2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
62 /* debounce timing parameters in msecs { interval, duration, timeout } */
63 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
64 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
65 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
67 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
68 u16 heads
, u16 sectors
);
69 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
70 static void ata_dev_xfermask(struct ata_device
*dev
);
72 static unsigned int ata_unique_id
= 1;
73 static struct workqueue_struct
*ata_wq
;
75 struct workqueue_struct
*ata_aux_wq
;
77 int atapi_enabled
= 1;
78 module_param(atapi_enabled
, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on)");
82 module_param(atapi_dmadir
, int, 0444);
83 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86 module_param_named(fua
, libata_fua
, int, 0444);
87 MODULE_PARM_DESC(fua
, "FUA support (0=off, 1=on)");
89 static int ata_probe_timeout
= ATA_TMOUT_INTERNAL
/ HZ
;
90 module_param(ata_probe_timeout
, int, 0444);
91 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
93 MODULE_AUTHOR("Jeff Garzik");
94 MODULE_DESCRIPTION("Library module for ATA devices");
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(DRV_VERSION
);
100 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
101 * @tf: Taskfile to convert
102 * @fis: Buffer into which data will output
103 * @pmp: Port multiplier port
105 * Converts a standard ATA taskfile to a Serial ATA
106 * FIS structure (Register - Host to Device).
109 * Inherited from caller.
112 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8
*fis
, u8 pmp
)
114 fis
[0] = 0x27; /* Register - Host to Device FIS */
115 fis
[1] = (pmp
& 0xf) | (1 << 7); /* Port multiplier number,
116 bit 7 indicates Command FIS */
117 fis
[2] = tf
->command
;
118 fis
[3] = tf
->feature
;
125 fis
[8] = tf
->hob_lbal
;
126 fis
[9] = tf
->hob_lbam
;
127 fis
[10] = tf
->hob_lbah
;
128 fis
[11] = tf
->hob_feature
;
131 fis
[13] = tf
->hob_nsect
;
142 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
143 * @fis: Buffer from which data will be input
144 * @tf: Taskfile to output
146 * Converts a serial ATA FIS structure to a standard ATA taskfile.
149 * Inherited from caller.
152 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
154 tf
->command
= fis
[2]; /* status */
155 tf
->feature
= fis
[3]; /* error */
162 tf
->hob_lbal
= fis
[8];
163 tf
->hob_lbam
= fis
[9];
164 tf
->hob_lbah
= fis
[10];
167 tf
->hob_nsect
= fis
[13];
170 static const u8 ata_rw_cmds
[] = {
174 ATA_CMD_READ_MULTI_EXT
,
175 ATA_CMD_WRITE_MULTI_EXT
,
179 ATA_CMD_WRITE_MULTI_FUA_EXT
,
183 ATA_CMD_PIO_READ_EXT
,
184 ATA_CMD_PIO_WRITE_EXT
,
197 ATA_CMD_WRITE_FUA_EXT
201 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
202 * @tf: command to examine and configure
203 * @dev: device tf belongs to
205 * Examine the device configuration and tf->flags to calculate
206 * the proper read/write commands and protocol to use.
211 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
215 int index
, fua
, lba48
, write
;
217 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
218 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
219 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
221 if (dev
->flags
& ATA_DFLAG_PIO
) {
222 tf
->protocol
= ATA_PROT_PIO
;
223 index
= dev
->multi_count
? 0 : 8;
224 } else if (lba48
&& (dev
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
225 /* Unable to use DMA due to host limitation */
226 tf
->protocol
= ATA_PROT_PIO
;
227 index
= dev
->multi_count
? 0 : 8;
229 tf
->protocol
= ATA_PROT_DMA
;
233 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
242 * ata_tf_read_block - Read block address from ATA taskfile
243 * @tf: ATA taskfile of interest
244 * @dev: ATA device @tf belongs to
249 * Read block address from @tf. This function can handle all
250 * three address formats - LBA, LBA48 and CHS. tf->protocol and
251 * flags select the address format to use.
254 * Block address read from @tf.
256 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
260 if (tf
->flags
& ATA_TFLAG_LBA
) {
261 if (tf
->flags
& ATA_TFLAG_LBA48
) {
262 block
|= (u64
)tf
->hob_lbah
<< 40;
263 block
|= (u64
)tf
->hob_lbam
<< 32;
264 block
|= tf
->hob_lbal
<< 24;
266 block
|= (tf
->device
& 0xf) << 24;
268 block
|= tf
->lbah
<< 16;
269 block
|= tf
->lbam
<< 8;
274 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
275 head
= tf
->device
& 0xf;
278 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
;
285 * ata_build_rw_tf - Build ATA taskfile for given read/write request
286 * @tf: Target ATA taskfile
287 * @dev: ATA device @tf belongs to
288 * @block: Block address
289 * @n_block: Number of blocks
290 * @tf_flags: RW/FUA etc...
296 * Build ATA taskfile @tf for read/write request described by
297 * @block, @n_block, @tf_flags and @tag on @dev.
301 * 0 on success, -ERANGE if the request is too large for @dev,
302 * -EINVAL if the request is invalid.
304 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
305 u64 block
, u32 n_block
, unsigned int tf_flags
,
308 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
309 tf
->flags
|= tf_flags
;
311 if ((dev
->flags
& (ATA_DFLAG_PIO
| ATA_DFLAG_NCQ_OFF
|
312 ATA_DFLAG_NCQ
)) == ATA_DFLAG_NCQ
&&
313 likely(tag
!= ATA_TAG_INTERNAL
)) {
315 if (!lba_48_ok(block
, n_block
))
318 tf
->protocol
= ATA_PROT_NCQ
;
319 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
321 if (tf
->flags
& ATA_TFLAG_WRITE
)
322 tf
->command
= ATA_CMD_FPDMA_WRITE
;
324 tf
->command
= ATA_CMD_FPDMA_READ
;
326 tf
->nsect
= tag
<< 3;
327 tf
->hob_feature
= (n_block
>> 8) & 0xff;
328 tf
->feature
= n_block
& 0xff;
330 tf
->hob_lbah
= (block
>> 40) & 0xff;
331 tf
->hob_lbam
= (block
>> 32) & 0xff;
332 tf
->hob_lbal
= (block
>> 24) & 0xff;
333 tf
->lbah
= (block
>> 16) & 0xff;
334 tf
->lbam
= (block
>> 8) & 0xff;
335 tf
->lbal
= block
& 0xff;
338 if (tf
->flags
& ATA_TFLAG_FUA
)
339 tf
->device
|= 1 << 7;
340 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
341 tf
->flags
|= ATA_TFLAG_LBA
;
343 if (lba_28_ok(block
, n_block
)) {
345 tf
->device
|= (block
>> 24) & 0xf;
346 } else if (lba_48_ok(block
, n_block
)) {
347 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
351 tf
->flags
|= ATA_TFLAG_LBA48
;
353 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
355 tf
->hob_lbah
= (block
>> 40) & 0xff;
356 tf
->hob_lbam
= (block
>> 32) & 0xff;
357 tf
->hob_lbal
= (block
>> 24) & 0xff;
359 /* request too large even for LBA48 */
362 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
365 tf
->nsect
= n_block
& 0xff;
367 tf
->lbah
= (block
>> 16) & 0xff;
368 tf
->lbam
= (block
>> 8) & 0xff;
369 tf
->lbal
= block
& 0xff;
371 tf
->device
|= ATA_LBA
;
374 u32 sect
, head
, cyl
, track
;
376 /* The request -may- be too large for CHS addressing. */
377 if (!lba_28_ok(block
, n_block
))
380 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
383 /* Convert LBA to CHS */
384 track
= (u32
)block
/ dev
->sectors
;
385 cyl
= track
/ dev
->heads
;
386 head
= track
% dev
->heads
;
387 sect
= (u32
)block
% dev
->sectors
+ 1;
389 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
390 (u32
)block
, track
, cyl
, head
, sect
);
392 /* Check whether the converted CHS can fit.
396 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
399 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
410 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
411 * @pio_mask: pio_mask
412 * @mwdma_mask: mwdma_mask
413 * @udma_mask: udma_mask
415 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
416 * unsigned int xfer_mask.
424 static unsigned int ata_pack_xfermask(unsigned int pio_mask
,
425 unsigned int mwdma_mask
,
426 unsigned int udma_mask
)
428 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
429 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
430 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
434 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
435 * @xfer_mask: xfer_mask to unpack
436 * @pio_mask: resulting pio_mask
437 * @mwdma_mask: resulting mwdma_mask
438 * @udma_mask: resulting udma_mask
440 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
441 * Any NULL distination masks will be ignored.
443 static void ata_unpack_xfermask(unsigned int xfer_mask
,
444 unsigned int *pio_mask
,
445 unsigned int *mwdma_mask
,
446 unsigned int *udma_mask
)
449 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
451 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
453 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
456 static const struct ata_xfer_ent
{
460 { ATA_SHIFT_PIO
, ATA_BITS_PIO
, XFER_PIO_0
},
461 { ATA_SHIFT_MWDMA
, ATA_BITS_MWDMA
, XFER_MW_DMA_0
},
462 { ATA_SHIFT_UDMA
, ATA_BITS_UDMA
, XFER_UDMA_0
},
467 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
468 * @xfer_mask: xfer_mask of interest
470 * Return matching XFER_* value for @xfer_mask. Only the highest
471 * bit of @xfer_mask is considered.
477 * Matching XFER_* value, 0 if no match found.
479 static u8
ata_xfer_mask2mode(unsigned int xfer_mask
)
481 int highbit
= fls(xfer_mask
) - 1;
482 const struct ata_xfer_ent
*ent
;
484 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
485 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
486 return ent
->base
+ highbit
- ent
->shift
;
491 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
492 * @xfer_mode: XFER_* of interest
494 * Return matching xfer_mask for @xfer_mode.
500 * Matching xfer_mask, 0 if no match found.
502 static unsigned int ata_xfer_mode2mask(u8 xfer_mode
)
504 const struct ata_xfer_ent
*ent
;
506 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
507 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
508 return 1 << (ent
->shift
+ xfer_mode
- ent
->base
);
513 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
514 * @xfer_mode: XFER_* of interest
516 * Return matching xfer_shift for @xfer_mode.
522 * Matching xfer_shift, -1 if no match found.
524 static int ata_xfer_mode2shift(unsigned int xfer_mode
)
526 const struct ata_xfer_ent
*ent
;
528 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
529 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
535 * ata_mode_string - convert xfer_mask to string
536 * @xfer_mask: mask of bits supported; only highest bit counts.
538 * Determine string which represents the highest speed
539 * (highest bit in @modemask).
545 * Constant C string representing highest speed listed in
546 * @mode_mask, or the constant C string "<n/a>".
548 static const char *ata_mode_string(unsigned int xfer_mask
)
550 static const char * const xfer_mode_str
[] = {
574 highbit
= fls(xfer_mask
) - 1;
575 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
576 return xfer_mode_str
[highbit
];
580 static const char *sata_spd_string(unsigned int spd
)
582 static const char * const spd_str
[] = {
587 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
589 return spd_str
[spd
- 1];
592 void ata_dev_disable(struct ata_device
*dev
)
594 if (ata_dev_enabled(dev
) && ata_msg_drv(dev
->ap
)) {
595 ata_dev_printk(dev
, KERN_WARNING
, "disabled\n");
601 * ata_pio_devchk - PATA device presence detection
602 * @ap: ATA channel to examine
603 * @device: Device to examine (starting at zero)
605 * This technique was originally described in
606 * Hale Landis's ATADRVR (www.ata-atapi.com), and
607 * later found its way into the ATA/ATAPI spec.
609 * Write a pattern to the ATA shadow registers,
610 * and if a device is present, it will respond by
611 * correctly storing and echoing back the
612 * ATA shadow register contents.
618 static unsigned int ata_pio_devchk(struct ata_port
*ap
,
621 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
624 ap
->ops
->dev_select(ap
, device
);
626 outb(0x55, ioaddr
->nsect_addr
);
627 outb(0xaa, ioaddr
->lbal_addr
);
629 outb(0xaa, ioaddr
->nsect_addr
);
630 outb(0x55, ioaddr
->lbal_addr
);
632 outb(0x55, ioaddr
->nsect_addr
);
633 outb(0xaa, ioaddr
->lbal_addr
);
635 nsect
= inb(ioaddr
->nsect_addr
);
636 lbal
= inb(ioaddr
->lbal_addr
);
638 if ((nsect
== 0x55) && (lbal
== 0xaa))
639 return 1; /* we found a device */
641 return 0; /* nothing found */
645 * ata_mmio_devchk - PATA device presence detection
646 * @ap: ATA channel to examine
647 * @device: Device to examine (starting at zero)
649 * This technique was originally described in
650 * Hale Landis's ATADRVR (www.ata-atapi.com), and
651 * later found its way into the ATA/ATAPI spec.
653 * Write a pattern to the ATA shadow registers,
654 * and if a device is present, it will respond by
655 * correctly storing and echoing back the
656 * ATA shadow register contents.
662 static unsigned int ata_mmio_devchk(struct ata_port
*ap
,
665 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
668 ap
->ops
->dev_select(ap
, device
);
670 writeb(0x55, (void __iomem
*) ioaddr
->nsect_addr
);
671 writeb(0xaa, (void __iomem
*) ioaddr
->lbal_addr
);
673 writeb(0xaa, (void __iomem
*) ioaddr
->nsect_addr
);
674 writeb(0x55, (void __iomem
*) ioaddr
->lbal_addr
);
676 writeb(0x55, (void __iomem
*) ioaddr
->nsect_addr
);
677 writeb(0xaa, (void __iomem
*) ioaddr
->lbal_addr
);
679 nsect
= readb((void __iomem
*) ioaddr
->nsect_addr
);
680 lbal
= readb((void __iomem
*) ioaddr
->lbal_addr
);
682 if ((nsect
== 0x55) && (lbal
== 0xaa))
683 return 1; /* we found a device */
685 return 0; /* nothing found */
689 * ata_devchk - PATA device presence detection
690 * @ap: ATA channel to examine
691 * @device: Device to examine (starting at zero)
693 * Dispatch ATA device presence detection, depending
694 * on whether we are using PIO or MMIO to talk to the
695 * ATA shadow registers.
701 static unsigned int ata_devchk(struct ata_port
*ap
,
704 if (ap
->flags
& ATA_FLAG_MMIO
)
705 return ata_mmio_devchk(ap
, device
);
706 return ata_pio_devchk(ap
, device
);
710 * ata_dev_classify - determine device type based on ATA-spec signature
711 * @tf: ATA taskfile register set for device to be identified
713 * Determine from taskfile register contents whether a device is
714 * ATA or ATAPI, as per "Signature and persistence" section
715 * of ATA/PI spec (volume 1, sect 5.14).
721 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
722 * the event of failure.
725 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
727 /* Apple's open source Darwin code hints that some devices only
728 * put a proper signature into the LBA mid/high registers,
729 * So, we only check those. It's sufficient for uniqueness.
732 if (((tf
->lbam
== 0) && (tf
->lbah
== 0)) ||
733 ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3))) {
734 DPRINTK("found ATA device by sig\n");
738 if (((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) ||
739 ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96))) {
740 DPRINTK("found ATAPI device by sig\n");
741 return ATA_DEV_ATAPI
;
744 DPRINTK("unknown device\n");
745 return ATA_DEV_UNKNOWN
;
749 * ata_dev_try_classify - Parse returned ATA device signature
750 * @ap: ATA channel to examine
751 * @device: Device to examine (starting at zero)
752 * @r_err: Value of error register on completion
754 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
755 * an ATA/ATAPI-defined set of values is placed in the ATA
756 * shadow registers, indicating the results of device detection
759 * Select the ATA device, and read the values from the ATA shadow
760 * registers. Then parse according to the Error register value,
761 * and the spec-defined values examined by ata_dev_classify().
767 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
771 ata_dev_try_classify(struct ata_port
*ap
, unsigned int device
, u8
*r_err
)
773 struct ata_taskfile tf
;
777 ap
->ops
->dev_select(ap
, device
);
779 memset(&tf
, 0, sizeof(tf
));
781 ap
->ops
->tf_read(ap
, &tf
);
786 /* see if device passed diags: if master then continue and warn later */
787 if (err
== 0 && device
== 0)
788 /* diagnostic fail : do nothing _YET_ */
789 ap
->device
[device
].horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
792 else if ((device
== 0) && (err
== 0x81))
797 /* determine if device is ATA or ATAPI */
798 class = ata_dev_classify(&tf
);
800 if (class == ATA_DEV_UNKNOWN
)
802 if ((class == ATA_DEV_ATA
) && (ata_chk_status(ap
) == 0))
808 * ata_id_string - Convert IDENTIFY DEVICE page into string
809 * @id: IDENTIFY DEVICE results we will examine
810 * @s: string into which data is output
811 * @ofs: offset into identify device page
812 * @len: length of string to return. must be an even number.
814 * The strings in the IDENTIFY DEVICE page are broken up into
815 * 16-bit chunks. Run through the string, and output each
816 * 8-bit chunk linearly, regardless of platform.
822 void ata_id_string(const u16
*id
, unsigned char *s
,
823 unsigned int ofs
, unsigned int len
)
842 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
843 * @id: IDENTIFY DEVICE results we will examine
844 * @s: string into which data is output
845 * @ofs: offset into identify device page
846 * @len: length of string to return. must be an odd number.
848 * This function is identical to ata_id_string except that it
849 * trims trailing spaces and terminates the resulting string with
850 * null. @len must be actual maximum length (even number) + 1.
855 void ata_id_c_string(const u16
*id
, unsigned char *s
,
856 unsigned int ofs
, unsigned int len
)
862 ata_id_string(id
, s
, ofs
, len
- 1);
864 p
= s
+ strnlen(s
, len
- 1);
865 while (p
> s
&& p
[-1] == ' ')
870 static u64
ata_id_n_sectors(const u16
*id
)
872 if (ata_id_has_lba(id
)) {
873 if (ata_id_has_lba48(id
))
874 return ata_id_u64(id
, 100);
876 return ata_id_u32(id
, 60);
878 if (ata_id_current_chs_valid(id
))
879 return ata_id_u32(id
, 57);
881 return id
[1] * id
[3] * id
[6];
886 * ata_noop_dev_select - Select device 0/1 on ATA bus
887 * @ap: ATA channel to manipulate
888 * @device: ATA device (numbered from zero) to select
890 * This function performs no actual function.
892 * May be used as the dev_select() entry in ata_port_operations.
897 void ata_noop_dev_select (struct ata_port
*ap
, unsigned int device
)
903 * ata_std_dev_select - Select device 0/1 on ATA bus
904 * @ap: ATA channel to manipulate
905 * @device: ATA device (numbered from zero) to select
907 * Use the method defined in the ATA specification to
908 * make either device 0, or device 1, active on the
909 * ATA channel. Works with both PIO and MMIO.
911 * May be used as the dev_select() entry in ata_port_operations.
917 void ata_std_dev_select (struct ata_port
*ap
, unsigned int device
)
922 tmp
= ATA_DEVICE_OBS
;
924 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
926 if (ap
->flags
& ATA_FLAG_MMIO
) {
927 writeb(tmp
, (void __iomem
*) ap
->ioaddr
.device_addr
);
929 outb(tmp
, ap
->ioaddr
.device_addr
);
931 ata_pause(ap
); /* needed; also flushes, for mmio */
935 * ata_dev_select - Select device 0/1 on ATA bus
936 * @ap: ATA channel to manipulate
937 * @device: ATA device (numbered from zero) to select
938 * @wait: non-zero to wait for Status register BSY bit to clear
939 * @can_sleep: non-zero if context allows sleeping
941 * Use the method defined in the ATA specification to
942 * make either device 0, or device 1, active on the
945 * This is a high-level version of ata_std_dev_select(),
946 * which additionally provides the services of inserting
947 * the proper pauses and status polling, where needed.
