hostap: hide unused procfs helpers
[linux/fpc-iii.git] / lib / assoc_array.c
blobc6659cb370331fa8afed30ee366b9b2432b9c6f0
1 /* Generic associative array implementation.
3 * See Documentation/core-api/assoc_array.rst for information.
5 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
6 * Written by David Howells (dhowells@redhat.com)
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public Licence
10 * as published by the Free Software Foundation; either version
11 * 2 of the Licence, or (at your option) any later version.
13 //#define DEBUG
14 #include <linux/rcupdate.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/assoc_array_priv.h>
20 * Iterate over an associative array. The caller must hold the RCU read lock
21 * or better.
23 static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
24 const struct assoc_array_ptr *stop,
25 int (*iterator)(const void *leaf,
26 void *iterator_data),
27 void *iterator_data)
29 const struct assoc_array_shortcut *shortcut;
30 const struct assoc_array_node *node;
31 const struct assoc_array_ptr *cursor, *ptr, *parent;
32 unsigned long has_meta;
33 int slot, ret;
35 cursor = root;
37 begin_node:
38 if (assoc_array_ptr_is_shortcut(cursor)) {
39 /* Descend through a shortcut */
40 shortcut = assoc_array_ptr_to_shortcut(cursor);
41 cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */
44 node = assoc_array_ptr_to_node(cursor);
45 slot = 0;
47 /* We perform two passes of each node.
49 * The first pass does all the leaves in this node. This means we
50 * don't miss any leaves if the node is split up by insertion whilst
51 * we're iterating over the branches rooted here (we may, however, see
52 * some leaves twice).
54 has_meta = 0;
55 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
56 ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
57 has_meta |= (unsigned long)ptr;
58 if (ptr && assoc_array_ptr_is_leaf(ptr)) {
59 /* We need a barrier between the read of the pointer,
60 * which is supplied by the above READ_ONCE().
62 /* Invoke the callback */
63 ret = iterator(assoc_array_ptr_to_leaf(ptr),
64 iterator_data);
65 if (ret)
66 return ret;
70 /* The second pass attends to all the metadata pointers. If we follow
71 * one of these we may find that we don't come back here, but rather go
72 * back to a replacement node with the leaves in a different layout.
74 * We are guaranteed to make progress, however, as the slot number for
75 * a particular portion of the key space cannot change - and we
76 * continue at the back pointer + 1.
78 if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
79 goto finished_node;
80 slot = 0;
82 continue_node:
83 node = assoc_array_ptr_to_node(cursor);
84 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
85 ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
86 if (assoc_array_ptr_is_meta(ptr)) {
87 cursor = ptr;
88 goto begin_node;
92 finished_node:
93 /* Move up to the parent (may need to skip back over a shortcut) */
94 parent = READ_ONCE(node->back_pointer); /* Address dependency. */
95 slot = node->parent_slot;
96 if (parent == stop)
97 return 0;
99 if (assoc_array_ptr_is_shortcut(parent)) {
100 shortcut = assoc_array_ptr_to_shortcut(parent);
101 cursor = parent;
102 parent = READ_ONCE(shortcut->back_pointer); /* Address dependency. */
103 slot = shortcut->parent_slot;
104 if (parent == stop)
105 return 0;
108 /* Ascend to next slot in parent node */
109 cursor = parent;
110 slot++;
111 goto continue_node;
115 * assoc_array_iterate - Pass all objects in the array to a callback
116 * @array: The array to iterate over.
117 * @iterator: The callback function.
118 * @iterator_data: Private data for the callback function.
120 * Iterate over all the objects in an associative array. Each one will be
121 * presented to the iterator function.
123 * If the array is being modified concurrently with the iteration then it is
124 * possible that some objects in the array will be passed to the iterator
125 * callback more than once - though every object should be passed at least
126 * once. If this is undesirable then the caller must lock against modification
127 * for the duration of this function.
129 * The function will return 0 if no objects were in the array or else it will
130 * return the result of the last iterator function called. Iteration stops
131 * immediately if any call to the iteration function results in a non-zero
132 * return.
134 * The caller should hold the RCU read lock or better if concurrent
135 * modification is possible.
137 int assoc_array_iterate(const struct assoc_array *array,
138 int (*iterator)(const void *object,
139 void *iterator_data),
140 void *iterator_data)
142 struct assoc_array_ptr *root = READ_ONCE(array->root); /* Address dependency. */
144 if (!root)
145 return 0;
146 return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
149 enum assoc_array_walk_status {
150 assoc_array_walk_tree_empty,
151 assoc_array_walk_found_terminal_node,
152 assoc_array_walk_found_wrong_shortcut,
155 struct assoc_array_walk_result {
156 struct {
157 struct assoc_array_node *node; /* Node in which leaf might be found */
158 int level;
159 int slot;
160 } terminal_node;
161 struct {
162 struct assoc_array_shortcut *shortcut;
163 int level;
164 int sc_level;
165 unsigned long sc_segments;
166 unsigned long dissimilarity;
167 } wrong_shortcut;
171 * Navigate through the internal tree looking for the closest node to the key.
173 static enum assoc_array_walk_status
174 assoc_array_walk(const struct assoc_array *array,
175 const struct assoc_array_ops *ops,
176 const void *index_key,
177 struct assoc_array_walk_result *result)
179 struct assoc_array_shortcut *shortcut;
180 struct assoc_array_node *node;
181 struct assoc_array_ptr *cursor, *ptr;
182 unsigned long sc_segments, dissimilarity;
183 unsigned long segments;
184 int level, sc_level, next_sc_level;
185 int slot;
187 pr_devel("-->%s()\n", __func__);
189 cursor = READ_ONCE(array->root); /* Address dependency. */
190 if (!cursor)
191 return assoc_array_walk_tree_empty;
193 level = 0;
195 /* Use segments from the key for the new leaf to navigate through the
196 * internal tree, skipping through nodes and shortcuts that are on
197 * route to the destination. Eventually we'll come to a slot that is
198 * either empty or contains a leaf at which point we've found a node in
199 * which the leaf we're looking for might be found or into which it
200 * should be inserted.
202 jumped:
203 segments = ops->get_key_chunk(index_key, level);
204 pr_devel("segments[%d]: %lx\n", level, segments);
206 if (assoc_array_ptr_is_shortcut(cursor))
207 goto follow_shortcut;
209 consider_node:
210 node = assoc_array_ptr_to_node(cursor);
211 slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
212 slot &= ASSOC_ARRAY_FAN_MASK;
213 ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
215 pr_devel("consider slot %x [ix=%d type=%lu]\n",
216 slot, level, (unsigned long)ptr & 3);
218 if (!assoc_array_ptr_is_meta(ptr)) {
219 /* The node doesn't have a node/shortcut pointer in the slot
220 * corresponding to the index key that we have to follow.
