1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
54 #include <net/tcp_memcontrol.h>
56 #include <asm/uaccess.h>
58 #include <trace/events/vmscan.h>
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 static struct mem_cgroup
*root_mem_cgroup __read_mostly
;
64 #ifdef CONFIG_MEMCG_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly
;
68 /* for remember boot option*/
69 #ifdef CONFIG_MEMCG_SWAP_ENABLED
70 static int really_do_swap_account __initdata
= 1;
72 static int really_do_swap_account __initdata
= 0;
76 #define do_swap_account 0
81 * Statistics for memory cgroup.
83 enum mem_cgroup_stat_index
{
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAP
, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_NSTATS
,
94 static const char * const mem_cgroup_stat_names
[] = {
101 enum mem_cgroup_events_index
{
102 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS
,
109 static const char * const mem_cgroup_events_names
[] = {
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
122 enum mem_cgroup_events_target
{
123 MEM_CGROUP_TARGET_THRESH
,
124 MEM_CGROUP_TARGET_SOFTLIMIT
,
125 MEM_CGROUP_TARGET_NUMAINFO
,
128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET 1024
132 struct mem_cgroup_stat_cpu
{
133 long count
[MEM_CGROUP_STAT_NSTATS
];
134 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
135 unsigned long nr_page_events
;
136 unsigned long targets
[MEM_CGROUP_NTARGETS
];
139 struct mem_cgroup_reclaim_iter
{
140 /* css_id of the last scanned hierarchy member */
142 /* scan generation, increased every round-trip */
143 unsigned int generation
;
147 * per-zone information in memory controller.
149 struct mem_cgroup_per_zone
{
150 struct lruvec lruvec
;
151 unsigned long lru_size
[NR_LRU_LISTS
];
153 struct mem_cgroup_reclaim_iter reclaim_iter
[DEF_PRIORITY
+ 1];
155 struct rb_node tree_node
; /* RB tree node */
156 unsigned long long usage_in_excess
;/* Set to the value by which */
157 /* the soft limit is exceeded*/
159 struct mem_cgroup
*memcg
; /* Back pointer, we cannot */
160 /* use container_of */
163 struct mem_cgroup_per_node
{
164 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
167 struct mem_cgroup_lru_info
{
168 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
176 struct mem_cgroup_tree_per_zone
{
177 struct rb_root rb_root
;
181 struct mem_cgroup_tree_per_node
{
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
185 struct mem_cgroup_tree
{
186 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
189 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
191 struct mem_cgroup_threshold
{
192 struct eventfd_ctx
*eventfd
;
197 struct mem_cgroup_threshold_ary
{
198 /* An array index points to threshold just below or equal to usage. */
199 int current_threshold
;
200 /* Size of entries[] */
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries
[0];
206 struct mem_cgroup_thresholds
{
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary
*primary
;
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
214 struct mem_cgroup_threshold_ary
*spare
;
218 struct mem_cgroup_eventfd_list
{
219 struct list_head list
;
220 struct eventfd_ctx
*eventfd
;
223 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
224 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
238 struct cgroup_subsys_state css
;
240 * the counter to account for memory usage
242 struct res_counter res
;
246 * the counter to account for mem+swap usage.
248 struct res_counter memsw
;
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
259 struct rcu_head rcu_freeing
;
261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use.
264 struct work_struct work_freeing
;
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
271 struct mem_cgroup_lru_info info
;
272 int last_scanned_node
;
274 nodemask_t scan_nodes
;
275 atomic_t numainfo_events
;
276 atomic_t numainfo_updating
;
279 * Should the accounting and control be hierarchical, per subtree?
289 /* OOM-Killer disable */
290 int oom_kill_disable
;
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum
;
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock
;
298 /* thresholds for memory usage. RCU-protected */
299 struct mem_cgroup_thresholds thresholds
;
301 /* thresholds for mem+swap usage. RCU-protected */
302 struct mem_cgroup_thresholds memsw_thresholds
;
304 /* For oom notifier event fd */
305 struct list_head oom_notify
;
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
311 unsigned long move_charge_at_immigrate
;
313 * set > 0 if pages under this cgroup are moving to other cgroup.
315 atomic_t moving_account
;
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock
;
321 struct mem_cgroup_stat_cpu __percpu
*stat
;
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
326 struct mem_cgroup_stat_cpu nocpu_base
;
327 spinlock_t pcp_counter_lock
;
330 struct tcp_memcontrol tcp_mem
;
334 /* Stuffs for move charges at task migration. */
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
340 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
341 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
345 /* "mc" and its members are protected by cgroup_mutex */
346 static struct move_charge_struct
{
347 spinlock_t lock
; /* for from, to */
348 struct mem_cgroup
*from
;
349 struct mem_cgroup
*to
;
350 unsigned long precharge
;
351 unsigned long moved_charge
;
352 unsigned long moved_swap
;
353 struct task_struct
*moving_task
; /* a task moving charges */
354 wait_queue_head_t waitq
; /* a waitq for other context */
356 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
357 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
360 static bool move_anon(void)
362 return test_bit(MOVE_CHARGE_TYPE_ANON
,
363 &mc
.to
->move_charge_at_immigrate
);
366 static bool move_file(void)
368 return test_bit(MOVE_CHARGE_TYPE_FILE
,
369 &mc
.to
->move_charge_at_immigrate
);
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
376 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
380 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
381 MEM_CGROUP_CHARGE_TYPE_ANON
,
382 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
384 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
388 /* for encoding cft->private value on file */
391 #define _OOM_TYPE (2)
392 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
394 #define MEMFILE_ATTR(val) ((val) & 0xffff)
395 /* Used for OOM nofiier */
396 #define OOM_CONTROL (0)
399 * Reclaim flags for mem_cgroup_hierarchical_reclaim
401 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
406 static void mem_cgroup_get(struct mem_cgroup
*memcg
);
407 static void mem_cgroup_put(struct mem_cgroup
*memcg
);
409 /* Writing them here to avoid exposing memcg's inner layout */
410 #ifdef CONFIG_MEMCG_KMEM
411 #include <net/sock.h>
414 static bool mem_cgroup_is_root(struct mem_cgroup
*memcg
);
415 void sock_update_memcg(struct sock
*sk
)
417 if (mem_cgroup_sockets_enabled
) {
418 struct mem_cgroup
*memcg
;
419 struct cg_proto
*cg_proto
;
421 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
423 /* Socket cloning can throw us here with sk_cgrp already
424 * filled. It won't however, necessarily happen from
425 * process context. So the test for root memcg given
426 * the current task's memcg won't help us in this case.
428 * Respecting the original socket's memcg is a better
429 * decision in this case.
432 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
433 mem_cgroup_get(sk
->sk_cgrp
->memcg
);
438 memcg
= mem_cgroup_from_task(current
);
439 cg_proto
= sk
->sk_prot
->proto_cgroup(memcg
);
440 if (!mem_cgroup_is_root(memcg
) && memcg_proto_active(cg_proto
)) {
441 mem_cgroup_get(memcg
);
442 sk
->sk_cgrp
= cg_proto
;
447 EXPORT_SYMBOL(sock_update_memcg
);
449 void sock_release_memcg(struct sock
*sk
)
451 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
452 struct mem_cgroup
*memcg
;
453 WARN_ON(!sk
->sk_cgrp
->memcg
);
454 memcg
= sk
->sk_cgrp
->memcg
;
455 mem_cgroup_put(memcg
);
460 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
462 if (!memcg
|| mem_cgroup_is_root(memcg
))
465 return &memcg
->tcp_mem
.cg_proto
;
467 EXPORT_SYMBOL(tcp_proto_cgroup
);
468 #endif /* CONFIG_INET */
469 #endif /* CONFIG_MEMCG_KMEM */
471 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
472 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
474 if (!memcg_proto_activated(&memcg
->tcp_mem
.cg_proto
))
476 static_key_slow_dec(&memcg_socket_limit_enabled
);
479 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
484 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
486 static struct mem_cgroup_per_zone
*
487 mem_cgroup_zoneinfo(struct mem_cgroup
*memcg
, int nid
, int zid
)
489 return &memcg
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
492 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
497 static struct mem_cgroup_per_zone
*
498 page_cgroup_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
500 int nid
= page_to_nid(page
);
501 int zid
= page_zonenum(page
);
503 return mem_cgroup_zoneinfo(memcg
, nid
, zid
);
506 static struct mem_cgroup_tree_per_zone
*
507 soft_limit_tree_node_zone(int nid
, int zid
)
509 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
512 static struct mem_cgroup_tree_per_zone
*
513 soft_limit_tree_from_page(struct page
*page
)
515 int nid
= page_to_nid(page
);
516 int zid
= page_zonenum(page
);
518 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
522 __mem_cgroup_insert_exceeded(struct mem_cgroup
*memcg
,
523 struct mem_cgroup_per_zone
*mz
,
524 struct mem_cgroup_tree_per_zone
*mctz
,
525 unsigned long long new_usage_in_excess
)
527 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
528 struct rb_node
*parent
= NULL
;
529 struct mem_cgroup_per_zone
*mz_node
;
534 mz
->usage_in_excess
= new_usage_in_excess
;
535 if (!mz
->usage_in_excess
)
539 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
541 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
544 * We can't avoid mem cgroups that are over their soft
545 * limit by the same amount
547 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
550 rb_link_node(&mz
->tree_node
, parent
, p
);
551 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
556 __mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
557 struct mem_cgroup_per_zone
*mz
,
558 struct mem_cgroup_tree_per_zone
*mctz
)
562 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
567 mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
568 struct mem_cgroup_per_zone
*mz
,
569 struct mem_cgroup_tree_per_zone
*mctz
)
571 spin_lock(&mctz
->lock
);
572 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
573 spin_unlock(&mctz
->lock
);
577 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
579 unsigned long long excess
;
580 struct mem_cgroup_per_zone
*mz
;
581 struct mem_cgroup_tree_per_zone
*mctz
;
582 int nid
= page_to_nid(page
);
583 int zid
= page_zonenum(page
);
584 mctz
= soft_limit_tree_from_page(page
);
587 * Necessary to update all ancestors when hierarchy is used.
588 * because their event counter is not touched.
590 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
591 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
592 excess
= res_counter_soft_limit_excess(&memcg
->res
);
594 * We have to update the tree if mz is on RB-tree or
595 * mem is over its softlimit.
597 if (excess
|| mz
->on_tree
) {
598 spin_lock(&mctz
->lock
);
599 /* if on-tree, remove it */
601 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
603 * Insert again. mz->usage_in_excess will be updated.
604 * If excess is 0, no tree ops.
606 __mem_cgroup_insert_exceeded(memcg
, mz
, mctz
, excess
);
607 spin_unlock(&mctz
->lock
);
612 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
615 struct mem_cgroup_per_zone
*mz
;
616 struct mem_cgroup_tree_per_zone
*mctz
;
618 for_each_node(node
) {
619 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
620 mz
= mem_cgroup_zoneinfo(memcg
, node
, zone
);
621 mctz
= soft_limit_tree_node_zone(node
, zone
);
622 mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
627 static struct mem_cgroup_per_zone
*
628 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
630 struct rb_node
*rightmost
= NULL
;
631 struct mem_cgroup_per_zone
*mz
;
635 rightmost
= rb_last(&mctz
->rb_root
);
637 goto done
; /* Nothing to reclaim from */
639 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
641 * Remove the node now but someone else can add it back,
642 * we will to add it back at the end of reclaim to its correct
643 * position in the tree.
