2 * linux/fs/ext4/readpage.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2015, Google, Inc.
7 * This was originally taken from fs/mpage.c
9 * The intent is the ext4_mpage_readpages() function here is intended
10 * to replace mpage_readpages() in the general case, not just for
11 * encrypted files. It has some limitations (see below), where it
12 * will fall back to read_block_full_page(), but these limitations
13 * should only be hit when page_size != block_size.
15 * This will allow us to attach a callback function to support ext4
18 * If anything unusual happens, such as:
20 * - encountering a page which has buffers
21 * - encountering a page which has a non-hole after a hole
22 * - encountering a page with non-contiguous blocks
24 * then this code just gives up and calls the buffer_head-based read function.
25 * It does handle a page which has holes at the end - that is a common case:
26 * the end-of-file on blocksize < PAGE_SIZE setups.
30 #include <linux/kernel.h>
31 #include <linux/export.h>
33 #include <linux/kdev_t.h>
34 #include <linux/gfp.h>
35 #include <linux/bio.h>
37 #include <linux/buffer_head.h>
38 #include <linux/blkdev.h>
39 #include <linux/highmem.h>
40 #include <linux/prefetch.h>
41 #include <linux/mpage.h>
42 #include <linux/writeback.h>
43 #include <linux/backing-dev.h>
44 #include <linux/pagevec.h>
45 #include <linux/cleancache.h>
50 * Call ext4_decrypt on every single page, reusing the encryption
53 static void completion_pages(struct work_struct
*work
)
55 #ifdef CONFIG_EXT4_FS_ENCRYPTION
56 struct ext4_crypto_ctx
*ctx
=
57 container_of(work
, struct ext4_crypto_ctx
, r
.work
);
58 struct bio
*bio
= ctx
->r
.bio
;
62 bio_for_each_segment_all(bv
, bio
, i
) {
63 struct page
*page
= bv
->bv_page
;
65 int ret
= ext4_decrypt(page
);
70 SetPageUptodate(page
);
73 ext4_release_crypto_ctx(ctx
);
80 static inline bool ext4_bio_encrypted(struct bio
*bio
)
82 #ifdef CONFIG_EXT4_FS_ENCRYPTION
83 return unlikely(bio
->bi_private
!= NULL
);
90 * I/O completion handler for multipage BIOs.
92 * The mpage code never puts partial pages into a BIO (except for end-of-file).
93 * If a page does not map to a contiguous run of blocks then it simply falls
94 * back to block_read_full_page().
96 * Why is this? If a page's completion depends on a number of different BIOs
97 * which can complete in any order (or at the same time) then determining the
98 * status of that page is hard. See end_buffer_async_read() for the details.
99 * There is no point in duplicating all that complexity.
101 static void mpage_end_io(struct bio
*bio
)
106 if (ext4_bio_encrypted(bio
)) {
107 struct ext4_crypto_ctx
*ctx
= bio
->bi_private
;
110 ext4_release_crypto_ctx(ctx
);
112 INIT_WORK(&ctx
->r
.work
, completion_pages
);
114 queue_work(ext4_read_workqueue
, &ctx
->r
.work
);
118 bio_for_each_segment_all(bv
, bio
, i
) {
119 struct page
*page
= bv
->bv_page
;
121 if (!bio
->bi_error
) {
122 SetPageUptodate(page
);
124 ClearPageUptodate(page
);
133 int ext4_mpage_readpages(struct address_space
*mapping
,
134 struct list_head
*pages
, struct page
*page
,
137 struct bio
*bio
= NULL
;
139 sector_t last_block_in_bio
= 0;
141 struct inode
*inode
= mapping
->host
;
142 const unsigned blkbits
= inode
->i_blkbits
;
143 const unsigned blocks_per_page
= PAGE_SIZE
>> blkbits
;
144 const unsigned blocksize
= 1 << blkbits
;
145 sector_t block_in_file
;
147 sector_t last_block_in_file
;
148 sector_t blocks
[MAX_BUF_PER_PAGE
];
150 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
152 unsigned relative_block
= 0;
153 struct ext4_map_blocks map
;
160 for (page_idx
= 0; nr_pages
; page_idx
++, nr_pages
--) {
161 int fully_mapped
= 1;
162 unsigned first_hole
= blocks_per_page
;
164 prefetchw(&page
->flags
);
166 page
= list_entry(pages
->prev
, struct page
, lru
);
167 list_del(&page
->lru
);
168 if (add_to_page_cache_lru(page
, mapping
, page
->index
,
169 mapping_gfp_constraint(mapping
, GFP_KERNEL
)))
173 if (page_has_buffers(page
))
176 block_in_file
= (sector_t
)page
->index
<< (PAGE_SHIFT
- blkbits
);
177 last_block
= block_in_file
+ nr_pages
* blocks_per_page
;
178 last_block_in_file
= (i_size_read(inode
) + blocksize
- 1) >> blkbits
;
179 if (last_block
> last_block_in_file
)
180 last_block
= last_block_in_file
;
184 * Map blocks using the previous result first.