222 result->terminal_node.node = node;
223 result->terminal_node.level = level;
224 result->terminal_node.slot = slot;
225 pr_devel("<--%s() = terminal_node\n", __func__);
226 return assoc_array_walk_found_terminal_node;
229 if (assoc_array_ptr_is_node(ptr)) {
230 /* There is a pointer to a node in the slot corresponding to
231 * this index key segment, so we need to follow it.
233 cursor = ptr;
234 level += ASSOC_ARRAY_LEVEL_STEP;
235 if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
236 goto consider_node;
237 goto jumped;
240 /* There is a shortcut in the slot corresponding to the index key
241 * segment. We follow the shortcut if its partial index key matches
242 * this leaf's. Otherwise we need to split the shortcut.
244 cursor = ptr;
245 follow_shortcut:
246 shortcut = assoc_array_ptr_to_shortcut(cursor);
247 pr_devel("shortcut to %d\n", shortcut->skip_to_level);
248 sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
249 BUG_ON(sc_level > shortcut->skip_to_level);
251 do {
252 /* Check the leaf against the shortcut's index key a word at a
253 * time, trimming the final word (the shortcut stores the index
254 * key completely from the root to the shortcut's target).
256 if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
257 segments = ops->get_key_chunk(index_key, sc_level);
259 sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
260 dissimilarity = segments ^ sc_segments;
262 if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
263 /* Trim segments that are beyond the shortcut */
264 int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
265 dissimilarity &= ~(ULONG_MAX << shift);
266 next_sc_level = shortcut->skip_to_level;
267 } else {
268 next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
269 next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
272 if (dissimilarity != 0) {
273 /* This shortcut points elsewhere */
274 result->wrong_shortcut.shortcut = shortcut;
275 result->wrong_shortcut.level = level;
276 result->wrong_shortcut.sc_level = sc_level;
277 result->wrong_shortcut.sc_segments = sc_segments;
278 result->wrong_shortcut.dissimilarity = dissimilarity;
279 return assoc_array_walk_found_wrong_shortcut;
282 sc_level = next_sc_level;
283 } while (sc_level < shortcut->skip_to_level);
285 /* The shortcut matches the leaf's index to this point. */
286 cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */
287 if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
288 level = sc_level;
289 goto jumped;
290 } else {
291 level = sc_level;
292 goto consider_node;
297 * assoc_array_find - Find an object by index key
298 * @array: The associative array to search.
299 * @ops: The operations to use.
300 * @index_key: The key to the object.
302 * Find an object in an associative array by walking through the internal tree
303 * to the node that should contain the object and then searching the leaves
304 * there. NULL is returned if the requested object was not found in the array.
306 * The caller must hold the RCU read lock or better.
308 void *assoc_array_find(const struct assoc_array *array,
309 const struct assoc_array_ops *ops,
310 const void *index_key)
312 struct assoc_array_walk_result result;
313 const struct assoc_array_node *node;
314 const struct assoc_array_ptr *ptr;
315 const void *leaf;
316 int slot;
318 if (assoc_array_walk(array, ops, index_key, &result) !=
319 assoc_array_walk_found_terminal_node)
320 return NULL;
322 node = result.terminal_node.node;
324 /* If the target key is available to us, it's has to be pointed to by
325 * the terminal node.
327 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
328 ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
329 if (ptr && assoc_array_ptr_is_leaf(ptr)) {
330 /* We need a barrier between the read of the pointer
331 * and dereferencing the pointer - but only if we are
332 * actually going to dereference it.
334 leaf = assoc_array_ptr_to_leaf(ptr);
335 if (ops->compare_object(leaf, index_key))
336 return (void *)leaf;
340 return NULL;
344 * Destructively iterate over an associative array. The caller must prevent
345 * other simultaneous accesses.
347 static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
348 const struct assoc_array_ops *ops)
350 struct assoc_array_shortcut *shortcut;
351 struct assoc_array_node *node;
352 struct assoc_array_ptr *cursor, *parent = NULL;
353 int slot = -1;
355 pr_devel("-->%s()\n", __func__);
357 cursor = root;
358 if (!cursor) {
359 pr_devel("empty\n");
360 return;
363 move_to_meta:
364 if (assoc_array_ptr_is_shortcut(cursor)) {
365 /* Descend through a shortcut */
366 pr_devel("[%d] shortcut\n", slot);
367 BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
368 shortcut = assoc_array_ptr_to_shortcut(cursor);
369 BUG_ON(shortcut->back_pointer != parent);
370 BUG_ON(slot != -1 && shortcut->parent_slot != slot);
371 parent = cursor;
372 cursor = shortcut->next_node;
373 slot = -1;
374 BUG_ON(!assoc_array_ptr_is_node(cursor));
377 pr_devel("[%d] node\n", slot);
378 node = assoc_array_ptr_to_node(cursor);
379 BUG_ON(node->back_pointer != parent);
380 BUG_ON(slot != -1 && node->parent_slot != slot);
381 slot = 0;
383 continue_node:
384 pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
385 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
386 struct assoc_array_ptr *ptr = node->slots[slot];
387 if (!ptr)
388 continue;
389 if (assoc_array_ptr_is_meta(ptr)) {
390 parent = cursor;
391 cursor = ptr;
392 goto move_to_meta;
395 if (ops) {
396 pr_devel("[%d] free leaf\n", slot);
397 ops->free_object(assoc_array_ptr_to_leaf(ptr));
401 parent = node->back_pointer;
402 slot = node->parent_slot;
403 pr_devel("free node\n");
404 kfree(node);
405 if (!parent)
406 return; /* Done */
408 /* Move back up to the parent (may need to free a shortcut on
409 * the way up) */
410 if (assoc_array_ptr_is_shortcut(parent)) {
411 shortcut = assoc_array_ptr_to_shortcut(parent);
412 BUG_ON(shortcut->next_node != cursor);
413 cursor = parent;
414 parent = shortcut->back_pointer;
415 slot = shortcut->parent_slot;
416 pr_devel("free shortcut\n");
417 kfree(shortcut);
418 if (!parent)
419 return;
421 BUG_ON(!assoc_array_ptr_is_node(parent));
424 /* Ascend to next slot in parent node */
425 pr_devel("ascend to %p[%d]\n", parent, slot);
426 cursor = parent;
427 node = assoc_array_ptr_to_node(cursor);
428 slot++;
429 goto continue_node;
433 * assoc_array_destroy - Destroy an associative array
434 * @array: The array to destroy.