645 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
646 if (!res_counter_soft_limit_excess(&mz
->memcg
->res
) ||
647 !css_tryget(&mz
->memcg
->css
))
653 static struct mem_cgroup_per_zone
*
654 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
656 struct mem_cgroup_per_zone
*mz
;
658 spin_lock(&mctz
->lock
);
659 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
660 spin_unlock(&mctz
->lock
);
665 * Implementation Note: reading percpu statistics for memcg.
667 * Both of vmstat[] and percpu_counter has threshold and do periodic
668 * synchronization to implement "quick" read. There are trade-off between
669 * reading cost and precision of value. Then, we may have a chance to implement
670 * a periodic synchronizion of counter in memcg's counter.
672 * But this _read() function is used for user interface now. The user accounts
673 * memory usage by memory cgroup and he _always_ requires exact value because
674 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
675 * have to visit all online cpus and make sum. So, for now, unnecessary
676 * synchronization is not implemented. (just implemented for cpu hotplug)
678 * If there are kernel internal actions which can make use of some not-exact
679 * value, and reading all cpu value can be performance bottleneck in some
680 * common workload, threashold and synchonization as vmstat[] should be
683 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
684 enum mem_cgroup_stat_index idx
)
690 for_each_online_cpu(cpu
)
691 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
692 #ifdef CONFIG_HOTPLUG_CPU
693 spin_lock(&memcg
->pcp_counter_lock
);
694 val
+= memcg
->nocpu_base
.count
[idx
];
695 spin_unlock(&memcg
->pcp_counter_lock
);
701 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
704 int val
= (charge
) ? 1 : -1;
705 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
708 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
709 enum mem_cgroup_events_index idx
)
711 unsigned long val
= 0;
714 for_each_online_cpu(cpu
)
715 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
716 #ifdef CONFIG_HOTPLUG_CPU
717 spin_lock(&memcg
->pcp_counter_lock
);
718 val
+= memcg
->nocpu_base
.events
[idx
];
719 spin_unlock(&memcg
->pcp_counter_lock
);
724 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
725 bool anon
, int nr_pages
)
730 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
731 * counted as CACHE even if it's on ANON LRU.
734 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
737 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
740 /* pagein of a big page is an event. So, ignore page size */
742 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
744 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
745 nr_pages
= -nr_pages
; /* for event */
748 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
754 mem_cgroup_get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
756 struct mem_cgroup_per_zone
*mz
;
758 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
759 return mz
->lru_size
[lru
];
763 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
, int nid
, int zid
,
764 unsigned int lru_mask
)
766 struct mem_cgroup_per_zone
*mz
;
768 unsigned long ret
= 0;
770 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
773 if (BIT(lru
) & lru_mask
)
774 ret
+= mz
->lru_size
[lru
];
780 mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
781 int nid
, unsigned int lru_mask
)
786 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++)
787 total
+= mem_cgroup_zone_nr_lru_pages(memcg
,
793 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
794 unsigned int lru_mask
)
799 for_each_node_state(nid
, N_HIGH_MEMORY
)
800 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
804 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
805 enum mem_cgroup_events_target target
)
807 unsigned long val
, next
;
809 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
810 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
811 /* from time_after() in jiffies.h */
812 if ((long)next
- (long)val
< 0) {
814 case MEM_CGROUP_TARGET_THRESH
:
815 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
817 case MEM_CGROUP_TARGET_SOFTLIMIT
:
818 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
820 case MEM_CGROUP_TARGET_NUMAINFO
:
821 next
= val
+ NUMAINFO_EVENTS_TARGET
;
826 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
833 * Check events in order.
836 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
839 /* threshold event is triggered in finer grain than soft limit */
840 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
841 MEM_CGROUP_TARGET_THRESH
))) {
843 bool do_numainfo __maybe_unused
;
845 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
846 MEM_CGROUP_TARGET_SOFTLIMIT
);
848 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
849 MEM_CGROUP_TARGET_NUMAINFO
);
853 mem_cgroup_threshold(memcg
);
854 if (unlikely(do_softlimit
))
855 mem_cgroup_update_tree(memcg
, page
);
857 if (unlikely(do_numainfo
))
858 atomic_inc(&memcg
->numainfo_events
);
864 struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
866 return container_of(cgroup_subsys_state(cont
,
867 mem_cgroup_subsys_id
), struct mem_cgroup
,
871 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
874 * mm_update_next_owner() may clear mm->owner to NULL
875 * if it races with swapoff, page migration, etc.
876 * So this can be called with p == NULL.
881 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
882 struct mem_cgroup
, css
);
885 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
887 struct mem_cgroup
*memcg
= NULL
;
892 * Because we have no locks, mm->owner's may be being moved to other
893 * cgroup. We use css_tryget() here even if this looks
894 * pessimistic (rather than adding locks here).
898 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
899 if (unlikely(!memcg
))
901 } while (!css_tryget(&memcg
->css
));
907 * mem_cgroup_iter - iterate over memory cgroup hierarchy
908 * @root: hierarchy root
909 * @prev: previously returned memcg, NULL on first invocation
910 * @reclaim: cookie for shared reclaim walks, NULL for full walks
912 * Returns references to children of the hierarchy below @root, or
913 * @root itself, or %NULL after a full round-trip.
915 * Caller must pass the return value in @prev on subsequent
916 * invocations for reference counting, or use mem_cgroup_iter_break()
917 * to cancel a hierarchy walk before the round-trip is complete.
919 * Reclaimers can specify a zone and a priority level in @reclaim to
920 * divide up the memcgs in the hierarchy among all concurrent
921 * reclaimers operating on the same zone and priority.
923 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
924 struct mem_cgroup
*prev
,
925 struct mem_cgroup_reclaim_cookie
*reclaim
)
927 struct mem_cgroup
*memcg
= NULL
;
930 if (mem_cgroup_disabled())
934 root
= root_mem_cgroup
;
936 if (prev
&& !reclaim
)
937 id
= css_id(&prev
->css
);
939 if (prev
&& prev
!= root
)
942 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
949 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
950 struct cgroup_subsys_state
*css
;
953 int nid
= zone_to_nid(reclaim
->zone
);
954 int zid
= zone_idx(reclaim
->zone
);
955 struct mem_cgroup_per_zone
*mz
;
957 mz
= mem_cgroup_zoneinfo(root
, nid
, zid
);
958 iter
= &mz
->reclaim_iter
[reclaim
->priority
];
959 if (prev
&& reclaim
->generation
!= iter
->generation
)
965 css
= css_get_next(&mem_cgroup_subsys
, id
+ 1, &root
->css
, &id
);
967 if (css
== &root
->css
|| css_tryget(css
))
968 memcg
= container_of(css
,
969 struct mem_cgroup
, css
);
978 else if (!prev
&& memcg
)
979 reclaim
->generation
= iter
->generation
;
989 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
990 * @root: hierarchy root
991 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
993 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
994 struct mem_cgroup
*prev
)
997 root
= root_mem_cgroup
;
998 if (prev
&& prev
!= root
)
1003 * Iteration constructs for visiting all cgroups (under a tree). If
1004 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1005 * be used for reference counting.
1007 #define for_each_mem_cgroup_tree(iter, root) \
1008 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1010 iter = mem_cgroup_iter(root, iter, NULL))
1012 #define for_each_mem_cgroup(iter) \
1013 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1015 iter = mem_cgroup_iter(NULL, iter, NULL))
1017 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
1019 return (memcg
== root_mem_cgroup
);
1022 void mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
1024 struct mem_cgroup
*memcg
;
1030 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1031 if (unlikely(!memcg
))
1036 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
]);
1039 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
1047 EXPORT_SYMBOL(mem_cgroup_count_vm_event
);
1050 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1051 * @zone: zone of the wanted lruvec
1052 * @memcg: memcg of the wanted lruvec
1054 * Returns the lru list vector holding pages for the given @zone and
1055 * @mem. This can be the global zone lruvec, if the memory controller
1058 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
1059 struct mem_cgroup
*memcg
)
1061 struct mem_cgroup_per_zone
*mz
;
1063 if (mem_cgroup_disabled())
1064 return &zone
->lruvec
;
1066 mz
= mem_cgroup_zoneinfo(memcg
, zone_to_nid(zone
), zone_idx(zone
));
1071 * Following LRU functions are allowed to be used without PCG_LOCK.
1072 * Operations are called by routine of global LRU independently from memcg.
1073 * What we have to take care of here is validness of pc->mem_cgroup.
1075 * Changes to pc->mem_cgroup happens when
1078 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1079 * It is added to LRU before charge.
1080 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1081 * When moving account, the page is not on LRU. It's isolated.
1085 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1087 * @zone: zone of the page
1089 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
1091 struct mem_cgroup_per_zone
*mz
;
1092 struct mem_cgroup
*memcg
;
1093 struct page_cgroup
*pc
;
1095 if (mem_cgroup_disabled())
1096 return &zone
->lruvec
;
1098 pc
= lookup_page_cgroup(page
);
1099 memcg
= pc
->mem_cgroup
;
1102 * Surreptitiously switch any uncharged offlist page to root:
1103 * an uncharged page off lru does nothing to secure
1104 * its former mem_cgroup from sudden removal.
1106 * Our caller holds lru_lock, and PageCgroupUsed is updated
1107 * under page_cgroup lock: between them, they make all uses
1108 * of pc->mem_cgroup safe.
1110 if (!PageLRU(page
) && !PageCgroupUsed(pc
) && memcg
!= root_mem_cgroup
)
1111 pc
->mem_cgroup
= memcg
= root_mem_cgroup
;
1113 mz
= page_cgroup_zoneinfo(memcg
, page
);
1118 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1119 * @lruvec: mem_cgroup per zone lru vector
1120 * @lru: index of lru list the page is sitting on
1121 * @nr_pages: positive when adding or negative when removing
1123 * This function must be called when a page is added to or removed from an
1126 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1129 struct mem_cgroup_per_zone
*mz
;
1130 unsigned long *lru_size
;
1132 if (mem_cgroup_disabled())
1135 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1136 lru_size
= mz
->lru_size
+ lru
;
1137 *lru_size
+= nr_pages
;
1138 VM_BUG_ON((long)(*lru_size
) < 0);
1142 * Checks whether given mem is same or in the root_mem_cgroup's
1145 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1146 struct mem_cgroup
*memcg
)
1148 if (root_memcg
== memcg
)
1150 if (!root_memcg
->use_hierarchy
|| !memcg
)
1152 return css_is_ancestor(&memcg
->css
, &root_memcg
->css
);
1155 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1156 struct mem_cgroup
*memcg
)
1161 ret
= __mem_cgroup_same_or_subtree(root_memcg
, memcg
);
1166 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*memcg
)
1169 struct mem_cgroup
*curr
= NULL
;
1170 struct task_struct
*p
;
1172 p
= find_lock_task_mm(task
);
1174 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1178 * All threads may have already detached their mm's, but the oom
1179 * killer still needs to detect if they have already been oom
1180 * killed to prevent needlessly killing additional tasks.
1183 curr
= mem_cgroup_from_task(task
);
1185 css_get(&curr
->css
);
1191 * We should check use_hierarchy of "memcg" not "curr". Because checking
1192 * use_hierarchy of "curr" here make this function true if hierarchy is
1193 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1194 * hierarchy(even if use_hierarchy is disabled in "memcg").