953 void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
954 unsigned int wait
, unsigned int can_sleep
)
956 if (ata_msg_probe(ap
))
957 ata_port_printk(ap
, KERN_INFO
, "ata_dev_select: ENTER, ata%u: "
958 "device %u, wait %u\n", ap
->id
, device
, wait
);
963 ap
->ops
->dev_select(ap
, device
);
966 if (can_sleep
&& ap
->device
[device
].class == ATA_DEV_ATAPI
)
973 * ata_dump_id - IDENTIFY DEVICE info debugging output
974 * @id: IDENTIFY DEVICE page to dump
976 * Dump selected 16-bit words from the given IDENTIFY DEVICE
983 static inline void ata_dump_id(const u16
*id
)
985 DPRINTK("49==0x%04x "
995 DPRINTK("80==0x%04x "
1005 DPRINTK("88==0x%04x "
1012 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1013 * @id: IDENTIFY data to compute xfer mask from
1015 * Compute the xfermask for this device. This is not as trivial
1016 * as it seems if we must consider early devices correctly.
1018 * FIXME: pre IDE drive timing (do we care ?).
1026 static unsigned int ata_id_xfermask(const u16
*id
)
1028 unsigned int pio_mask
, mwdma_mask
, udma_mask
;
1030 /* Usual case. Word 53 indicates word 64 is valid */
1031 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1032 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1036 /* If word 64 isn't valid then Word 51 high byte holds
1037 * the PIO timing number for the maximum. Turn it into
1040 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1041 if (mode
< 5) /* Valid PIO range */
1042 pio_mask
= (2 << mode
) - 1;
1046 /* But wait.. there's more. Design your standards by
1047 * committee and you too can get a free iordy field to
1048 * process. However its the speeds not the modes that
1049 * are supported... Note drivers using the timing API
1050 * will get this right anyway
1054 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1056 if (ata_id_is_cfa(id
)) {
1058 * Process compact flash extended modes
1060 int pio
= id
[163] & 0x7;
1061 int dma
= (id
[163] >> 3) & 7;
1064 pio_mask
|= (1 << 5);
1066 pio_mask
|= (1 << 6);
1068 mwdma_mask
|= (1 << 3);
1070 mwdma_mask
|= (1 << 4);
1074 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1075 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1077 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1081 * ata_port_queue_task - Queue port_task
1082 * @ap: The ata_port to queue port_task for
1083 * @fn: workqueue function to be scheduled
1084 * @data: data for @fn to use
1085 * @delay: delay time for workqueue function
1087 * Schedule @fn(@data) for execution after @delay jiffies using
1088 * port_task. There is one port_task per port and it's the
1089 * user(low level driver)'s responsibility to make sure that only
1090 * one task is active at any given time.
1092 * libata core layer takes care of synchronization between
1093 * port_task and EH. ata_port_queue_task() may be ignored for EH
1097 * Inherited from caller.
1099 void ata_port_queue_task(struct ata_port
*ap
, work_func_t fn
, void *data
,
1100 unsigned long delay
)
1104 if (ap
->pflags
& ATA_PFLAG_FLUSH_PORT_TASK
)
1107 PREPARE_DELAYED_WORK(&ap
->port_task
, fn
);
1108 ap
->port_task_data
= data
;
1110 rc
= queue_delayed_work(ata_wq
, &ap
->port_task
, delay
);
1112 /* rc == 0 means that another user is using port task */
1117 * ata_port_flush_task - Flush port_task
1118 * @ap: The ata_port to flush port_task for
1120 * After this function completes, port_task is guranteed not to
1121 * be running or scheduled.
1124 * Kernel thread context (may sleep)
1126 void ata_port_flush_task(struct ata_port
*ap
)
1128 unsigned long flags
;
1132 spin_lock_irqsave(ap
->lock
, flags
);
1133 ap
->pflags
|= ATA_PFLAG_FLUSH_PORT_TASK
;
1134 spin_unlock_irqrestore(ap
->lock
, flags
);
1136 DPRINTK("flush #1\n");
1137 flush_workqueue(ata_wq
);
1140 * At this point, if a task is running, it's guaranteed to see
1141 * the FLUSH flag; thus, it will never queue pio tasks again.
1144 if (!cancel_delayed_work(&ap
->port_task
)) {
1145 if (ata_msg_ctl(ap
))
1146 ata_port_printk(ap
, KERN_DEBUG
, "%s: flush #2\n",
1148 flush_workqueue(ata_wq
);
1151 spin_lock_irqsave(ap
->lock
, flags
);
1152 ap
->pflags
&= ~ATA_PFLAG_FLUSH_PORT_TASK
;
1153 spin_unlock_irqrestore(ap
->lock
, flags
);
1155 if (ata_msg_ctl(ap
))
1156 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __FUNCTION__
);
1159 void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1161 struct completion
*waiting
= qc
->private_data
;
1167 * ata_exec_internal_sg - execute libata internal command
1168 * @dev: Device to which the command is sent
1169 * @tf: Taskfile registers for the command and the result
1170 * @cdb: CDB for packet command
1171 * @dma_dir: Data tranfer direction of the command
1172 * @sg: sg list for the data buffer of the command
1173 * @n_elem: Number of sg entries
1175 * Executes libata internal command with timeout. @tf contains
1176 * command on entry and result on return. Timeout and error
1177 * conditions are reported via return value. No recovery action
1178 * is taken after a command times out. It's caller's duty to
1179 * clean up after timeout.
1182 * None. Should be called with kernel context, might sleep.
1185 * Zero on success, AC_ERR_* mask on failure
1187 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1188 struct ata_taskfile
*tf
, const u8
*cdb
,
1189 int dma_dir
, struct scatterlist
*sg
,
1190 unsigned int n_elem
)
1192 struct ata_port
*ap
= dev
->ap
;
1193 u8 command
= tf
->command
;
1194 struct ata_queued_cmd
*qc
;
1195 unsigned int tag
, preempted_tag
;
1196 u32 preempted_sactive
, preempted_qc_active
;
1197 DECLARE_COMPLETION_ONSTACK(wait
);
1198 unsigned long flags
;
1199 unsigned int err_mask
;
1202 spin_lock_irqsave(ap
->lock
, flags
);
1204 /* no internal command while frozen */
1205 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1206 spin_unlock_irqrestore(ap
->lock
, flags
);
1207 return AC_ERR_SYSTEM
;
1210 /* initialize internal qc */
1212 /* XXX: Tag 0 is used for drivers with legacy EH as some
1213 * drivers choke if any other tag is given. This breaks
1214 * ata_tag_internal() test for those drivers. Don't use new
1215 * EH stuff without converting to it.
1217 if (ap
->ops
->error_handler
)
1218 tag
= ATA_TAG_INTERNAL
;
1222 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1224 qc
= __ata_qc_from_tag(ap
, tag
);
1232 preempted_tag
= ap
->active_tag
;
1233 preempted_sactive
= ap
->sactive
;
1234 preempted_qc_active
= ap
->qc_active
;
1235 ap
->active_tag
= ATA_TAG_POISON
;
1239 /* prepare & issue qc */
1242 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1243 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1244 qc
->dma_dir
= dma_dir
;
1245 if (dma_dir
!= DMA_NONE
) {
1246 unsigned int i
, buflen
= 0;
1248 for (i
= 0; i
< n_elem
; i
++)
1249 buflen
+= sg
[i
].length
;
1251 ata_sg_init(qc
, sg
, n_elem
);
1252 qc
->nsect
= buflen
/ ATA_SECT_SIZE
;
1253 qc
->nbytes
= buflen
;
1256 qc
->private_data
= &wait
;
1257 qc
->complete_fn
= ata_qc_complete_internal
;
1261 spin_unlock_irqrestore(ap
->lock
, flags
);
1263 rc
= wait_for_completion_timeout(&wait
, ata_probe_timeout
);
1265 ata_port_flush_task(ap
);
1268 spin_lock_irqsave(ap
->lock
, flags
);
1270 /* We're racing with irq here. If we lose, the
1271 * following test prevents us from completing the qc
1272 * twice. If we win, the port is frozen and will be
1273 * cleaned up by ->post_internal_cmd().
1275 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1276 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1278 if (ap
->ops
->error_handler
)
1279 ata_port_freeze(ap
);
1281 ata_qc_complete(qc
);
1283 if (ata_msg_warn(ap
))
1284 ata_dev_printk(dev
, KERN_WARNING
,
1285 "qc timeout (cmd 0x%x)\n", command
);
1288 spin_unlock_irqrestore(ap
->lock
, flags
);
1291 /* do post_internal_cmd */
1292 if (ap
->ops
->post_internal_cmd
)
1293 ap
->ops
->post_internal_cmd(qc
);
1295 if (qc
->flags
& ATA_QCFLAG_FAILED
&& !qc
->err_mask
) {
1296 if (ata_msg_warn(ap
))
1297 ata_dev_printk(dev
, KERN_WARNING
,
1298 "zero err_mask for failed "
1299 "internal command, assuming AC_ERR_OTHER\n");
1300 qc
->err_mask
|= AC_ERR_OTHER
;
1304 spin_lock_irqsave(ap
->lock
, flags
);
1306 *tf
= qc
->result_tf
;
1307 err_mask
= qc
->err_mask
;
1310 ap
->active_tag
= preempted_tag
;
1311 ap
->sactive
= preempted_sactive
;
1312 ap
->qc_active
= preempted_qc_active
;
1314 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1315 * Until those drivers are fixed, we detect the condition
1316 * here, fail the command with AC_ERR_SYSTEM and reenable the
1319 * Note that this doesn't change any behavior as internal
1320 * command failure results in disabling the device in the
1321 * higher layer for LLDDs without new reset/EH callbacks.
1323 * Kill the following code as soon as those drivers are fixed.
1325 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1326 err_mask
|= AC_ERR_SYSTEM
;
1330 spin_unlock_irqrestore(ap
->lock
, flags
);
1336 * ata_exec_internal - execute libata internal command
1337 * @dev: Device to which the command is sent
1338 * @tf: Taskfile registers for the command and the result
1339 * @cdb: CDB for packet command
1340 * @dma_dir: Data tranfer direction of the command
1341 * @buf: Data buffer of the command
1342 * @buflen: Length of data buffer
1344 * Wrapper around ata_exec_internal_sg() which takes simple
1345 * buffer instead of sg list.
1348 * None. Should be called with kernel context, might sleep.
1351 * Zero on success, AC_ERR_* mask on failure
1353 unsigned ata_exec_internal(struct ata_device
*dev
,
1354 struct ata_taskfile
*tf
, const u8
*cdb
,
1355 int dma_dir
, void *buf
, unsigned int buflen
)
1357 struct scatterlist
*psg
= NULL
, sg
;
1358 unsigned int n_elem
= 0;
1360 if (dma_dir
!= DMA_NONE
) {
1362 sg_init_one(&sg
, buf
, buflen
);
1367 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
);
1371 * ata_do_simple_cmd - execute simple internal command
1372 * @dev: Device to which the command is sent
1373 * @cmd: Opcode to execute
1375 * Execute a 'simple' command, that only consists of the opcode
1376 * 'cmd' itself, without filling any other registers
1379 * Kernel thread context (may sleep).
1382 * Zero on success, AC_ERR_* mask on failure
1384 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1386 struct ata_taskfile tf
;
1388 ata_tf_init(dev
, &tf
);
1391 tf
.flags
|= ATA_TFLAG_DEVICE
;
1392 tf
.protocol
= ATA_PROT_NODATA
;
1394 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
1398 * ata_pio_need_iordy - check if iordy needed
1401 * Check if the current speed of the device requires IORDY. Used
1402 * by various controllers for chip configuration.
1405 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
1408 int speed
= adev
->pio_mode
- XFER_PIO_0
;
1415 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1417 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
1418 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
1419 /* Is the speed faster than the drive allows non IORDY ? */
1421 /* This is cycle times not frequency - watch the logic! */
1422 if (pio
> 240) /* PIO2 is 240nS per cycle */
1431 * ata_dev_read_id - Read ID data from the specified device
1432 * @dev: target device
1433 * @p_class: pointer to class of the target device (may be changed)
1434 * @flags: ATA_READID_* flags
1435 * @id: buffer to read IDENTIFY data into
1437 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1438 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1439 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1440 * for pre-ATA4 drives.
1443 * Kernel thread context (may sleep)
1446 * 0 on success, -errno otherwise.
1448 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
1449 unsigned int flags
, u16
*id
)
1451 struct ata_port
*ap
= dev
->ap
;
1452 unsigned int class = *p_class
;
1453 struct ata_taskfile tf
;
1454 unsigned int err_mask
= 0;
1458 if (ata_msg_ctl(ap
))
1459 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER, host %u, dev %u\n",
1460 __FUNCTION__
, ap
->id
, dev
->devno
);
1462 ata_dev_select(ap
, dev
->devno
, 1, 1); /* select device 0/1 */
1465 ata_tf_init(dev
, &tf
);
1469 tf
.command
= ATA_CMD_ID_ATA
;
1472 tf
.command
= ATA_CMD_ID_ATAPI
;
1476 reason
= "unsupported class";
1480 tf
.protocol
= ATA_PROT_PIO
;
1482 /* Some devices choke if TF registers contain garbage. Make
1483 * sure those are properly initialized.
1485 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
1487 /* Device presence detection is unreliable on some
1488 * controllers. Always poll IDENTIFY if available.
1490 tf
.flags
|= ATA_TFLAG_POLLING
;
1492 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_FROM_DEVICE
,
1493 id
, sizeof(id
[0]) * ATA_ID_WORDS
);
1495 if (err_mask
& AC_ERR_NODEV_HINT
) {
1496 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1497 ap
->id
, dev
->devno
);
1502 reason
= "I/O error";
1506 swap_buf_le16(id
, ATA_ID_WORDS
);
1510 reason
= "device reports illegal type";
1512 if (class == ATA_DEV_ATA
) {
1513 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
1516 if (ata_id_is_ata(id
))
1520 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
1522 * The exact sequence expected by certain pre-ATA4 drives is:
1525 * INITIALIZE DEVICE PARAMETERS
1527 * Some drives were very specific about that exact sequence.
1529 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
1530 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
1533 reason
= "INIT_DEV_PARAMS failed";
1537 /* current CHS translation info (id[53-58]) might be
1538 * changed. reread the identify device info.
1540 flags
&= ~ATA_READID_POSTRESET
;
1550 if (ata_msg_warn(ap
))
1551 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
1552 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
1556 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
1558 return ((dev
->ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
1561 static void ata_dev_config_ncq(struct ata_device
*dev
,
1562 char *desc
, size_t desc_sz
)
1564 struct ata_port
*ap
= dev
->ap
;
1565 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
1567 if (!ata_id_has_ncq(dev
->id
)) {
1571 if (ata_device_blacklisted(dev
) & ATA_HORKAGE_NONCQ
) {
1572 snprintf(desc
, desc_sz
, "NCQ (not used)");
1575 if (ap
->flags
& ATA_FLAG_NCQ
) {
1576 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
1577 dev
->flags
|= ATA_DFLAG_NCQ
;
1580 if (hdepth
>= ddepth
)
1581 snprintf(desc
, desc_sz
, "NCQ (depth %d)", ddepth
);
1583 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)", hdepth
, ddepth
);
1586 static void ata_set_port_max_cmd_len(struct ata_port
*ap
)
1590 if (ap
->scsi_host
) {
1591 unsigned int len
= 0;
1593 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1594 len
= max(len
, ap
->device
[i
].cdb_len
);
1596 ap
->scsi_host
->max_cmd_len
= len
;
1601 * ata_dev_configure - Configure the specified ATA/ATAPI device
1602 * @dev: Target device to configure
1604 * Configure @dev according to @dev->id. Generic and low-level
1605 * driver specific fixups are also applied.
1608 * Kernel thread context (may sleep)
1611 * 0 on success, -errno otherwise
1613 int ata_dev_configure(struct ata_device
*dev
)
1615 struct ata_port
*ap
= dev
->ap
;
1616 int print_info
= ap
->eh_context
.i
.flags
& ATA_EHI_PRINTINFO
;
1617 const u16
*id
= dev
->id
;
1618 unsigned int xfer_mask
;
1619 char revbuf
[7]; /* XYZ-99\0 */
1622 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
1623 ata_dev_printk(dev
, KERN_INFO
,
1624 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1625 __FUNCTION__
, ap
->id
, dev
->devno
);
1629 if (ata_msg_probe(ap
))
1630 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER, host %u, dev %u\n",
1631 __FUNCTION__
, ap
->id
, dev
->devno
);
1633 /* print device capabilities */
1634 if (ata_msg_probe(ap
))
1635 ata_dev_printk(dev
, KERN_DEBUG
,
1636 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1637 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1639 id
[49], id
[82], id
[83], id
[84],
1640 id
[85], id
[86], id
[87], id
[88]);
1642 /* initialize to-be-configured parameters */
1643 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
1644 dev
->max_sectors
= 0;
1652 * common ATA, ATAPI feature tests
1655 /* find max transfer mode; for printk only */
1656 xfer_mask
= ata_id_xfermask(id
);
1658 if (ata_msg_probe(ap
))
1661 /* ATA-specific feature tests */
1662 if (dev
->class == ATA_DEV_ATA
) {
1663 if (ata_id_is_cfa(id
)) {
1664 if (id
[162] & 1) /* CPRM may make this media unusable */
1665 ata_dev_printk(dev
, KERN_WARNING
, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1666 ap
->id
, dev
->devno
);
1667 snprintf(revbuf
, 7, "CFA");
1670 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
1672 dev
->n_sectors
= ata_id_n_sectors(id
);
1674 if (ata_id_has_lba(id
)) {
1675 const char *lba_desc
;
1679 dev
->flags
|= ATA_DFLAG_LBA
;
1680 if (ata_id_has_lba48(id
)) {
1681 dev
->flags
|= ATA_DFLAG_LBA48
;
1684 if (dev
->n_sectors
>= (1UL << 28) &&
1685 ata_id_has_flush_ext(id
))
1686 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
1690 ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
1692 /* print device info to dmesg */
1693 if (ata_msg_drv(ap
) && print_info
)
1694 ata_dev_printk(dev
, KERN_INFO
, "%s, "
1695 "max %s, %Lu sectors: %s %s\n",
1697 ata_mode_string(xfer_mask
),
1698 (unsigned long long)dev
->n_sectors
,
1699 lba_desc
, ncq_desc
);
1703 /* Default translation */
1704 dev
->cylinders
= id
[1];
1706 dev
->sectors
= id
[6];
1708 if (ata_id_current_chs_valid(id
)) {
1709 /* Current CHS translation is valid. */
1710 dev
->cylinders
= id
[54];
1711 dev
->heads
= id
[55];
1712 dev
->sectors
= id
[56];
1715 /* print device info to dmesg */
1716 if (ata_msg_drv(ap
) && print_info
)
1717 ata_dev_printk(dev
, KERN_INFO
, "%s, "
1718 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1720 ata_mode_string(xfer_mask
),
1721 (unsigned long long)dev
->n_sectors
,
1722 dev
->cylinders
, dev
->heads
,
1726 if (dev
->id
[59] & 0x100) {
1727 dev
->multi_count
= dev
->id
[59] & 0xff;
1728 if (ata_msg_drv(ap
) && print_info
)
1729 ata_dev_printk(dev
, KERN_INFO
,
1730 "ata%u: dev %u multi count %u\n",
1731 ap
->id
, dev
->devno
, dev
->multi_count
);
1737 /* ATAPI-specific feature tests */
1738 else if (dev
->class == ATA_DEV_ATAPI
) {
1739 char *cdb_intr_string
= "";
1741 rc
= atapi_cdb_len(id
);
1742 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
1743 if (ata_msg_warn(ap
))
1744 ata_dev_printk(dev
, KERN_WARNING
,
1745 "unsupported CDB len\n");
1749 dev
->cdb_len
= (unsigned int) rc
;
1751 if (ata_id_cdb_intr(dev
->id
)) {
1752 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
1753 cdb_intr_string
= ", CDB intr";
1756 /* print device info to dmesg */
1757 if (ata_msg_drv(ap
) && print_info
)
1758 ata_dev_printk(dev
, KERN_INFO
, "ATAPI, max %s%s\n",
1759 ata_mode_string(xfer_mask
),
1763 /* determine max_sectors */
1764 dev
->max_sectors
= ATA_MAX_SECTORS
;
1765 if (dev
->flags
& ATA_DFLAG_LBA48
)
1766 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
1768 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
1769 /* Let the user know. We don't want to disallow opens for
1770 rescue purposes, or in case the vendor is just a blithering
1773 ata_dev_printk(dev
, KERN_WARNING
,
1774 "Drive reports diagnostics failure. This may indicate a drive\n");
1775 ata_dev_printk(dev
, KERN_WARNING
,
1776 "fault or invalid emulation. Contact drive vendor for information.\n");
1780 ata_set_port_max_cmd_len(ap
);
1782 /* limit bridge transfers to udma5, 200 sectors */
1783 if (ata_dev_knobble(dev
)) {
1784 if (ata_msg_drv(ap
) && print_info
)
1785 ata_dev_printk(dev
, KERN_INFO
,
1786 "applying bridge limits\n");
1787 dev
->udma_mask
&= ATA_UDMA5
;
1788 dev
->max_sectors
= ATA_MAX_SECTORS
;
1791 if (ap
->ops
->dev_config
)
1792 ap
->ops
->dev_config(ap
, dev
);
1794 if (ata_msg_probe(ap
))
1795 ata_dev_printk(dev
, KERN_DEBUG
, "%s: EXIT, drv_stat = 0x%x\n",
1796 __FUNCTION__
, ata_chk_status(ap
));
1800 if (ata_msg_probe(ap
))
1801 ata_dev_printk(dev
, KERN_DEBUG
,
1802 "%s: EXIT, err\n", __FUNCTION__
);
1807 * ata_bus_probe - Reset and probe ATA bus
1810 * Master ATA bus probing function. Initiates a hardware-dependent
1811 * bus reset, then attempts to identify any devices found on
1815 * PCI/etc. bus probe sem.