435 * @ops: The operations to use.
437 * Discard all metadata and free all objects in an associative array. The
438 * array will be empty and ready to use again upon completion. This function
439 * cannot fail.
441 * The caller must prevent all other accesses whilst this takes place as no
442 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
443 * accesses to continue. On the other hand, no memory allocation is required.
445 void assoc_array_destroy(struct assoc_array *array,
446 const struct assoc_array_ops *ops)
448 assoc_array_destroy_subtree(array->root, ops);
449 array->root = NULL;
453 * Handle insertion into an empty tree.
455 static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
457 struct assoc_array_node *new_n0;
459 pr_devel("-->%s()\n", __func__);
461 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
462 if (!new_n0)
463 return false;
465 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
466 edit->leaf_p = &new_n0->slots[0];
467 edit->adjust_count_on = new_n0;
468 edit->set[0].ptr = &edit->array->root;
469 edit->set[0].to = assoc_array_node_to_ptr(new_n0);
471 pr_devel("<--%s() = ok [no root]\n", __func__);
472 return true;
476 * Handle insertion into a terminal node.
478 static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
479 const struct assoc_array_ops *ops,
480 const void *index_key,
481 struct assoc_array_walk_result *result)
483 struct assoc_array_shortcut *shortcut, *new_s0;
484 struct assoc_array_node *node, *new_n0, *new_n1, *side;
485 struct assoc_array_ptr *ptr;
486 unsigned long dissimilarity, base_seg, blank;
487 size_t keylen;
488 bool have_meta;
489 int level, diff;
490 int slot, next_slot, free_slot, i, j;
492 node = result->terminal_node.node;
493 level = result->terminal_node.level;
494 edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
496 pr_devel("-->%s()\n", __func__);
498 /* We arrived at a node which doesn't have an onward node or shortcut
499 * pointer that we have to follow. This means that (a) the leaf we
500 * want must go here (either by insertion or replacement) or (b) we
501 * need to split this node and insert in one of the fragments.
503 free_slot = -1;
505 /* Firstly, we have to check the leaves in this node to see if there's
506 * a matching one we should replace in place.
508 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
509 ptr = node->slots[i];
510 if (!ptr) {
511 free_slot = i;
512 continue;
514 if (assoc_array_ptr_is_leaf(ptr) &&
515 ops->compare_object(assoc_array_ptr_to_leaf(ptr),
516 index_key)) {
517 pr_devel("replace in slot %d\n", i);
518 edit->leaf_p = &node->slots[i];
519 edit->dead_leaf = node->slots[i];
520 pr_devel("<--%s() = ok [replace]\n", __func__);
521 return true;
525 /* If there is a free slot in this node then we can just insert the
526 * leaf here.
528 if (free_slot >= 0) {
529 pr_devel("insert in free slot %d\n", free_slot);
530 edit->leaf_p = &node->slots[free_slot];
531 edit->adjust_count_on = node;
532 pr_devel("<--%s() = ok [insert]\n", __func__);
533 return true;
536 /* The node has no spare slots - so we're either going to have to split
537 * it or insert another node before it.
539 * Whatever, we're going to need at least two new nodes - so allocate
540 * those now. We may also need a new shortcut, but we deal with that
541 * when we need it.
543 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
544 if (!new_n0)
545 return false;
546 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
547 new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
548 if (!new_n1)
549 return false;
550 edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
552 /* We need to find out how similar the leaves are. */
553 pr_devel("no spare slots\n");
554 have_meta = false;
555 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
556 ptr = node->slots[i];
557 if (assoc_array_ptr_is_meta(ptr)) {
558 edit->segment_cache[i] = 0xff;
559 have_meta = true;
560 continue;
562 base_seg = ops->get_object_key_chunk(
563 assoc_array_ptr_to_leaf(ptr), level);
564 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
565 edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
568 if (have_meta) {
569 pr_devel("have meta\n");
570 goto split_node;
573 /* The node contains only leaves */
574 dissimilarity = 0;
575 base_seg = edit->segment_cache[0];
576 for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
577 dissimilarity |= edit->segment_cache[i] ^ base_seg;
579 pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
581 if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
582 /* The old leaves all cluster in the same slot. We will need
583 * to insert a shortcut if the new node wants to cluster with them.
585 if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
586 goto all_leaves_cluster_together;
588 /* Otherwise all the old leaves cluster in the same slot, but
589 * the new leaf wants to go into a different slot - so we
590 * create a new node (n0) to hold the new leaf and a pointer to
591 * a new node (n1) holding all the old leaves.
593 * This can be done by falling through to the node splitting
594 * path.
596 pr_devel("present leaves cluster but not new leaf\n");
599 split_node:
600 pr_devel("split node\n");
602 /* We need to split the current node. The node must contain anything
603 * from a single leaf (in the one leaf case, this leaf will cluster
604 * with the new leaf) and the rest meta-pointers, to all leaves, some
605 * of which may cluster.
607 * It won't contain the case in which all the current leaves plus the
608 * new leaves want to cluster in the same slot.
610 * We need to expel at least two leaves out of a set consisting of the
611 * leaves in the node and the new leaf. The current meta pointers can
612 * just be copied as they shouldn't cluster with any of the leaves.
614 * We need a new node (n0) to replace the current one and a new node to
615 * take the expelled nodes (n1).
617 edit->set[0].to = assoc_array_node_to_ptr(new_n0);
618 new_n0->back_pointer = node->back_pointer;
619 new_n0->parent_slot = node->parent_slot;
620 new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
621 new_n1->parent_slot = -1; /* Need to calculate this */
623 do_split_node:
624 pr_devel("do_split_node\n");
626 new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
627 new_n1->nr_leaves_on_branch = 0;
629 /* Begin by finding two matching leaves. There have to be at least two
630 * that match - even if there are meta pointers - because any leaf that
631 * would match a slot with a meta pointer in it must be somewhere
632 * behind that meta pointer and cannot be here. Further, given N
633 * remaining leaf slots, we now have N+1 leaves to go in them.