1196 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1197 css_put(&curr
->css
);
1201 int mem_cgroup_inactive_anon_is_low(struct lruvec
*lruvec
)
1203 unsigned long inactive_ratio
;
1204 unsigned long inactive
;
1205 unsigned long active
;
1208 inactive
= mem_cgroup_get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1209 active
= mem_cgroup_get_lru_size(lruvec
, LRU_ACTIVE_ANON
);
1211 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1213 inactive_ratio
= int_sqrt(10 * gb
);
1217 return inactive
* inactive_ratio
< active
;
1220 int mem_cgroup_inactive_file_is_low(struct lruvec
*lruvec
)
1222 unsigned long active
;
1223 unsigned long inactive
;
1225 inactive
= mem_cgroup_get_lru_size(lruvec
, LRU_INACTIVE_FILE
);
1226 active
= mem_cgroup_get_lru_size(lruvec
, LRU_ACTIVE_FILE
);
1228 return (active
> inactive
);
1231 #define mem_cgroup_from_res_counter(counter, member) \
1232 container_of(counter, struct mem_cgroup, member)
1235 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1236 * @memcg: the memory cgroup
1238 * Returns the maximum amount of memory @mem can be charged with, in
1241 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1243 unsigned long long margin
;
1245 margin
= res_counter_margin(&memcg
->res
);
1246 if (do_swap_account
)
1247 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1248 return margin
>> PAGE_SHIFT
;
1251 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1253 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1256 if (cgrp
->parent
== NULL
)
1257 return vm_swappiness
;
1259 return memcg
->swappiness
;
1263 * memcg->moving_account is used for checking possibility that some thread is
1264 * calling move_account(). When a thread on CPU-A starts moving pages under
1265 * a memcg, other threads should check memcg->moving_account under
1266 * rcu_read_lock(), like this:
1270 * memcg->moving_account+1 if (memcg->mocing_account)
1272 * synchronize_rcu() update something.
1277 /* for quick checking without looking up memcg */
1278 atomic_t memcg_moving __read_mostly
;
1280 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1282 atomic_inc(&memcg_moving
);
1283 atomic_inc(&memcg
->moving_account
);
1287 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1290 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1291 * We check NULL in callee rather than caller.
1294 atomic_dec(&memcg_moving
);
1295 atomic_dec(&memcg
->moving_account
);
1300 * 2 routines for checking "mem" is under move_account() or not.
1302 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1303 * is used for avoiding races in accounting. If true,
1304 * pc->mem_cgroup may be overwritten.
1306 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1307 * under hierarchy of moving cgroups. This is for
1308 * waiting at hith-memory prressure caused by "move".
1311 static bool mem_cgroup_stolen(struct mem_cgroup
*memcg
)
1313 VM_BUG_ON(!rcu_read_lock_held());
1314 return atomic_read(&memcg
->moving_account
) > 0;
1317 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1319 struct mem_cgroup
*from
;
1320 struct mem_cgroup
*to
;
1323 * Unlike task_move routines, we access mc.to, mc.from not under
1324 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1326 spin_lock(&mc
.lock
);
1332 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1333 || mem_cgroup_same_or_subtree(memcg
, to
);
1335 spin_unlock(&mc
.lock
);
1339 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1341 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1342 if (mem_cgroup_under_move(memcg
)) {
1344 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1345 /* moving charge context might have finished. */
1348 finish_wait(&mc
.waitq
, &wait
);
1356 * Take this lock when
1357 * - a code tries to modify page's memcg while it's USED.
1358 * - a code tries to modify page state accounting in a memcg.
1359 * see mem_cgroup_stolen(), too.
1361 static void move_lock_mem_cgroup(struct mem_cgroup
*memcg
,
1362 unsigned long *flags
)
1364 spin_lock_irqsave(&memcg
->move_lock
, *flags
);
1367 static void move_unlock_mem_cgroup(struct mem_cgroup
*memcg
,
1368 unsigned long *flags
)
1370 spin_unlock_irqrestore(&memcg
->move_lock
, *flags
);
1374 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1375 * @memcg: The memory cgroup that went over limit
1376 * @p: Task that is going to be killed
1378 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1381 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1383 struct cgroup
*task_cgrp
;
1384 struct cgroup
*mem_cgrp
;
1386 * Need a buffer in BSS, can't rely on allocations. The code relies
1387 * on the assumption that OOM is serialized for memory controller.
1388 * If this assumption is broken, revisit this code.
1390 static char memcg_name
[PATH_MAX
];
1398 mem_cgrp
= memcg
->css
.cgroup
;
1399 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1401 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1404 * Unfortunately, we are unable to convert to a useful name
1405 * But we'll still print out the usage information
1412 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1415 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1423 * Continues from above, so we don't need an KERN_ level
1425 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1428 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1429 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1430 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1431 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1432 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1434 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1435 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1436 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1440 * This function returns the number of memcg under hierarchy tree. Returns
1441 * 1(self count) if no children.
1443 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1446 struct mem_cgroup
*iter
;
1448 for_each_mem_cgroup_tree(iter
, memcg
)
1454 * Return the memory (and swap, if configured) limit for a memcg.
1456 static u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1461 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1462 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1464 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1466 * If memsw is finite and limits the amount of swap space available
1467 * to this memcg, return that limit.
1469 return min(limit
, memsw
);
1472 void __mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1475 struct mem_cgroup
*iter
;
1476 unsigned long chosen_points
= 0;
1477 unsigned long totalpages
;
1478 unsigned int points
= 0;
1479 struct task_struct
*chosen
= NULL
;
1481 totalpages
= mem_cgroup_get_limit(memcg
) >> PAGE_SHIFT
? : 1;
1482 for_each_mem_cgroup_tree(iter
, memcg
) {
1483 struct cgroup
*cgroup
= iter
->css
.cgroup
;
1484 struct cgroup_iter it
;
1485 struct task_struct
*task
;
1487 cgroup_iter_start(cgroup
, &it
);
1488 while ((task
= cgroup_iter_next(cgroup
, &it
))) {
1489 switch (oom_scan_process_thread(task
, totalpages
, NULL
,
1491 case OOM_SCAN_SELECT
:
1493 put_task_struct(chosen
);
1495 chosen_points
= ULONG_MAX
;
1496 get_task_struct(chosen
);
1498 case OOM_SCAN_CONTINUE
:
1500 case OOM_SCAN_ABORT
:
1501 cgroup_iter_end(cgroup
, &it
);
1502 mem_cgroup_iter_break(memcg
, iter
);
1504 put_task_struct(chosen
);
1509 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1510 if (points
> chosen_points
) {
1512 put_task_struct(chosen
);
1514 chosen_points
= points
;
1515 get_task_struct(chosen
);
1518 cgroup_iter_end(cgroup
, &it
);
1523 points
= chosen_points
* 1000 / totalpages
;
1524 oom_kill_process(chosen
, gfp_mask
, order
, points
, totalpages
, memcg
,
1525 NULL
, "Memory cgroup out of memory");
1528 static unsigned long mem_cgroup_reclaim(struct mem_cgroup
*memcg
,
1530 unsigned long flags
)
1532 unsigned long total
= 0;
1533 bool noswap
= false;
1536 if (flags
& MEM_CGROUP_RECLAIM_NOSWAP
)
1538 if (!(flags
& MEM_CGROUP_RECLAIM_SHRINK
) && memcg
->memsw_is_minimum
)
1541 for (loop
= 0; loop
< MEM_CGROUP_MAX_RECLAIM_LOOPS
; loop
++) {
1543 drain_all_stock_async(memcg
);
1544 total
+= try_to_free_mem_cgroup_pages(memcg
, gfp_mask
, noswap
);
1546 * Allow limit shrinkers, which are triggered directly
1547 * by userspace, to catch signals and stop reclaim
1548 * after minimal progress, regardless of the margin.
1550 if (total
&& (flags
& MEM_CGROUP_RECLAIM_SHRINK
))
1552 if (mem_cgroup_margin(memcg
))
1555 * If nothing was reclaimed after two attempts, there
1556 * may be no reclaimable pages in this hierarchy.
1565 * test_mem_cgroup_node_reclaimable
1566 * @memcg: the target memcg
1567 * @nid: the node ID to be checked.
1568 * @noswap : specify true here if the user wants flle only information.
1570 * This function returns whether the specified memcg contains any
1571 * reclaimable pages on a node. Returns true if there are any reclaimable
1572 * pages in the node.
1574 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1575 int nid
, bool noswap
)
1577 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1579 if (noswap
|| !total_swap_pages
)
1581 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1586 #if MAX_NUMNODES > 1
1589 * Always updating the nodemask is not very good - even if we have an empty
1590 * list or the wrong list here, we can start from some node and traverse all
1591 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1594 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1598 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1599 * pagein/pageout changes since the last update.
1601 if (!atomic_read(&memcg
->numainfo_events
))
1603 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1606 /* make a nodemask where this memcg uses memory from */
1607 memcg
->scan_nodes
= node_states
[N_HIGH_MEMORY
];
1609 for_each_node_mask(nid
, node_states
[N_HIGH_MEMORY
]) {
1611 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1612 node_clear(nid
, memcg
->scan_nodes
);
1615 atomic_set(&memcg
->numainfo_events
, 0);
1616 atomic_set(&memcg
->numainfo_updating
, 0);
1620 * Selecting a node where we start reclaim from. Because what we need is just
1621 * reducing usage counter, start from anywhere is O,K. Considering
1622 * memory reclaim from current node, there are pros. and cons.
1624 * Freeing memory from current node means freeing memory from a node which
1625 * we'll use or we've used. So, it may make LRU bad. And if several threads
1626 * hit limits, it will see a contention on a node. But freeing from remote
1627 * node means more costs for memory reclaim because of memory latency.
1629 * Now, we use round-robin. Better algorithm is welcomed.
1631 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1635 mem_cgroup_may_update_nodemask(memcg
);
1636 node
= memcg
->last_scanned_node
;
1638 node
= next_node(node
, memcg
->scan_nodes
);
1639 if (node
== MAX_NUMNODES
)
1640 node
= first_node(memcg
->scan_nodes
);
1642 * We call this when we hit limit, not when pages are added to LRU.
1643 * No LRU may hold pages because all pages are UNEVICTABLE or
1644 * memcg is too small and all pages are not on LRU. In that case,
1645 * we use curret node.
1647 if (unlikely(node
== MAX_NUMNODES
))
1648 node
= numa_node_id();
1650 memcg
->last_scanned_node
= node
;
1655 * Check all nodes whether it contains reclaimable pages or not.
1656 * For quick scan, we make use of scan_nodes. This will allow us to skip
1657 * unused nodes. But scan_nodes is lazily updated and may not cotain
1658 * enough new information. We need to do double check.
1660 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1665 * quick check...making use of scan_node.
1666 * We can skip unused nodes.
1668 if (!nodes_empty(memcg
->scan_nodes
)) {
1669 for (nid
= first_node(memcg
->scan_nodes
);
1671 nid
= next_node(nid
, memcg
->scan_nodes
)) {
1673 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1678 * Check rest of nodes.
1680 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1681 if (node_isset(nid
, memcg
->scan_nodes
))
1683 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
1690 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1695 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
1697 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
1701 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1704 unsigned long *total_scanned
)
1706 struct mem_cgroup
*victim
= NULL
;
1709 unsigned long excess
;
1710 unsigned long nr_scanned
;
1711 struct mem_cgroup_reclaim_cookie reclaim
= {
1716 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
1719 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1724 * If we have not been able to reclaim
1725 * anything, it might because there are
1726 * no reclaimable pages under this hierarchy
1731 * We want to do more targeted reclaim.