1818 * Zero on success, negative errno otherwise.
1821 int ata_bus_probe(struct ata_port
*ap
)
1823 unsigned int classes
[ATA_MAX_DEVICES
];
1824 int tries
[ATA_MAX_DEVICES
];
1825 int i
, rc
, down_xfermask
;
1826 struct ata_device
*dev
;
1830 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1831 tries
[i
] = ATA_PROBE_MAX_TRIES
;
1836 /* reset and determine device classes */
1837 ap
->ops
->phy_reset(ap
);
1839 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1840 dev
= &ap
->device
[i
];
1842 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
1843 dev
->class != ATA_DEV_UNKNOWN
)
1844 classes
[dev
->devno
] = dev
->class;
1846 classes
[dev
->devno
] = ATA_DEV_NONE
;
1848 dev
->class = ATA_DEV_UNKNOWN
;
1853 /* after the reset the device state is PIO 0 and the controller
1854 state is undefined. Record the mode */
1856 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1857 ap
->device
[i
].pio_mode
= XFER_PIO_0
;
1859 /* read IDENTIFY page and configure devices */
1860 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
1861 dev
= &ap
->device
[i
];
1864 dev
->class = classes
[i
];
1866 if (!ata_dev_enabled(dev
))
1869 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
1874 ap
->eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
1875 rc
= ata_dev_configure(dev
);
1876 ap
->eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
1881 /* configure transfer mode */
1882 rc
= ata_set_mode(ap
, &dev
);
1888 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
1889 if (ata_dev_enabled(&ap
->device
[i
]))
1892 /* no device present, disable port */
1893 ata_port_disable(ap
);
1894 ap
->ops
->port_disable(ap
);
1901 tries
[dev
->devno
] = 0;
1904 sata_down_spd_limit(ap
);
1907 tries
[dev
->devno
]--;
1908 if (down_xfermask
&&
1909 ata_down_xfermask_limit(dev
, tries
[dev
->devno
] == 1))
1910 tries
[dev
->devno
] = 0;
1913 if (!tries
[dev
->devno
]) {
1914 ata_down_xfermask_limit(dev
, 1);
1915 ata_dev_disable(dev
);
1922 * ata_port_probe - Mark port as enabled
1923 * @ap: Port for which we indicate enablement
1925 * Modify @ap data structure such that the system
1926 * thinks that the entire port is enabled.
1928 * LOCKING: host lock, or some other form of
1932 void ata_port_probe(struct ata_port
*ap
)
1934 ap
->flags
&= ~ATA_FLAG_DISABLED
;
1938 * sata_print_link_status - Print SATA link status
1939 * @ap: SATA port to printk link status about
1941 * This function prints link speed and status of a SATA link.
1946 static void sata_print_link_status(struct ata_port
*ap
)
1948 u32 sstatus
, scontrol
, tmp
;
1950 if (sata_scr_read(ap
, SCR_STATUS
, &sstatus
))
1952 sata_scr_read(ap
, SCR_CONTROL
, &scontrol
);
1954 if (ata_port_online(ap
)) {
1955 tmp
= (sstatus
>> 4) & 0xf;
1956 ata_port_printk(ap
, KERN_INFO
,
1957 "SATA link up %s (SStatus %X SControl %X)\n",
1958 sata_spd_string(tmp
), sstatus
, scontrol
);
1960 ata_port_printk(ap
, KERN_INFO
,
1961 "SATA link down (SStatus %X SControl %X)\n",
1967 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1968 * @ap: SATA port associated with target SATA PHY.
1970 * This function issues commands to standard SATA Sxxx
1971 * PHY registers, to wake up the phy (and device), and
1972 * clear any reset condition.
1975 * PCI/etc. bus probe sem.
1978 void __sata_phy_reset(struct ata_port
*ap
)
1981 unsigned long timeout
= jiffies
+ (HZ
* 5);
1983 if (ap
->flags
& ATA_FLAG_SATA_RESET
) {
1984 /* issue phy wake/reset */
1985 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x301);
1986 /* Couldn't find anything in SATA I/II specs, but
1987 * AHCI-1.1 10.4.2 says at least 1 ms. */
1990 /* phy wake/clear reset */
1991 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x300);
1993 /* wait for phy to become ready, if necessary */
1996 sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
1997 if ((sstatus
& 0xf) != 1)
1999 } while (time_before(jiffies
, timeout
));
2001 /* print link status */
2002 sata_print_link_status(ap
);
2004 /* TODO: phy layer with polling, timeouts, etc. */
2005 if (!ata_port_offline(ap
))
2008 ata_port_disable(ap
);
2010 if (ap
->flags
& ATA_FLAG_DISABLED
)
2013 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
2014 ata_port_disable(ap
);
2018 ap
->cbl
= ATA_CBL_SATA
;
2022 * sata_phy_reset - Reset SATA bus.
2023 * @ap: SATA port associated with target SATA PHY.
2025 * This function resets the SATA bus, and then probes
2026 * the bus for devices.
2029 * PCI/etc. bus probe sem.
2032 void sata_phy_reset(struct ata_port
*ap
)
2034 __sata_phy_reset(ap
);
2035 if (ap
->flags
& ATA_FLAG_DISABLED
)
2041 * ata_dev_pair - return other device on cable
2044 * Obtain the other device on the same cable, or if none is
2045 * present NULL is returned
2048 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2050 struct ata_port
*ap
= adev
->ap
;
2051 struct ata_device
*pair
= &ap
->device
[1 - adev
->devno
];
2052 if (!ata_dev_enabled(pair
))
2058 * ata_port_disable - Disable port.
2059 * @ap: Port to be disabled.
2061 * Modify @ap data structure such that the system
2062 * thinks that the entire port is disabled, and should
2063 * never attempt to probe or communicate with devices
2066 * LOCKING: host lock, or some other form of
2070 void ata_port_disable(struct ata_port
*ap
)
2072 ap
->device
[0].class = ATA_DEV_NONE
;
2073 ap
->device
[1].class = ATA_DEV_NONE
;
2074 ap
->flags
|= ATA_FLAG_DISABLED
;
2078 * sata_down_spd_limit - adjust SATA spd limit downward
2079 * @ap: Port to adjust SATA spd limit for
2081 * Adjust SATA spd limit of @ap downward. Note that this
2082 * function only adjusts the limit. The change must be applied
2083 * using sata_set_spd().
2086 * Inherited from caller.
2089 * 0 on success, negative errno on failure
2091 int sata_down_spd_limit(struct ata_port
*ap
)
2093 u32 sstatus
, spd
, mask
;
2096 rc
= sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
2100 mask
= ap
->sata_spd_limit
;
2103 highbit
= fls(mask
) - 1;
2104 mask
&= ~(1 << highbit
);
2106 spd
= (sstatus
>> 4) & 0xf;
2110 mask
&= (1 << spd
) - 1;
2114 ap
->sata_spd_limit
= mask
;
2116 ata_port_printk(ap
, KERN_WARNING
, "limiting SATA link speed to %s\n",
2117 sata_spd_string(fls(mask
)));
2122 static int __sata_set_spd_needed(struct ata_port
*ap
, u32
*scontrol
)
2126 if (ap
->sata_spd_limit
== UINT_MAX
)
2129 limit
= fls(ap
->sata_spd_limit
);
2131 spd
= (*scontrol
>> 4) & 0xf;
2132 *scontrol
= (*scontrol
& ~0xf0) | ((limit
& 0xf) << 4);
2134 return spd
!= limit
;
2138 * sata_set_spd_needed - is SATA spd configuration needed
2139 * @ap: Port in question
2141 * Test whether the spd limit in SControl matches
2142 * @ap->sata_spd_limit. This function is used to determine
2143 * whether hardreset is necessary to apply SATA spd
2147 * Inherited from caller.
2150 * 1 if SATA spd configuration is needed, 0 otherwise.
2152 int sata_set_spd_needed(struct ata_port
*ap
)
2156 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
))
2159 return __sata_set_spd_needed(ap
, &scontrol
);
2163 * sata_set_spd - set SATA spd according to spd limit
2164 * @ap: Port to set SATA spd for
2166 * Set SATA spd of @ap according to sata_spd_limit.
2169 * Inherited from caller.
2172 * 0 if spd doesn't need to be changed, 1 if spd has been
2173 * changed. Negative errno if SCR registers are inaccessible.
2175 int sata_set_spd(struct ata_port
*ap
)
2180 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2183 if (!__sata_set_spd_needed(ap
, &scontrol
))
2186 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2193 * This mode timing computation functionality is ported over from
2194 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2197 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2198 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2199 * for UDMA6, which is currently supported only by Maxtor drives.
2201 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2204 static const struct ata_timing ata_timing
[] = {
2206 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 15 },
2207 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 20 },
2208 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 30 },
2209 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 45 },
2211 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 80, 0 },
2212 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 100, 0 },
2213 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 60 },
2214 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 80 },
2215 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 120 },
2217 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2219 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 120, 0 },
2220 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 150, 0 },
2221 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 480, 0 },
2223 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 240, 0 },
2224 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 480, 0 },
2225 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 960, 0 },
2227 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 80, 0 },
2228 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 100, 0 },
2229 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 120, 0 },
2230 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 180, 0 },
2232 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 240, 0 },
2233 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 383, 0 },
2234 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 600, 0 },
2236 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2241 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2242 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2244 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
2246 q
->setup
= EZ(t
->setup
* 1000, T
);
2247 q
->act8b
= EZ(t
->act8b
* 1000, T
);
2248 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
2249 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
2250 q
->active
= EZ(t
->active
* 1000, T
);
2251 q
->recover
= EZ(t
->recover
* 1000, T
);
2252 q
->cycle
= EZ(t
->cycle
* 1000, T
);
2253 q
->udma
= EZ(t
->udma
* 1000, UT
);
2256 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
2257 struct ata_timing
*m
, unsigned int what
)
2259 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
2260 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
2261 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
2262 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
2263 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
2264 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
2265 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
2266 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
2269 static const struct ata_timing
* ata_timing_find_mode(unsigned short speed
)
2271 const struct ata_timing
*t
;
2273 for (t
= ata_timing
; t
->mode
!= speed
; t
++)
2274 if (t
->mode
== 0xFF)
2279 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
2280 struct ata_timing
*t
, int T
, int UT
)
2282 const struct ata_timing
*s
;
2283 struct ata_timing p
;
2289 if (!(s
= ata_timing_find_mode(speed
)))
2292 memcpy(t
, s
, sizeof(*s
));
2295 * If the drive is an EIDE drive, it can tell us it needs extended
2296 * PIO/MW_DMA cycle timing.
2299 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
2300 memset(&p
, 0, sizeof(p
));
2301 if(speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
2302 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
2303 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
2304 } else if(speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
2305 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
2307 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
2311 * Convert the timing to bus clock counts.
2314 ata_timing_quantize(t
, t
, T
, UT
);
2317 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2318 * S.M.A.R.T * and some other commands. We have to ensure that the
2319 * DMA cycle timing is slower/equal than the fastest PIO timing.
2322 if (speed
> XFER_PIO_6
) {
2323 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
2324 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
2328 * Lengthen active & recovery time so that cycle time is correct.
2331 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
2332 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
2333 t
->rec8b
= t
->cyc8b
- t
->act8b
;
2336 if (t
->active
+ t
->recover
< t
->cycle
) {
2337 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
2338 t
->recover
= t
->cycle
- t
->active
;
2345 * ata_down_xfermask_limit - adjust dev xfer masks downward
2346 * @dev: Device to adjust xfer masks
2347 * @force_pio0: Force PIO0
2349 * Adjust xfer masks of @dev downward. Note that this function
2350 * does not apply the change. Invoking ata_set_mode() afterwards
2351 * will apply the limit.
2354 * Inherited from caller.
2357 * 0 on success, negative errno on failure
2359 int ata_down_xfermask_limit(struct ata_device
*dev
, int force_pio0
)
2361 unsigned long xfer_mask
;
2364 xfer_mask
= ata_pack_xfermask(dev
->pio_mask
, dev
->mwdma_mask
,
2369 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2370 if (xfer_mask
& ATA_MASK_UDMA
)
2371 xfer_mask
&= ~ATA_MASK_MWDMA
;
2373 highbit
= fls(xfer_mask
) - 1;
2374 xfer_mask
&= ~(1 << highbit
);
2376 xfer_mask
&= 1 << ATA_SHIFT_PIO
;
2380 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
2383 ata_dev_printk(dev
, KERN_WARNING
, "limiting speed to %s\n",
2384 ata_mode_string(xfer_mask
));
2392 static int ata_dev_set_mode(struct ata_device
*dev
)
2394 struct ata_eh_context
*ehc
= &dev
->ap
->eh_context
;
2395 unsigned int err_mask
;
2398 dev
->flags
&= ~ATA_DFLAG_PIO
;
2399 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
2400 dev
->flags
|= ATA_DFLAG_PIO
;
2402 err_mask
= ata_dev_set_xfermode(dev
);
2404 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
2405 "(err_mask=0x%x)\n", err_mask
);
2409 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
2410 rc
= ata_dev_revalidate(dev
, 0);
2411 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
2415 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2416 dev
->xfer_shift
, (int)dev
->xfer_mode
);
2418 ata_dev_printk(dev
, KERN_INFO
, "configured for %s\n",
2419 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)));
2424 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2425 * @ap: port on which timings will be programmed
2426 * @r_failed_dev: out paramter for failed device
2428 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2429 * ata_set_mode() fails, pointer to the failing device is
2430 * returned in @r_failed_dev.
2433 * PCI/etc. bus probe sem.
2436 * 0 on success, negative errno otherwise
2438 int ata_set_mode(struct ata_port
*ap
, struct ata_device
**r_failed_dev
)
2440 struct ata_device
*dev
;
2441 int i
, rc
= 0, used_dma
= 0, found
= 0;
2443 /* has private set_mode? */
2444 if (ap
->ops
->set_mode
)
2445 return ap
->ops
->set_mode(ap
, r_failed_dev
);
2447 /* step 1: calculate xfer_mask */
2448 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2449 unsigned int pio_mask
, dma_mask
;
2451 dev
= &ap
->device
[i
];
2453 if (!ata_dev_enabled(dev
))
2456 ata_dev_xfermask(dev
);
2458 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
2459 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
2460 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
2461 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
2470 /* step 2: always set host PIO timings */
2471 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2472 dev
= &ap
->device
[i
];
2473 if (!ata_dev_enabled(dev
))
2476 if (!dev
->pio_mode
) {
2477 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
2482 dev
->xfer_mode
= dev
->pio_mode
;
2483 dev
->xfer_shift
= ATA_SHIFT_PIO
;
2484 if (ap
->ops
->set_piomode
)
2485 ap
->ops
->set_piomode(ap
, dev
);
2488 /* step 3: set host DMA timings */
2489 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2490 dev
= &ap
->device
[i
];
2492 if (!ata_dev_enabled(dev
) || !dev
->dma_mode
)
2495 dev
->xfer_mode
= dev
->dma_mode
;
2496 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
2497 if (ap
->ops
->set_dmamode
)
2498 ap
->ops
->set_dmamode(ap
, dev
);
2501 /* step 4: update devices' xfer mode */
2502 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
2503 dev
= &ap
->device
[i
];
2505 /* don't udpate suspended devices' xfer mode */
2506 if (!ata_dev_ready(dev
))
2509 rc
= ata_dev_set_mode(dev
);
2514 /* Record simplex status. If we selected DMA then the other
2515 * host channels are not permitted to do so.
2517 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
2518 ap
->host
->simplex_claimed
= 1;
2520 /* step5: chip specific finalisation */
2521 if (ap
->ops
->post_set_mode
)
2522 ap
->ops
->post_set_mode(ap
);
2526 *r_failed_dev
= dev
;
2531 * ata_tf_to_host - issue ATA taskfile to host controller
2532 * @ap: port to which command is being issued
2533 * @tf: ATA taskfile register set
2535 * Issues ATA taskfile register set to ATA host controller,
2536 * with proper synchronization with interrupt handler and
2540 * spin_lock_irqsave(host lock)
2543 static inline void ata_tf_to_host(struct ata_port
*ap
,
2544 const struct ata_taskfile
*tf
)
2546 ap
->ops
->tf_load(ap
, tf
);
2547 ap
->ops
->exec_command(ap
, tf
);
2551 * ata_busy_sleep - sleep until BSY clears, or timeout
2552 * @ap: port containing status register to be polled
2553 * @tmout_pat: impatience timeout
2554 * @tmout: overall timeout
2556 * Sleep until ATA Status register bit BSY clears,
2557 * or a timeout occurs.
2560 * Kernel thread context (may sleep).
2563 * 0 on success, -errno otherwise.
2565 int ata_busy_sleep(struct ata_port
*ap
,
2566 unsigned long tmout_pat
, unsigned long tmout
)
2568 unsigned long timer_start
, timeout
;
2571 status
= ata_busy_wait(ap
, ATA_BUSY
, 300);
2572 timer_start
= jiffies
;
2573 timeout
= timer_start
+ tmout_pat
;
2574 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2575 time_before(jiffies
, timeout
)) {
2577 status
= ata_busy_wait(ap
, ATA_BUSY
, 3);
2580 if (status
!= 0xff && (status
& ATA_BUSY
))
2581 ata_port_printk(ap
, KERN_WARNING
,
2582 "port is slow to respond, please be patient "
2583 "(Status 0x%x)\n", status
);
2585 timeout
= timer_start
+ tmout
;
2586 while (status
!= 0xff && (status
& ATA_BUSY
) &&
2587 time_before(jiffies
, timeout
)) {
2589 status
= ata_chk_status(ap
);
2595 if (status
& ATA_BUSY
) {
2596 ata_port_printk(ap
, KERN_ERR
, "port failed to respond "
2597 "(%lu secs, Status 0x%x)\n",
2598 tmout
/ HZ
, status
);
2605 static void ata_bus_post_reset(struct ata_port
*ap
, unsigned int devmask
)
2607 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2608 unsigned int dev0
= devmask
& (1 << 0);
2609 unsigned int dev1
= devmask
& (1 << 1);
2610 unsigned long timeout
;
2612 /* if device 0 was found in ata_devchk, wait for its
2616 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2618 /* if device 1 was found in ata_devchk, wait for
2619 * register access, then wait for BSY to clear
2621 timeout
= jiffies
+ ATA_TMOUT_BOOT
;
2625 ap
->ops
->dev_select(ap
, 1);
2626 if (ap
->flags
& ATA_FLAG_MMIO
) {
2627 nsect
= readb((void __iomem
*) ioaddr
->nsect_addr
);
2628 lbal
= readb((void __iomem
*) ioaddr
->lbal_addr
);
2630 nsect
= inb(ioaddr
->nsect_addr
);
2631 lbal
= inb(ioaddr
->lbal_addr
);
2633 if ((nsect
== 1) && (lbal
== 1))
2635 if (time_after(jiffies
, timeout
)) {
2639 msleep(50); /* give drive a breather */
2642 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2644 /* is all this really necessary? */
2645 ap
->ops
->dev_select(ap
, 0);
2647 ap
->ops
->dev_select(ap
, 1);
2649 ap
->ops
->dev_select(ap
, 0);
2652 static unsigned int ata_bus_softreset(struct ata_port
*ap
,
2653 unsigned int devmask
)
2655 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2657 DPRINTK("ata%u: bus reset via SRST\n", ap
->id
);
2659 /* software reset. causes dev0 to be selected */
2660 if (ap
->flags
& ATA_FLAG_MMIO
) {
2661 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2662 udelay(20); /* FIXME: flush */
2663 writeb(ap
->ctl
| ATA_SRST
, (void __iomem
*) ioaddr
->ctl_addr
);
2664 udelay(20); /* FIXME: flush */
2665 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2667 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2669 outb(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
2671 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2674 /* spec mandates ">= 2ms" before checking status.