635 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
636 slot = edit->segment_cache[i];
637 if (slot != 0xff)
638 for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
639 if (edit->segment_cache[j] == slot)
640 goto found_slot_for_multiple_occupancy;
642 found_slot_for_multiple_occupancy:
643 pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
644 BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
645 BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
646 BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
648 new_n1->parent_slot = slot;
650 /* Metadata pointers cannot change slot */
651 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
652 if (assoc_array_ptr_is_meta(node->slots[i]))
653 new_n0->slots[i] = node->slots[i];
654 else
655 new_n0->slots[i] = NULL;
656 BUG_ON(new_n0->slots[slot] != NULL);
657 new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
659 /* Filter the leaf pointers between the new nodes */
660 free_slot = -1;
661 next_slot = 0;
662 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
663 if (assoc_array_ptr_is_meta(node->slots[i]))
664 continue;
665 if (edit->segment_cache[i] == slot) {
666 new_n1->slots[next_slot++] = node->slots[i];
667 new_n1->nr_leaves_on_branch++;
668 } else {
669 do {
670 free_slot++;
671 } while (new_n0->slots[free_slot] != NULL);
672 new_n0->slots[free_slot] = node->slots[i];
676 pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
678 if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
679 do {
680 free_slot++;
681 } while (new_n0->slots[free_slot] != NULL);
682 edit->leaf_p = &new_n0->slots[free_slot];
683 edit->adjust_count_on = new_n0;
684 } else {
685 edit->leaf_p = &new_n1->slots[next_slot++];
686 edit->adjust_count_on = new_n1;
689 BUG_ON(next_slot <= 1);
691 edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
692 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
693 if (edit->segment_cache[i] == 0xff) {
694 ptr = node->slots[i];
695 BUG_ON(assoc_array_ptr_is_leaf(ptr));
696 if (assoc_array_ptr_is_node(ptr)) {
697 side = assoc_array_ptr_to_node(ptr);
698 edit->set_backpointers[i] = &side->back_pointer;
699 } else {
700 shortcut = assoc_array_ptr_to_shortcut(ptr);
701 edit->set_backpointers[i] = &shortcut->back_pointer;
706 ptr = node->back_pointer;
707 if (!ptr)
708 edit->set[0].ptr = &edit->array->root;
709 else if (assoc_array_ptr_is_node(ptr))
710 edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
711 else
712 edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
713 edit->excised_meta[0] = assoc_array_node_to_ptr(node);
714 pr_devel("<--%s() = ok [split node]\n", __func__);
715 return true;
717 all_leaves_cluster_together:
718 /* All the leaves, new and old, want to cluster together in this node
719 * in the same slot, so we have to replace this node with a shortcut to
720 * skip over the identical parts of the key and then place a pair of
721 * nodes, one inside the other, at the end of the shortcut and
722 * distribute the keys between them.
724 * Firstly we need to work out where the leaves start diverging as a
725 * bit position into their keys so that we know how big the shortcut
726 * needs to be.
728 * We only need to make a single pass of N of the N+1 leaves because if
729 * any keys differ between themselves at bit X then at least one of
730 * them must also differ with the base key at bit X or before.
732 pr_devel("all leaves cluster together\n");
733 diff = INT_MAX;
734 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
735 int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
736 index_key);
737 if (x < diff) {
738 BUG_ON(x < 0);
739 diff = x;
742 BUG_ON(diff == INT_MAX);
743 BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
745 keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
746 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
748 new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
749 keylen * sizeof(unsigned long), GFP_KERNEL);
750 if (!new_s0)
751 return false;
752 edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
754 edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
755 new_s0->back_pointer = node->back_pointer;
756 new_s0->parent_slot = node->parent_slot;
757 new_s0->next_node = assoc_array_node_to_ptr(new_n0);
758 new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
759 new_n0->parent_slot = 0;
760 new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
761 new_n1->parent_slot = -1; /* Need to calculate this */
763 new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
764 pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
765 BUG_ON(level <= 0);
767 for (i = 0; i < keylen; i++)
768 new_s0->index_key[i] =
769 ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
771 blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
772 pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
773 new_s0->index_key[keylen - 1] &= ~blank;
775 /* This now reduces to a node splitting exercise for which we'll need
776 * to regenerate the disparity table.
778 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
779 ptr = node->slots[i];
780 base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
781 level);
782 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
783 edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
786 base_seg = ops->get_key_chunk(index_key, level);
787 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
788 edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
789 goto do_split_node;
793 * Handle insertion into the middle of a shortcut.
795 static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
796 const struct assoc_array_ops *ops,
797 struct assoc_array_walk_result *result)
799 struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
800 struct assoc_array_node *node, *new_n0, *side;
801 unsigned long sc_segments, dissimilarity, blank;
802 size_t keylen;
803 int level, sc_level, diff;
804 int sc_slot;
806 shortcut = result->wrong_shortcut.shortcut;
807 level = result->wrong_shortcut.level;
808 sc_level = result->wrong_shortcut.sc_level;
809 sc_segments = result->wrong_shortcut.sc_segments;
810 dissimilarity = result->wrong_shortcut.dissimilarity;
812 pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
813 __func__, level, dissimilarity, sc_level);
815 /* We need to split a shortcut and insert a node between the two
816 * pieces. Zero-length pieces will be dispensed with entirely.
818 * First of all, we need to find out in which level the first
819 * difference was.
821 diff = __ffs(dissimilarity);
822 diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
823 diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
824 pr_devel("diff=%d\n", diff);
826 if (!shortcut->back_pointer) {
827 edit->set[0].ptr = &edit->array->root;
828 } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
829 node = assoc_array_ptr_to_node(shortcut->back_pointer);
830 edit->set[0].ptr = &node->slots[shortcut->parent_slot];
831 } else {
832 BUG();
835 edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
837 /* Create a new node now since we're going to need it anyway */
838 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
839 if (!new_n0)
840 return false;
841 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
842 edit->adjust_count_on = new_n0;
844 /* Insert a new shortcut before the new node if this segment isn't of
845 * zero length - otherwise we just connect the new node directly to the
846 * parent.
848 level += ASSOC_ARRAY_LEVEL_STEP;
849 if (diff > level) {
850 pr_devel("pre-shortcut %d...%d\n", level, diff);
851 keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
852 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
854 new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
855 keylen * sizeof(unsigned long), GFP_KERNEL);
856 if (!new_s0)
857 return false;
858 edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
859 edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
860 new_s0->back_pointer = shortcut->back_pointer;
861 new_s0->parent_slot = shortcut->parent_slot;
862 new_s0->next_node = assoc_array_node_to_ptr(new_n0);
863 new_s0->skip_to_level = diff;
865 new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
866 new_n0->parent_slot = 0;
868 memcpy(new_s0->index_key, shortcut->index_key,
869 keylen * sizeof(unsigned long));
871 blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
872 pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
873 new_s0->index_key[keylen - 1] &= ~blank;
874 } else {
875 pr_devel("no pre-shortcut\n");
876 edit->set[0].to = assoc_array_node_to_ptr(new_n0);
877 new_n0->back_pointer = shortcut->back_pointer;
878 new_n0->parent_slot = shortcut->parent_slot;
881 side = assoc_array_ptr_to_node(shortcut->next_node);
882 new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
884 /* We need to know which slot in the new node is going to take a
885 * metadata pointer.