1732 * excess >> 2 is not to excessive so as to
1733 * reclaim too much, nor too less that we keep
1734 * coming back to reclaim from this cgroup
1736 if (total
>= (excess
>> 2) ||
1737 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1742 if (!mem_cgroup_reclaimable(victim
, false))
1744 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
1746 *total_scanned
+= nr_scanned
;
1747 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
1750 mem_cgroup_iter_break(root_memcg
, victim
);
1755 * Check OOM-Killer is already running under our hierarchy.
1756 * If someone is running, return false.
1757 * Has to be called with memcg_oom_lock
1759 static bool mem_cgroup_oom_lock(struct mem_cgroup
*memcg
)
1761 struct mem_cgroup
*iter
, *failed
= NULL
;
1763 for_each_mem_cgroup_tree(iter
, memcg
) {
1764 if (iter
->oom_lock
) {
1766 * this subtree of our hierarchy is already locked
1767 * so we cannot give a lock.
1770 mem_cgroup_iter_break(memcg
, iter
);
1773 iter
->oom_lock
= true;
1780 * OK, we failed to lock the whole subtree so we have to clean up
1781 * what we set up to the failing subtree
1783 for_each_mem_cgroup_tree(iter
, memcg
) {
1784 if (iter
== failed
) {
1785 mem_cgroup_iter_break(memcg
, iter
);
1788 iter
->oom_lock
= false;
1794 * Has to be called with memcg_oom_lock
1796 static int mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1798 struct mem_cgroup
*iter
;
1800 for_each_mem_cgroup_tree(iter
, memcg
)
1801 iter
->oom_lock
= false;
1805 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1807 struct mem_cgroup
*iter
;
1809 for_each_mem_cgroup_tree(iter
, memcg
)
1810 atomic_inc(&iter
->under_oom
);
1813 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1815 struct mem_cgroup
*iter
;
1818 * When a new child is created while the hierarchy is under oom,
1819 * mem_cgroup_oom_lock() may not be called. We have to use
1820 * atomic_add_unless() here.
1822 for_each_mem_cgroup_tree(iter
, memcg
)
1823 atomic_add_unless(&iter
->under_oom
, -1, 0);
1826 static DEFINE_SPINLOCK(memcg_oom_lock
);
1827 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1829 struct oom_wait_info
{
1830 struct mem_cgroup
*memcg
;
1834 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1835 unsigned mode
, int sync
, void *arg
)
1837 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1838 struct mem_cgroup
*oom_wait_memcg
;
1839 struct oom_wait_info
*oom_wait_info
;
1841 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1842 oom_wait_memcg
= oom_wait_info
->memcg
;
1845 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1846 * Then we can use css_is_ancestor without taking care of RCU.
1848 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
1849 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
1851 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1854 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
1856 /* for filtering, pass "memcg" as argument. */
1857 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1860 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1862 if (memcg
&& atomic_read(&memcg
->under_oom
))
1863 memcg_wakeup_oom(memcg
);
1867 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1869 static bool mem_cgroup_handle_oom(struct mem_cgroup
*memcg
, gfp_t mask
,
1872 struct oom_wait_info owait
;
1873 bool locked
, need_to_kill
;
1875 owait
.memcg
= memcg
;
1876 owait
.wait
.flags
= 0;
1877 owait
.wait
.func
= memcg_oom_wake_function
;
1878 owait
.wait
.private = current
;
1879 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1880 need_to_kill
= true;
1881 mem_cgroup_mark_under_oom(memcg
);
1883 /* At first, try to OOM lock hierarchy under memcg.*/
1884 spin_lock(&memcg_oom_lock
);
1885 locked
= mem_cgroup_oom_lock(memcg
);
1887 * Even if signal_pending(), we can't quit charge() loop without
1888 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1889 * under OOM is always welcomed, use TASK_KILLABLE here.
1891 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1892 if (!locked
|| memcg
->oom_kill_disable
)
1893 need_to_kill
= false;
1895 mem_cgroup_oom_notify(memcg
);
1896 spin_unlock(&memcg_oom_lock
);
1899 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1900 mem_cgroup_out_of_memory(memcg
, mask
, order
);
1903 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1905 spin_lock(&memcg_oom_lock
);
1907 mem_cgroup_oom_unlock(memcg
);
1908 memcg_wakeup_oom(memcg
);
1909 spin_unlock(&memcg_oom_lock
);
1911 mem_cgroup_unmark_under_oom(memcg
);
1913 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1915 /* Give chance to dying process */
1916 schedule_timeout_uninterruptible(1);
1921 * Currently used to update mapped file statistics, but the routine can be
1922 * generalized to update other statistics as well.
1924 * Notes: Race condition
1926 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1927 * it tends to be costly. But considering some conditions, we doesn't need
1928 * to do so _always_.
1930 * Considering "charge", lock_page_cgroup() is not required because all
1931 * file-stat operations happen after a page is attached to radix-tree. There
1932 * are no race with "charge".
1934 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1935 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1936 * if there are race with "uncharge". Statistics itself is properly handled
1939 * Considering "move", this is an only case we see a race. To make the race
1940 * small, we check mm->moving_account and detect there are possibility of race
1941 * If there is, we take a lock.
1944 void __mem_cgroup_begin_update_page_stat(struct page
*page
,
1945 bool *locked
, unsigned long *flags
)
1947 struct mem_cgroup
*memcg
;
1948 struct page_cgroup
*pc
;
1950 pc
= lookup_page_cgroup(page
);
1952 memcg
= pc
->mem_cgroup
;
1953 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
1956 * If this memory cgroup is not under account moving, we don't
1957 * need to take move_lock_mem_cgroup(). Because we already hold
1958 * rcu_read_lock(), any calls to move_account will be delayed until
1959 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1961 if (!mem_cgroup_stolen(memcg
))
1964 move_lock_mem_cgroup(memcg
, flags
);
1965 if (memcg
!= pc
->mem_cgroup
|| !PageCgroupUsed(pc
)) {
1966 move_unlock_mem_cgroup(memcg
, flags
);
1972 void __mem_cgroup_end_update_page_stat(struct page
*page
, unsigned long *flags
)
1974 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1977 * It's guaranteed that pc->mem_cgroup never changes while
1978 * lock is held because a routine modifies pc->mem_cgroup
1979 * should take move_lock_mem_cgroup().
1981 move_unlock_mem_cgroup(pc
->mem_cgroup
, flags
);
1984 void mem_cgroup_update_page_stat(struct page
*page
,
1985 enum mem_cgroup_page_stat_item idx
, int val
)
1987 struct mem_cgroup
*memcg
;
1988 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1989 unsigned long uninitialized_var(flags
);
1991 if (mem_cgroup_disabled())
1994 memcg
= pc
->mem_cgroup
;
1995 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
1999 case MEMCG_NR_FILE_MAPPED
:
2000 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
2006 this_cpu_add(memcg
->stat
->count
[idx
], val
);
2010 * size of first charge trial. "32" comes from vmscan.c's magic value.
2011 * TODO: maybe necessary to use big numbers in big irons.
2013 #define CHARGE_BATCH 32U
2014 struct memcg_stock_pcp
{
2015 struct mem_cgroup
*cached
; /* this never be root cgroup */
2016 unsigned int nr_pages
;
2017 struct work_struct work
;
2018 unsigned long flags
;
2019 #define FLUSHING_CACHED_CHARGE 0
2021 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2022 static DEFINE_MUTEX(percpu_charge_mutex
);
2025 * Try to consume stocked charge on this cpu. If success, one page is consumed
2026 * from local stock and true is returned. If the stock is 0 or charges from a
2027 * cgroup which is not current target, returns false. This stock will be
2030 static bool consume_stock(struct mem_cgroup
*memcg
)
2032 struct memcg_stock_pcp
*stock
;
2035 stock
= &get_cpu_var(memcg_stock
);
2036 if (memcg
== stock
->cached
&& stock
->nr_pages
)
2038 else /* need to call res_counter_charge */
2040 put_cpu_var(memcg_stock
);
2045 * Returns stocks cached in percpu to res_counter and reset cached information.
2047 static void drain_stock(struct memcg_stock_pcp
*stock
)
2049 struct mem_cgroup
*old
= stock
->cached
;
2051 if (stock
->nr_pages
) {
2052 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2054 res_counter_uncharge(&old
->res
, bytes
);
2055 if (do_swap_account
)
2056 res_counter_uncharge(&old
->memsw
, bytes
);
2057 stock
->nr_pages
= 0;
2059 stock
->cached
= NULL
;
2063 * This must be called under preempt disabled or must be called by
2064 * a thread which is pinned to local cpu.
2066 static void drain_local_stock(struct work_struct
*dummy
)
2068 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
2070 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2074 * Cache charges(val) which is from res_counter, to local per_cpu area.
2075 * This will be consumed by consume_stock() function, later.
2077 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2079 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2081 if (stock
->cached
!= memcg
) { /* reset if necessary */
2083 stock
->cached
= memcg
;
2085 stock
->nr_pages
+= nr_pages
;
2086 put_cpu_var(memcg_stock
);
2090 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2091 * of the hierarchy under it. sync flag says whether we should block
2092 * until the work is done.
2094 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2098 /* Notify other cpus that system-wide "drain" is running */
2101 for_each_online_cpu(cpu
) {
2102 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2103 struct mem_cgroup
*memcg
;
2105 memcg
= stock
->cached
;
2106 if (!memcg
|| !stock
->nr_pages
)
2108 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2110 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2112 drain_local_stock(&stock
->work
);
2114 schedule_work_on(cpu
, &stock
->work
);
2122 for_each_online_cpu(cpu
) {
2123 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2124 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2125 flush_work(&stock
->work
);
2132 * Tries to drain stocked charges in other cpus. This function is asynchronous
2133 * and just put a work per cpu for draining localy on each cpu. Caller can
2134 * expects some charges will be back to res_counter later but cannot wait for
2137 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2140 * If someone calls draining, avoid adding more kworker runs.
2142 if (!mutex_trylock(&percpu_charge_mutex
))
2144 drain_all_stock(root_memcg
, false);
2145 mutex_unlock(&percpu_charge_mutex
);
2148 /* This is a synchronous drain interface. */
2149 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2151 /* called when force_empty is called */
2152 mutex_lock(&percpu_charge_mutex
);
2153 drain_all_stock(root_memcg
, true);
2154 mutex_unlock(&percpu_charge_mutex
);
2158 * This function drains percpu counter value from DEAD cpu and
2159 * move it to local cpu. Note that this function can be preempted.