186 if ((map
.m_flags
& EXT4_MAP_MAPPED
) &&
187 block_in_file
> map
.m_lblk
&&
188 block_in_file
< (map
.m_lblk
+ map
.m_len
)) {
189 unsigned map_offset
= block_in_file
- map
.m_lblk
;
190 unsigned last
= map
.m_len
- map_offset
;
192 for (relative_block
= 0; ; relative_block
++) {
193 if (relative_block
== last
) {
195 map
.m_flags
&= ~EXT4_MAP_MAPPED
;
198 if (page_block
== blocks_per_page
)
200 blocks
[page_block
] = map
.m_pblk
+ map_offset
+
208 * Then do more ext4_map_blocks() calls until we are
209 * done with this page.
211 while (page_block
< blocks_per_page
) {
212 if (block_in_file
< last_block
) {
213 map
.m_lblk
= block_in_file
;
214 map
.m_len
= last_block
- block_in_file
;
216 if (ext4_map_blocks(NULL
, inode
, &map
, 0) < 0) {
219 zero_user_segment(page
, 0,
225 if ((map
.m_flags
& EXT4_MAP_MAPPED
) == 0) {
227 if (first_hole
== blocks_per_page
)
228 first_hole
= page_block
;
233 if (first_hole
!= blocks_per_page
)
234 goto confused
; /* hole -> non-hole */
236 /* Contiguous blocks? */
237 if (page_block
&& blocks
[page_block
-1] != map
.m_pblk
-1)
239 for (relative_block
= 0; ; relative_block
++) {
240 if (relative_block
== map
.m_len
) {
242 map
.m_flags
&= ~EXT4_MAP_MAPPED
;
244 } else if (page_block
== blocks_per_page
)
246 blocks
[page_block
] = map
.m_pblk
+relative_block
;
251 if (first_hole
!= blocks_per_page
) {
252 zero_user_segment(page
, first_hole
<< blkbits
,
254 if (first_hole
== 0) {
255 SetPageUptodate(page
);
259 } else if (fully_mapped
) {
260 SetPageMappedToDisk(page
);
262 if (fully_mapped
&& blocks_per_page
== 1 &&
263 !PageUptodate(page
) && cleancache_get_page(page
) == 0) {
264 SetPageUptodate(page
);
269 * This page will go to BIO. Do we need to send this
272 if (bio
&& (last_block_in_bio
!= blocks
[0] - 1)) {
274 submit_bio(READ
, bio
);
278 struct ext4_crypto_ctx
*ctx
= NULL
;
280 if (ext4_encrypted_inode(inode
) &&
281 S_ISREG(inode
->i_mode
)) {
282 ctx
= ext4_get_crypto_ctx(inode
, GFP_NOFS
);
286 bio
= bio_alloc(GFP_KERNEL
,
287 min_t(int, nr_pages
, BIO_MAX_PAGES
));
290 ext4_release_crypto_ctx(ctx
);
294 bio
->bi_iter
.bi_sector
= blocks
[0] << (blkbits
- 9);
295 bio
->bi_end_io
= mpage_end_io
;
296 bio
->bi_private
= ctx
;
299 length
= first_hole
<< blkbits
;
300 if (bio_add_page(bio
, page
, length
, 0) < length
)
301 goto submit_and_realloc
;
303 if (((map
.m_flags
& EXT4_MAP_BOUNDARY
) &&
304 (relative_block
== map
.m_len
)) ||
305 (first_hole
!= blocks_per_page
)) {
306 submit_bio(READ
, bio
);
309 last_block_in_bio
= blocks
[blocks_per_page
- 1];
313 submit_bio(READ
, bio
);
316 if (!PageUptodate(page
))
317 block_read_full_page(page
, ext4_get_block
);
324 BUG_ON(pages
&& !list_empty(pages
));
326 submit_bio(READ
, bio
);