887 sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
888 sc_slot &= ASSOC_ARRAY_FAN_MASK;
890 pr_devel("new slot %lx >> %d -> %d\n",
891 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
893 /* Determine whether we need to follow the new node with a replacement
894 * for the current shortcut. We could in theory reuse the current
895 * shortcut if its parent slot number doesn't change - but that's a
896 * 1-in-16 chance so not worth expending the code upon.
898 level = diff + ASSOC_ARRAY_LEVEL_STEP;
899 if (level < shortcut->skip_to_level) {
900 pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
901 keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
902 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
904 new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
905 keylen * sizeof(unsigned long), GFP_KERNEL);
906 if (!new_s1)
907 return false;
908 edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
910 new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
911 new_s1->parent_slot = sc_slot;
912 new_s1->next_node = shortcut->next_node;
913 new_s1->skip_to_level = shortcut->skip_to_level;
915 new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
917 memcpy(new_s1->index_key, shortcut->index_key,
918 keylen * sizeof(unsigned long));
920 edit->set[1].ptr = &side->back_pointer;
921 edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
922 } else {
923 pr_devel("no post-shortcut\n");
925 /* We don't have to replace the pointed-to node as long as we
926 * use memory barriers to make sure the parent slot number is
927 * changed before the back pointer (the parent slot number is
928 * irrelevant to the old parent shortcut).
930 new_n0->slots[sc_slot] = shortcut->next_node;
931 edit->set_parent_slot[0].p = &side->parent_slot;
932 edit->set_parent_slot[0].to = sc_slot;
933 edit->set[1].ptr = &side->back_pointer;
934 edit->set[1].to = assoc_array_node_to_ptr(new_n0);
937 /* Install the new leaf in a spare slot in the new node. */
938 if (sc_slot == 0)
939 edit->leaf_p = &new_n0->slots[1];
940 else
941 edit->leaf_p = &new_n0->slots[0];
943 pr_devel("<--%s() = ok [split shortcut]\n", __func__);
944 return edit;
948 * assoc_array_insert - Script insertion of an object into an associative array
949 * @array: The array to insert into.
950 * @ops: The operations to use.
951 * @index_key: The key to insert at.
952 * @object: The object to insert.
954 * Precalculate and preallocate a script for the insertion or replacement of an
955 * object in an associative array. This results in an edit script that can
956 * either be applied or cancelled.
958 * The function returns a pointer to an edit script or -ENOMEM.
960 * The caller should lock against other modifications and must continue to hold
961 * the lock until assoc_array_apply_edit() has been called.
963 * Accesses to the tree may take place concurrently with this function,
964 * provided they hold the RCU read lock.
966 struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
967 const struct assoc_array_ops *ops,
968 const void *index_key,
969 void *object)
971 struct assoc_array_walk_result result;
972 struct assoc_array_edit *edit;
974 pr_devel("-->%s()\n", __func__);
976 /* The leaf pointer we're given must not have the bottom bit set as we
977 * use those for type-marking the pointer. NULL pointers are also not
978 * allowed as they indicate an empty slot but we have to allow them
979 * here as they can be updated later.
981 BUG_ON(assoc_array_ptr_is_meta(object));
983 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
984 if (!edit)
985 return ERR_PTR(-ENOMEM);
986 edit->array = array;
987 edit->ops = ops;
988 edit->leaf = assoc_array_leaf_to_ptr(object);
989 edit->adjust_count_by = 1;
991 switch (assoc_array_walk(array, ops, index_key, &result)) {
992 case assoc_array_walk_tree_empty:
993 /* Allocate a root node if there isn't one yet */
994 if (!assoc_array_insert_in_empty_tree(edit))
995 goto enomem;
996 return edit;
998 case assoc_array_walk_found_terminal_node:
999 /* We found a node that doesn't have a node/shortcut pointer in
1000 * the slot corresponding to the index key that we have to
1001 * follow.
1003 if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1004 &result))
1005 goto enomem;
1006 return edit;
1008 case assoc_array_walk_found_wrong_shortcut:
1009 /* We found a shortcut that didn't match our key in a slot we
1010 * needed to follow.
1012 if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1013 goto enomem;
1014 return edit;
1017 enomem:
1018 /* Clean up after an out of memory error */
1019 pr_devel("enomem\n");
1020 assoc_array_cancel_edit(edit);
1021 return ERR_PTR(-ENOMEM);
1025 * assoc_array_insert_set_object - Set the new object pointer in an edit script
1026 * @edit: The edit script to modify.
1027 * @object: The object pointer to set.
1029 * Change the object to be inserted in an edit script. The object pointed to
1030 * by the old object is not freed. This must be done prior to applying the
1031 * script.
1033 void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1035 BUG_ON(!object);
1036 edit->leaf = assoc_array_leaf_to_ptr(object);
1039 struct assoc_array_delete_collapse_context {
1040 struct assoc_array_node *node;
1041 const void *skip_leaf;
1042 int slot;
1046 * Subtree collapse to node iterator.
1048 static int assoc_array_delete_collapse_iterator(const void *leaf,
1049 void *iterator_data)
1051 struct assoc_array_delete_collapse_context *collapse = iterator_data;
1053 if (leaf == collapse->skip_leaf)
1054 return 0;
1056 BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1058 collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1059 return 0;
1063 * assoc_array_delete - Script deletion of an object from an associative array
1064 * @array: The array to search.
1065 * @ops: The operations to use.
1066 * @index_key: The key to the object.
1068 * Precalculate and preallocate a script for the deletion of an object from an
1069 * associative array. This results in an edit script that can either be
1070 * applied or cancelled.
1072 * The function returns a pointer to an edit script if the object was found,
1073 * NULL if the object was not found or -ENOMEM.
1075 * The caller should lock against other modifications and must continue to hold
1076 * the lock until assoc_array_apply_edit() has been called.
1078 * Accesses to the tree may take place concurrently with this function,
1079 * provided they hold the RCU read lock.