2161 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2165 spin_lock(&memcg
->pcp_counter_lock
);
2166 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
2167 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2169 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2170 memcg
->nocpu_base
.count
[i
] += x
;
2172 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2173 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2175 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2176 memcg
->nocpu_base
.events
[i
] += x
;
2178 spin_unlock(&memcg
->pcp_counter_lock
);
2181 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2182 unsigned long action
,
2185 int cpu
= (unsigned long)hcpu
;
2186 struct memcg_stock_pcp
*stock
;
2187 struct mem_cgroup
*iter
;
2189 if (action
== CPU_ONLINE
)
2192 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
2195 for_each_mem_cgroup(iter
)
2196 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2198 stock
= &per_cpu(memcg_stock
, cpu
);
2204 /* See __mem_cgroup_try_charge() for details */
2206 CHARGE_OK
, /* success */
2207 CHARGE_RETRY
, /* need to retry but retry is not bad */
2208 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2209 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2210 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
2213 static int mem_cgroup_do_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2214 unsigned int nr_pages
, bool oom_check
)
2216 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2217 struct mem_cgroup
*mem_over_limit
;
2218 struct res_counter
*fail_res
;
2219 unsigned long flags
= 0;
2222 ret
= res_counter_charge(&memcg
->res
, csize
, &fail_res
);
2225 if (!do_swap_account
)
2227 ret
= res_counter_charge(&memcg
->memsw
, csize
, &fail_res
);
2231 res_counter_uncharge(&memcg
->res
, csize
);
2232 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2233 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2235 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2237 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2238 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2240 * Never reclaim on behalf of optional batching, retry with a
2241 * single page instead.
2243 if (nr_pages
== CHARGE_BATCH
)
2244 return CHARGE_RETRY
;
2246 if (!(gfp_mask
& __GFP_WAIT
))
2247 return CHARGE_WOULDBLOCK
;
2249 ret
= mem_cgroup_reclaim(mem_over_limit
, gfp_mask
, flags
);
2250 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2251 return CHARGE_RETRY
;
2253 * Even though the limit is exceeded at this point, reclaim
2254 * may have been able to free some pages. Retry the charge
2255 * before killing the task.
2257 * Only for regular pages, though: huge pages are rather
2258 * unlikely to succeed so close to the limit, and we fall back
2259 * to regular pages anyway in case of failure.
2261 if (nr_pages
== 1 && ret
)
2262 return CHARGE_RETRY
;
2265 * At task move, charge accounts can be doubly counted. So, it's
2266 * better to wait until the end of task_move if something is going on.
2268 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2269 return CHARGE_RETRY
;
2271 /* If we don't need to call oom-killer at el, return immediately */
2273 return CHARGE_NOMEM
;
2275 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
, get_order(csize
)))
2276 return CHARGE_OOM_DIE
;
2278 return CHARGE_RETRY
;
2282 * __mem_cgroup_try_charge() does
2283 * 1. detect memcg to be charged against from passed *mm and *ptr,
2284 * 2. update res_counter
2285 * 3. call memory reclaim if necessary.
2287 * In some special case, if the task is fatal, fatal_signal_pending() or
2288 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2289 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2290 * as possible without any hazards. 2: all pages should have a valid
2291 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2292 * pointer, that is treated as a charge to root_mem_cgroup.
2294 * So __mem_cgroup_try_charge() will return
2295 * 0 ... on success, filling *ptr with a valid memcg pointer.
2296 * -ENOMEM ... charge failure because of resource limits.
2297 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2299 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2300 * the oom-killer can be invoked.
2302 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2304 unsigned int nr_pages
,
2305 struct mem_cgroup
**ptr
,
2308 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2309 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2310 struct mem_cgroup
*memcg
= NULL
;
2314 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2315 * in system level. So, allow to go ahead dying process in addition to
2318 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2319 || fatal_signal_pending(current
)))
2323 * We always charge the cgroup the mm_struct belongs to.
2324 * The mm_struct's mem_cgroup changes on task migration if the
2325 * thread group leader migrates. It's possible that mm is not
2326 * set, if so charge the init_mm (happens for pagecache usage).
2329 *ptr
= root_mem_cgroup
;
2331 if (*ptr
) { /* css should be a valid one */
2333 VM_BUG_ON(css_is_removed(&memcg
->css
));
2334 if (mem_cgroup_is_root(memcg
))
2336 if (nr_pages
== 1 && consume_stock(memcg
))
2338 css_get(&memcg
->css
);
2340 struct task_struct
*p
;
2343 p
= rcu_dereference(mm
->owner
);
2345 * Because we don't have task_lock(), "p" can exit.
2346 * In that case, "memcg" can point to root or p can be NULL with
2347 * race with swapoff. Then, we have small risk of mis-accouning.
2348 * But such kind of mis-account by race always happens because
2349 * we don't have cgroup_mutex(). It's overkill and we allo that
2351 * (*) swapoff at el will charge against mm-struct not against
2352 * task-struct. So, mm->owner can be NULL.
2354 memcg
= mem_cgroup_from_task(p
);
2356 memcg
= root_mem_cgroup
;
2357 if (mem_cgroup_is_root(memcg
)) {
2361 if (nr_pages
== 1 && consume_stock(memcg
)) {
2363 * It seems dagerous to access memcg without css_get().
2364 * But considering how consume_stok works, it's not
2365 * necessary. If consume_stock success, some charges
2366 * from this memcg are cached on this cpu. So, we
2367 * don't need to call css_get()/css_tryget() before
2368 * calling consume_stock().
2373 /* after here, we may be blocked. we need to get refcnt */
2374 if (!css_tryget(&memcg
->css
)) {
2384 /* If killed, bypass charge */
2385 if (fatal_signal_pending(current
)) {
2386 css_put(&memcg
->css
);
2391 if (oom
&& !nr_oom_retries
) {
2393 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2396 ret
= mem_cgroup_do_charge(memcg
, gfp_mask
, batch
, oom_check
);
2400 case CHARGE_RETRY
: /* not in OOM situation but retry */
2402 css_put(&memcg
->css
);
2405 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2406 css_put(&memcg
->css
);
2408 case CHARGE_NOMEM
: /* OOM routine works */
2410 css_put(&memcg
->css
);
2413 /* If oom, we never return -ENOMEM */
2416 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2417 css_put(&memcg
->css
);
2420 } while (ret
!= CHARGE_OK
);
2422 if (batch
> nr_pages
)
2423 refill_stock(memcg
, batch
- nr_pages
);
2424 css_put(&memcg
->css
);
2432 *ptr
= root_mem_cgroup
;
2437 * Somemtimes we have to undo a charge we got by try_charge().
2438 * This function is for that and do uncharge, put css's refcnt.
2439 * gotten by try_charge().
2441 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*memcg
,
2442 unsigned int nr_pages
)
2444 if (!mem_cgroup_is_root(memcg
)) {
2445 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2447 res_counter_uncharge(&memcg
->res
, bytes
);
2448 if (do_swap_account
)
2449 res_counter_uncharge(&memcg
->memsw
, bytes
);
2454 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2455 * This is useful when moving usage to parent cgroup.
2457 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup
*memcg
,
2458 unsigned int nr_pages
)
2460 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2462 if (mem_cgroup_is_root(memcg
))
2465 res_counter_uncharge_until(&memcg
->res
, memcg
->res
.parent
, bytes
);
2466 if (do_swap_account
)
2467 res_counter_uncharge_until(&memcg
->memsw
,
2468 memcg
->memsw
.parent
, bytes
);
2472 * A helper function to get mem_cgroup from ID. must be called under
2473 * rcu_read_lock(). The caller must check css_is_removed() or some if
2474 * it's concern. (dropping refcnt from swap can be called against removed
2477 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2479 struct cgroup_subsys_state
*css
;
2481 /* ID 0 is unused ID */
2484 css
= css_lookup(&mem_cgroup_subsys
, id
);
2487 return container_of(css
, struct mem_cgroup
, css
);
2490 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2492 struct mem_cgroup
*memcg
= NULL
;
2493 struct page_cgroup
*pc
;
2497 VM_BUG_ON(!PageLocked(page
));
2499 pc
= lookup_page_cgroup(page
);
2500 lock_page_cgroup(pc
);
2501 if (PageCgroupUsed(pc
)) {
2502 memcg
= pc
->mem_cgroup
;
2503 if (memcg
&& !css_tryget(&memcg
->css
))
2505 } else if (PageSwapCache(page
)) {
2506 ent
.val
= page_private(page
);
2507 id
= lookup_swap_cgroup_id(ent
);
2509 memcg
= mem_cgroup_lookup(id
);
2510 if (memcg
&& !css_tryget(&memcg
->css
))
2514 unlock_page_cgroup(pc
);
2518 static void __mem_cgroup_commit_charge(struct mem_cgroup
*memcg
,
2520 unsigned int nr_pages
,
2521 enum charge_type ctype
,
2524 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2525 struct zone
*uninitialized_var(zone
);
2526 struct lruvec
*lruvec
;
2527 bool was_on_lru
= false;
2530 lock_page_cgroup(pc
);
2531 if (unlikely(PageCgroupUsed(pc
))) {
2532 unlock_page_cgroup(pc
);
2533 __mem_cgroup_cancel_charge(memcg
, nr_pages
);
2537 * we don't need page_cgroup_lock about tail pages, becase they are not
2538 * accessed by any other context at this point.
2542 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2543 * may already be on some other mem_cgroup's LRU. Take care of it.
2546 zone
= page_zone(page
);
2547 spin_lock_irq(&zone
->lru_lock
);
2548 if (PageLRU(page
)) {
2549 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2551 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2556 pc
->mem_cgroup
= memcg
;
2558 * We access a page_cgroup asynchronously without lock_page_cgroup().
2559 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2560 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2561 * before USED bit, we need memory barrier here.
2562 * See mem_cgroup_add_lru_list(), etc.
2565 SetPageCgroupUsed(pc
);
2569 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2570 VM_BUG_ON(PageLRU(page
));
2572 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2574 spin_unlock_irq(&zone
->lru_lock
);
2577 if (ctype
== MEM_CGROUP_CHARGE_TYPE_ANON
)
2582 mem_cgroup_charge_statistics(memcg
, anon
, nr_pages
);
2583 unlock_page_cgroup(pc
);
2586 * "charge_statistics" updated event counter. Then, check it.
2587 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2588 * if they exceeds softlimit.
2590 memcg_check_events(memcg
, page
);
2593 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2595 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2597 * Because tail pages are not marked as "used", set it. We're under
2598 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2599 * charge/uncharge will be never happen and move_account() is done under
2600 * compound_lock(), so we don't have to take care of races.
2602 void mem_cgroup_split_huge_fixup(struct page
*head
)
2604 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
2605 struct page_cgroup
*pc
;
2608 if (mem_cgroup_disabled())
2610 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
2612 pc
->mem_cgroup
= head_pc
->mem_cgroup
;
2613 smp_wmb();/* see __commit_charge() */
2614 pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
2617 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2620 * mem_cgroup_move_account - move account of the page
2622 * @nr_pages: number of regular pages (>1 for huge pages)
2623 * @pc: page_cgroup of the page.
2624 * @from: mem_cgroup which the page is moved from.
2625 * @to: mem_cgroup which the page is moved to. @from != @to.
2627 * The caller must confirm following.
2628 * - page is not on LRU (isolate_page() is useful.)
2629 * - compound_lock is held when nr_pages > 1
2631 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2634 static int mem_cgroup_move_account(struct page
*page
,
2635 unsigned int nr_pages
,
2636 struct page_cgroup
*pc
,
2637 struct mem_cgroup
*from
,
2638 struct mem_cgroup
*to
)
2640 unsigned long flags
;
2642 bool anon
= PageAnon(page
);
2644 VM_BUG_ON(from
== to
);
2645 VM_BUG_ON(PageLRU(page
));
2647 * The page is isolated from LRU. So, collapse function
2648 * will not handle this page. But page splitting can happen.
