Update libata drive blacklist to the latest from 2.6.21
[linux/fpc-iii.git] / kernel / hrtimer.c
blob859640952b001c9120c142b322cb237b83fea95a
1 /*
2 * linux/kernel/hrtimer.c
4 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
7 * High-resolution kernel timers
9 * In contrast to the low-resolution timeout API implemented in
10 * kernel/timer.c, hrtimers provide finer resolution and accuracy
11 * depending on system configuration and capabilities.
13 * These timers are currently used for:
14 * - itimers
15 * - POSIX timers
16 * - nanosleep
17 * - precise in-kernel timing
19 * Started by: Thomas Gleixner and Ingo Molnar
21 * Credits:
22 * based on kernel/timer.c
24 * Help, testing, suggestions, bugfixes, improvements were
25 * provided by:
27 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
28 * et. al.
30 * For licencing details see kernel-base/COPYING
33 #include <linux/cpu.h>
34 #include <linux/module.h>
35 #include <linux/percpu.h>
36 #include <linux/hrtimer.h>
37 #include <linux/notifier.h>
38 #include <linux/syscalls.h>
39 #include <linux/interrupt.h>
41 #include <asm/uaccess.h>
43 /**
44 * ktime_get - get the monotonic time in ktime_t format
46 * returns the time in ktime_t format
48 static ktime_t ktime_get(void)
50 struct timespec now;
52 ktime_get_ts(&now);
54 return timespec_to_ktime(now);
57 /**
58 * ktime_get_real - get the real (wall-) time in ktime_t format
60 * returns the time in ktime_t format
62 static ktime_t ktime_get_real(void)
64 struct timespec now;
66 getnstimeofday(&now);
68 return timespec_to_ktime(now);
71 EXPORT_SYMBOL_GPL(ktime_get_real);
74 * The timer bases:
76 * Note: If we want to add new timer bases, we have to skip the two
77 * clock ids captured by the cpu-timers. We do this by holding empty
78 * entries rather than doing math adjustment of the clock ids.
79 * This ensures that we capture erroneous accesses to these clock ids
80 * rather than moving them into the range of valid clock id's.
83 #define MAX_HRTIMER_BASES 2
85 static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) =
88 .index = CLOCK_REALTIME,
89 .get_time = &ktime_get_real,
90 .resolution = KTIME_REALTIME_RES,
93 .index = CLOCK_MONOTONIC,
94 .get_time = &ktime_get,
95 .resolution = KTIME_MONOTONIC_RES,
99 /**
100 * ktime_get_ts - get the monotonic clock in timespec format
101 * @ts: pointer to timespec variable
103 * The function calculates the monotonic clock from the realtime
104 * clock and the wall_to_monotonic offset and stores the result
105 * in normalized timespec format in the variable pointed to by ts.
107 void ktime_get_ts(struct timespec *ts)
109 struct timespec tomono;
110 unsigned long seq;
112 do {
113 seq = read_seqbegin(&xtime_lock);
114 getnstimeofday(ts);
115 tomono = wall_to_monotonic;
117 } while (read_seqretry(&xtime_lock, seq));
119 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
120 ts->tv_nsec + tomono.tv_nsec);
122 EXPORT_SYMBOL_GPL(ktime_get_ts);
125 * Get the coarse grained time at the softirq based on xtime and
126 * wall_to_monotonic.
128 static void hrtimer_get_softirq_time(struct hrtimer_base *base)
130 ktime_t xtim, tomono;
131 unsigned long seq;
133 do {
134 seq = read_seqbegin(&xtime_lock);
135 xtim = timespec_to_ktime(xtime);
136 tomono = timespec_to_ktime(wall_to_monotonic);
138 } while (read_seqretry(&xtime_lock, seq));
140 base[CLOCK_REALTIME].softirq_time = xtim;
141 base[CLOCK_MONOTONIC].softirq_time = ktime_add(xtim, tomono);
145 * Functions and macros which are different for UP/SMP systems are kept in a
146 * single place
148 #ifdef CONFIG_SMP
150 #define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0)
153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
154 * means that all timers which are tied to this base via timer->base are
155 * locked, and the base itself is locked too.
157 * So __run_timers/migrate_timers can safely modify all timers which could
158 * be found on the lists/queues.
160 * When the timer's base is locked, and the timer removed from list, it is
161 * possible to set timer->base = NULL and drop the lock: the timer remains
162 * locked.