1081 struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1082 const struct assoc_array_ops *ops,
1083 const void *index_key)
1085 struct assoc_array_delete_collapse_context collapse;
1086 struct assoc_array_walk_result result;
1087 struct assoc_array_node *node, *new_n0;
1088 struct assoc_array_edit *edit;
1089 struct assoc_array_ptr *ptr;
1090 bool has_meta;
1091 int slot, i;
1093 pr_devel("-->%s()\n", __func__);
1095 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1096 if (!edit)
1097 return ERR_PTR(-ENOMEM);
1098 edit->array = array;
1099 edit->ops = ops;
1100 edit->adjust_count_by = -1;
1102 switch (assoc_array_walk(array, ops, index_key, &result)) {
1103 case assoc_array_walk_found_terminal_node:
1104 /* We found a node that should contain the leaf we've been
1105 * asked to remove - *if* it's in the tree.
1107 pr_devel("terminal_node\n");
1108 node = result.terminal_node.node;
1110 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1111 ptr = node->slots[slot];
1112 if (ptr &&
1113 assoc_array_ptr_is_leaf(ptr) &&
1114 ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1115 index_key))
1116 goto found_leaf;
1118 case assoc_array_walk_tree_empty:
1119 case assoc_array_walk_found_wrong_shortcut:
1120 default:
1121 assoc_array_cancel_edit(edit);
1122 pr_devel("not found\n");
1123 return NULL;
1126 found_leaf:
1127 BUG_ON(array->nr_leaves_on_tree <= 0);
1129 /* In the simplest form of deletion we just clear the slot and release
1130 * the leaf after a suitable interval.
1132 edit->dead_leaf = node->slots[slot];
1133 edit->set[0].ptr = &node->slots[slot];
1134 edit->set[0].to = NULL;
1135 edit->adjust_count_on = node;
1137 /* If that concludes erasure of the last leaf, then delete the entire
1138 * internal array.
1140 if (array->nr_leaves_on_tree == 1) {
1141 edit->set[1].ptr = &array->root;
1142 edit->set[1].to = NULL;
1143 edit->adjust_count_on = NULL;
1144 edit->excised_subtree = array->root;
1145 pr_devel("all gone\n");
1146 return edit;
1149 /* However, we'd also like to clear up some metadata blocks if we
1150 * possibly can.
1152 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1153 * leaves in it, then attempt to collapse it - and attempt to
1154 * recursively collapse up the tree.
1156 * We could also try and collapse in partially filled subtrees to take
1157 * up space in this node.
1159 if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1160 struct assoc_array_node *parent, *grandparent;
1161 struct assoc_array_ptr *ptr;
1163 /* First of all, we need to know if this node has metadata so
1164 * that we don't try collapsing if all the leaves are already
1165 * here.
1167 has_meta = false;
1168 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1169 ptr = node->slots[i];
1170 if (assoc_array_ptr_is_meta(ptr)) {
1171 has_meta = true;
1172 break;
1176 pr_devel("leaves: %ld [m=%d]\n",
1177 node->nr_leaves_on_branch - 1, has_meta);
1179 /* Look further up the tree to see if we can collapse this node
1180 * into a more proximal node too.
1182 parent = node;
1183 collapse_up:
1184 pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1186 ptr = parent->back_pointer;
1187 if (!ptr)
1188 goto do_collapse;
1189 if (assoc_array_ptr_is_shortcut(ptr)) {
1190 struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1191 ptr = s->back_pointer;
1192 if (!ptr)
1193 goto do_collapse;
1196 grandparent = assoc_array_ptr_to_node(ptr);
1197 if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1198 parent = grandparent;
1199 goto collapse_up;
1202 do_collapse:
1203 /* There's no point collapsing if the original node has no meta
1204 * pointers to discard and if we didn't merge into one of that
1205 * node's ancestry.
1207 if (has_meta || parent != node) {
1208 node = parent;
1210 /* Create a new node to collapse into */
1211 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1212 if (!new_n0)
1213 goto enomem;
1214 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1216 new_n0->back_pointer = node->back_pointer;
1217 new_n0->parent_slot = node->parent_slot;
1218 new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1219 edit->adjust_count_on = new_n0;
1221 collapse.node = new_n0;
1222 collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1223 collapse.slot = 0;
1224 assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1225 node->back_pointer,
1226 assoc_array_delete_collapse_iterator,
1227 &collapse);
1228 pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1229 BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1231 if (!node->back_pointer) {
1232 edit->set[1].ptr = &array->root;
1233 } else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1234 BUG();
1235 } else if (assoc_array_ptr_is_node(node->back_pointer)) {
1236 struct assoc_array_node *p =
1237 assoc_array_ptr_to_node(node->back_pointer);
1238 edit->set[1].ptr = &p->slots[node->parent_slot];
1239 } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1240 struct assoc_array_shortcut *s =
1241 assoc_array_ptr_to_shortcut(node->back_pointer);
1242 edit->set[1].ptr = &s->next_node;
1244 edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1245 edit->excised_subtree = assoc_array_node_to_ptr(node);
1249 return edit;
1251 enomem:
1252 /* Clean up after an out of memory error */
1253 pr_devel("enomem\n");
1254 assoc_array_cancel_edit(edit);
1255 return ERR_PTR(-ENOMEM);
1259 * assoc_array_clear - Script deletion of all objects from an associative array
1260 * @array: The array to clear.
1261 * @ops: The operations to use.
1263 * Precalculate and preallocate a script for the deletion of all the objects
1264 * from an associative array. This results in an edit script that can either
1265 * be applied or cancelled.
1267 * The function returns a pointer to an edit script if there are objects to be
1268 * deleted, NULL if there are no objects in the array or -ENOMEM.
1270 * The caller should lock against other modifications and must continue to hold
1271 * the lock until assoc_array_apply_edit() has been called.
1273 * Accesses to the tree may take place concurrently with this function,
1274 * provided they hold the RCU read lock.
1276 struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1277 const struct assoc_array_ops *ops)
1279 struct assoc_array_edit *edit;
1281 pr_devel("-->%s()\n", __func__);
1283 if (!array->root)
1284 return NULL;
1286 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1287 if (!edit)
1288 return ERR_PTR(-ENOMEM);
1289 edit->array = array;
1290 edit->ops = ops;
1291 edit->set[1].ptr = &array->root;
1292 edit->set[1].to = NULL;
1293 edit->excised_subtree = array->root;
1294 edit->ops_for_excised_subtree = ops;
1295 pr_devel("all gone\n");
1296 return edit;
1300 * Handle the deferred destruction after an applied edit.