2649 * Do this check under compound_page_lock(). The caller should
2653 if (nr_pages
> 1 && !PageTransHuge(page
))
2656 lock_page_cgroup(pc
);
2659 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
2662 move_lock_mem_cgroup(from
, &flags
);
2664 if (!anon
&& page_mapped(page
)) {
2665 /* Update mapped_file data for mem_cgroup */
2667 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2668 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2671 mem_cgroup_charge_statistics(from
, anon
, -nr_pages
);
2673 /* caller should have done css_get */
2674 pc
->mem_cgroup
= to
;
2675 mem_cgroup_charge_statistics(to
, anon
, nr_pages
);
2677 * We charges against "to" which may not have any tasks. Then, "to"
2678 * can be under rmdir(). But in current implementation, caller of
2679 * this function is just force_empty() and move charge, so it's
2680 * guaranteed that "to" is never removed. So, we don't check rmdir
2683 move_unlock_mem_cgroup(from
, &flags
);
2686 unlock_page_cgroup(pc
);
2690 memcg_check_events(to
, page
);
2691 memcg_check_events(from
, page
);
2697 * move charges to its parent.
2700 static int mem_cgroup_move_parent(struct page
*page
,
2701 struct page_cgroup
*pc
,
2702 struct mem_cgroup
*child
)
2704 struct mem_cgroup
*parent
;
2705 unsigned int nr_pages
;
2706 unsigned long uninitialized_var(flags
);
2710 if (mem_cgroup_is_root(child
))
2714 if (!get_page_unless_zero(page
))
2716 if (isolate_lru_page(page
))
2719 nr_pages
= hpage_nr_pages(page
);
2721 parent
= parent_mem_cgroup(child
);
2723 * If no parent, move charges to root cgroup.
2726 parent
= root_mem_cgroup
;
2729 flags
= compound_lock_irqsave(page
);
2731 ret
= mem_cgroup_move_account(page
, nr_pages
,
2734 __mem_cgroup_cancel_local_charge(child
, nr_pages
);
2737 compound_unlock_irqrestore(page
, flags
);
2738 putback_lru_page(page
);
2746 * Charge the memory controller for page usage.
2748 * 0 if the charge was successful
2749 * < 0 if the cgroup is over its limit
2751 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2752 gfp_t gfp_mask
, enum charge_type ctype
)
2754 struct mem_cgroup
*memcg
= NULL
;
2755 unsigned int nr_pages
= 1;
2759 if (PageTransHuge(page
)) {
2760 nr_pages
<<= compound_order(page
);
2761 VM_BUG_ON(!PageTransHuge(page
));
2763 * Never OOM-kill a process for a huge page. The
2764 * fault handler will fall back to regular pages.
2769 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &memcg
, oom
);
2772 __mem_cgroup_commit_charge(memcg
, page
, nr_pages
, ctype
, false);
2776 int mem_cgroup_newpage_charge(struct page
*page
,
2777 struct mm_struct
*mm
, gfp_t gfp_mask
)
2779 if (mem_cgroup_disabled())
2781 VM_BUG_ON(page_mapped(page
));
2782 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
2784 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2785 MEM_CGROUP_CHARGE_TYPE_ANON
);
2789 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2790 enum charge_type ctype
);
2792 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2795 struct mem_cgroup
*memcg
= NULL
;
2796 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
2799 if (mem_cgroup_disabled())
2801 if (PageCompound(page
))
2806 if (!page_is_file_cache(page
))
2807 type
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
2809 if (!PageSwapCache(page
))
2810 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
, type
);
2811 else { /* page is swapcache/shmem */
2812 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &memcg
);
2814 __mem_cgroup_commit_charge_swapin(page
, memcg
, type
);
2820 * While swap-in, try_charge -> commit or cancel, the page is locked.
2821 * And when try_charge() successfully returns, one refcnt to memcg without
2822 * struct page_cgroup is acquired. This refcnt will be consumed by
2823 * "commit()" or removed by "cancel()"
2825 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2827 gfp_t mask
, struct mem_cgroup
**memcgp
)
2829 struct mem_cgroup
*memcg
;
2834 if (mem_cgroup_disabled())
2837 if (!do_swap_account
)
2840 * A racing thread's fault, or swapoff, may have already updated
2841 * the pte, and even removed page from swap cache: in those cases
2842 * do_swap_page()'s pte_same() test will fail; but there's also a
2843 * KSM case which does need to charge the page.
2845 if (!PageSwapCache(page
))
2847 memcg
= try_get_mem_cgroup_from_page(page
);
2851 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, memcgp
, true);
2852 css_put(&memcg
->css
);
2859 ret
= __mem_cgroup_try_charge(mm
, mask
, 1, memcgp
, true);
2866 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*memcg
,
2867 enum charge_type ctype
)
2869 if (mem_cgroup_disabled())
2873 cgroup_exclude_rmdir(&memcg
->css
);
2875 __mem_cgroup_commit_charge(memcg
, page
, 1, ctype
, true);
2877 * Now swap is on-memory. This means this page may be
2878 * counted both as mem and swap....double count.
2879 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2880 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2881 * may call delete_from_swap_cache() before reach here.
2883 if (do_swap_account
&& PageSwapCache(page
)) {
2884 swp_entry_t ent
= {.val
= page_private(page
)};
2885 mem_cgroup_uncharge_swap(ent
);
2888 * At swapin, we may charge account against cgroup which has no tasks.
2889 * So, rmdir()->pre_destroy() can be called while we do this charge.
2890 * In that case, we need to call pre_destroy() again. check it here.
2892 cgroup_release_and_wakeup_rmdir(&memcg
->css
);
2895 void mem_cgroup_commit_charge_swapin(struct page
*page
,
2896 struct mem_cgroup
*memcg
)
2898 __mem_cgroup_commit_charge_swapin(page
, memcg
,
2899 MEM_CGROUP_CHARGE_TYPE_ANON
);
2902 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*memcg
)
2904 if (mem_cgroup_disabled())
2908 __mem_cgroup_cancel_charge(memcg
, 1);
2911 static void mem_cgroup_do_uncharge(struct mem_cgroup
*memcg
,
2912 unsigned int nr_pages
,
2913 const enum charge_type ctype
)
2915 struct memcg_batch_info
*batch
= NULL
;
2916 bool uncharge_memsw
= true;
2918 /* If swapout, usage of swap doesn't decrease */
2919 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2920 uncharge_memsw
= false;
2922 batch
= ¤t
->memcg_batch
;
2924 * In usual, we do css_get() when we remember memcg pointer.
2925 * But in this case, we keep res->usage until end of a series of
2926 * uncharges. Then, it's ok to ignore memcg's refcnt.
2929 batch
->memcg
= memcg
;
2931 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2932 * In those cases, all pages freed continuously can be expected to be in
2933 * the same cgroup and we have chance to coalesce uncharges.
2934 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2935 * because we want to do uncharge as soon as possible.
2938 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2939 goto direct_uncharge
;
2942 goto direct_uncharge
;
2945 * In typical case, batch->memcg == mem. This means we can
2946 * merge a series of uncharges to an uncharge of res_counter.
2947 * If not, we uncharge res_counter ony by one.
2949 if (batch
->memcg
!= memcg
)
2950 goto direct_uncharge
;
2951 /* remember freed charge and uncharge it later */
2954 batch
->memsw_nr_pages
++;
2957 res_counter_uncharge(&memcg
->res
, nr_pages
* PAGE_SIZE
);
2959 res_counter_uncharge(&memcg
->memsw
, nr_pages
* PAGE_SIZE
);
2960 if (unlikely(batch
->memcg
!= memcg
))
2961 memcg_oom_recover(memcg
);
2965 * uncharge if !page_mapped(page)
2967 static struct mem_cgroup
*
2968 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2970 struct mem_cgroup
*memcg
= NULL
;
2971 unsigned int nr_pages
= 1;
2972 struct page_cgroup
*pc
;
2975 if (mem_cgroup_disabled())
2978 if (PageSwapCache(page
))
2981 if (PageTransHuge(page
)) {
2982 nr_pages
<<= compound_order(page
);
2983 VM_BUG_ON(!PageTransHuge(page
));
2986 * Check if our page_cgroup is valid
2988 pc
= lookup_page_cgroup(page
);
2989 if (unlikely(!PageCgroupUsed(pc
)))
2992 lock_page_cgroup(pc
);
2994 memcg
= pc
->mem_cgroup
;
2996 if (!PageCgroupUsed(pc
))
2999 anon
= PageAnon(page
);
3002 case MEM_CGROUP_CHARGE_TYPE_ANON
:
3004 * Generally PageAnon tells if it's the anon statistics to be
3005 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3006 * used before page reached the stage of being marked PageAnon.
3010 case MEM_CGROUP_CHARGE_TYPE_DROP
:
3011 /* See mem_cgroup_prepare_migration() */
3012 if (page_mapped(page
) || PageCgroupMigration(pc
))
3015 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
3016 if (!PageAnon(page
)) { /* Shared memory */
3017 if (page
->mapping
&& !page_is_file_cache(page
))
3019 } else if (page_mapped(page
)) /* Anon */
3026 mem_cgroup_charge_statistics(memcg
, anon
, -nr_pages
);
3028 ClearPageCgroupUsed(pc
);
3030 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3031 * freed from LRU. This is safe because uncharged page is expected not
3032 * to be reused (freed soon). Exception is SwapCache, it's handled by
3033 * special functions.
3036 unlock_page_cgroup(pc
);
3038 * even after unlock, we have memcg->res.usage here and this memcg
3039 * will never be freed.
3041 memcg_check_events(memcg
, page
);
3042 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
3043 mem_cgroup_swap_statistics(memcg
, true);
3044 mem_cgroup_get(memcg
);
3046 if (!mem_cgroup_is_root(memcg
))
3047 mem_cgroup_do_uncharge(memcg
, nr_pages
, ctype
);
3052 unlock_page_cgroup(pc
);
3056 void mem_cgroup_uncharge_page(struct page
*page
)
3059 if (page_mapped(page
))
3061 VM_BUG_ON(page
->mapping
&& !PageAnon(page
));
3062 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_ANON
);
3065 void mem_cgroup_uncharge_cache_page(struct page
*page
)
3067 VM_BUG_ON(page_mapped(page
));
3068 VM_BUG_ON(page
->mapping
);
3069 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
3073 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3074 * In that cases, pages are freed continuously and we can expect pages
3075 * are in the same memcg. All these calls itself limits the number of
3076 * pages freed at once, then uncharge_start/end() is called properly.
3077 * This may be called prural(2) times in a context,
3080 void mem_cgroup_uncharge_start(void)
3082 current
->memcg_batch
.do_batch
++;
3083 /* We can do nest. */
3084 if (current
->memcg_batch
.do_batch
== 1) {
3085 current
->memcg_batch
.memcg
= NULL
;
3086 current
->memcg_batch
.nr_pages
= 0;
3087 current
->memcg_batch
.memsw_nr_pages
= 0;
3091 void mem_cgroup_uncharge_end(void)
3093 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
3095 if (!batch
->do_batch
)
3099 if (batch
->do_batch
) /* If stacked, do nothing. */
3105 * This "batch->memcg" is valid without any css_get/put etc...
3106 * bacause we hide charges behind us.
3108 if (batch
->nr_pages
)
3109 res_counter_uncharge(&batch
->memcg
->res
,
3110 batch
->nr_pages
* PAGE_SIZE
);
3111 if (batch
->memsw_nr_pages
)
3112 res_counter_uncharge(&batch
->memcg
->memsw
,
3113 batch
->memsw_nr_pages
* PAGE_SIZE
);
3114 memcg_oom_recover(batch
->memcg
);
3115 /* forget this pointer (for sanity check) */
3116 batch
->memcg
= NULL
;
3121 * called after __delete_from_swap_cache() and drop "page" account.
