /* Happy Meal can do it all... */
2791 dev
->features
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
2793 dev
->irq
= op
->irqs
[0];
2795 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2796 /* Hook up SBUS register/descriptor accessors. */
2797 hp
->read_desc32
= sbus_hme_read_desc32
;
2798 hp
->write_txd
= sbus_hme_write_txd
;
2799 hp
->write_rxd
= sbus_hme_write_rxd
;
2800 hp
->read32
= sbus_hme_read32
;
2801 hp
->write32
= sbus_hme_write32
;
2804 /* Grrr, Happy Meal comes up by default not advertising
2805 * full duplex 100baseT capabilities, fix this.
2807 spin_lock_irq(&hp
->happy_lock
);
2808 happy_meal_set_initial_advertisement(hp
);
2809 spin_unlock_irq(&hp
->happy_lock
);
2811 if (register_netdev(hp
->dev
)) {
2812 printk(KERN_ERR
"happymeal: Cannot register net device, "
2814 goto err_out_free_coherent
;
2817 dev_set_drvdata(&op
->dev
, hp
);
2820 printk(KERN_INFO
"%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2821 dev
->name
, qfe_slot
);
2823 printk(KERN_INFO
"%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2826 printk("%pM\n", dev
->dev_addr
);
2830 err_out_free_coherent
:
2831 dma_free_coherent(hp
->dma_dev
,
2838 of_iounmap(&op
->resource
[0], hp
->gregs
, GREG_REG_SIZE
);
2840 of_iounmap(&op
->resource
[1], hp
->etxregs
, ETX_REG_SIZE
);
2842 of_iounmap(&op
->resource
[2], hp
->erxregs
, ERX_REG_SIZE
);
2844 of_iounmap(&op
->resource
[3], hp
->bigmacregs
, BMAC_REG_SIZE
);
2846 of_iounmap(&op
->resource
[4], hp
->tcvregs
, TCVR_REG_SIZE
);
2849 qp
->happy_meals
[qfe_slot
] = NULL
;
2851 err_out_free_netdev
:
2860 #ifndef CONFIG_SPARC
2861 static int is_quattro_p(struct pci_dev
*pdev
)
2863 struct pci_dev
*busdev
= pdev
->bus
->self
;
2864 struct list_head
*tmp
;
2867 if (busdev
== NULL
||
2868 busdev
->vendor
!= PCI_VENDOR_ID_DEC
||
2869 busdev
->device
!= PCI_DEVICE_ID_DEC_21153
)
2873 tmp
= pdev
->bus
->devices
.next
;
2874 while (tmp
!= &pdev
->bus
->devices
) {
2875 struct pci_dev
*this_pdev
= pci_dev_b(tmp
);
2877 if (this_pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2878 this_pdev
->device
== PCI_DEVICE_ID_SUN_HAPPYMEAL
)
2890 /* Fetch MAC address from vital product data of PCI ROM. */
2891 static int find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, int index
, unsigned char *dev_addr
)
2895 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2896 void __iomem
*p
= rom_base
+ this_offset
;
2898 if (readb(p
+ 0) != 0x90 ||
2899 readb(p
+ 1) != 0x00 ||
2900 readb(p
+ 2) != 0x09 ||
2901 readb(p
+ 3) != 0x4e ||
2902 readb(p
+ 4) != 0x41 ||
2903 readb(p
+ 5) != 0x06)
2912 for (i
= 0; i
< 6; i
++)
2913 dev_addr
[i
] = readb(p
+ i
);
2921 static void get_hme_mac_nonsparc(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2924 void __iomem
*p
= pci_map_rom(pdev
, &size
);
2930 if (is_quattro_p(pdev
))
2931 index
= PCI_SLOT(pdev
->devfn
);
2933 found
= readb(p
) == 0x55 &&
2934 readb(p
+ 1) == 0xaa &&
2935 find_eth_addr_in_vpd(p
, (64 * 1024), index