164 static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer,
165 unsigned long *flags)
167 struct hrtimer_base *base;
169 for (;;) {
170 base = timer->base;
171 if (likely(base != NULL)) {
172 spin_lock_irqsave(&base->lock, *flags);
173 if (likely(base == timer->base))
174 return base;
175 /* The timer has migrated to another CPU: */
176 spin_unlock_irqrestore(&base->lock, *flags);
178 cpu_relax();
183 * Switch the timer base to the current CPU when possible.
185 static inline struct hrtimer_base *
186 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
188 struct hrtimer_base *new_base;
190 new_base = &__get_cpu_var(hrtimer_bases)[base->index];
192 if (base != new_base) {
194 * We are trying to schedule the timer on the local CPU.
195 * However we can't change timer's base while it is running,
196 * so we keep it on the same CPU. No hassle vs. reprogramming
197 * the event source in the high resolution case. The softirq
198 * code will take care of this when the timer function has
199 * completed. There is no conflict as we hold the lock until
200 * the timer is enqueued.
202 if (unlikely(base->curr_timer == timer))
203 return base;
205 /* See the comment in lock_timer_base() */
206 timer->base = NULL;
207 spin_unlock(&base->lock);
208 spin_lock(&new_base->lock);
209 timer->base = new_base;
211 return new_base;
214 #else /* CONFIG_SMP */
216 #define set_curr_timer(b, t) do { } while (0)
218 static inline struct hrtimer_base *
219 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
221 struct hrtimer_base *base = timer->base;
223 spin_lock_irqsave(&base->lock, *flags);
225 return base;
228 #define switch_hrtimer_base(t, b) (b)
230 #endif /* !CONFIG_SMP */
233 * Functions for the union type storage format of ktime_t which are
234 * too large for inlining:
236 #if BITS_PER_LONG < 64
237 # ifndef CONFIG_KTIME_SCALAR
239 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
240 * @kt: addend
241 * @nsec: the scalar nsec value to add
243 * Returns the sum of kt and nsec in ktime_t format
245 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
247 ktime_t tmp;
249 if (likely(nsec < NSEC_PER_SEC)) {
250 tmp.tv64 = nsec;
251 } else {
252 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
254 tmp = ktime_set((long)nsec, rem);
257 return ktime_add(kt, tmp);
260 #else /* CONFIG_KTIME_SCALAR */
262 # endif /* !CONFIG_KTIME_SCALAR */
265 * Divide a ktime value by a nanosecond value
267 static unsigned long ktime_divns(const ktime_t kt, s64 div)
269 u64 dclc, inc, dns;
270 int sft = 0;
272 dclc = dns = ktime_to_ns(kt);
273 inc = div;
274 /* Make sure the divisor is less than 2^32: */
275 while (div >> 32) {
276 sft++;
277 div >>= 1;
279 dclc >>= sft;
280 do_div(dclc, (unsigned long) div);
282 return (unsigned long) dclc;
285 #else /* BITS_PER_LONG < 64 */
286 # define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div))
287 #endif /* BITS_PER_LONG >= 64 */
290 * Counterpart to lock_timer_base above:
292 static inline
293 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
295 spin_unlock_irqrestore(&timer->base->lock, *flags);
299 * hrtimer_forward - forward the timer expiry
300 * @timer: hrtimer to forward
301 * @now: forward past this time
302 * @interval: the interval to forward
304 * Forward the timer expiry so it will expire in the future.
305 * Returns the number of overruns.
307 unsigned long
308 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
310 unsigned long orun = 1;
311 ktime_t delta;
313 delta = ktime_sub(now, timer->expires);
315 if (delta.tv64 < 0)
316 return 0;
318 if (interval.tv64 < timer->base->resolution.tv64)
319 interval.tv64 = timer->base->resolution.tv64;
321 if (unlikely(delta.tv64 >= interval.tv64)) {
322 s64 incr = ktime_to_ns(interval);
324 orun = ktime_divns(delta, incr);
325 timer->expires = ktime_add_ns(timer->expires, incr * orun);
326 if (timer->expires.tv64 > now.tv64)
327 return orun;
329 * This (and the ktime_add() below) is the
330 * correction for exact:
332 orun++;
334 timer->expires = ktime_add(timer->expires, interval);
336 * Make sure, that the result did not wrap with a very large
337 * interval.
339 if (timer->expires.tv64 < 0)
340 timer->expires = ktime_set(KTIME_SEC_MAX, 0);
342 return orun;
346 * enqueue_hrtimer - internal function to (re)start a timer
348 * The timer is inserted in expiry order. Insertion into the
349 * red black tree is O(log(n)). Must hold the base lock.