3122 * memcg information is recorded to swap_cgroup of "ent"
3125 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
3127 struct mem_cgroup
*memcg
;
3128 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
3130 if (!swapout
) /* this was a swap cache but the swap is unused ! */
3131 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
3133 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
3136 * record memcg information, if swapout && memcg != NULL,
3137 * mem_cgroup_get() was called in uncharge().
3139 if (do_swap_account
&& swapout
&& memcg
)
3140 swap_cgroup_record(ent
, css_id(&memcg
->css
));
3144 #ifdef CONFIG_MEMCG_SWAP
3146 * called from swap_entry_free(). remove record in swap_cgroup and
3147 * uncharge "memsw" account.
3149 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
3151 struct mem_cgroup
*memcg
;
3154 if (!do_swap_account
)
3157 id
= swap_cgroup_record(ent
, 0);
3159 memcg
= mem_cgroup_lookup(id
);
3162 * We uncharge this because swap is freed.
3163 * This memcg can be obsolete one. We avoid calling css_tryget
3165 if (!mem_cgroup_is_root(memcg
))
3166 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
3167 mem_cgroup_swap_statistics(memcg
, false);
3168 mem_cgroup_put(memcg
);
3174 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3175 * @entry: swap entry to be moved
3176 * @from: mem_cgroup which the entry is moved from
3177 * @to: mem_cgroup which the entry is moved to
3179 * It succeeds only when the swap_cgroup's record for this entry is the same
3180 * as the mem_cgroup's id of @from.
3182 * Returns 0 on success, -EINVAL on failure.
3184 * The caller must have charged to @to, IOW, called res_counter_charge() about
3185 * both res and memsw, and called css_get().
3187 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
3188 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
3190 unsigned short old_id
, new_id
;
3192 old_id
= css_id(&from
->css
);
3193 new_id
= css_id(&to
->css
);
3195 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
3196 mem_cgroup_swap_statistics(from
, false);
3197 mem_cgroup_swap_statistics(to
, true);
3199 * This function is only called from task migration context now.
3200 * It postpones res_counter and refcount handling till the end
3201 * of task migration(mem_cgroup_clear_mc()) for performance
3202 * improvement. But we cannot postpone mem_cgroup_get(to)
3203 * because if the process that has been moved to @to does
3204 * swap-in, the refcount of @to might be decreased to 0.
3212 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
3213 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
3220 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3223 int mem_cgroup_prepare_migration(struct page
*page
,
3224 struct page
*newpage
, struct mem_cgroup
**memcgp
, gfp_t gfp_mask
)
3226 struct mem_cgroup
*memcg
= NULL
;
3227 struct page_cgroup
*pc
;
3228 enum charge_type ctype
;
3233 VM_BUG_ON(PageTransHuge(page
));
3234 if (mem_cgroup_disabled())
3237 pc
= lookup_page_cgroup(page
);
3238 lock_page_cgroup(pc
);
3239 if (PageCgroupUsed(pc
)) {
3240 memcg
= pc
->mem_cgroup
;
3241 css_get(&memcg
->css
);
3243 * At migrating an anonymous page, its mapcount goes down
3244 * to 0 and uncharge() will be called. But, even if it's fully
3245 * unmapped, migration may fail and this page has to be
3246 * charged again. We set MIGRATION flag here and delay uncharge
3247 * until end_migration() is called
3249 * Corner Case Thinking
3251 * When the old page was mapped as Anon and it's unmap-and-freed
3252 * while migration was ongoing.
3253 * If unmap finds the old page, uncharge() of it will be delayed
3254 * until end_migration(). If unmap finds a new page, it's
3255 * uncharged when it make mapcount to be 1->0. If unmap code
3256 * finds swap_migration_entry, the new page will not be mapped
3257 * and end_migration() will find it(mapcount==0).
3260 * When the old page was mapped but migraion fails, the kernel
3261 * remaps it. A charge for it is kept by MIGRATION flag even
3262 * if mapcount goes down to 0. We can do remap successfully
3263 * without charging it again.
3266 * The "old" page is under lock_page() until the end of
3267 * migration, so, the old page itself will not be swapped-out.
3268 * If the new page is swapped out before end_migraton, our
3269 * hook to usual swap-out path will catch the event.
3272 SetPageCgroupMigration(pc
);
3274 unlock_page_cgroup(pc
);
3276 * If the page is not charged at this point,
3283 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, 1, memcgp
, false);
3284 css_put(&memcg
->css
);/* drop extra refcnt */
3286 if (PageAnon(page
)) {
3287 lock_page_cgroup(pc
);
3288 ClearPageCgroupMigration(pc
);
3289 unlock_page_cgroup(pc
);
3291 * The old page may be fully unmapped while we kept it.
3293 mem_cgroup_uncharge_page(page
);
3295 /* we'll need to revisit this error code (we have -EINTR) */
3299 * We charge new page before it's used/mapped. So, even if unlock_page()
3300 * is called before end_migration, we can catch all events on this new
3301 * page. In the case new page is migrated but not remapped, new page's
3302 * mapcount will be finally 0 and we call uncharge in end_migration().
3305 ctype
= MEM_CGROUP_CHARGE_TYPE_ANON
;
3306 else if (page_is_file_cache(page
))
3307 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3309 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3310 __mem_cgroup_commit_charge(memcg
, newpage
, 1, ctype
, false);
3314 /* remove redundant charge if migration failed*/
3315 void mem_cgroup_end_migration(struct mem_cgroup
*memcg
,
3316 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
3318 struct page
*used
, *unused
;
3319 struct page_cgroup
*pc
;
3324 /* blocks rmdir() */
3325 cgroup_exclude_rmdir(&memcg
->css
);
3326 if (!migration_ok
) {
3334 * We disallowed uncharge of pages under migration because mapcount
3335 * of the page goes down to zero, temporarly.
3336 * Clear the flag and check the page should be charged.
3338 pc
= lookup_page_cgroup(oldpage
);
3339 lock_page_cgroup(pc
);
3340 ClearPageCgroupMigration(pc
);
3341 unlock_page_cgroup(pc
);
3342 anon
= PageAnon(used
);
3343 __mem_cgroup_uncharge_common(unused
,
3344 anon
? MEM_CGROUP_CHARGE_TYPE_ANON
3345 : MEM_CGROUP_CHARGE_TYPE_CACHE
);
3348 * If a page is a file cache, radix-tree replacement is very atomic
3349 * and we can skip this check. When it was an Anon page, its mapcount
3350 * goes down to 0. But because we added MIGRATION flage, it's not
3351 * uncharged yet. There are several case but page->mapcount check
3352 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3353 * check. (see prepare_charge() also)
3356 mem_cgroup_uncharge_page(used
);
3358 * At migration, we may charge account against cgroup which has no
3360 * So, rmdir()->pre_destroy() can be called while we do this charge.
3361 * In that case, we need to call pre_destroy() again. check it here.
3363 cgroup_release_and_wakeup_rmdir(&memcg
->css
);
3367 * At replace page cache, newpage is not under any memcg but it's on
3368 * LRU. So, this function doesn't touch res_counter but handles LRU
3369 * in correct way. Both pages are locked so we cannot race with uncharge.
3371 void mem_cgroup_replace_page_cache(struct page
*oldpage
,
3372 struct page
*newpage
)
3374 struct mem_cgroup
*memcg
= NULL
;
3375 struct page_cgroup
*pc
;
3376 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
3378 if (mem_cgroup_disabled())
3381 pc
= lookup_page_cgroup(oldpage
);
3382 /* fix accounting on old pages */
3383 lock_page_cgroup(pc
);
3384 if (PageCgroupUsed(pc
)) {
3385 memcg
= pc
->mem_cgroup
;
3386 mem_cgroup_charge_statistics(memcg
, false, -1);
3387 ClearPageCgroupUsed(pc
);
3389 unlock_page_cgroup(pc
);
3392 * When called from shmem_replace_page(), in some cases the
3393 * oldpage has already been charged, and in some cases not.
3398 if (PageSwapBacked(oldpage
))
3399 type
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
3402 * Even if newpage->mapping was NULL before starting replacement,
3403 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3404 * LRU while we overwrite pc->mem_cgroup.
3406 __mem_cgroup_commit_charge(memcg
, newpage
, 1, type
, true);
3409 #ifdef CONFIG_DEBUG_VM
3410 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
3412 struct page_cgroup
*pc
;
3414 pc
= lookup_page_cgroup(page
);
3416 * Can be NULL while feeding pages into the page allocator for
3417 * the first time, i.e. during boot or memory hotplug;
3418 * or when mem_cgroup_disabled().
3420 if (likely(pc
) && PageCgroupUsed(pc
))
3425 bool mem_cgroup_bad_page_check(struct page
*page
)
3427 if (mem_cgroup_disabled())
3430 return lookup_page_cgroup_used(page
) != NULL
;
3433 void mem_cgroup_print_bad_page(struct page
*page
)
3435 struct page_cgroup
*pc
;
3437 pc
= lookup_page_cgroup_used(page
);
3439 printk(KERN_ALERT
"pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3440 pc
, pc
->flags
, pc
->mem_cgroup
);
3445 static DEFINE_MUTEX(set_limit_mutex
);
3447 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3448 unsigned long long val
)
3451 u64 memswlimit
, memlimit
;
3453 int children
= mem_cgroup_count_children(memcg
);
3454 u64 curusage
, oldusage
;
3458 * For keeping hierarchical_reclaim simple, how long we should retry
3459 * is depends on callers. We set our retry-count to be function
3460 * of # of children which we should visit in this loop.
3462 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3464 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3467 while (retry_count
) {
3468 if (signal_pending(current
)) {
3473 * Rather than hide all in some function, I do this in
3474 * open coded manner. You see what this really does.
3475 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3477 mutex_lock(&set_limit_mutex
);
3478 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3479 if (memswlimit
< val
) {
3481 mutex_unlock(&set_limit_mutex
);
3485 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3489 ret
= res_counter_set_limit(&memcg
->res
, val
);
3491 if (memswlimit
== val
)
3492 memcg
->memsw_is_minimum
= true;
3494 memcg
->memsw_is_minimum
= false;
3496 mutex_unlock(&set_limit_mutex
);
3501 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
3502 MEM_CGROUP_RECLAIM_SHRINK
);
3503 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3504 /* Usage is reduced ? */
3505 if (curusage
>= oldusage
)
3508 oldusage
= curusage
;
3510 if (!ret
&& enlarge
)
3511 memcg_oom_recover(memcg
);
3516 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3517 unsigned long long val
)
3520 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3521 int children
= mem_cgroup_count_children(memcg
);
3525 /* see mem_cgroup_resize_res_limit */
3526 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3527 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3528 while (retry_count
) {
3529 if (signal_pending(current
)) {
3534 * Rather than hide all in some function, I do this in
3535 * open coded manner. You see what this really does.