2675 * We wait 150ms, because that was the magic delay used for
2676 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2677 * between when the ATA command register is written, and then
2678 * status is checked. Because waiting for "a while" before
2679 * checking status is fine, post SRST, we perform this magic
2680 * delay here as well.
2682 * Old drivers/ide uses the 2mS rule and then waits for ready
2686 /* Before we perform post reset processing we want to see if
2687 * the bus shows 0xFF because the odd clown forgets the D7
2688 * pulldown resistor.
2690 if (ata_check_status(ap
) == 0xFF)
2693 ata_bus_post_reset(ap
, devmask
);
2699 * ata_bus_reset - reset host port and associated ATA channel
2700 * @ap: port to reset
2702 * This is typically the first time we actually start issuing
2703 * commands to the ATA channel. We wait for BSY to clear, then
2704 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2705 * result. Determine what devices, if any, are on the channel
2706 * by looking at the device 0/1 error register. Look at the signature
2707 * stored in each device's taskfile registers, to determine if
2708 * the device is ATA or ATAPI.
2711 * PCI/etc. bus probe sem.
2712 * Obtains host lock.
2715 * Sets ATA_FLAG_DISABLED if bus reset fails.
2718 void ata_bus_reset(struct ata_port
*ap
)
2720 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2721 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2723 unsigned int dev0
, dev1
= 0, devmask
= 0;
2725 DPRINTK("ENTER, host %u, port %u\n", ap
->id
, ap
->port_no
);
2727 /* determine if device 0/1 are present */
2728 if (ap
->flags
& ATA_FLAG_SATA_RESET
)
2731 dev0
= ata_devchk(ap
, 0);
2733 dev1
= ata_devchk(ap
, 1);
2737 devmask
|= (1 << 0);
2739 devmask
|= (1 << 1);
2741 /* select device 0 again */
2742 ap
->ops
->dev_select(ap
, 0);
2744 /* issue bus reset */
2745 if (ap
->flags
& ATA_FLAG_SRST
)
2746 if (ata_bus_softreset(ap
, devmask
))
2750 * determine by signature whether we have ATA or ATAPI devices
2752 ap
->device
[0].class = ata_dev_try_classify(ap
, 0, &err
);
2753 if ((slave_possible
) && (err
!= 0x81))
2754 ap
->device
[1].class = ata_dev_try_classify(ap
, 1, &err
);
2756 /* re-enable interrupts */
2757 if (ap
->ioaddr
.ctl_addr
) /* FIXME: hack. create a hook instead */
2760 /* is double-select really necessary? */
2761 if (ap
->device
[1].class != ATA_DEV_NONE
)
2762 ap
->ops
->dev_select(ap
, 1);
2763 if (ap
->device
[0].class != ATA_DEV_NONE
)
2764 ap
->ops
->dev_select(ap
, 0);
2766 /* if no devices were detected, disable this port */
2767 if ((ap
->device
[0].class == ATA_DEV_NONE
) &&
2768 (ap
->device
[1].class == ATA_DEV_NONE
))
2771 if (ap
->flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
)) {
2772 /* set up device control for ATA_FLAG_SATA_RESET */
2773 if (ap
->flags
& ATA_FLAG_MMIO
)
2774 writeb(ap
->ctl
, (void __iomem
*) ioaddr
->ctl_addr
);
2776 outb(ap
->ctl
, ioaddr
->ctl_addr
);
2783 ata_port_printk(ap
, KERN_ERR
, "disabling port\n");
2784 ap
->ops
->port_disable(ap
);
2790 * sata_phy_debounce - debounce SATA phy status
2791 * @ap: ATA port to debounce SATA phy status for
2792 * @params: timing parameters { interval, duratinon, timeout } in msec
2794 * Make sure SStatus of @ap reaches stable state, determined by
2795 * holding the same value where DET is not 1 for @duration polled
2796 * every @interval, before @timeout. Timeout constraints the
2797 * beginning of the stable state. Because, after hot unplugging,
2798 * DET gets stuck at 1 on some controllers, this functions waits
2799 * until timeout then returns 0 if DET is stable at 1.
2802 * Kernel thread context (may sleep)
2805 * 0 on success, -errno on failure.
2807 int sata_phy_debounce(struct ata_port
*ap
, const unsigned long *params
)
2809 unsigned long interval_msec
= params
[0];
2810 unsigned long duration
= params
[1] * HZ
/ 1000;
2811 unsigned long timeout
= jiffies
+ params
[2] * HZ
/ 1000;
2812 unsigned long last_jiffies
;
2816 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
2821 last_jiffies
= jiffies
;
2824 msleep(interval_msec
);
2825 if ((rc
= sata_scr_read(ap
, SCR_STATUS
, &cur
)))
2831 if (cur
== 1 && time_before(jiffies
, timeout
))
2833 if (time_after(jiffies
, last_jiffies
+ duration
))
2838 /* unstable, start over */
2840 last_jiffies
= jiffies
;
2843 if (time_after(jiffies
, timeout
))
2849 * sata_phy_resume - resume SATA phy
2850 * @ap: ATA port to resume SATA phy for
2851 * @params: timing parameters { interval, duratinon, timeout } in msec
2853 * Resume SATA phy of @ap and debounce it.
2856 * Kernel thread context (may sleep)
2859 * 0 on success, -errno on failure.
2861 int sata_phy_resume(struct ata_port
*ap
, const unsigned long *params
)
2866 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
2869 scontrol
= (scontrol
& 0x0f0) | 0x300;
2871 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
2874 /* Some PHYs react badly if SStatus is pounded immediately
2875 * after resuming. Delay 200ms before debouncing.
2879 return sata_phy_debounce(ap
, params
);
2882 static void ata_wait_spinup(struct ata_port
*ap
)
2884 struct ata_eh_context
*ehc
= &ap
->eh_context
;
2885 unsigned long end
, secs
;
2888 /* first, debounce phy if SATA */
2889 if (ap
->cbl
== ATA_CBL_SATA
) {
2890 rc
= sata_phy_debounce(ap
, sata_deb_timing_hotplug
);
2892 /* if debounced successfully and offline, no need to wait */
2893 if ((rc
== 0 || rc
== -EOPNOTSUPP
) && ata_port_offline(ap
))
2897 /* okay, let's give the drive time to spin up */
2898 end
= ehc
->i
.hotplug_timestamp
+ ATA_SPINUP_WAIT
* HZ
/ 1000;
2899 secs
= ((end
- jiffies
) + HZ
- 1) / HZ
;
2901 if (time_after(jiffies
, end
))
2905 ata_port_printk(ap
, KERN_INFO
, "waiting for device to spin up "
2906 "(%lu secs)\n", secs
);
2908 schedule_timeout_uninterruptible(end
- jiffies
);
2912 * ata_std_prereset - prepare for reset
2913 * @ap: ATA port to be reset
2915 * @ap is about to be reset. Initialize it.
2918 * Kernel thread context (may sleep)
2921 * 0 on success, -errno otherwise.
2923 int ata_std_prereset(struct ata_port
*ap
)
2925 struct ata_eh_context
*ehc
= &ap
->eh_context
;
2926 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
2929 /* handle link resume & hotplug spinup */
2930 if ((ehc
->i
.flags
& ATA_EHI_RESUME_LINK
) &&
2931 (ap
->flags
& ATA_FLAG_HRST_TO_RESUME
))
2932 ehc
->i
.action
|= ATA_EH_HARDRESET
;
2934 if ((ehc
->i
.flags
& ATA_EHI_HOTPLUGGED
) &&
2935 (ap
->flags
& ATA_FLAG_SKIP_D2H_BSY
))
2936 ata_wait_spinup(ap
);
2938 /* if we're about to do hardreset, nothing more to do */
2939 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
2942 /* if SATA, resume phy */
2943 if (ap
->cbl
== ATA_CBL_SATA
) {
2944 rc
= sata_phy_resume(ap
, timing
);
2945 if (rc
&& rc
!= -EOPNOTSUPP
) {
2946 /* phy resume failed */
2947 ata_port_printk(ap
, KERN_WARNING
, "failed to resume "
2948 "link for reset (errno=%d)\n", rc
);
2953 /* Wait for !BSY if the controller can wait for the first D2H
2954 * Reg FIS and we don't know that no device is attached.
2956 if (!(ap
->flags
& ATA_FLAG_SKIP_D2H_BSY
) && !ata_port_offline(ap
))
2957 ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
);
2963 * ata_std_softreset - reset host port via ATA SRST
2964 * @ap: port to reset
2965 * @classes: resulting classes of attached devices
2967 * Reset host port using ATA SRST.
2970 * Kernel thread context (may sleep)
2973 * 0 on success, -errno otherwise.
2975 int ata_std_softreset(struct ata_port
*ap
, unsigned int *classes
)
2977 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2978 unsigned int devmask
= 0, err_mask
;
2983 if (ata_port_offline(ap
)) {
2984 classes
[0] = ATA_DEV_NONE
;
2988 /* determine if device 0/1 are present */
2989 if (ata_devchk(ap
, 0))
2990 devmask
|= (1 << 0);
2991 if (slave_possible
&& ata_devchk(ap
, 1))
2992 devmask
|= (1 << 1);
2994 /* select device 0 again */
2995 ap
->ops
->dev_select(ap
, 0);
2997 /* issue bus reset */
2998 DPRINTK("about to softreset, devmask=%x\n", devmask
);
2999 err_mask
= ata_bus_softreset(ap
, devmask
);
3001 ata_port_printk(ap
, KERN_ERR
, "SRST failed (err_mask=0x%x)\n",
3006 /* determine by signature whether we have ATA or ATAPI devices */
3007 classes
[0] = ata_dev_try_classify(ap
, 0, &err
);
3008 if (slave_possible
&& err
!= 0x81)
3009 classes
[1] = ata_dev_try_classify(ap
, 1, &err
);
3012 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
3017 * sata_port_hardreset - reset port via SATA phy reset
3018 * @ap: port to reset
3019 * @timing: timing parameters { interval, duratinon, timeout } in msec
3021 * SATA phy-reset host port using DET bits of SControl register.
3024 * Kernel thread context (may sleep)
3027 * 0 on success, -errno otherwise.
3029 int sata_port_hardreset(struct ata_port
*ap
, const unsigned long *timing
)
3036 if (sata_set_spd_needed(ap
)) {
3037 /* SATA spec says nothing about how to reconfigure
3038 * spd. To be on the safe side, turn off phy during
3039 * reconfiguration. This works for at least ICH7 AHCI
3042 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3045 scontrol
= (scontrol
& 0x0f0) | 0x304;
3047 if ((rc
= sata_scr_write(ap
, SCR_CONTROL
, scontrol
)))
3053 /* issue phy wake/reset */
3054 if ((rc
= sata_scr_read(ap
, SCR_CONTROL
, &scontrol
)))
3057 scontrol
= (scontrol
& 0x0f0) | 0x301;
3059 if ((rc
= sata_scr_write_flush(ap
, SCR_CONTROL
, scontrol
)))
3062 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3063 * 10.4.2 says at least 1 ms.
3067 /* bring phy back */
3068 rc
= sata_phy_resume(ap
, timing
);
3070 DPRINTK("EXIT, rc=%d\n", rc
);
3075 * sata_std_hardreset - reset host port via SATA phy reset
3076 * @ap: port to reset
3077 * @class: resulting class of attached device
3079 * SATA phy-reset host port using DET bits of SControl register,
3080 * wait for !BSY and classify the attached device.
3083 * Kernel thread context (may sleep)
3086 * 0 on success, -errno otherwise.
3088 int sata_std_hardreset(struct ata_port
*ap
, unsigned int *class)
3090 const unsigned long *timing
= sata_ehc_deb_timing(&ap
->eh_context
);
3096 rc
= sata_port_hardreset(ap
, timing
);
3098 ata_port_printk(ap
, KERN_ERR
,
3099 "COMRESET failed (errno=%d)\n", rc
);
3103 /* TODO: phy layer with polling, timeouts, etc. */
3104 if (ata_port_offline(ap
)) {
3105 *class = ATA_DEV_NONE
;
3106 DPRINTK("EXIT, link offline\n");
3110 if (ata_busy_sleep(ap
, ATA_TMOUT_BOOT_QUICK
, ATA_TMOUT_BOOT
)) {
3111 ata_port_printk(ap
, KERN_ERR
,
3112 "COMRESET failed (device not ready)\n");
3116 ap
->ops
->dev_select(ap
, 0); /* probably unnecessary */
3118 *class = ata_dev_try_classify(ap
, 0, NULL
);
3120 DPRINTK("EXIT, class=%u\n", *class);
3125 * ata_std_postreset - standard postreset callback
3126 * @ap: the target ata_port
3127 * @classes: classes of attached devices
3129 * This function is invoked after a successful reset. Note that
3130 * the device might have been reset more than once using
3131 * different reset methods before postreset is invoked.
3134 * Kernel thread context (may sleep)
3136 void ata_std_postreset(struct ata_port
*ap
, unsigned int *classes
)
3142 /* print link status */
3143 sata_print_link_status(ap
);
3146 if (sata_scr_read(ap
, SCR_ERROR
, &serror
) == 0)
3147 sata_scr_write(ap
, SCR_ERROR
, serror
);
3149 /* re-enable interrupts */
3150 if (!ap
->ops
->error_handler
) {
3151 /* FIXME: hack. create a hook instead */
3152 if (ap
->ioaddr
.ctl_addr
)
3156 /* is double-select really necessary? */
3157 if (classes
[0] != ATA_DEV_NONE
)
3158 ap
->ops
->dev_select(ap
, 1);
3159 if (classes
[1] != ATA_DEV_NONE
)
3160 ap
->ops
->dev_select(ap
, 0);
3162 /* bail out if no device is present */
3163 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
3164 DPRINTK("EXIT, no device\n");
3168 /* set up device control */
3169 if (ap
->ioaddr
.ctl_addr
) {
3170 if (ap
->flags
& ATA_FLAG_MMIO
)
3171 writeb(ap
->ctl
, (void __iomem
*) ap
->ioaddr
.ctl_addr
);
3173 outb(ap
->ctl
, ap
->ioaddr
.ctl_addr
);
3180 * ata_dev_same_device - Determine whether new ID matches configured device
3181 * @dev: device to compare against
3182 * @new_class: class of the new device
3183 * @new_id: IDENTIFY page of the new device
3185 * Compare @new_class and @new_id against @dev and determine
3186 * whether @dev is the device indicated by @new_class and
3193 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3195 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
3198 const u16
*old_id
= dev
->id
;
3199 unsigned char model
[2][41], serial
[2][21];
3202 if (dev
->class != new_class
) {
3203 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
3204 dev
->class, new_class
);
3208 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD_OFS
, sizeof(model
[0]));
3209 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD_OFS
, sizeof(model
[1]));
3210 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO_OFS
, sizeof(serial
[0]));
3211 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO_OFS
, sizeof(serial
[1]));
3212 new_n_sectors
= ata_id_n_sectors(new_id
);
3214 if (strcmp(model
[0], model
[1])) {
3215 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
3216 "'%s' != '%s'\n", model
[0], model
[1]);
3220 if (strcmp(serial
[0], serial
[1])) {
3221 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
3222 "'%s' != '%s'\n", serial
[0], serial
[1]);
3226 if (dev
->class == ATA_DEV_ATA
&& dev
->n_sectors
!= new_n_sectors
) {
3227 ata_dev_printk(dev
, KERN_INFO
, "n_sectors mismatch "
3229 (unsigned long long)dev
->n_sectors
,
3230 (unsigned long long)new_n_sectors
);
3238 * ata_dev_revalidate - Revalidate ATA device
3239 * @dev: device to revalidate
3240 * @readid_flags: read ID flags
3242 * Re-read IDENTIFY page and make sure @dev is still attached to
3246 * Kernel thread context (may sleep)
3249 * 0 on success, negative errno otherwise
3251 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int readid_flags
)
3253 unsigned int class = dev
->class;
3254 u16
*id
= (void *)dev
->ap
->sector_buf
;
3257 if (!ata_dev_enabled(dev
)) {
3263 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
3267 /* is the device still there? */
3268 if (!ata_dev_same_device(dev
, class, id
)) {
3273 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
3275 /* configure device according to the new ID */
3276 rc
= ata_dev_configure(dev
);
3281 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
3285 struct ata_blacklist_entry
{
3286 const char *model_num
;
3287 const char *model_rev
;
3288 unsigned long horkage
;
3291 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
3292 /* Devices with DMA related problems under Linux */
3293 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
3294 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
3295 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
3296 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
3297 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
3298 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
3299 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
3300 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
3301 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
3302 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
3303 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
3304 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
3305 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
3306 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
3307 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
3308 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
3309 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
3310 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
3311 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
3312 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
3313 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
3314 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
3315 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
3316 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
3317 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
3318 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
3319 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
3320 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
3321 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA
},
3323 /* Devices we expect to fail diagnostics */
3325 /* Devices where NCQ should be avoided */
3327 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
3328 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3329 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
3331 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ
},
3332 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3333 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ
},
3334 /* Blacklist entries taken from Silicon Image 3124/3132
3335 Windows driver .inf file - also several Linux problem reports */
3336 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
3337 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
3338 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
3340 /* Devices with NCQ limits */
3346 static int ata_strim(char *s
, size_t len
)
3348 len
= strnlen(s
, len
);
3350 /* ATAPI specifies that empty space is blank-filled; remove blanks */
3351 while ((len
> 0) && (s
[len
- 1] == ' ')) {
3358 unsigned long ata_device_blacklisted(const struct ata_device
*dev
)
3360 unsigned char model_num
[40];
3361 unsigned char model_rev
[16];
3362 unsigned int nlen
, rlen
;
3363 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
3365 ata_id_string(dev
->id
, model_num
, ATA_ID_PROD_OFS
,
3367 ata_id_string(dev
->id
, model_rev
, ATA_ID_FW_REV_OFS
,
3369 nlen
= ata_strim(model_num
, sizeof(model_num
));
3370 rlen
= ata_strim(model_rev
, sizeof(model_rev
));
3372 while (ad
->model_num
) {
3373 if (!strncmp(ad
->model_num
, model_num
, nlen
)) {
3374 if (ad
->model_rev
== NULL
)
3376 if (!strncmp(ad
->model_rev
, model_rev
, rlen
))
3384 static int ata_dma_blacklisted(const struct ata_device
*dev
)
3386 /* We don't support polling DMA.
3387 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3388 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3390 if ((dev
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
3391 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
3393 return (ata_device_blacklisted(dev
) & ATA_HORKAGE_NODMA
) ? 1 : 0;
3397 * ata_dev_xfermask - Compute supported xfermask of the given device
3398 * @dev: Device to compute xfermask for
3400 * Compute supported xfermask of @dev and store it in
3401 * dev->*_mask. This function is responsible for applying all
3402 * known limits including host controller limits, device
3408 static void ata_dev_xfermask(struct ata_device
*dev
)
3410 struct ata_port
*ap
= dev
->ap
;
3411 struct ata_host
*host
= ap
->host
;
3412 unsigned long xfer_mask
;
3414 /* controller modes available */
3415 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
3416 ap
->mwdma_mask
, ap
->udma_mask
);
3418 /* Apply cable rule here. Don't apply it early because when
3419 * we handle hot plug the cable type can itself change.