, dev_addr
);
2936 pci_unmap_rom(pdev
, p
);
2941 /* Sun MAC prefix then 3 random bytes. */
2945 get_random_bytes(&dev_addr
[3], 3);
2948 #endif /* !(CONFIG_SPARC) */
2950 static int __devinit
happy_meal_pci_probe(struct pci_dev
*pdev
,
2951 const struct pci_device_id
*ent
)
2953 struct quattro
*qp
= NULL
;
2955 struct device_node
*dp
;
2957 struct happy_meal
*hp
;
2958 struct net_device
*dev
;
2959 void __iomem
*hpreg_base
;
2960 unsigned long hpreg_res
;
2961 int i
, qfe_slot
= -1;
2965 /* Now make sure pci_dev cookie is there. */
2967 dp
= pci_device_to_OF_node(pdev
);
2968 strcpy(prom_name
, dp
->name
);
2970 if (is_quattro_p(pdev
))
2971 strcpy(prom_name
, "SUNW,qfe");
2973 strcpy(prom_name
, "SUNW,hme");
2978 if (pci_enable_device(pdev
))
2980 pci_set_master(pdev
);
2982 if (!strcmp(prom_name
, "SUNW,qfe") || !strcmp(prom_name
, "qfe")) {
2983 qp
= quattro_pci_find(pdev
);
2986 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++)
2987 if (qp
->happy_meals
[qfe_slot
] == NULL
)
2993 dev
= alloc_etherdev(sizeof(struct happy_meal
));
2997 SET_NETDEV_DEV(dev
, &pdev
->dev
);
2999 if (hme_version_printed
++ == 0)
3000 printk(KERN_INFO
"%s", version
);
3002 dev
->base_addr
= (long) pdev
;
3004 hp
= netdev_priv(dev
);
3005 memset(hp
, 0, sizeof(*hp
));
3007 hp
->happy_dev
= pdev
;
3008 hp
->dma_dev
= &pdev
->dev
;
3010 spin_lock_init(&hp
->happy_lock
);
3013 hp
->qfe_parent
= qp
;
3014 hp
->qfe_ent
= qfe_slot
;
3015 qp
->happy_meals
[qfe_slot
] = dev
;
3018 hpreg_res
= pci_resource_start(pdev
, 0);
3020 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
3021 printk(KERN_ERR
"happymeal(PCI): Cannot find proper PCI device base address.\n");
3022 goto err_out_clear_quattro
;
3024 if (pci_request_regions(pdev
, DRV_NAME
)) {
3025 printk(KERN_ERR
"happymeal(PCI): Cannot obtain PCI resources, "
3027 goto err_out_clear_quattro
;
3030 if ((hpreg_base
= ioremap(hpreg_res
, 0x8000)) == NULL
) {
3031 printk(KERN_ERR
"happymeal(PCI): Unable to remap card memory.\n");
3032 goto err_out_free_res
;
3035 for (i
= 0; i
< 6; i
++) {
3036 if (macaddr
[i
] != 0)
3039 if (i
< 6) { /* a mac address was given */
3040 for (i
= 0; i
< 6; i
++)
3041 dev
->dev_addr
[i
] = macaddr
[i
];
3045 const unsigned char *addr
;
3048 if (qfe_slot
!= -1 &&
3049 (addr
= of_get_property(dp
,
3050 "local-mac-address", &len
)) != NULL
3052 memcpy(dev
->dev_addr
, addr
, 6);
3054 memcpy(dev
->dev_addr
, idprom
->id_ethaddr
, 6);
3057 get_hme_mac_nonsparc(pdev
, &dev
->dev_addr
[0]);
3061 /* Layout registers. */
3062 hp
->gregs
= (hpreg_base
+ 0x0000UL
);
3063 hp
->etxregs
= (hpreg_base
+ 0x2000UL
);
3064 hp
->erxregs
= (hpreg_base
+ 0x4000UL
);
3065 hp
->bigmacregs
= (hpreg_base
+ 0x6000UL
);
3066 hp
->tcvregs
= (hpreg_base
+ 0x7000UL
);
3069 hp
->hm_revision
= of_getintprop_default(dp
, "hm-rev", 0xff);
3070 if (hp
->hm_revision
== 0xff)
3071 hp
->hm_revision
= 0xc0 | (pdev
->revision
& 0x0f);
3073 /* works with this on non-sparc hosts */
3074 hp