351 static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
353 struct rb_node **link = &base->active.rb_node;
354 struct rb_node *parent = NULL;
355 struct hrtimer *entry;
358 * Find the right place in the rbtree:
360 while (*link) {
361 parent = *link;
362 entry = rb_entry(parent, struct hrtimer, node);
364 * We dont care about collisions. Nodes with
365 * the same expiry time stay together.
367 if (timer->expires.tv64 < entry->expires.tv64)
368 link = &(*link)->rb_left;
369 else
370 link = &(*link)->rb_right;
374 * Insert the timer to the rbtree and check whether it
375 * replaces the first pending timer
377 rb_link_node(&timer->node, parent, link);
378 rb_insert_color(&timer->node, &base->active);
380 if (!base->first || timer->expires.tv64 <
381 rb_entry(base->first, struct hrtimer, node)->expires.tv64)
382 base->first = &timer->node;
386 * __remove_hrtimer - internal function to remove a timer
388 * Caller must hold the base lock.
390 static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
393 * Remove the timer from the rbtree and replace the
394 * first entry pointer if necessary.
396 if (base->first == &timer->node)
397 base->first = rb_next(&timer->node);
398 rb_erase(&timer->node, &base->active);
399 rb_set_parent(&timer->node, &timer->node);
403 * remove hrtimer, called with base lock held
405 static inline int
406 remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
408 if (hrtimer_active(timer)) {
409 __remove_hrtimer(timer, base);
410 return 1;
412 return 0;
416 * hrtimer_start - (re)start an relative timer on the current CPU
417 * @timer: the timer to be added
418 * @tim: expiry time
419 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
421 * Returns:
422 * 0 on success
423 * 1 when the timer was active
426 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
428 struct hrtimer_base *base, *new_base;
429 unsigned long flags;
430 int ret;
432 base = lock_hrtimer_base(timer, &flags);
434 /* Remove an active timer from the queue: */
435 ret = remove_hrtimer(timer, base);
437 /* Switch the timer base, if necessary: */
438 new_base = switch_hrtimer_base(timer, base);
440 if (mode == HRTIMER_REL) {
441 tim = ktime_add(tim, new_base->get_time());
443 * CONFIG_TIME_LOW_RES is a temporary way for architectures
444 * to signal that they simply return xtime in
445 * do_gettimeoffset(). In this case we want to round up by
446 * resolution when starting a relative timer, to avoid short
447 * timeouts. This will go away with the GTOD framework.
449 #ifdef CONFIG_TIME_LOW_RES
450 tim = ktime_add(tim, base->resolution);
451 #endif
453 timer->expires = tim;
455 enqueue_hrtimer(timer, new_base);
457 unlock_hrtimer_base(timer, &flags);
459 return ret;
461 EXPORT_SYMBOL_GPL(hrtimer_start);
464 * hrtimer_try_to_cancel - try to deactivate a timer
465 * @timer: hrtimer to stop
467 * Returns:
468 * 0 when the timer was not active
469 * 1 when the timer was active
470 * -1 when the timer is currently excuting the callback function and
471 * cannot be stopped
473 int hrtimer_try_to_cancel(struct hrtimer *timer)
475 struct hrtimer_base *base;
476 unsigned long flags;
477 int ret = -1;
479 base = lock_hrtimer_base(timer, &flags);
481 if (base->curr_timer != timer)
482 ret = remove_hrtimer(timer, base);
484 unlock_hrtimer_base(timer, &flags);
486 return ret;
489 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
492 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
493 * @timer: the timer to be cancelled
495 * Returns:
496 * 0 when the timer was not active
497 * 1 when the timer was active
499 int hrtimer_cancel(struct hrtimer *timer)
501 for (;;) {
502 int ret = hrtimer_try_to_cancel(timer);
504 if (ret >= 0)
505 return ret;
506 cpu_relax();
509 EXPORT_SYMBOL_GPL(hrtimer_cancel);
512 * hrtimer_get_remaining - get remaining time for the timer
513 * @timer: the timer to read
515 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
517 struct hrtimer_base *base;
518 unsigned long flags;
519 ktime_t rem;
521 base = lock_hrtimer_base(timer, &flags);
522 rem = ktime_sub(timer->expires, timer->base->get_time());
523 unlock_hrtimer_base(timer, &flags);
525 return rem;
527 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
529 #ifdef CONFIG_NO_IDLE_HZ
531 * hrtimer_get_next_event - get the time until next expiry event
533 * Returns the delta to the next expiry event or KTIME_MAX if no timer
534 * is pending.