3421 if (ap
->cbl
== ATA_CBL_PATA40
)
3422 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
3423 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3424 * host side are checked drive side as well. Cases where we know a
3425 * 40wire cable is used safely for 80 are not checked here.
3427 if (ata_drive_40wire(dev
->id
) && (ap
->cbl
== ATA_CBL_PATA_UNK
|| ap
->cbl
== ATA_CBL_PATA80
))
3428 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
3431 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
3432 dev
->mwdma_mask
, dev
->udma_mask
);
3433 xfer_mask
&= ata_id_xfermask(dev
->id
);
3436 * CFA Advanced TrueIDE timings are not allowed on a shared
3439 if (ata_dev_pair(dev
)) {
3440 /* No PIO5 or PIO6 */
3441 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
3442 /* No MWDMA3 or MWDMA 4 */
3443 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
3446 if (ata_dma_blacklisted(dev
)) {
3447 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3448 ata_dev_printk(dev
, KERN_WARNING
,
3449 "device is on DMA blacklist, disabling DMA\n");
3452 if ((host
->flags
& ATA_HOST_SIMPLEX
) && host
->simplex_claimed
) {
3453 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
3454 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
3455 "other device, disabling DMA\n");
3458 if (ap
->ops
->mode_filter
)
3459 xfer_mask
= ap
->ops
->mode_filter(ap
, dev
, xfer_mask
);
3461 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
3462 &dev
->mwdma_mask
, &dev
->udma_mask
);
3466 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3467 * @dev: Device to which command will be sent
3469 * Issue SET FEATURES - XFER MODE command to device @dev
3473 * PCI/etc. bus probe sem.
3476 * 0 on success, AC_ERR_* mask otherwise.
3479 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
3481 struct ata_taskfile tf
;
3482 unsigned int err_mask
;
3484 /* set up set-features taskfile */
3485 DPRINTK("set features - xfer mode\n");
3487 ata_tf_init(dev
, &tf
);
3488 tf
.command
= ATA_CMD_SET_FEATURES
;
3489 tf
.feature
= SETFEATURES_XFER
;
3490 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3491 tf
.protocol
= ATA_PROT_NODATA
;
3492 tf
.nsect
= dev
->xfer_mode
;
3494 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3496 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3501 * ata_dev_init_params - Issue INIT DEV PARAMS command
3502 * @dev: Device to which command will be sent
3503 * @heads: Number of heads (taskfile parameter)
3504 * @sectors: Number of sectors (taskfile parameter)
3507 * Kernel thread context (may sleep)
3510 * 0 on success, AC_ERR_* mask otherwise.
3512 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
3513 u16 heads
, u16 sectors
)
3515 struct ata_taskfile tf
;
3516 unsigned int err_mask
;
3518 /* Number of sectors per track 1-255. Number of heads 1-16 */
3519 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
3520 return AC_ERR_INVALID
;
3522 /* set up init dev params taskfile */
3523 DPRINTK("init dev params \n");
3525 ata_tf_init(dev
, &tf
);
3526 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
3527 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
3528 tf
.protocol
= ATA_PROT_NODATA
;
3530 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
3532 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0);
3534 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
3539 * ata_sg_clean - Unmap DMA memory associated with command
3540 * @qc: Command containing DMA memory to be released
3542 * Unmap all mapped DMA memory associated with this command.
3545 * spin_lock_irqsave(host lock)
3547 void ata_sg_clean(struct ata_queued_cmd
*qc
)
3549 struct ata_port
*ap
= qc
->ap
;
3550 struct scatterlist
*sg
= qc
->__sg
;
3551 int dir
= qc
->dma_dir
;
3552 void *pad_buf
= NULL
;
3554 WARN_ON(!(qc
->flags
& ATA_QCFLAG_DMAMAP
));
3555 WARN_ON(sg
== NULL
);
3557 if (qc
->flags
& ATA_QCFLAG_SINGLE
)
3558 WARN_ON(qc
->n_elem
> 1);
3560 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
3562 /* if we padded the buffer out to 32-bit bound, and data
3563 * xfer direction is from-device, we must copy from the
3564 * pad buffer back into the supplied buffer
3566 if (qc
->pad_len
&& !(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
3567 pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3569 if (qc
->flags
& ATA_QCFLAG_SG
) {
3571 dma_unmap_sg(ap
->dev
, sg
, qc
->n_elem
, dir
);
3572 /* restore last sg */
3573 sg
[qc
->orig_n_elem
- 1].length
+= qc
->pad_len
;
3575 struct scatterlist
*psg
= &qc
->pad_sgent
;
3576 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
3577 memcpy(addr
+ psg
->offset
, pad_buf
, qc
->pad_len
);
3578 kunmap_atomic(addr
, KM_IRQ0
);
3582 dma_unmap_single(ap
->dev
,
3583 sg_dma_address(&sg
[0]), sg_dma_len(&sg
[0]),
3586 sg
->length
+= qc
->pad_len
;
3588 memcpy(qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
3589 pad_buf
, qc
->pad_len
);
3592 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
3597 * ata_fill_sg - Fill PCI IDE PRD table
3598 * @qc: Metadata associated with taskfile to be transferred
3600 * Fill PCI IDE PRD (scatter-gather) table with segments
3601 * associated with the current disk command.
3604 * spin_lock_irqsave(host lock)
3607 static void ata_fill_sg(struct ata_queued_cmd
*qc
)
3609 struct ata_port
*ap
= qc
->ap
;
3610 struct scatterlist
*sg
;
3613 WARN_ON(qc
->__sg
== NULL
);
3614 WARN_ON(qc
->n_elem
== 0 && qc
->pad_len
== 0);
3617 ata_for_each_sg(sg
, qc
) {
3621 /* determine if physical DMA addr spans 64K boundary.
3622 * Note h/w doesn't support 64-bit, so we unconditionally
3623 * truncate dma_addr_t to u32.
3625 addr
= (u32
) sg_dma_address(sg
);
3626 sg_len
= sg_dma_len(sg
);
3629 offset
= addr
& 0xffff;
3631 if ((offset
+ sg_len
) > 0x10000)
3632 len
= 0x10000 - offset
;
3634 ap
->prd
[idx
].addr
= cpu_to_le32(addr
);
3635 ap
->prd
[idx
].flags_len
= cpu_to_le32(len
& 0xffff);
3636 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx
, addr
, len
);
3645 ap
->prd
[idx
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
3648 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3649 * @qc: Metadata associated with taskfile to check
3651 * Allow low-level driver to filter ATA PACKET commands, returning
3652 * a status indicating whether or not it is OK to use DMA for the
3653 * supplied PACKET command.
3656 * spin_lock_irqsave(host lock)
3658 * RETURNS: 0 when ATAPI DMA can be used
3661 int ata_check_atapi_dma(struct ata_queued_cmd
*qc
)
3663 struct ata_port
*ap
= qc
->ap
;
3664 int rc
= 0; /* Assume ATAPI DMA is OK by default */
3666 if (ap
->ops
->check_atapi_dma
)
3667 rc
= ap
->ops
->check_atapi_dma(qc
);
3672 * ata_qc_prep - Prepare taskfile for submission
3673 * @qc: Metadata associated with taskfile to be prepared
3675 * Prepare ATA taskfile for submission.
3678 * spin_lock_irqsave(host lock)
3680 void ata_qc_prep(struct ata_queued_cmd
*qc
)
3682 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
3688 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
3691 * ata_sg_init_one - Associate command with memory buffer
3692 * @qc: Command to be associated
3693 * @buf: Memory buffer
3694 * @buflen: Length of memory buffer, in bytes.
3696 * Initialize the data-related elements of queued_cmd @qc
3697 * to point to a single memory buffer, @buf of byte length @buflen.
3700 * spin_lock_irqsave(host lock)
3703 void ata_sg_init_one(struct ata_queued_cmd
*qc
, void *buf
, unsigned int buflen
)
3705 qc
->flags
|= ATA_QCFLAG_SINGLE
;
3707 qc
->__sg
= &qc
->sgent
;
3709 qc
->orig_n_elem
= 1;
3711 qc
->nbytes
= buflen
;
3713 sg_init_one(&qc
->sgent
, buf
, buflen
);
3717 * ata_sg_init - Associate command with scatter-gather table.
3718 * @qc: Command to be associated
3719 * @sg: Scatter-gather table.
3720 * @n_elem: Number of elements in s/g table.
3722 * Initialize the data-related elements of queued_cmd @qc
3723 * to point to a scatter-gather table @sg, containing @n_elem
3727 * spin_lock_irqsave(host lock)
3730 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
3731 unsigned int n_elem
)
3733 qc
->flags
|= ATA_QCFLAG_SG
;
3735 qc
->n_elem
= n_elem
;
3736 qc
->orig_n_elem
= n_elem
;
3740 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3741 * @qc: Command with memory buffer to be mapped.
3743 * DMA-map the memory buffer associated with queued_cmd @qc.
3746 * spin_lock_irqsave(host lock)
3749 * Zero on success, negative on error.
3752 static int ata_sg_setup_one(struct ata_queued_cmd
*qc
)
3754 struct ata_port
*ap
= qc
->ap
;
3755 int dir
= qc
->dma_dir
;
3756 struct scatterlist
*sg
= qc
->__sg
;
3757 dma_addr_t dma_address
;
3760 /* we must lengthen transfers to end on a 32-bit boundary */
3761 qc
->pad_len
= sg
->length
& 3;
3763 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3764 struct scatterlist
*psg
= &qc
->pad_sgent
;
3766 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
3768 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
3770 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
)
3771 memcpy(pad_buf
, qc
->buf_virt
+ sg
->length
- qc
->pad_len
,
3774 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3775 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
3777 sg
->length
-= qc
->pad_len
;
3778 if (sg
->length
== 0)
3781 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3782 sg
->length
, qc
->pad_len
);
3790 dma_address
= dma_map_single(ap
->dev
, qc
->buf_virt
,
3792 if (dma_mapping_error(dma_address
)) {
3794 sg
->length
+= qc
->pad_len
;
3798 sg_dma_address(sg
) = dma_address
;
3799 sg_dma_len(sg
) = sg
->length
;
3802 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg
),
3803 qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
3809 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3810 * @qc: Command with scatter-gather table to be mapped.
3812 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3815 * spin_lock_irqsave(host lock)
3818 * Zero on success, negative on error.
3822 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
3824 struct ata_port
*ap
= qc
->ap
;
3825 struct scatterlist
*sg
= qc
->__sg
;
3826 struct scatterlist
*lsg
= &sg
[qc
->n_elem
- 1];
3827 int n_elem
, pre_n_elem
, dir
, trim_sg
= 0;
3829 VPRINTK("ENTER, ata%u\n", ap
->id
);
3830 WARN_ON(!(qc
->flags
& ATA_QCFLAG_SG
));
3832 /* we must lengthen transfers to end on a 32-bit boundary */
3833 qc
->pad_len
= lsg
->length
& 3;
3835 void *pad_buf
= ap
->pad
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3836 struct scatterlist
*psg
= &qc
->pad_sgent
;
3837 unsigned int offset
;
3839 WARN_ON(qc
->dev
->class != ATA_DEV_ATAPI
);
3841 memset(pad_buf
, 0, ATA_DMA_PAD_SZ
);
3844 * psg->page/offset are used to copy to-be-written
3845 * data in this function or read data in ata_sg_clean.
3847 offset
= lsg
->offset
+ lsg
->length
- qc
->pad_len
;
3848 psg
->page
= nth_page(lsg
->page
, offset
>> PAGE_SHIFT
);
3849 psg
->offset
= offset_in_page(offset
);
3851 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
3852 void *addr
= kmap_atomic(psg
->page
, KM_IRQ0
);
3853 memcpy(pad_buf
, addr
+ psg
->offset
, qc
->pad_len
);
3854 kunmap_atomic(addr
, KM_IRQ0
);
3857 sg_dma_address(psg
) = ap
->pad_dma
+ (qc
->tag
* ATA_DMA_PAD_SZ
);
3858 sg_dma_len(psg
) = ATA_DMA_PAD_SZ
;
3860 lsg
->length
-= qc
->pad_len
;
3861 if (lsg
->length
== 0)
3864 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3865 qc
->n_elem
- 1, lsg
->length
, qc
->pad_len
);
3868 pre_n_elem
= qc
->n_elem
;
3869 if (trim_sg
&& pre_n_elem
)
3878 n_elem
= dma_map_sg(ap
->dev
, sg
, pre_n_elem
, dir
);
3880 /* restore last sg */
3881 lsg
->length
+= qc
->pad_len
;
3885 DPRINTK("%d sg elements mapped\n", n_elem
);
3888 qc
->n_elem
= n_elem
;
3894 * swap_buf_le16 - swap halves of 16-bit words in place
3895 * @buf: Buffer to swap
3896 * @buf_words: Number of 16-bit words in buffer.
3898 * Swap halves of 16-bit words if needed to convert from
3899 * little-endian byte order to native cpu byte order, or
3903 * Inherited from caller.
3905 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
3910 for (i
= 0; i
< buf_words
; i
++)
3911 buf
[i
] = le16_to_cpu(buf
[i
]);
3912 #endif /* __BIG_ENDIAN */
3916 * ata_mmio_data_xfer - Transfer data by MMIO
3917 * @adev: device for this I/O
3919 * @buflen: buffer length
3920 * @write_data: read/write
3922 * Transfer data from/to the device data register by MMIO.
3925 * Inherited from caller.
3928 void ata_mmio_data_xfer(struct ata_device
*adev
, unsigned char *buf
,
3929 unsigned int buflen
, int write_data
)
3931 struct ata_port
*ap
= adev
->ap
;
3933 unsigned int words
= buflen
>> 1;
3934 u16
*buf16
= (u16
*) buf
;
3935 void __iomem
*mmio
= (void __iomem
*)ap
->ioaddr
.data_addr
;
3937 /* Transfer multiple of 2 bytes */
3939 for (i
= 0; i
< words
; i
++)
3940 writew(le16_to_cpu(buf16
[i
]), mmio
);
3942 for (i
= 0; i
< words
; i
++)
3943 buf16
[i
] = cpu_to_le16(readw(mmio
));
3946 /* Transfer trailing 1 byte, if any. */
3947 if (unlikely(buflen
& 0x01)) {
3948 u16 align_buf
[1] = { 0 };
3949 unsigned char *trailing_buf
= buf
+ buflen
- 1;
3952 memcpy(align_buf
, trailing_buf
, 1);
3953 writew(le16_to_cpu(align_buf
[0]), mmio
);
3955 align_buf
[0] = cpu_to_le16(readw(mmio
));
3956 memcpy(trailing_buf
, align_buf
, 1);
3962 * ata_pio_data_xfer - Transfer data by PIO
3963 * @adev: device to target
3965 * @buflen: buffer length
3966 * @write_data: read/write
3968 * Transfer data from/to the device data register by PIO.
3971 * Inherited from caller.
3974 void ata_pio_data_xfer(struct ata_device
*adev
, unsigned char *buf
,
3975 unsigned int buflen
, int write_data
)
3977 struct ata_port
*ap
= adev
->ap
;
3978 unsigned int words
= buflen
>> 1;
3980 /* Transfer multiple of 2 bytes */
3982 outsw(ap
->ioaddr
.data_addr
, buf
, words
);
3984 insw(ap
->ioaddr
.data_addr
, buf
, words
);
3986 /* Transfer trailing 1 byte, if any. */
3987 if (unlikely(buflen
& 0x01)) {
3988 u16 align_buf
[1] = { 0 };
3989 unsigned char *trailing_buf
= buf
+ buflen
- 1;
3992 memcpy(align_buf
, trailing_buf
, 1);
3993 outw(le16_to_cpu(align_buf
[0]), ap
->ioaddr
.data_addr
);
3995 align_buf
[0] = cpu_to_le16(inw(ap
->ioaddr
.data_addr
));
3996 memcpy(trailing_buf
, align_buf
, 1);
4002 * ata_pio_data_xfer_noirq - Transfer data by PIO
4003 * @adev: device to target
4005 * @buflen: buffer length
4006 * @write_data: read/write
4008 * Transfer data from/to the device data register by PIO. Do the
4009 * transfer with interrupts disabled.
4012 * Inherited from caller.
4015 void ata_pio_data_xfer_noirq(struct ata_device
*adev
, unsigned char *buf
,
4016 unsigned int buflen
, int write_data
)
4018 unsigned long flags
;
4019 local_irq_save(flags
);
4020 ata_pio_data_xfer(adev
, buf
, buflen
, write_data
);
4021 local_irq_restore(flags
);
4026 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
4027 * @qc: Command on going
4029 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
4032 * Inherited from caller.
4035 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
4037 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
4038 struct scatterlist
*sg
= qc
->__sg
;
4039 struct ata_port
*ap
= qc
->ap
;
4041 unsigned int offset
;
4044 if (qc
->cursect
== (qc
->nsect
- 1))
4045 ap
->hsm_task_state
= HSM_ST_LAST
;
4047 page
= sg
[qc
->cursg
].page
;
4048 offset
= sg
[qc
->cursg
].offset
+ qc
->cursg_ofs
* ATA_SECT_SIZE
;
4050 /* get the current page and offset */
4051 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
4052 offset
%= PAGE_SIZE
;
4054 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4056 if (PageHighMem(page
)) {
4057 unsigned long flags
;
4059 /* FIXME: use a bounce buffer */
4060 local_irq_save(flags
);
4061 buf
= kmap_atomic(page
, KM_IRQ0
);
4063 /* do the actual data transfer */
4064 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, ATA_SECT_SIZE
, do_write
);
4066 kunmap_atomic(buf
, KM_IRQ0
);
4067 local_irq_restore(flags
);
4069 buf
= page_address(page
);
4070 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, ATA_SECT_SIZE
, do_write
);
4076 if ((qc
->cursg_ofs
* ATA_SECT_SIZE
) == (&sg
[qc
->cursg
])->length
) {
4083 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4084 * @qc: Command on going
4086 * Transfer one or many ATA_SECT_SIZE of data from/to the
4087 * ATA device for the DRQ request.
4090 * Inherited from caller.
4093 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
4095 if (is_multi_taskfile(&qc
->tf
)) {
4096 /* READ/WRITE MULTIPLE */
4099 WARN_ON(qc
->dev
->multi_count
== 0);
4101 nsect
= min(qc
->nsect
- qc
->cursect
, qc
->dev
->multi_count
);
4109 * atapi_send_cdb - Write CDB bytes to hardware
4110 * @ap: Port to which ATAPI device is attached.
4111 * @qc: Taskfile currently active
4113 * When device has indicated its readiness to accept
4114 * a CDB, this function is called. Send the CDB.
4120 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
4123 DPRINTK("send cdb\n");
4124 WARN_ON(qc
->dev
->cdb_len
< 12);
4126 ap
->ops
->data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
4127 ata_altstatus(ap
); /* flush */
4129 switch (qc
->tf
.protocol
) {
4130 case ATA_PROT_ATAPI
:
4131 ap
->hsm_task_state
= HSM_ST
;
4133 case ATA_PROT_ATAPI_NODATA
:
4134 ap
->hsm_task_state
= HSM_ST_LAST
;
4136 case ATA_PROT_ATAPI_DMA
:
4137 ap
->hsm_task_state
= HSM_ST_LAST
;
4138 /* initiate bmdma */
4139 ap
->ops
->bmdma_start(qc
);
4145 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4146 * @qc: Command on going
4147 * @bytes: number of bytes
4149 * Transfer Transfer data from/to the ATAPI device.
4152 * Inherited from caller.