1302 static void assoc_array_rcu_cleanup(struct rcu_head *head)
1304 struct assoc_array_edit *edit =
1305 container_of(head, struct assoc_array_edit, rcu);
1306 int i;
1308 pr_devel("-->%s()\n", __func__);
1310 if (edit->dead_leaf)
1311 edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1312 for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1313 if (edit->excised_meta[i])
1314 kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1316 if (edit->excised_subtree) {
1317 BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1318 if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1319 struct assoc_array_node *n =
1320 assoc_array_ptr_to_node(edit->excised_subtree);
1321 n->back_pointer = NULL;
1322 } else {
1323 struct assoc_array_shortcut *s =
1324 assoc_array_ptr_to_shortcut(edit->excised_subtree);
1325 s->back_pointer = NULL;
1327 assoc_array_destroy_subtree(edit->excised_subtree,
1328 edit->ops_for_excised_subtree);
1331 kfree(edit);
1335 * assoc_array_apply_edit - Apply an edit script to an associative array
1336 * @edit: The script to apply.
1338 * Apply an edit script to an associative array to effect an insertion,
1339 * deletion or clearance. As the edit script includes preallocated memory,
1340 * this is guaranteed not to fail.
1342 * The edit script, dead objects and dead metadata will be scheduled for
1343 * destruction after an RCU grace period to permit those doing read-only
1344 * accesses on the array to continue to do so under the RCU read lock whilst
1345 * the edit is taking place.
1347 void assoc_array_apply_edit(struct assoc_array_edit *edit)
1349 struct assoc_array_shortcut *shortcut;
1350 struct assoc_array_node *node;
1351 struct assoc_array_ptr *ptr;
1352 int i;
1354 pr_devel("-->%s()\n", __func__);
1356 smp_wmb();
1357 if (edit->leaf_p)
1358 *edit->leaf_p = edit->leaf;
1360 smp_wmb();
1361 for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1362 if (edit->set_parent_slot[i].p)
1363 *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1365 smp_wmb();
1366 for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1367 if (edit->set_backpointers[i])
1368 *edit->set_backpointers[i] = edit->set_backpointers_to;
1370 smp_wmb();
1371 for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1372 if (edit->set[i].ptr)
1373 *edit->set[i].ptr = edit->set[i].to;
1375 if (edit->array->root == NULL) {
1376 edit->array->nr_leaves_on_tree = 0;
1377 } else if (edit->adjust_count_on) {
1378 node = edit->adjust_count_on;
1379 for (;;) {
1380 node->nr_leaves_on_branch += edit->adjust_count_by;
1382 ptr = node->back_pointer;
1383 if (!ptr)
1384 break;
1385 if (assoc_array_ptr_is_shortcut(ptr)) {
1386 shortcut = assoc_array_ptr_to_shortcut(ptr);
1387 ptr = shortcut->back_pointer;
1388 if (!ptr)
1389 break;
1391 BUG_ON(!assoc_array_ptr_is_node(ptr));
1392 node = assoc_array_ptr_to_node(ptr);
1395 edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1398 call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1402 * assoc_array_cancel_edit - Discard an edit script.
1403 * @edit: The script to discard.
1405 * Free an edit script and all the preallocated data it holds without making
1406 * any changes to the associative array it was intended for.
1408 * NOTE! In the case of an insertion script, this does _not_ release the leaf
1409 * that was to be inserted. That is left to the caller.
1411 void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1413 struct assoc_array_ptr *ptr;
1414 int i;
1416 pr_devel("-->%s()\n", __func__);
1418 /* Clean up after an out of memory error */
1419 for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1420 ptr = edit->new_meta[i];
1421 if (ptr) {
1422 if (assoc_array_ptr_is_node(ptr))
1423 kfree(assoc_array_ptr_to_node(ptr));
1424 else
1425 kfree(assoc_array_ptr_to_shortcut(ptr));
1428 kfree(edit);
1432 * assoc_array_gc - Garbage collect an associative array.
1433 * @array: The array to clean.
1434 * @ops: The operations to use.
1435 * @iterator: A callback function to pass judgement on each object.
1436 * @iterator_data: Private data for the callback function.
1438 * Collect garbage from an associative array and pack down the internal tree to
1439 * save memory.
1441 * The iterator function is asked to pass judgement upon each object in the
1442 * array. If it returns false, the object is discard and if it returns true,
1443 * the object is kept. If it returns true, it must increment the object's
1444 * usage count (or whatever it needs to do to retain it) before returning.
1446 * This function returns 0 if successful or -ENOMEM if out of memory. In the
1447 * latter case, the array is not changed.
1449 * The caller should lock against other modifications and must continue to hold
1450 * the lock until assoc_array_apply_edit() has been called.
1452 * Accesses to the tree may take place concurrently with this function,
1453 * provided they hold the RCU read lock.
1455 int assoc_array_gc(struct assoc_array *array,
1456 const struct assoc_array_ops *ops,
1457 bool (*iterator)(void *object, void *iterator_data),
1458 void *iterator_data)
1460 struct assoc_array_shortcut *shortcut, *new_s;
1461 struct assoc_array_node *node, *new_n;
1462 struct assoc_array_edit *edit;
1463 struct assoc_array_ptr *cursor, *ptr;
1464 struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1465 unsigned long nr_leaves_on_tree;
1466 int keylen, slot, nr_free, next_slot, i;
1468 pr_devel("-->%s()\n", __func__);
1470 if (!array->root)
1471 return 0;
1473 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1474 if (!edit)
1475 return -ENOMEM;
1476 edit->array = array;
1477 edit->ops = ops;
1478 edit->ops_for_excised_subtree = ops;
1479 edit->set[0].ptr = &array->root;
1480 edit->excised_subtree = array->root;
1482 new_root = new_parent = NULL;
1483 new_ptr_pp = &new_root;
1484 cursor = array->root;
1486 descend:
1487 /* If this point is a shortcut, then we need to duplicate it and
1488 * advance the target cursor.
1490 if (assoc_array_ptr_is_shortcut(cursor)) {
1491 shortcut = assoc_array_ptr_to_shortcut(cursor);
1492 keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1493 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1494 new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
1495 keylen * sizeof(unsigned long), GFP_KERNEL);
1496 if (!new_s)
1497 goto enomem;
1498 pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1499 memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
1500 keylen * sizeof(unsigned long)));
1501 new_s->back_pointer = new_parent;
1502 new_s->parent_slot = shortcut->parent_slot;
1503 *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1504 new_ptr_pp = &new_s->next_node;
1505 cursor = shortcut->next_node;
1508 /* Duplicate the node at this position */
1509 node = assoc_array_ptr_to_node(cursor);
1510 new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1511 if (!new_n)
1512 goto enomem;
1513 pr_devel("dup node %p -> %p\n", node, new_n);
1514 new_n->back_pointer = new_parent;
1515 new_n->parent_slot = node->parent_slot;
1516 *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1517 new_ptr_pp = NULL;
1518 slot = 0;
1520 continue_node:
1521 /* Filter across any leaves and gc any subtrees */
1522 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1523 ptr = node->slots[slot];
1524 if (!ptr)
1525 continue;
1527 if (assoc_array_ptr_is_leaf(ptr)) {
1528 if (iterator(assoc_array_ptr_to_leaf(ptr),
1529 iterator_data))
1530 /* The iterator will have done any reference
1531 * counting on the object for us.