536 ktime_t hrtimer_get_next_event(void)
538 struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
539 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
540 unsigned long flags;
541 int i;
543 for (i = 0; i < MAX_HRTIMER_BASES; i++, base++) {
544 struct hrtimer *timer;
546 spin_lock_irqsave(&base->lock, flags);
547 if (!base->first) {
548 spin_unlock_irqrestore(&base->lock, flags);
549 continue;
551 timer = rb_entry(base->first, struct hrtimer, node);
552 delta.tv64 = timer->expires.tv64;
553 spin_unlock_irqrestore(&base->lock, flags);
554 delta = ktime_sub(delta, base->get_time());
555 if (delta.tv64 < mindelta.tv64)
556 mindelta.tv64 = delta.tv64;
558 if (mindelta.tv64 < 0)
559 mindelta.tv64 = 0;
560 return mindelta;
562 #endif
565 * hrtimer_init - initialize a timer to the given clock
566 * @timer: the timer to be initialized
567 * @clock_id: the clock to be used
568 * @mode: timer mode abs/rel
570 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
571 enum hrtimer_mode mode)
573 struct hrtimer_base *bases;
575 memset(timer, 0, sizeof(struct hrtimer));
577 bases = __raw_get_cpu_var(hrtimer_bases);
579 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_ABS)
580 clock_id = CLOCK_MONOTONIC;
582 timer->base = &bases[clock_id];
583 rb_set_parent(&timer->node, &timer->node);
585 EXPORT_SYMBOL_GPL(hrtimer_init);
588 * hrtimer_get_res - get the timer resolution for a clock
589 * @which_clock: which clock to query
590 * @tp: pointer to timespec variable to store the resolution
592 * Store the resolution of the clock selected by which_clock in the
593 * variable pointed to by tp.
595 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
597 struct hrtimer_base *bases;
599 bases = __raw_get_cpu_var(hrtimer_bases);
600 *tp = ktime_to_timespec(bases[which_clock].resolution);
602 return 0;
604 EXPORT_SYMBOL_GPL(hrtimer_get_res);
607 * Expire the per base hrtimer-queue:
609 static inline void run_hrtimer_queue(struct hrtimer_base *base)
611 struct rb_node *node;
613 if (!base->first)
614 return;
616 if (base->get_softirq_time)
617 base->softirq_time = base->get_softirq_time();
619 spin_lock_irq(&base->lock);
621 while ((node = base->first)) {
622 struct hrtimer *timer;
623 int (*fn)(struct hrtimer *);
624 int restart;
626 timer = rb_entry(node, struct hrtimer, node);
627 if (base->softirq_time.tv64 <= timer->expires.tv64)
628 break;
630 fn = timer->function;
631 set_curr_timer(base, timer);
632 __remove_hrtimer(timer, base);
633 spin_unlock_irq(&base->lock);
635 restart = fn(timer);
637 spin_lock_irq(&base->lock);
639 if (restart != HRTIMER_NORESTART) {
640 BUG_ON(hrtimer_active(timer));
641 enqueue_hrtimer(timer, base);
644 set_curr_timer(base, NULL);
645 spin_unlock_irq(&base->lock);
649 * Called from timer softirq every jiffy, expire hrtimers:
651 void hrtimer_run_queues(void)
653 struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
654 int i;
656 hrtimer_get_softirq_time(base);
658 for (i = 0; i < MAX_HRTIMER_BASES; i++)
659 run_hrtimer_queue(&base[i]);
663 * Sleep related functions:
665 static int hrtimer_wakeup(struct hrtimer *timer)
667 struct hrtimer_sleeper *t =
668 container_of(timer, struct hrtimer_sleeper, timer);
669 struct task_struct *task = t->task;
671 t->task = NULL;
672 if (task)
673 wake_up_process(task);
675 return HRTIMER_NORESTART;
678 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
680 sl->timer.function = hrtimer_wakeup;
681 sl->task = task;
684 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
686 hrtimer_init_sleeper(t, current);
688 do {
689 set_current_state(TASK_INTERRUPTIBLE);
690 hrtimer_start(&t->timer, t->timer.expires, mode);
692 schedule();
694 hrtimer_cancel(&t->timer);
695 mode = HRTIMER_ABS;
697 } while (t->task && !signal_pending(current));
699 return t->task == NULL;
702 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
704 struct hrtimer_sleeper t;
705 struct timespec __user *rmtp;