->hm_revision
= 0x20;
3077 /* Now enable the feature flags we can. */
3078 if (hp
->hm_revision
== 0x20 || hp
->hm_revision
== 0x21)
3079 hp
->happy_flags
= HFLAG_20_21
;
3080 else if (hp
->hm_revision
!= 0xa0 && hp
->hm_revision
!= 0xc0)
3081 hp
->happy_flags
= HFLAG_NOT_A0
;
3084 hp
->happy_flags
|= HFLAG_QUATTRO
;
3086 /* And of course, indicate this is PCI. */
3087 hp
->happy_flags
|= HFLAG_PCI
;
3090 /* Assume PCI happy meals can handle all burst sizes. */
3091 hp
->happy_bursts
= DMA_BURSTBITS
;
3094 hp
->happy_block
= (struct hmeal_init_block
*)
3095 dma_alloc_coherent(&pdev
->dev
, PAGE_SIZE
, &hp
->hblock_dvma
, GFP_KERNEL
);
3098 if (!hp
->happy_block
) {
3099 printk(KERN_ERR
"happymeal(PCI): Cannot get hme init block.\n");
3100 goto err_out_iounmap
;
3104 hp
->timer_state
= asleep
;
3105 hp
->timer_ticks
= 0;
3107 init_timer(&hp
->happy_timer
);
3110 dev
->netdev_ops
= &hme_netdev_ops
;
3111 dev
->watchdog_timeo
= 5*HZ
;
3112 dev
->ethtool_ops
= &hme_ethtool_ops
;
3113 dev
->irq
= pdev
->irq
;
3116 /* Happy Meal can do it all... */
3117 dev
->features
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
3119 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3120 /* Hook up PCI register/descriptor accessors. */
3121 hp
->read_desc32
= pci_hme_read_desc32
;
3122 hp
->write_txd
= pci_hme_write_txd
;
3123 hp
->write_rxd
= pci_hme_write_rxd
;
3124 hp
->read32
= pci_hme_read32
;
3125 hp
->write32
= pci_hme_write32
;
3128 /* Grrr, Happy Meal comes up by default not advertising
3129 * full duplex 100baseT capabilities, fix this.
3131 spin_lock_irq(&hp
->happy_lock
);
3132 happy_meal_set_initial_advertisement(hp
);
3133 spin_unlock_irq(&hp
->happy_lock
);
3135 if (register_netdev(hp
->dev
)) {
3136 printk(KERN_ERR
"happymeal(PCI): Cannot register net device, "
3138 goto err_out_iounmap
;
3141 dev_set_drvdata(&pdev
->dev
, hp
);
3144 struct pci_dev
*qpdev
= qp
->quattro_dev
;
3147 if (!strncmp(dev
->name
, "eth", 3)) {
3148 int i
= simple_strtoul(dev
->name
+ 3, NULL
, 10);
3149 sprintf(prom_name
, "-%d", i
+ 3);
3151 printk(KERN_INFO
"%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev
->name
, prom_name
);
3152 if (qpdev
->vendor
== PCI_VENDOR_ID_DEC
&&
3153 qpdev
->device
== PCI_DEVICE_ID_DEC_21153
)
3154 printk("DEC 21153 PCI Bridge\n");
3156 printk("unknown bridge %04x.%04x\n",
3157 qpdev
->vendor
, qpdev
->device
);
3161 printk(KERN_INFO
"%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3162 dev
->name
, qfe_slot
);
3164 printk(KERN_INFO
"%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3167 printk("%pM\n", dev
->dev_addr
);
3175 pci_release_regions(pdev
);
3177 err_out_clear_quattro
:
3179 qp
->happy_meals
[qfe_slot
] = NULL
;
3187 static void __devexit
happy_meal_pci_remove(struct pci_dev
*pdev
)
3189 struct happy_meal
*hp
= dev_get_drvdata(&pdev
->dev
);
3190 struct net_device
*net_dev
= hp
->dev
;
3192 unregister_netdev(net_dev
);
3194 dma_free_coherent(hp
->dma_dev
, PAGE_SIZE