4156 static void __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
4158 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
4159 struct scatterlist
*sg
= qc
->__sg
;
4160 struct ata_port
*ap
= qc
->ap
;
4163 unsigned int offset
, count
;
4165 if (qc
->curbytes
+ bytes
>= qc
->nbytes
)
4166 ap
->hsm_task_state
= HSM_ST_LAST
;
4169 if (unlikely(qc
->cursg
>= qc
->n_elem
)) {
4171 * The end of qc->sg is reached and the device expects
4172 * more data to transfer. In order not to overrun qc->sg
4173 * and fulfill length specified in the byte count register,
4174 * - for read case, discard trailing data from the device
4175 * - for write case, padding zero data to the device
4177 u16 pad_buf
[1] = { 0 };
4178 unsigned int words
= bytes
>> 1;
4181 if (words
) /* warning if bytes > 1 */
4182 ata_dev_printk(qc
->dev
, KERN_WARNING
,
4183 "%u bytes trailing data\n", bytes
);
4185 for (i
= 0; i
< words
; i
++)
4186 ap
->ops
->data_xfer(qc
->dev
, (unsigned char*)pad_buf
, 2, do_write
);
4188 ap
->hsm_task_state
= HSM_ST_LAST
;
4192 sg
= &qc
->__sg
[qc
->cursg
];
4195 offset
= sg
->offset
+ qc
->cursg_ofs
;
4197 /* get the current page and offset */
4198 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
4199 offset
%= PAGE_SIZE
;
4201 /* don't overrun current sg */
4202 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
4204 /* don't cross page boundaries */
4205 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
4207 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
4209 if (PageHighMem(page
)) {
4210 unsigned long flags
;
4212 /* FIXME: use bounce buffer */
4213 local_irq_save(flags
);
4214 buf
= kmap_atomic(page
, KM_IRQ0
);
4216 /* do the actual data transfer */
4217 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4219 kunmap_atomic(buf
, KM_IRQ0
);
4220 local_irq_restore(flags
);
4222 buf
= page_address(page
);
4223 ap
->ops
->data_xfer(qc
->dev
, buf
+ offset
, count
, do_write
);
4227 qc
->curbytes
+= count
;
4228 qc
->cursg_ofs
+= count
;
4230 if (qc
->cursg_ofs
== sg
->length
) {
4240 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4241 * @qc: Command on going
4243 * Transfer Transfer data from/to the ATAPI device.
4246 * Inherited from caller.
4249 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
4251 struct ata_port
*ap
= qc
->ap
;
4252 struct ata_device
*dev
= qc
->dev
;
4253 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
4254 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
4256 /* Abuse qc->result_tf for temp storage of intermediate TF
4257 * here to save some kernel stack usage.
4258 * For normal completion, qc->result_tf is not relevant. For
4259 * error, qc->result_tf is later overwritten by ata_qc_complete().
4260 * So, the correctness of qc->result_tf is not affected.
4262 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4263 ireason
= qc
->result_tf
.nsect
;
4264 bc_lo
= qc
->result_tf
.lbam
;
4265 bc_hi
= qc
->result_tf
.lbah
;
4266 bytes
= (bc_hi
<< 8) | bc_lo
;
4268 /* shall be cleared to zero, indicating xfer of data */
4269 if (ireason
& (1 << 0))
4272 /* make sure transfer direction matches expected */
4273 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
4274 if (do_write
!= i_write
)
4277 VPRINTK("ata%u: xfering %d bytes\n", ap
->id
, bytes
);
4279 __atapi_pio_bytes(qc
, bytes
);
4284 ata_dev_printk(dev
, KERN_INFO
, "ATAPI check failed\n");
4285 qc
->err_mask
|= AC_ERR_HSM
;
4286 ap
->hsm_task_state
= HSM_ST_ERR
;
4290 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4291 * @ap: the target ata_port
4295 * 1 if ok in workqueue, 0 otherwise.
4298 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
4300 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
4303 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
4304 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
4305 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
4308 if (is_atapi_taskfile(&qc
->tf
) &&
4309 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
4317 * ata_hsm_qc_complete - finish a qc running on standard HSM
4318 * @qc: Command to complete
4319 * @in_wq: 1 if called from workqueue, 0 otherwise
4321 * Finish @qc which is running on standard HSM.
4324 * If @in_wq is zero, spin_lock_irqsave(host lock).
4325 * Otherwise, none on entry and grabs host lock.
4327 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
4329 struct ata_port
*ap
= qc
->ap
;
4330 unsigned long flags
;
4332 if (ap
->ops
->error_handler
) {
4334 spin_lock_irqsave(ap
->lock
, flags
);
4336 /* EH might have kicked in while host lock is
4339 qc
= ata_qc_from_tag(ap
, qc
->tag
);
4341 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
4343 ata_qc_complete(qc
);
4345 ata_port_freeze(ap
);
4348 spin_unlock_irqrestore(ap
->lock
, flags
);
4350 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
4351 ata_qc_complete(qc
);
4353 ata_port_freeze(ap
);
4357 spin_lock_irqsave(ap
->lock
, flags
);
4359 ata_qc_complete(qc
);
4360 spin_unlock_irqrestore(ap
->lock
, flags
);
4362 ata_qc_complete(qc
);
4365 ata_altstatus(ap
); /* flush */
4369 * ata_hsm_move - move the HSM to the next state.
4370 * @ap: the target ata_port
4372 * @status: current device status
4373 * @in_wq: 1 if called from workqueue, 0 otherwise
4376 * 1 when poll next status needed, 0 otherwise.
4378 int ata_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
4379 u8 status
, int in_wq
)
4381 unsigned long flags
= 0;
4384 WARN_ON((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
4386 /* Make sure ata_qc_issue_prot() does not throw things
4387 * like DMA polling into the workqueue. Notice that
4388 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4390 WARN_ON(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
4393 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4394 ap
->id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
4396 switch (ap
->hsm_task_state
) {
4398 /* Send first data block or PACKET CDB */
4400 /* If polling, we will stay in the work queue after
4401 * sending the data. Otherwise, interrupt handler
4402 * takes over after sending the data.
4404 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
4406 /* check device status */
4407 if (unlikely((status
& ATA_DRQ
) == 0)) {
4408 /* handle BSY=0, DRQ=0 as error */
4409 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4410 /* device stops HSM for abort/error */
4411 qc
->err_mask
|= AC_ERR_DEV
;
4413 /* HSM violation. Let EH handle this */
4414 qc
->err_mask
|= AC_ERR_HSM
;
4416 ap
->hsm_task_state
= HSM_ST_ERR
;
4420 /* Device should not ask for data transfer (DRQ=1)
4421 * when it finds something wrong.
4422 * We ignore DRQ here and stop the HSM by
4423 * changing hsm_task_state to HSM_ST_ERR and
4424 * let the EH abort the command or reset the device.
4426 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4427 printk(KERN_WARNING
"ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4429 qc
->err_mask
|= AC_ERR_HSM
;
4430 ap
->hsm_task_state
= HSM_ST_ERR
;
4434 /* Send the CDB (atapi) or the first data block (ata pio out).
4435 * During the state transition, interrupt handler shouldn't
4436 * be invoked before the data transfer is complete and
4437 * hsm_task_state is changed. Hence, the following locking.
4440 spin_lock_irqsave(ap
->lock
, flags
);
4442 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
4443 /* PIO data out protocol.
4444 * send first data block.
4447 /* ata_pio_sectors() might change the state
4448 * to HSM_ST_LAST. so, the state is changed here
4449 * before ata_pio_sectors().
4451 ap
->hsm_task_state
= HSM_ST
;
4452 ata_pio_sectors(qc
);
4453 ata_altstatus(ap
); /* flush */
4456 atapi_send_cdb(ap
, qc
);
4459 spin_unlock_irqrestore(ap
->lock
, flags
);
4461 /* if polling, ata_pio_task() handles the rest.
4462 * otherwise, interrupt handler takes over from here.
4467 /* complete command or read/write the data register */
4468 if (qc
->tf
.protocol
== ATA_PROT_ATAPI
) {
4469 /* ATAPI PIO protocol */
4470 if ((status
& ATA_DRQ
) == 0) {
4471 /* No more data to transfer or device error.
4472 * Device error will be tagged in HSM_ST_LAST.
4474 ap
->hsm_task_state
= HSM_ST_LAST
;
4478 /* Device should not ask for data transfer (DRQ=1)
4479 * when it finds something wrong.
4480 * We ignore DRQ here and stop the HSM by
4481 * changing hsm_task_state to HSM_ST_ERR and
4482 * let the EH abort the command or reset the device.
4484 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4485 printk(KERN_WARNING
"ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4487 qc
->err_mask
|= AC_ERR_HSM
;
4488 ap
->hsm_task_state
= HSM_ST_ERR
;
4492 atapi_pio_bytes(qc
);
4494 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
4495 /* bad ireason reported by device */
4499 /* ATA PIO protocol */
4500 if (unlikely((status
& ATA_DRQ
) == 0)) {
4501 /* handle BSY=0, DRQ=0 as error */
4502 if (likely(status
& (ATA_ERR
| ATA_DF
)))
4503 /* device stops HSM for abort/error */
4504 qc
->err_mask
|= AC_ERR_DEV
;
4506 /* HSM violation. Let EH handle this.
4507 * Phantom devices also trigger this
4508 * condition. Mark hint.
4510 qc
->err_mask
|= AC_ERR_HSM
|
4513 ap
->hsm_task_state
= HSM_ST_ERR
;
4517 /* For PIO reads, some devices may ask for
4518 * data transfer (DRQ=1) alone with ERR=1.
4519 * We respect DRQ here and transfer one
4520 * block of junk data before changing the
4521 * hsm_task_state to HSM_ST_ERR.
4523 * For PIO writes, ERR=1 DRQ=1 doesn't make
4524 * sense since the data block has been
4525 * transferred to the device.
4527 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
4528 /* data might be corrputed */
4529 qc
->err_mask
|= AC_ERR_DEV
;
4531 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
4532 ata_pio_sectors(qc
);
4534 status
= ata_wait_idle(ap
);
4537 if (status
& (ATA_BUSY
| ATA_DRQ
))
4538 qc
->err_mask
|= AC_ERR_HSM
;
4540 /* ata_pio_sectors() might change the
4541 * state to HSM_ST_LAST. so, the state
4542 * is changed after ata_pio_sectors().
4544 ap
->hsm_task_state
= HSM_ST_ERR
;
4548 ata_pio_sectors(qc
);
4550 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
4551 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
4554 status
= ata_wait_idle(ap
);
4559 ata_altstatus(ap
); /* flush */
4564 if (unlikely(!ata_ok(status
))) {
4565 qc
->err_mask
|= __ac_err_mask(status
);
4566 ap
->hsm_task_state
= HSM_ST_ERR
;
4570 /* no more data to transfer */
4571 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4572 ap
->id
, qc
->dev
->devno
, status
);
4574 WARN_ON(qc
->err_mask
);
4576 ap
->hsm_task_state
= HSM_ST_IDLE
;
4578 /* complete taskfile transaction */
4579 ata_hsm_qc_complete(qc
, in_wq
);
4585 /* make sure qc->err_mask is available to
4586 * know what's wrong and recover
4588 WARN_ON(qc
->err_mask
== 0);
4590 ap
->hsm_task_state
= HSM_ST_IDLE
;
4592 /* complete taskfile transaction */
4593 ata_hsm_qc_complete(qc
, in_wq
);
4605 static void ata_pio_task(struct work_struct
*work
)
4607 struct ata_port
*ap
=
4608 container_of(work
, struct ata_port
, port_task
.work
);
4609 struct ata_queued_cmd
*qc
= ap
->port_task_data
;
4614 WARN_ON(ap
->hsm_task_state
== HSM_ST_IDLE
);
4617 * This is purely heuristic. This is a fast path.
4618 * Sometimes when we enter, BSY will be cleared in
4619 * a chk-status or two. If not, the drive is probably seeking
4620 * or something. Snooze for a couple msecs, then
4621 * chk-status again. If still busy, queue delayed work.
4623 status
= ata_busy_wait(ap
, ATA_BUSY
, 5);
4624 if (status
& ATA_BUSY
) {
4626 status
= ata_busy_wait(ap
, ATA_BUSY
, 10);
4627 if (status
& ATA_BUSY
) {
4628 ata_port_queue_task(ap
, ata_pio_task
, qc
, ATA_SHORT_PAUSE
);
4634 poll_next
= ata_hsm_move(ap
, qc
, status
, 1);
4636 /* another command or interrupt handler
4637 * may be running at this point.
4644 * ata_qc_new - Request an available ATA command, for queueing
4645 * @ap: Port associated with device @dev
4646 * @dev: Device from whom we request an available command structure
4652 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4654 struct ata_queued_cmd
*qc
= NULL
;
4657 /* no command while frozen */
4658 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4661 /* the last tag is reserved for internal command. */
4662 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4663 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4664 qc
= __ata_qc_from_tag(ap
, i
);
4675 * ata_qc_new_init - Request an available ATA command, and initialize it
4676 * @dev: Device from whom we request an available command structure
4682 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4684 struct ata_port
*ap
= dev
->ap
;
4685 struct ata_queued_cmd
*qc
;
4687 qc
= ata_qc_new(ap
);
4700 * ata_qc_free - free unused ata_queued_cmd
4701 * @qc: Command to complete
4703 * Designed to free unused ata_queued_cmd object
4704 * in case something prevents using it.
4707 * spin_lock_irqsave(host lock)
4709 void ata_qc_free(struct ata_queued_cmd
*qc
)
4711 struct ata_port
*ap
= qc
->ap
;
4714 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4718 if (likely(ata_tag_valid(tag
))) {
4719 qc
->tag
= ATA_TAG_POISON
;
4720 clear_bit(tag
, &ap
->qc_allocated
);
4724 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4726 struct ata_port
*ap
= qc
->ap
;
4728 WARN_ON(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4729 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4731 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4734 /* command should be marked inactive atomically with qc completion */
4735 if (qc
->tf
.protocol
== ATA_PROT_NCQ
)
4736 ap
->sactive
&= ~(1 << qc
->tag
);
4738 ap
->active_tag
= ATA_TAG_POISON
;
4740 /* atapi: mark qc as inactive to prevent the interrupt handler
4741 * from completing the command twice later, before the error handler
4742 * is called. (when rc != 0 and atapi request sense is needed)
4744 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4745 ap
->qc_active
&= ~(1 << qc
->tag
);
4747 /* call completion callback */
4748 qc
->complete_fn(qc
);
4751 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4753 struct ata_port
*ap
= qc
->ap
;
4755 qc
->result_tf
.flags
= qc
->tf
.flags
;
4756 ap
->ops
->tf_read(ap
, &qc
->result_tf
);
4760 * ata_qc_complete - Complete an active ATA command
4761 * @qc: Command to complete
4762 * @err_mask: ATA Status register contents
4764 * Indicate to the mid and upper layers that an ATA
4765 * command has completed, with either an ok or not-ok status.
4768 * spin_lock_irqsave(host lock)
4770 void ata_qc_complete(struct ata_queued_cmd
*qc
)
4772 struct ata_port
*ap
= qc
->ap
;
4774 /* XXX: New EH and old EH use different mechanisms to
4775 * synchronize EH with regular execution path.
4777 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4778 * Normal execution path is responsible for not accessing a
4779 * failed qc. libata core enforces the rule by returning NULL
4780 * from ata_qc_from_tag() for failed qcs.
4782 * Old EH depends on ata_qc_complete() nullifying completion
4783 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4784 * not synchronize with interrupt handler. Only PIO task is
4787 if (ap
->ops
->error_handler
) {
4788 WARN_ON(ap
->pflags
& ATA_PFLAG_FROZEN
);
4790 if (unlikely(qc
->err_mask
))
4791 qc
->flags
|= ATA_QCFLAG_FAILED
;
4793 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
4794 if (!ata_tag_internal(qc
->tag
)) {
4795 /* always fill result TF for failed qc */
4797 ata_qc_schedule_eh(qc
);
4802 /* read result TF if requested */
4803 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4806 __ata_qc_complete(qc
);
4808 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
4811 /* read result TF if failed or requested */
4812 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
4815 __ata_qc_complete(qc
);
4820 * ata_qc_complete_multiple - Complete multiple qcs successfully
4821 * @ap: port in question
4822 * @qc_active: new qc_active mask
4823 * @finish_qc: LLDD callback invoked before completing a qc
4825 * Complete in-flight commands. This functions is meant to be
4826 * called from low-level driver's interrupt routine to complete
4827 * requests normally. ap->qc_active and @qc_active is compared
4828 * and commands are completed accordingly.
4831 * spin_lock_irqsave(host lock)
4834 * Number of completed commands on success, -errno otherwise.
4836 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
,
4837 void (*finish_qc
)(struct ata_queued_cmd
*))
4843 done_mask
= ap
->qc_active
^ qc_active
;
4845 if (unlikely(done_mask
& qc_active
)) {
4846 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
4847 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
4851 for (i
= 0; i
< ATA_MAX_QUEUE
; i
++) {
4852 struct ata_queued_cmd
*qc
;
4854 if (!(done_mask
& (1 << i
)))
4857 if ((qc
= ata_qc_from_tag(ap
, i
))) {
4860 ata_qc_complete(qc
);
4868 static inline int ata_should_dma_map(struct ata_queued_cmd
*qc
)
4870 struct ata_port
*ap
= qc
->ap
;
4872 switch (qc
->tf
.protocol
) {
4875 case ATA_PROT_ATAPI_DMA
:
4878 case ATA_PROT_ATAPI
:
4880 if (ap
->flags
& ATA_FLAG_PIO_DMA
)
4893 * ata_qc_issue - issue taskfile to device
4894 * @qc: command to issue to device
4896 * Prepare an ATA command to submission to device.
4897 * This includes mapping the data into a DMA-able
4898 * area, filling in the S/G table, and finally
4899 * writing the taskfile to hardware, starting the command.
4902 * spin_lock_irqsave(host lock)
4904 void ata_qc_issue(struct ata_queued_cmd
*qc
)
4906 struct ata_port
*ap
= qc
->ap
;
4908 /* Make sure only one non-NCQ command is outstanding. The
4909 * check is skipped for old EH because it reuses active qc to
4910 * request ATAPI sense.
4912 WARN_ON(ap
->ops
->error_handler
&& ata_tag_valid(ap
->active_tag
));
4914 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4915 WARN_ON(ap
->sactive
& (1 << qc
->tag
));
4916 ap
->sactive
|= 1 << qc
->tag
;
4918 WARN_ON(ap
->sactive
);
4919 ap
->active_tag
= qc
->tag
;
4922 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
4923 ap
->qc_active
|= 1 << qc
->tag
;
4925 if (ata_should_dma_map(qc
)) {
4926 if (qc
->flags
& ATA_QCFLAG_SG
) {
4927 if (ata_sg_setup(qc
))
4929 } else if (qc
->flags
& ATA_QCFLAG_SINGLE
) {
4930 if (ata_sg_setup_one(qc
))
4934 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4937 ap
->ops
->qc_prep(qc
);
4939 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
4940 if (unlikely(qc
->err_mask
))
4945 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4946 qc
->err_mask
|= AC_ERR_SYSTEM
;
4948 ata_qc_complete(qc
);
4952 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4953 * @qc: command to issue to device
4955 * Using various libata functions and hooks, this function
4956 * starts an ATA command. ATA commands are grouped into
4957 * classes called "protocols", and issuing each type of protocol
4958 * is slightly different.
4960 * May be used as the qc_issue() entry in ata_port_operations.
4963 * spin_lock_irqsave(host lock)
4966 * Zero on success, AC_ERR_* mask on failure
4969 unsigned int ata_qc_issue_prot(struct ata_queued_cmd
*qc
)
4971 struct ata_port
*ap
= qc
->ap
;
4973 /* Use polling pio if the LLD doesn't handle
4974 * interrupt driven pio and atapi CDB interrupt.
4976 if (ap
->flags
& ATA_FLAG_PIO_POLLING
) {
4977 switch (qc
->tf
.protocol
) {
4979 case ATA_PROT_NODATA
:
4980 case ATA_PROT_ATAPI
:
4981 case ATA_PROT_ATAPI_NODATA
:
4982 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
4984 case ATA_PROT_ATAPI_DMA
:
4985 if (qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)
4986 /* see ata_dma_blacklisted() */
4994 /* Some controllers show flaky interrupt behavior after
4995 * setting xfer mode. Use polling instead.
4997 if (unlikely(qc
->tf
.command
== ATA_CMD_SET_FEATURES
&&
4998 qc
->tf
.feature
== SETFEATURES_XFER
) &&
4999 (ap
->flags
& ATA_FLAG_SETXFER_POLLING
))
5000 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
5002 /* select the device */
5003 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
5005 /* start the command */
5006 switch (qc
->tf
.protocol
) {
5007 case ATA_PROT_NODATA
:
5008 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5009 ata_qc_set_polling(qc
);
5011 ata_tf_to_host(ap
, &qc
->tf
);
5012 ap
->hsm_task_state
= HSM_ST_LAST
;
5014 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5015 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5020 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5022 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
5023 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
5024 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
5025 ap
->hsm_task_state
= HSM_ST_LAST
;
5029 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5030 ata_qc_set_polling(qc
);
5032 ata_tf_to_host(ap
, &qc
->tf
);
5034 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
5035 /* PIO data out protocol */
5036 ap
->hsm_task_state
= HSM_ST_FIRST
;
5037 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5039 /* always send first data block using
5040 * the ata_pio_task() codepath.