706 struct timespec tu;
707 ktime_t time;
709 restart->fn = do_no_restart_syscall;
711 hrtimer_init(&t.timer, restart->arg0, HRTIMER_ABS);
712 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
714 if (do_nanosleep(&t, HRTIMER_ABS))
715 return 0;
717 rmtp = (struct timespec __user *) restart->arg1;
718 if (rmtp) {
719 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
720 if (time.tv64 <= 0)
721 return 0;
722 tu = ktime_to_timespec(time);
723 if (copy_to_user(rmtp, &tu, sizeof(tu)))
724 return -EFAULT;
727 restart->fn = hrtimer_nanosleep_restart;
729 /* The other values in restart are already filled in */
730 return -ERESTART_RESTARTBLOCK;
733 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
734 const enum hrtimer_mode mode, const clockid_t clockid)
736 struct restart_block *restart;
737 struct hrtimer_sleeper t;
738 struct timespec tu;
739 ktime_t rem;
741 hrtimer_init(&t.timer, clockid, mode);
742 t.timer.expires = timespec_to_ktime(*rqtp);
743 if (do_nanosleep(&t, mode))
744 return 0;
746 /* Absolute timers do not update the rmtp value and restart: */
747 if (mode == HRTIMER_ABS)
748 return -ERESTARTNOHAND;
750 if (rmtp) {
751 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
752 if (rem.tv64 <= 0)
753 return 0;
754 tu = ktime_to_timespec(rem);
755 if (copy_to_user(rmtp, &tu, sizeof(tu)))
756 return -EFAULT;
759 restart = &current_thread_info()->restart_block;
760 restart->fn = hrtimer_nanosleep_restart;
761 restart->arg0 = (unsigned long) t.timer.base->index;
762 restart->arg1 = (unsigned long) rmtp;
763 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
764 restart->arg3 = t.timer.expires.tv64 >> 32;
766 return -ERESTART_RESTARTBLOCK;
769 asmlinkage long
770 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
772 struct timespec tu;
774 if (copy_from_user(&tu, rqtp, sizeof(tu)))
775 return -EFAULT;
777 if (!timespec_valid(&tu))
778 return -EINVAL;
780 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC);
784 * Functions related to boot-time initialization:
786 static void __devinit init_hrtimers_cpu(int cpu)
788 struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu);
789 int i;
791 for (i = 0; i < MAX_HRTIMER_BASES; i++, base++) {
792 spin_lock_init(&base->lock);
793 lockdep_set_class(&base->lock, &base->lock_key);
797 #ifdef CONFIG_HOTPLUG_CPU
799 static void migrate_hrtimer_list(struct hrtimer_base *old_base,
800 struct hrtimer_base *new_base)
802 struct hrtimer *timer;
803 struct rb_node *node;
805 while ((node = rb_first(&old_base->active))) {
806 timer = rb_entry(node, struct hrtimer, node);
807 __remove_hrtimer(timer, old_base);
808 timer->base = new_base;
809 enqueue_hrtimer(timer, new_base);
813 static void migrate_hrtimers(int cpu)
815 struct hrtimer_base *old_base, *new_base;
816 int i;
818 BUG_ON(cpu_online(cpu));
819 old_base = per_cpu(hrtimer_bases, cpu);
820 new_base = get_cpu_var(hrtimer_bases);
822 local_irq_disable();
824 for (i = 0; i < MAX_HRTIMER_BASES; i++) {
826 spin_lock(&new_base->lock);
827 spin_lock(&old_base->lock);
829 BUG_ON(old_base->curr_timer);
831 migrate_hrtimer_list(old_base, new_base);
833 spin_unlock(&old_base->lock);
834 spin_unlock(&new_base->lock);
835 old_base++;
836 new_base++;
839 local_irq_enable();
840 put_cpu_var(hrtimer_bases);
842 #endif /* CONFIG_HOTPLUG_CPU */
844 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
845 unsigned long action, void *hcpu)
847 long cpu = (long)hcpu;
849 switch (action) {
851 case CPU_UP_PREPARE:
852 init_hrtimers_cpu(cpu);
853 break;
855 #ifdef CONFIG_HOTPLUG_CPU
856 case CPU_DEAD:
857 migrate_hrtimers(cpu);
858 break;
859 #endif
861 default:
862 break;
865 return NOTIFY_OK;
868 static struct notifier_block __cpuinitdata hrtimers_nb = {
869 .notifier_call = hrtimer_cpu_notify,
872 void __init hrtimers_init(void)
874 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
875 (void *)(long)smp_processor_id());
876 register_cpu_notifier(&hrtimers_nb);