,
3195 hp
->happy_block
, hp
->hblock_dvma
);
3197 pci_release_regions(hp
->happy_dev
);
3199 free_netdev(net_dev
);
3201 dev_set_drvdata(&pdev
->dev
, NULL
);
3204 static struct pci_device_id happymeal_pci_ids
[] = {
3205 { PCI_DEVICE(PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_HAPPYMEAL
) },
3206 { } /* Terminating entry */
3209 MODULE_DEVICE_TABLE(pci
, happymeal_pci_ids
);
3211 static struct pci_driver hme_pci_driver
= {
3213 .id_table
= happymeal_pci_ids
,
3214 .probe
= happy_meal_pci_probe
,
3215 .remove
= __devexit_p(happy_meal_pci_remove
),
3218 static int __init
happy_meal_pci_init(void)
3220 return pci_register_driver(&hme_pci_driver
);
3223 static void happy_meal_pci_exit(void)
3225 pci_unregister_driver(&hme_pci_driver
);
3227 while (qfe_pci_list
) {
3228 struct quattro
*qfe
= qfe_pci_list
;
3229 struct quattro
*next
= qfe
->next
;
3233 qfe_pci_list
= next
;
3240 static int __devinit
hme_sbus_probe(struct of_device
*op
, const struct of_device_id
*match
)
3242 struct device_node
*dp
= op
->node
;
3243 const char *model
= of_get_property(dp
, "model", NULL
);
3244 int is_qfe
= (match
->data
!= NULL
);
3246 if (!is_qfe
&& model
&& !strcmp(model
, "SUNW,sbus-qfe"))
3249 return happy_meal_sbus_probe_one(op
, is_qfe
);
3252 static int __devexit
hme_sbus_remove(struct of_device
*op
)
3254 struct happy_meal
*hp
= dev_get_drvdata(&op
->dev
);
3255 struct net_device
*net_dev
= hp
->dev
;
3257 unregister_netdev(net_dev
);
3259 /* XXX qfe parent interrupt... */
3261 of_iounmap(&op
->resource
[0], hp
->gregs
, GREG_REG_SIZE
);
3262 of_iounmap(&op
->resource
[1], hp
->etxregs
, ETX_REG_SIZE
);
3263 of_iounmap(&op
->resource
[2], hp
->erxregs
, ERX_REG_SIZE
);
3264 of_iounmap(&op
->resource
[3], hp
->bigmacregs
, BMAC_REG_SIZE
);
3265 of_iounmap(&op
->resource
[4], hp
->tcvregs
, TCVR_REG_SIZE
);
3266 dma_free_coherent(hp
->dma_dev
,
3271 free_netdev(net_dev
);
3273 dev_set_drvdata(&op
->dev
, NULL
);
3278 static const struct of_device_id hme_sbus_match
[] = {
3293 MODULE_DEVICE_TABLE(of
, hme_sbus_match
);
3295 static struct of_platform_driver hme_sbus_driver
= {
3297 .match_table
= hme_sbus_match
,
3298 .probe
= hme_sbus_probe
,
3299 .remove
= __devexit_p(hme_sbus_remove
),
3302 static int __init
happy_meal_sbus_init(void)
3306 err
= of_register_driver(&hme_sbus_driver
, &of_bus_type
);
3308 err
= quattro_sbus_register_irqs();
3313 static void happy_meal_sbus_exit(void)
3315 of_unregister_driver(&hme_sbus_driver
);
3316 quattro_sbus_free_irqs();
3318 while (qfe_sbus_list
) {
3319 struct quattro
*qfe
= qfe_sbus_list
;
3320 struct quattro
*next
= qfe
->next
;
3324 qfe_sbus_list
= next
;
3329 static int __init
happy_meal_probe(void)
3334 err
= happy_meal_sbus_init();
3338 err
= happy_meal_pci_init();
3341 happy_meal_sbus_exit();
3350 static void __exit
happy_meal_exit(void)
3353 happy_meal_sbus_exit();
3356 happy_meal_pci_exit();
3360 module_init(happy_meal_probe
);
3361 module_exit(happy_meal_exit
);