1533 new_n->slots[slot] = ptr;
1534 continue;
1537 new_ptr_pp = &new_n->slots[slot];
1538 cursor = ptr;
1539 goto descend;
1542 pr_devel("-- compress node %p --\n", new_n);
1544 /* Count up the number of empty slots in this node and work out the
1545 * subtree leaf count.
1547 new_n->nr_leaves_on_branch = 0;
1548 nr_free = 0;
1549 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1550 ptr = new_n->slots[slot];
1551 if (!ptr)
1552 nr_free++;
1553 else if (assoc_array_ptr_is_leaf(ptr))
1554 new_n->nr_leaves_on_branch++;
1556 pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1558 /* See what we can fold in */
1559 next_slot = 0;
1560 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1561 struct assoc_array_shortcut *s;
1562 struct assoc_array_node *child;
1564 ptr = new_n->slots[slot];
1565 if (!ptr || assoc_array_ptr_is_leaf(ptr))
1566 continue;
1568 s = NULL;
1569 if (assoc_array_ptr_is_shortcut(ptr)) {
1570 s = assoc_array_ptr_to_shortcut(ptr);
1571 ptr = s->next_node;
1574 child = assoc_array_ptr_to_node(ptr);
1575 new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1577 if (child->nr_leaves_on_branch <= nr_free + 1) {
1578 /* Fold the child node into this one */
1579 pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1580 slot, child->nr_leaves_on_branch, nr_free + 1,
1581 next_slot);
1583 /* We would already have reaped an intervening shortcut
1584 * on the way back up the tree.
1586 BUG_ON(s);
1588 new_n->slots[slot] = NULL;
1589 nr_free++;
1590 if (slot < next_slot)
1591 next_slot = slot;
1592 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1593 struct assoc_array_ptr *p = child->slots[i];
1594 if (!p)
1595 continue;
1596 BUG_ON(assoc_array_ptr_is_meta(p));
1597 while (new_n->slots[next_slot])
1598 next_slot++;
1599 BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1600 new_n->slots[next_slot++] = p;
1601 nr_free--;
1603 kfree(child);
1604 } else {
1605 pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1606 slot, child->nr_leaves_on_branch, nr_free + 1,
1607 next_slot);
1611 pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1613 nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1615 /* Excise this node if it is singly occupied by a shortcut */
1616 if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1617 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1618 if ((ptr = new_n->slots[slot]))
1619 break;
1621 if (assoc_array_ptr_is_meta(ptr) &&
1622 assoc_array_ptr_is_shortcut(ptr)) {
1623 pr_devel("excise node %p with 1 shortcut\n", new_n);
1624 new_s = assoc_array_ptr_to_shortcut(ptr);
1625 new_parent = new_n->back_pointer;
1626 slot = new_n->parent_slot;
1627 kfree(new_n);
1628 if (!new_parent) {
1629 new_s->back_pointer = NULL;
1630 new_s->parent_slot = 0;
1631 new_root = ptr;
1632 goto gc_complete;
1635 if (assoc_array_ptr_is_shortcut(new_parent)) {
1636 /* We can discard any preceding shortcut also */
1637 struct assoc_array_shortcut *s =
1638 assoc_array_ptr_to_shortcut(new_parent);
1640 pr_devel("excise preceding shortcut\n");
1642 new_parent = new_s->back_pointer = s->back_pointer;
1643 slot = new_s->parent_slot = s->parent_slot;
1644 kfree(s);
1645 if (!new_parent) {
1646 new_s->back_pointer = NULL;
1647 new_s->parent_slot = 0;
1648 new_root = ptr;
1649 goto gc_complete;
1653 new_s->back_pointer = new_parent;
1654 new_s->parent_slot = slot;
1655 new_n = assoc_array_ptr_to_node(new_parent);
1656 new_n->slots[slot] = ptr;
1657 goto ascend_old_tree;
1661 /* Excise any shortcuts we might encounter that point to nodes that
1662 * only contain leaves.
1664 ptr = new_n->back_pointer;
1665 if (!ptr)
1666 goto gc_complete;
1668 if (assoc_array_ptr_is_shortcut(ptr)) {
1669 new_s = assoc_array_ptr_to_shortcut(ptr);
1670 new_parent = new_s->back_pointer;
1671 slot = new_s->parent_slot;
1673 if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1674 struct assoc_array_node *n;
1676 pr_devel("excise shortcut\n");
1677 new_n->back_pointer = new_parent;
1678 new_n->parent_slot = slot;
1679 kfree(new_s);
1680 if (!new_parent) {
1681 new_root = assoc_array_node_to_ptr(new_n);
1682 goto gc_complete;
1685 n = assoc_array_ptr_to_node(new_parent);
1686 n->slots[slot] = assoc_array_node_to_ptr(new_n);
1688 } else {
1689 new_parent = ptr;
1691 new_n = assoc_array_ptr_to_node(new_parent);
1693 ascend_old_tree:
1694 ptr = node->back_pointer;
1695 if (assoc_array_ptr_is_shortcut(ptr)) {
1696 shortcut = assoc_array_ptr_to_shortcut(ptr);
1697 slot = shortcut->parent_slot;
1698 cursor = shortcut->back_pointer;
1699 if (!cursor)
1700 goto gc_complete;
1701 } else {
1702 slot = node->parent_slot;
1703 cursor = ptr;
1705 BUG_ON(!cursor);
1706 node = assoc_array_ptr_to_node(cursor);
1707 slot++;
1708 goto continue_node;
1710 gc_complete:
1711 edit->set[0].to = new_root;
1712 assoc_array_apply_edit(edit);
1713 array->nr_leaves_on_tree = nr_leaves_on_tree;
1714 return 0;
1716 enomem:
1717 pr_devel("enomem\n");
1718 assoc_array_destroy_subtree(new_root, edit->ops);
1719 kfree(edit);
1720 return -ENOMEM;