5043 /* PIO data in protocol */
5044 ap
->hsm_task_state
= HSM_ST
;
5046 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5047 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5049 /* if polling, ata_pio_task() handles the rest.
5050 * otherwise, interrupt handler takes over from here.
5056 case ATA_PROT_ATAPI
:
5057 case ATA_PROT_ATAPI_NODATA
:
5058 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
5059 ata_qc_set_polling(qc
);
5061 ata_tf_to_host(ap
, &qc
->tf
);
5063 ap
->hsm_task_state
= HSM_ST_FIRST
;
5065 /* send cdb by polling if no cdb interrupt */
5066 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
5067 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
5068 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5071 case ATA_PROT_ATAPI_DMA
:
5072 WARN_ON(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
5074 ap
->ops
->tf_load(ap
, &qc
->tf
); /* load tf registers */
5075 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
5076 ap
->hsm_task_state
= HSM_ST_FIRST
;
5078 /* send cdb by polling if no cdb interrupt */
5079 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5080 ata_port_queue_task(ap
, ata_pio_task
, qc
, 0);
5085 return AC_ERR_SYSTEM
;
5092 * ata_host_intr - Handle host interrupt for given (port, task)
5093 * @ap: Port on which interrupt arrived (possibly...)
5094 * @qc: Taskfile currently active in engine
5096 * Handle host interrupt for given queued command. Currently,
5097 * only DMA interrupts are handled. All other commands are
5098 * handled via polling with interrupts disabled (nIEN bit).
5101 * spin_lock_irqsave(host lock)
5104 * One if interrupt was handled, zero if not (shared irq).
5107 inline unsigned int ata_host_intr (struct ata_port
*ap
,
5108 struct ata_queued_cmd
*qc
)
5110 struct ata_eh_info
*ehi
= &ap
->eh_info
;
5111 u8 status
, host_stat
= 0;
5113 VPRINTK("ata%u: protocol %d task_state %d\n",
5114 ap
->id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
5116 /* Check whether we are expecting interrupt in this state */
5117 switch (ap
->hsm_task_state
) {
5119 /* Some pre-ATAPI-4 devices assert INTRQ
5120 * at this state when ready to receive CDB.
5123 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5124 * The flag was turned on only for atapi devices.
5125 * No need to check is_atapi_taskfile(&qc->tf) again.
5127 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
5131 if (qc
->tf
.protocol
== ATA_PROT_DMA
||
5132 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
) {
5133 /* check status of DMA engine */
5134 host_stat
= ap
->ops
->bmdma_status(ap
);
5135 VPRINTK("ata%u: host_stat 0x%X\n", ap
->id
, host_stat
);
5137 /* if it's not our irq... */
5138 if (!(host_stat
& ATA_DMA_INTR
))
5141 /* before we do anything else, clear DMA-Start bit */
5142 ap
->ops
->bmdma_stop(qc
);
5144 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
5145 /* error when transfering data to/from memory */
5146 qc
->err_mask
|= AC_ERR_HOST_BUS
;
5147 ap
->hsm_task_state
= HSM_ST_ERR
;
5157 /* check altstatus */
5158 status
= ata_altstatus(ap
);
5159 if (status
& ATA_BUSY
)
5162 /* check main status, clearing INTRQ */
5163 status
= ata_chk_status(ap
);
5164 if (unlikely(status
& ATA_BUSY
))
5167 /* ack bmdma irq events */
5168 ap
->ops
->irq_clear(ap
);
5170 ata_hsm_move(ap
, qc
, status
, 0);
5172 if (unlikely(qc
->err_mask
) && (qc
->tf
.protocol
== ATA_PROT_DMA
||
5173 qc
->tf
.protocol
== ATA_PROT_ATAPI_DMA
))
5174 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
5176 return 1; /* irq handled */
5179 ap
->stats
.idle_irq
++;
5182 if ((ap
->stats
.idle_irq
% 1000) == 0) {
5183 ata_irq_ack(ap
, 0); /* debug trap */
5184 ata_port_printk(ap
, KERN_WARNING
, "irq trap\n");
5188 return 0; /* irq not handled */
5192 * ata_interrupt - Default ATA host interrupt handler
5193 * @irq: irq line (unused)
5194 * @dev_instance: pointer to our ata_host information structure
5196 * Default interrupt handler for PCI IDE devices. Calls
5197 * ata_host_intr() for each port that is not disabled.
5200 * Obtains host lock during operation.
5203 * IRQ_NONE or IRQ_HANDLED.
5206 irqreturn_t
ata_interrupt (int irq
, void *dev_instance
)
5208 struct ata_host
*host
= dev_instance
;
5210 unsigned int handled
= 0;
5211 unsigned long flags
;
5213 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5214 spin_lock_irqsave(&host
->lock
, flags
);
5216 for (i
= 0; i
< host
->n_ports
; i
++) {
5217 struct ata_port
*ap
;
5219 ap
= host
->ports
[i
];
5221 !(ap
->flags
& ATA_FLAG_DISABLED
)) {
5222 struct ata_queued_cmd
*qc
;
5224 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
5225 if (qc
&& (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) &&
5226 (qc
->flags
& ATA_QCFLAG_ACTIVE
))
5227 handled
|= ata_host_intr(ap
, qc
);
5231 spin_unlock_irqrestore(&host
->lock
, flags
);
5233 return IRQ_RETVAL(handled
);
5237 * sata_scr_valid - test whether SCRs are accessible
5238 * @ap: ATA port to test SCR accessibility for
5240 * Test whether SCRs are accessible for @ap.
5246 * 1 if SCRs are accessible, 0 otherwise.
5248 int sata_scr_valid(struct ata_port
*ap
)
5250 return ap
->cbl
== ATA_CBL_SATA
&& ap
->ops
->scr_read
;
5254 * sata_scr_read - read SCR register of the specified port
5255 * @ap: ATA port to read SCR for
5257 * @val: Place to store read value
5259 * Read SCR register @reg of @ap into *@val. This function is
5260 * guaranteed to succeed if the cable type of the port is SATA
5261 * and the port implements ->scr_read.
5267 * 0 on success, negative errno on failure.
5269 int sata_scr_read(struct ata_port
*ap
, int reg
, u32
*val
)
5271 if (sata_scr_valid(ap
)) {
5272 *val
= ap
->ops
->scr_read(ap
, reg
);
5279 * sata_scr_write - write SCR register of the specified port
5280 * @ap: ATA port to write SCR for
5281 * @reg: SCR to write
5282 * @val: value to write
5284 * Write @val to SCR register @reg of @ap. This function is
5285 * guaranteed to succeed if the cable type of the port is SATA
5286 * and the port implements ->scr_read.
5292 * 0 on success, negative errno on failure.
5294 int sata_scr_write(struct ata_port
*ap
, int reg
, u32 val
)
5296 if (sata_scr_valid(ap
)) {
5297 ap
->ops
->scr_write(ap
, reg
, val
);
5304 * sata_scr_write_flush - write SCR register of the specified port and flush
5305 * @ap: ATA port to write SCR for
5306 * @reg: SCR to write
5307 * @val: value to write
5309 * This function is identical to sata_scr_write() except that this
5310 * function performs flush after writing to the register.
5316 * 0 on success, negative errno on failure.
5318 int sata_scr_write_flush(struct ata_port
*ap
, int reg
, u32 val
)
5320 if (sata_scr_valid(ap
)) {
5321 ap
->ops
->scr_write(ap
, reg
, val
);
5322 ap
->ops
->scr_read(ap
, reg
);
5329 * ata_port_online - test whether the given port is online
5330 * @ap: ATA port to test
5332 * Test whether @ap is online. Note that this function returns 0
5333 * if online status of @ap cannot be obtained, so
5334 * ata_port_online(ap) != !ata_port_offline(ap).
5340 * 1 if the port online status is available and online.
5342 int ata_port_online(struct ata_port
*ap
)
5346 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) == 0x3)
5352 * ata_port_offline - test whether the given port is offline
5353 * @ap: ATA port to test
5355 * Test whether @ap is offline. Note that this function returns
5356 * 0 if offline status of @ap cannot be obtained, so
5357 * ata_port_online(ap) != !ata_port_offline(ap).
5363 * 1 if the port offline status is available and offline.
5365 int ata_port_offline(struct ata_port
*ap
)
5369 if (!sata_scr_read(ap
, SCR_STATUS
, &sstatus
) && (sstatus
& 0xf) != 0x3)
5374 int ata_flush_cache(struct ata_device
*dev
)
5376 unsigned int err_mask
;
5379 if (!ata_try_flush_cache(dev
))
5382 if (dev
->flags
& ATA_DFLAG_FLUSH_EXT
)
5383 cmd
= ATA_CMD_FLUSH_EXT
;
5385 cmd
= ATA_CMD_FLUSH
;
5387 err_mask
= ata_do_simple_cmd(dev
, cmd
);
5389 ata_dev_printk(dev
, KERN_ERR
, "failed to flush cache\n");
5396 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5397 unsigned int action
, unsigned int ehi_flags
,
5400 unsigned long flags
;
5403 for (i
= 0; i
< host
->n_ports
; i
++) {
5404 struct ata_port
*ap
= host
->ports
[i
];
5406 /* Previous resume operation might still be in
5407 * progress. Wait for PM_PENDING to clear.
5409 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5410 ata_port_wait_eh(ap
);
5411 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5414 /* request PM ops to EH */
5415 spin_lock_irqsave(ap
->lock
, flags
);
5420 ap
->pm_result
= &rc
;
5423 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5424 ap
->eh_info
.action
|= action
;
5425 ap
->eh_info
.flags
|= ehi_flags
;
5427 ata_port_schedule_eh(ap
);
5429 spin_unlock_irqrestore(ap
->lock
, flags
);
5431 /* wait and check result */
5433 ata_port_wait_eh(ap
);
5434 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5444 * ata_host_suspend - suspend host
5445 * @host: host to suspend
5448 * Suspend @host. Actual operation is performed by EH. This
5449 * function requests EH to perform PM operations and waits for EH
5453 * Kernel thread context (may sleep).
5456 * 0 on success, -errno on failure.
5458 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5462 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5466 /* EH is quiescent now. Fail if we have any ready device.
5467 * This happens if hotplug occurs between completion of device
5468 * suspension and here.
5470 for (i
= 0; i
< host
->n_ports
; i
++) {
5471 struct ata_port
*ap
= host
->ports
[i
];
5473 for (j
= 0; j
< ATA_MAX_DEVICES
; j
++) {
5474 struct ata_device
*dev
= &ap
->device
[j
];
5476 if (ata_dev_ready(dev
)) {
5477 ata_port_printk(ap
, KERN_WARNING
,
5478 "suspend failed, device %d "
5479 "still active\n", dev
->devno
);
5486 host
->dev
->power
.power_state
= mesg
;
5490 ata_host_resume(host
);
5495 * ata_host_resume - resume host
5496 * @host: host to resume
5498 * Resume @host. Actual operation is performed by EH. This
5499 * function requests EH to perform PM operations and returns.
5500 * Note that all resume operations are performed parallely.
5503 * Kernel thread context (may sleep).
5505 void ata_host_resume(struct ata_host
*host
)
5507 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_SOFTRESET
,
5508 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5509 host
->dev
->power
.power_state
= PMSG_ON
;
5513 * ata_port_start - Set port up for dma.
5514 * @ap: Port to initialize
5516 * Called just after data structures for each port are
5517 * initialized. Allocates space for PRD table.
5519 * May be used as the port_start() entry in ata_port_operations.
5522 * Inherited from caller.
5525 int ata_port_start (struct ata_port
*ap
)
5527 struct device
*dev
= ap
->dev
;
5530 ap
->prd
= dma_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
, GFP_KERNEL
);
5534 rc
= ata_pad_alloc(ap
, dev
);
5536 dma_free_coherent(dev
, ATA_PRD_TBL_SZ
, ap
->prd
, ap
->prd_dma
);
5540 DPRINTK("prd alloc, virt %p, dma %llx\n", ap
->prd
, (unsigned long long) ap
->prd_dma
);
5547 * ata_port_stop - Undo ata_port_start()
5548 * @ap: Port to shut down
5550 * Frees the PRD table.
5552 * May be used as the port_stop() entry in ata_port_operations.
5555 * Inherited from caller.
5558 void ata_port_stop (struct ata_port
*ap
)
5560 struct device
*dev
= ap
->dev
;
5562 dma_free_coherent(dev
, ATA_PRD_TBL_SZ
, ap
->prd
, ap
->prd_dma
);
5563 ata_pad_free(ap
, dev
);
5566 void ata_host_stop (struct ata_host
*host
)
5568 if (host
->mmio_base
)
5569 iounmap(host
->mmio_base
);
5573 * ata_dev_init - Initialize an ata_device structure
5574 * @dev: Device structure to initialize
5576 * Initialize @dev in preparation for probing.
5579 * Inherited from caller.
5581 void ata_dev_init(struct ata_device
*dev
)
5583 struct ata_port
*ap
= dev
->ap
;
5584 unsigned long flags
;
5586 /* SATA spd limit is bound to the first device */
5587 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
5589 /* High bits of dev->flags are used to record warm plug
5590 * requests which occur asynchronously. Synchronize using
5593 spin_lock_irqsave(ap
->lock
, flags
);
5594 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5595 spin_unlock_irqrestore(ap
->lock
, flags
);
5597 memset((void *)dev
+ ATA_DEVICE_CLEAR_OFFSET
, 0,
5598 sizeof(*dev
) - ATA_DEVICE_CLEAR_OFFSET
);
5599 dev
->pio_mask
= UINT_MAX
;
5600 dev
->mwdma_mask
= UINT_MAX
;
5601 dev
->udma_mask
= UINT_MAX
;
5605 * ata_port_init - Initialize an ata_port structure
5606 * @ap: Structure to initialize
5607 * @host: Collection of hosts to which @ap belongs
5608 * @ent: Probe information provided by low-level driver
5609 * @port_no: Port number associated with this ata_port
5611 * Initialize a new ata_port structure.
5614 * Inherited from caller.
5616 void ata_port_init(struct ata_port
*ap
, struct ata_host
*host
,
5617 const struct ata_probe_ent
*ent
, unsigned int port_no
)
5621 ap
->lock
= &host
->lock
;
5622 ap
->flags
= ATA_FLAG_DISABLED
;
5623 ap
->id
= ata_unique_id
++;
5624 ap
->ctl
= ATA_DEVCTL_OBS
;
5627 ap
->port_no
= port_no
;
5628 if (port_no
== 1 && ent
->pinfo2
) {
5629 ap
->pio_mask
= ent
->pinfo2
->pio_mask
;
5630 ap
->mwdma_mask
= ent
->pinfo2
->mwdma_mask
;
5631 ap
->udma_mask
= ent
->pinfo2
->udma_mask
;
5632 ap
->flags
|= ent
->pinfo2
->flags
;
5633 ap
->ops
= ent
->pinfo2
->port_ops
;
5635 ap
->pio_mask
= ent
->pio_mask
;
5636 ap
->mwdma_mask
= ent
->mwdma_mask
;
5637 ap
->udma_mask
= ent
->udma_mask
;
5638 ap
->flags
|= ent
->port_flags
;
5639 ap
->ops
= ent
->port_ops
;
5641 ap
->hw_sata_spd_limit
= UINT_MAX
;
5642 ap
->active_tag
= ATA_TAG_POISON
;
5643 ap
->last_ctl
= 0xFF;
5645 #if defined(ATA_VERBOSE_DEBUG)
5646 /* turn on all debugging levels */
5647 ap
->msg_enable
= 0x00FF;
5648 #elif defined(ATA_DEBUG)
5649 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5651 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5654 INIT_DELAYED_WORK(&ap
->port_task
, NULL
);
5655 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5656 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5657 INIT_LIST_HEAD(&ap
->eh_done_q
);
5658 init_waitqueue_head(&ap
->eh_wait_q
);
5660 /* set cable type */
5661 ap
->cbl
= ATA_CBL_NONE
;
5662 if (ap
->flags
& ATA_FLAG_SATA
)
5663 ap
->cbl
= ATA_CBL_SATA
;
5665 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5666 struct ata_device
*dev
= &ap
->device
[i
];
5673 ap
->stats
.unhandled_irq
= 1;
5674 ap
->stats
.idle_irq
= 1;
5677 memcpy(&ap
->ioaddr
, &ent
->port
[port_no
], sizeof(struct ata_ioports
));
5681 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5682 * @ap: ATA port to initialize SCSI host for
5683 * @shost: SCSI host associated with @ap
5685 * Initialize SCSI host @shost associated with ATA port @ap.
5688 * Inherited from caller.
5690 static void ata_port_init_shost(struct ata_port
*ap
, struct Scsi_Host
*shost
)
5692 ap
->scsi_host
= shost
;
5694 shost
->unique_id
= ap
->id
;
5697 shost
->max_channel
= 1;
5698 shost
->max_cmd_len
= 12;
5702 * ata_port_add - Attach low-level ATA driver to system
5703 * @ent: Information provided by low-level driver
5704 * @host: Collections of ports to which we add
5705 * @port_no: Port number associated with this host
5707 * Attach low-level ATA driver to system.
5710 * PCI/etc. bus probe sem.
5713 * New ata_port on success, for NULL on error.
5715 static struct ata_port
* ata_port_add(const struct ata_probe_ent
*ent
,
5716 struct ata_host
*host
,
5717 unsigned int port_no
)
5719 struct Scsi_Host
*shost
;
5720 struct ata_port
*ap
;
5724 if (!ent
->port_ops
->error_handler
&&
5725 !(ent
->port_flags
& (ATA_FLAG_SATA_RESET
| ATA_FLAG_SRST
))) {
5726 printk(KERN_ERR
"ata%u: no reset mechanism available\n",
5731 shost
= scsi_host_alloc(ent
->sht
, sizeof(struct ata_port
));
5735 shost
->transportt
= &ata_scsi_transport_template
;
5737 ap
= ata_shost_to_port(shost
);
5739 ata_port_init(ap
, host
, ent
, port_no
);
5740 ata_port_init_shost(ap
, shost
);
5746 * ata_sas_host_init - Initialize a host struct
5747 * @host: host to initialize
5748 * @dev: device host is attached to
5749 * @flags: host flags
5753 * PCI/etc. bus probe sem.
5757 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
5758 unsigned long flags
, const struct ata_port_operations
*ops
)
5760 spin_lock_init(&host
->lock
);
5762 host
->flags
= flags
;
5767 * ata_device_add - Register hardware device with ATA and SCSI layers
5768 * @ent: Probe information describing hardware device to be registered
5770 * This function processes the information provided in the probe
5771 * information struct @ent, allocates the necessary ATA and SCSI
5772 * host information structures, initializes them, and registers
5773 * everything with requisite kernel subsystems.
5775 * This function requests irqs, probes the ATA bus, and probes
5779 * PCI/etc. bus probe sem.
5782 * Number of ports registered. Zero on error (no ports registered).
5784 int ata_device_add(const struct ata_probe_ent
*ent
)
5787 struct device
*dev
= ent
->dev
;
5788 struct ata_host
*host
;
5793 if (ent
->irq
== 0) {
5794 dev_printk(KERN_ERR
, dev
, "is not available: No interrupt assigned.\n");
5797 /* alloc a container for our list of ATA ports (buses) */
5798 host
= kzalloc(sizeof(struct ata_host
) +
5799 (ent
->n_ports
* sizeof(void *)), GFP_KERNEL
);
5803 ata_host_init(host
, dev
, ent
->_host_flags
, ent
->port_ops
);
5804 host
->n_ports
= ent
->n_ports
;
5805 host
->irq
= ent
->irq
;
5806 host
->irq2
= ent
->irq2
;
5807 host
->mmio_base
= ent
->mmio_base
;
5808 host
->private_data
= ent
->private_data
;
5810 /* register each port bound to this device */
5811 for (i
= 0; i
< host
->n_ports
; i
++) {
5812 struct ata_port
*ap
;
5813 unsigned long xfer_mode_mask
;
5814 int irq_line
= ent
->irq
;
5816 ap
= ata_port_add(ent
, host
, i
);
5817 host
->ports
[i
] = ap
;
5822 if (ent
->dummy_port_mask
& (1 << i
)) {
5823 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
5824 ap
->ops
= &ata_dummy_port_ops
;
5829 rc
= ap
->ops
->port_start(ap
);
5831 host
->ports
[i
] = NULL
;
5832 scsi_host_put(ap
->scsi_host
);
5836 /* Report the secondary IRQ for second channel legacy */
5837 if (i
== 1 && ent
->irq2
)
5838 irq_line
= ent
->irq2
;
5840 xfer_mode_mask
=(ap
->udma_mask
<< ATA_SHIFT_UDMA
) |
5841 (ap
->mwdma_mask
<< ATA_SHIFT_MWDMA
) |
5842 (ap
->pio_mask
<< ATA_SHIFT_PIO
);
5844 /* print per-port info to dmesg */
5845 ata_port_printk(ap
, KERN_INFO
, "%cATA max %s cmd 0x%lX "
5846 "ctl 0x%lX bmdma 0x%lX irq %d\n",
5847 ap
->flags
& ATA_FLAG_SATA
? 'S' : 'P',
5848 ata_mode_string(xfer_mode_mask
),
5849 ap
->ioaddr
.cmd_addr
,
5850 ap
->ioaddr
.ctl_addr
,
5851 ap
->ioaddr
.bmdma_addr
,
5854 /* freeze port before requesting IRQ */
5855 ata_eh_freeze_port(ap
);
5858 /* obtain irq, that may be shared between channels */
5859 rc
= request_irq(ent
->irq
, ent
->port_ops
->irq_handler
, ent
->irq_flags
,
5862 dev_printk(KERN_ERR
, dev
, "irq %lu request failed: %d\n",
5867 /* do we have a second IRQ for the other channel, eg legacy mode */
5869 /* We will get weird core code crashes later if this is true
5871 BUG_ON(ent
->irq
== ent
->irq2
);
5873 rc
= request_irq(ent
->irq2
, ent
->port_ops
->irq_handler
, ent
->irq_flags
,
5876 dev_printk(KERN_ERR
, dev
, "irq %lu request failed: %d\n",
5878 goto err_out_free_irq
;
5882 /* perform each probe synchronously */
5883 DPRINTK("probe begin\n");
5884 for (i
= 0; i
< host
->n_ports
; i
++) {
5885 struct ata_port
*ap
= host
->ports
[i
];
5889 /* init sata_spd_limit to the current value */
5890 if (sata_scr_read(ap
, SCR_CONTROL
, &scontrol
) == 0) {
5891 int spd
= (scontrol
>> 4) & 0xf;
5892 ap
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5894 ap
->sata_spd_limit
= ap
->hw_sata_spd_limit
;
5896 rc
= scsi_add_host(ap
->scsi_host
, dev
);
5898 ata_port_printk(ap
, KERN_ERR
, "scsi_add_host failed\n");
5899 /* FIXME: do something useful here */
5900 /* FIXME: handle unconditional calls to
5901 * scsi_scan_host and ata_host_remove, below,
5906 if (ap
->ops
->error_handler
) {
5907 struct ata_eh_info
*ehi
= &ap
->eh_info
;
5908 unsigned long flags
;
5912 /* kick EH for boot probing */
5913 spin_lock_irqsave(ap
->lock
, flags
);
5915 ehi
->probe_mask
= (1 << ATA_MAX_DEVICES
) - 1;
5916 ehi
->action
|= ATA_EH_SOFTRESET
;
5917 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
5919 ap
->pflags
|= ATA_PFLAG_LOADING
;
5920 ata_port_schedule_eh(ap
);
5922 spin_unlock_irqrestore(ap
->lock
, flags
);
5924 /* wait for EH to finish */
5925 ata_port_wait_eh(ap
);
5927 DPRINTK("ata%u: bus probe begin\n", ap
->id
);
5928 rc
= ata_bus_probe(ap
);
5929 DPRINTK("ata%u: bus probe end\n", ap
->id
);
5932 /* FIXME: do something useful here?
5933 * Current libata behavior will
5934 * tear down everything when
5935 * the module is removed
5936 * or the h/w is unplugged.
5942 /* probes are done, now scan each port's disk(s) */
5943 DPRINTK("host probe begin\n");
5944 for (i
= 0; i
< host
->n_ports
; i
++) {
5945 struct ata_port
*ap
= host
->ports
[i
];
5947 ata_scsi_scan_host(ap
);
5950 dev_set_drvdata(dev
, host
);
5952 VPRINTK("EXIT, returning %u\n", ent
->n_ports
);
5953 return ent
->n_ports
; /* success */
5956 free_irq(ent
->irq
, host
);
5958 for (i
= 0; i
< host
->n_ports
; i
++) {
5959 struct ata_port
*ap
= host
->ports
[i
];
5961 ap
->ops
->port_stop(ap
);
5962 scsi_host_put(ap
->scsi_host
);
5967 VPRINTK("EXIT, returning 0\n");
5972 * ata_port_detach - Detach ATA port in prepration of device removal
5973 * @ap: ATA port to be detached
5975 * Detach all ATA devices and the associated SCSI devices of @ap;
5976 * then, remove the associated SCSI host. @ap is guaranteed to
5977 * be quiescent on return from this function.
5980 * Kernel thread context (may sleep).
5982 void ata_port_detach(struct ata_port
*ap
)
5984 unsigned long flags
;
5987 if (!ap
->ops
->error_handler
)
5990 /* tell EH we're leaving & flush EH */
5991 spin_lock_irqsave(ap
->lock
, flags
);
5992 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
5993 spin_unlock_irqrestore(ap
->lock
, flags
);
5995 ata_port_wait_eh(ap
);
5997 /* EH is now guaranteed to see UNLOADING, so no new device
5998 * will be attached. Disable all existing devices.
6000 spin_lock_irqsave(ap
->lock
, flags
);
6002 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++)
6003 ata_dev_disable(&ap
->device
[i
]);
6005 spin_unlock_irqrestore(ap
->lock
, flags
);
6007 /* Final freeze & EH. All in-flight commands are aborted. EH
6008 * will be skipped and retrials will be terminated with bad
6011 spin_lock_irqsave(ap
->lock
, flags
);
6012 ata_port_freeze(ap
); /* won't be thawed */
6013 spin_unlock_irqrestore(ap
->lock
, flags
);
6015 ata_port_wait_eh(ap
);
6017 /* Flush hotplug task. The sequence is similar to
6018 * ata_port_flush_task().
6020 flush_workqueue(ata_aux_wq
);
6021 cancel_delayed_work(&ap
->hotplug_task
);
6022 flush_workqueue(ata_aux_wq
);
6025 /* remove the associated SCSI host */
6026 scsi_remove_host(ap
->scsi_host
);
6030 * ata_host_remove - PCI layer callback for device removal
6031 * @host: ATA host set that was removed
6033 * Unregister all objects associated with this host set. Free those
6037 * Inherited from calling layer (may sleep).
6040 void ata_host_remove(struct ata_host
*host
)
6044 for (i
= 0; i
< host
->n_ports
; i
++)
6045 ata_port_detach(host
->ports
[i
]);
6047 free_irq(host
->irq
, host
);
6049 free_irq(host
->irq2
, host
);
6051 for (i
= 0; i
< host
->n_ports
; i
++) {
6052 struct ata_port
*ap
= host
->ports
[i
];
6054 ata_scsi_release(ap
->scsi_host
);
6056 if ((ap
->flags
& ATA_FLAG_NO_LEGACY
) == 0) {
6057 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
6059 /* FIXME: Add -ac IDE pci mods to remove these special cases */
6060 if (ioaddr
->cmd_addr
== ATA_PRIMARY_CMD
)
6061 release_region(ATA_PRIMARY_CMD
, 8);
6062 else if (ioaddr
->cmd_addr
== ATA_SECONDARY_CMD
)
6063 release_region(ATA_SECONDARY_CMD
, 8);
6066 scsi_host_put(ap
->scsi_host
);
6069 if (host
->ops
->host_stop
)
6070 host
->ops
->host_stop(host
);
6076 * ata_scsi_release - SCSI layer callback hook for host unload
6077 * @shost: libata host to be unloaded
6079 * Performs all duties necessary to shut down a libata port...
6080 * Kill port kthread, disable port, and release resources.
6083 * Inherited from SCSI layer.
6089 int ata_scsi_release(struct Scsi_Host
*shost
)
6091 struct ata_port
*ap
= ata_shost_to_port(shost
);
6095 ap
->ops
->port_disable(ap
);
6096 ap
->ops
->port_stop(ap
);
6102 struct ata_probe_ent
*
6103 ata_probe_ent_alloc(struct device
*dev
, const struct ata_port_info
*port
)
6105 struct ata_probe_ent
*probe_ent
;
6107 probe_ent
= kzalloc(sizeof(*probe_ent
), GFP_KERNEL
);
6109 printk(KERN_ERR DRV_NAME
"(%s): out of memory\n",
6110 kobject_name(&(dev
->kobj
)));
6114 INIT_LIST_HEAD(&probe_ent
->node
);
6115 probe_ent
->dev
= dev
;
6117 probe_ent
->sht
= port
->sht
;
6118 probe_ent
->port_flags
= port
->flags
;
6119 probe_ent
->pio_mask
= port
->pio_mask
;
6120 probe_ent
->mwdma_mask
= port
->mwdma_mask
;
6121 probe_ent
->udma_mask
= port
->udma_mask
;
6122 probe_ent
->port_ops
= port
->port_ops
;
6123 probe_ent
->private_data
= port
->private_data
;
6129 * ata_std_ports - initialize ioaddr with standard port offsets.
6130 * @ioaddr: IO address structure to be initialized
6132 * Utility function which initializes data_addr, error_addr,
6133 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6134 * device_addr, status_addr, and command_addr to standard offsets
6135 * relative to cmd_addr.
6137 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6140 void ata_std_ports(struct ata_ioports
*ioaddr
)
6142 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
6143 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
6144 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
6145 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
6146 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
6147 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
6148 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
6149 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
6150 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
6151 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
6157 void ata_pci_host_stop (struct ata_host
*host
)
6159 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
6161 pci_iounmap(pdev
, host
->mmio_base
);
6165 * ata_pci_remove_one - PCI layer callback for device removal
6166 * @pdev: PCI device that was removed
6168 * PCI layer indicates to libata via this hook that
6169 * hot-unplug or module unload event has occurred.
6170 * Handle this by unregistering all objects associated
6171 * with this PCI device. Free those objects. Then finally
6172 * release PCI resources and disable device.
6175 * Inherited from PCI layer (may sleep).
6178 void ata_pci_remove_one (struct pci_dev
*pdev
)
6180 struct device
*dev
= pci_dev_to_dev(pdev
);
6181 struct ata_host
*host
= dev_get_drvdata(dev
);
6183 ata_host_remove(host
);
6185 pci_release_regions(pdev
);
6186 pci_disable_device(pdev
);
6187 dev_set_drvdata(dev
, NULL
);
6190 /* move to PCI subsystem */
6191 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6193 unsigned long tmp
= 0;
6195 switch (bits
->width
) {
6198 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6204 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6210 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6221 return (tmp
== bits
->val
) ? 1 : 0;
6224 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6226 pci_save_state(pdev
);
6228 if (mesg
.event
== PM_EVENT_SUSPEND
) {
6229 pci_disable_device(pdev
);
6230 pci_set_power_state(pdev
, PCI_D3hot
);
6234 void ata_pci_device_do_resume(struct pci_dev
*pdev
)
6236 pci_set_power_state(pdev
, PCI_D0
);
6237 pci_restore_state(pdev
);
6238 pci_enable_device(pdev
);
6239 pci_set_master(pdev
);
6242 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6244 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6247 rc
= ata_host_suspend(host
, mesg
);
6251 ata_pci_device_do_suspend(pdev
, mesg
);
6256 int ata_pci_device_resume(struct pci_dev
*pdev
)
6258 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6260 ata_pci_device_do_resume(pdev
);
6261 ata_host_resume(host
);
6264 #endif /* CONFIG_PCI */
6267 static int __init
ata_init(void)
6269 ata_probe_timeout
*= HZ
;
6270 ata_wq
= create_workqueue("ata");
6274 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6276 destroy_workqueue(ata_wq
);
6280 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6284 static void __exit
ata_exit(void)
6286 destroy_workqueue(ata_wq
);
6287 destroy_workqueue(ata_aux_wq
);
6290 subsys_initcall(ata_init
);
6291 module_exit(ata_exit
);
6293 static unsigned long ratelimit_time
;
6294 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6296 int ata_ratelimit(void)
6299 unsigned long flags
;
6301 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6303 if (time_after(jiffies
, ratelimit_time
)) {
6305 ratelimit_time
= jiffies
+ (HZ
/5);
6309 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6315 * ata_wait_register - wait until register value changes
6316 * @reg: IO-mapped register
6317 * @mask: Mask to apply to read register value
6318 * @val: Wait condition
6319 * @interval_msec: polling interval in milliseconds
6320 * @timeout_msec: timeout in milliseconds
6322 * Waiting for some bits of register to change is a common
6323 * operation for ATA controllers. This function reads 32bit LE
6324 * IO-mapped register @reg and tests for the following condition.
6326 * (*@reg & mask) != val
6328 * If the condition is met, it returns; otherwise, the process is
6329 * repeated after @interval_msec until timeout.
6332 * Kernel thread context (may sleep)
6335 * The final register value.
6337 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6338 unsigned long interval_msec
,
6339 unsigned long timeout_msec
)
6341 unsigned long timeout
;
6344 tmp
= ioread32(reg
);
6346 /* Calculate timeout _after_ the first read to make sure
6347 * preceding writes reach the controller before starting to
6348 * eat away the timeout.
6350 timeout
= jiffies
+ (timeout_msec
* HZ
) / 1000;
6352 while ((tmp
& mask
) == val
&& time_before(jiffies
, timeout
)) {
6353 msleep(interval_msec
);
6354 tmp
= ioread32(reg
);
6363 static void ata_dummy_noret(struct ata_port
*ap
) { }
6364 static int ata_dummy_ret0(struct ata_port
*ap
) { return 0; }
6365 static void ata_dummy_qc_noret(struct ata_queued_cmd
*qc
) { }
6367 static u8
ata_dummy_check_status(struct ata_port
*ap
)
6372 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6374 return AC_ERR_SYSTEM
;
6377 const struct ata_port_operations ata_dummy_port_ops
= {
6378 .port_disable
= ata_port_disable
,
6379 .check_status
= ata_dummy_check_status
,
6380 .check_altstatus
= ata_dummy_check_status
,
6381 .dev_select
= ata_noop_dev_select
,
6382 .qc_prep
= ata_noop_qc_prep
,
6383 .qc_issue
= ata_dummy_qc_issue
,
6384 .freeze
= ata_dummy_noret
,
6385 .thaw
= ata_dummy_noret
,
6386 .error_handler
= ata_dummy_noret
,
6387 .post_internal_cmd
= ata_dummy_qc_noret
,
6388 .irq_clear
= ata_dummy_noret
,
6389 .port_start
= ata_dummy_ret0
,
6390 .port_stop
= ata_dummy_noret
,
6394 * libata is essentially a library of internal helper functions for
6395 * low-level ATA host controller drivers. As such, the API/ABI is
6396 * likely to change as new drivers are added and updated.
6397 * Do not depend on ABI/API stability.
6400 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6401 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6402 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6403 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6404 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6405 EXPORT_SYMBOL_GPL(ata_std_ports
);
6406 EXPORT_SYMBOL_GPL(ata_host_init
);
6407 EXPORT_SYMBOL_GPL(ata_device_add
);
6408 EXPORT_SYMBOL_GPL(ata_port_detach
);
6409 EXPORT_SYMBOL_GPL(ata_host_remove
);
6410 EXPORT_SYMBOL_GPL(ata_sg_init
);
6411 EXPORT_SYMBOL_GPL(ata_sg_init_one
);
6412 EXPORT_SYMBOL_GPL(ata_hsm_move
);
6413 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6414 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6415 EXPORT_SYMBOL_GPL(ata_qc_issue_prot
);
6416 EXPORT_SYMBOL_GPL(ata_tf_load
);
6417 EXPORT_SYMBOL_GPL(ata_tf_read
);
6418 EXPORT_SYMBOL_GPL(ata_noop_dev_select
);
6419 EXPORT_SYMBOL_GPL(ata_std_dev_select
);
6420 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6421 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6422 EXPORT_SYMBOL_GPL(ata_check_status
);
6423 EXPORT_SYMBOL_GPL(ata_altstatus
);
6424 EXPORT_SYMBOL_GPL(ata_exec_command
);
6425 EXPORT_SYMBOL_GPL(ata_port_start
);
6426 EXPORT_SYMBOL_GPL(ata_port_stop
);
6427 EXPORT_SYMBOL_GPL(ata_host_stop
);
6428 EXPORT_SYMBOL_GPL(ata_interrupt
);
6429 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer
);
6430 EXPORT_SYMBOL_GPL(ata_pio_data_xfer
);
6431 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq
);
6432 EXPORT_SYMBOL_GPL(ata_qc_prep
);
6433 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6434 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
6435 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
6436 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
6437 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
6438 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
6439 EXPORT_SYMBOL_GPL(ata_bmdma_freeze
);
6440 EXPORT_SYMBOL_GPL(ata_bmdma_thaw
);
6441 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh
);
6442 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
6443 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
6444 EXPORT_SYMBOL_GPL(ata_port_probe
);
6445 EXPORT_SYMBOL_GPL(sata_set_spd
);
6446 EXPORT_SYMBOL_GPL(sata_phy_debounce
);
6447 EXPORT_SYMBOL_GPL(sata_phy_resume
);
6448 EXPORT_SYMBOL_GPL(sata_phy_reset
);
6449 EXPORT_SYMBOL_GPL(__sata_phy_reset
);
6450 EXPORT_SYMBOL_GPL(ata_bus_reset
);
6451 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6452 EXPORT_SYMBOL_GPL(ata_std_softreset
);
6453 EXPORT_SYMBOL_GPL(sata_port_hardreset
);
6454 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6455 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6456 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6457 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6458 EXPORT_SYMBOL_GPL(ata_port_disable
);
6459 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6460 EXPORT_SYMBOL_GPL(ata_wait_register
);
6461 EXPORT_SYMBOL_GPL(ata_busy_sleep
);
6462 EXPORT_SYMBOL_GPL(ata_port_queue_task
);
6463 EXPORT_SYMBOL_GPL(ata_scsi_ioctl
);
6464 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6465 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6466 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6467 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6468 EXPORT_SYMBOL_GPL(ata_scsi_release
);
6469 EXPORT_SYMBOL_GPL(ata_host_intr
);
6470 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6471 EXPORT_SYMBOL_GPL(sata_scr_read
);
6472 EXPORT_SYMBOL_GPL(sata_scr_write
);
6473 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6474 EXPORT_SYMBOL_GPL(ata_port_online
);
6475 EXPORT_SYMBOL_GPL(ata_port_offline
);
6476 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6477 EXPORT_SYMBOL_GPL(ata_host_resume
);
6478 EXPORT_SYMBOL_GPL(ata_id_string
);
6479 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6480 EXPORT_SYMBOL_GPL(ata_device_blacklisted
);
6481 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6483 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6484 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6485 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6488 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6489 EXPORT_SYMBOL_GPL(ata_pci_host_stop
);
6490 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode
);
6491 EXPORT_SYMBOL_GPL(ata_pci_init_one
);
6492 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6493 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6494 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6495 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6496 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6497 EXPORT_SYMBOL_GPL(ata_pci_default_filter
);
6498 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex
);
6499 #endif /* CONFIG_PCI */
6501 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend
);
6502 EXPORT_SYMBOL_GPL(ata_scsi_device_resume
);
6504 EXPORT_SYMBOL_GPL(ata_eng_timeout
);
6505 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6506 EXPORT_SYMBOL_GPL(ata_port_abort
);
6507 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6508 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6509 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6510 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6511 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6512 EXPORT_SYMBOL_GPL(ata_do_eh
);