3536 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3538 mutex_lock(&set_limit_mutex
);
3539 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3540 if (memlimit
> val
) {
3542 mutex_unlock(&set_limit_mutex
);
3545 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3546 if (memswlimit
< val
)
3548 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3550 if (memlimit
== val
)
3551 memcg
->memsw_is_minimum
= true;
3553 memcg
->memsw_is_minimum
= false;
3555 mutex_unlock(&set_limit_mutex
);
3560 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
3561 MEM_CGROUP_RECLAIM_NOSWAP
|
3562 MEM_CGROUP_RECLAIM_SHRINK
);
3563 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3564 /* Usage is reduced ? */
3565 if (curusage
>= oldusage
)
3568 oldusage
= curusage
;
3570 if (!ret
&& enlarge
)
3571 memcg_oom_recover(memcg
);
3575 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3577 unsigned long *total_scanned
)
3579 unsigned long nr_reclaimed
= 0;
3580 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3581 unsigned long reclaimed
;
3583 struct mem_cgroup_tree_per_zone
*mctz
;
3584 unsigned long long excess
;
3585 unsigned long nr_scanned
;
3590 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3592 * This loop can run a while, specially if mem_cgroup's continuously
3593 * keep exceeding their soft limit and putting the system under
3600 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3605 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
3606 gfp_mask
, &nr_scanned
);
3607 nr_reclaimed
+= reclaimed
;
3608 *total_scanned
+= nr_scanned
;
3609 spin_lock(&mctz
->lock
);
3612 * If we failed to reclaim anything from this memory cgroup
3613 * it is time to move on to the next cgroup
3619 * Loop until we find yet another one.
3621 * By the time we get the soft_limit lock
3622 * again, someone might have aded the
3623 * group back on the RB tree. Iterate to
3624 * make sure we get a different mem.
3625 * mem_cgroup_largest_soft_limit_node returns
3626 * NULL if no other cgroup is present on
3630 __mem_cgroup_largest_soft_limit_node(mctz
);
3632 css_put(&next_mz
->memcg
->css
);
3633 else /* next_mz == NULL or other memcg */
3637 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
3638 excess
= res_counter_soft_limit_excess(&mz
->memcg
->res
);
3640 * One school of thought says that we should not add
3641 * back the node to the tree if reclaim returns 0.
3642 * But our reclaim could return 0, simply because due
3643 * to priority we are exposing a smaller subset of
3644 * memory to reclaim from. Consider this as a longer
3647 /* If excess == 0, no tree ops */
3648 __mem_cgroup_insert_exceeded(mz
->memcg
, mz
, mctz
, excess
);
3649 spin_unlock(&mctz
->lock
);
3650 css_put(&mz
->memcg
->css
);
3653 * Could not reclaim anything and there are no more
3654 * mem cgroups to try or we seem to be looping without
3655 * reclaiming anything.
3657 if (!nr_reclaimed
&&
3659 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3661 } while (!nr_reclaimed
);
3663 css_put(&next_mz
->memcg
->css
);
3664 return nr_reclaimed
;
3668 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3669 * reclaim the pages page themselves - it just removes the page_cgroups.
3670 * Returns true if some page_cgroups were not freed, indicating that the caller
3671 * must retry this operation.
3673 static bool mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
3674 int node
, int zid
, enum lru_list lru
)
3676 struct mem_cgroup_per_zone
*mz
;
3677 unsigned long flags
, loop
;
3678 struct list_head
*list
;
3682 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3683 mz
= mem_cgroup_zoneinfo(memcg
, node
, zid
);
3684 list
= &mz
->lruvec
.lists
[lru
];
3686 loop
= mz
->lru_size
[lru
];
3687 /* give some margin against EBUSY etc...*/
3691 struct page_cgroup
*pc
;
3694 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3695 if (list_empty(list
)) {
3696 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3699 page
= list_entry(list
->prev
, struct page
, lru
);
3701 list_move(&page
->lru
, list
);
3703 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3706 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3708 pc
= lookup_page_cgroup(page
);
3710 if (mem_cgroup_move_parent(page
, pc
, memcg
)) {
3711 /* found lock contention or "pc" is obsolete. */
3717 return !list_empty(list
);
3721 * make mem_cgroup's charge to be 0 if there is no task.
3722 * This enables deleting this mem_cgroup.
3724 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
, bool free_all
)
3727 int node
, zid
, shrink
;
3728 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3729 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
3731 css_get(&memcg
->css
);
3734 /* should free all ? */
3740 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3742 /* This is for making all *used* pages to be on LRU. */
3743 lru_add_drain_all();
3744 drain_all_stock_sync(memcg
);
3746 mem_cgroup_start_move(memcg
);
3747 for_each_node_state(node
, N_HIGH_MEMORY
) {
3748 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3751 ret
= mem_cgroup_force_empty_list(memcg
,
3760 mem_cgroup_end_move(memcg
);
3761 memcg_oom_recover(memcg
);
3763 /* "ret" should also be checked to ensure all lists are empty. */
3764 } while (res_counter_read_u64(&memcg
->res
, RES_USAGE
) > 0 || ret
);
3766 css_put(&memcg
->css
);
3770 /* returns EBUSY if there is a task or if we come here twice. */
3771 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3775 /* we call try-to-free pages for make this cgroup empty */
3776 lru_add_drain_all();
3777 /* try to free all pages in this cgroup */
3779 while (nr_retries
&& res_counter_read_u64(&memcg
->res
, RES_USAGE
) > 0) {
3782 if (signal_pending(current
)) {
3786 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
3790 /* maybe some writeback is necessary */
3791 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3796 /* try move_account...there may be some *locked* pages. */
3800 static int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3802 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3806 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3808 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3811 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3815 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3816 struct cgroup
*parent
= cont
->parent
;
3817 struct mem_cgroup
*parent_memcg
= NULL
;
3820 parent_memcg
= mem_cgroup_from_cont(parent
);
3824 if (memcg
->use_hierarchy
== val
)
3828 * If parent's use_hierarchy is set, we can't make any modifications
3829 * in the child subtrees. If it is unset, then the change can
3830 * occur, provided the current cgroup has no children.
3832 * For the root cgroup, parent_mem is NULL, we allow value to be
3833 * set if there are no children.
3835 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
3836 (val
== 1 || val
== 0)) {
3837 if (list_empty(&cont
->children
))
3838 memcg
->use_hierarchy
= val
;
3851 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
3852 enum mem_cgroup_stat_index idx
)
3854 struct mem_cgroup
*iter
;
3857 /* Per-cpu values can be negative, use a signed accumulator */
3858 for_each_mem_cgroup_tree(iter
, memcg
)
3859 val
+= mem_cgroup_read_stat(iter
, idx
);
3861 if (val
< 0) /* race ? */
3866 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
3870 if (!mem_cgroup_is_root(memcg
)) {
3872 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3874 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3877 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
3878 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
3881 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAP
);
3883 return val
<< PAGE_SHIFT
;
3886 static ssize_t
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
,
3887 struct file
*file
, char __user
*buf
,
3888 size_t nbytes
, loff_t
*ppos
)
3890 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3893 int type
, name
, len
;
3895 type
= MEMFILE_TYPE(cft
->private);
3896 name
= MEMFILE_ATTR(cft
->private);
3898 if (!do_swap_account
&& type
== _MEMSWAP
)
3903 if (name
== RES_USAGE
)
3904 val
= mem_cgroup_usage(memcg
, false);
3906 val
= res_counter_read_u64(&memcg
->res
, name
);
3909 if (name
== RES_USAGE
)
3910 val
= mem_cgroup_usage(memcg
, true);
3912 val
= res_counter_read_u64(&memcg
->memsw
, name
);
3918 len
= scnprintf(str
, sizeof(str
), "%llu\n", (unsigned long long)val
);
3919 return simple_read_from_buffer(buf
, nbytes
, ppos
, str
, len
);
3922 * The user of this function is...
3925 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3928 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3930 unsigned long long val
;
3933 type
= MEMFILE_TYPE(cft
->private);
3934 name
= MEMFILE_ATTR(cft
->private);
3936 if (!do_swap_account
&& type
== _MEMSWAP
)
3941 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3945 /* This function does all necessary parse...reuse it */
3946 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3950 ret
= mem_cgroup_resize_limit(memcg
, val
);
3952 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3954 case RES_SOFT_LIMIT
:
3955 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3959 * For memsw, soft limits are hard to implement in terms
3960 * of semantics, for now, we support soft limits for
3961 * control without swap
3964 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3969 ret
= -EINVAL
; /* should be BUG() ? */
3975 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3976 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3978 struct cgroup
*cgroup
;
3979 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3981 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3982 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3983 cgroup
= memcg
->css
.cgroup
;
3984 if (!memcg
->use_hierarchy
)
3987 while (cgroup
->parent
) {
3988 cgroup
= cgroup
->parent
;
3989 memcg
= mem_cgroup_from_cont(cgroup
);
3990 if (!memcg
->use_hierarchy
)
3992 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3993 min_limit
= min(min_limit
, tmp
);
3994 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3995 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3998 *mem_limit
= min_limit
;
3999 *memsw_limit
= min_memsw_limit
;
4002 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
4004 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4007 type
= MEMFILE_TYPE(event
);
4008 name
= MEMFILE_ATTR(event
);
4010 if (!do_swap_account
&& type
== _MEMSWAP
)
4016 res_counter_reset_max(&memcg
->res
);
4018 res_counter_reset_max(&memcg
->memsw
);
4022 res_counter_reset_failcnt(&memcg
->res
);
4024 res_counter_reset_failcnt(&memcg
->memsw
);
4031 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
4034 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
4038 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4039 struct cftype
*cft
, u64 val
)
4041 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4043 if (val
>= (1 << NR_MOVE_TYPE
))
4046 * We check this value several times in both in can_attach() and
4047 * attach(), so we need cgroup lock to prevent this value from being
4051 memcg
->move_charge_at_immigrate
= val
;
4057 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
4058 struct cftype
*cft
, u64 val
)
4065 static int memcg_numa_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
4069 unsigned long total_nr
, file_nr
, anon_nr
, unevictable_nr
;
4070 unsigned long node_nr
;
4071 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4073 total_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL
);
4074 seq_printf(m
, "total=%lu", total_nr
);
4075 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4076 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL
);
4077 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4081 file_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL_FILE
);
4082 seq_printf(m
, "file=%lu", file_nr
);
4083 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4084 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
4086 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4090 anon_nr
= mem_cgroup_nr_lru_pages(memcg
, LRU_ALL_ANON
);
4091 seq_printf(m
, "anon=%lu", anon_nr
);
4092 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4093 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
4095 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4099 unevictable_nr
= mem_cgroup_nr_lru_pages(memcg
, BIT(LRU_UNEVICTABLE
));
4100 seq_printf(m
, "unevictable=%lu", unevictable_nr
);
4101 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4102 node_nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
4103 BIT(LRU_UNEVICTABLE
));
4104 seq_printf(m
, " N%d=%lu", nid
, node_nr
);
4109 #endif /* CONFIG_NUMA */
4111 static const char * const mem_cgroup_lru_names
[] = {
4119 static inline void mem_cgroup_lru_names_not_uptodate(void)
4121 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
4124 static int memcg_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
4127 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4128 struct mem_cgroup
*mi
;
4131 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
4132 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
4134 seq_printf(m
, "%s %ld\n", mem_cgroup_stat_names
[i
],
4135 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
4138 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
4139 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
4140 mem_cgroup_read_events(memcg
, i
));
4142 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
4143 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
4144 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
4146 /* Hierarchical information */
4148 unsigned long long limit
, memsw_limit
;
4149 memcg_get_hierarchical_limit(memcg
, &limit
, &memsw_limit
);
4150 seq_printf(m
, "hierarchical_memory_limit %llu\n", limit
);
4151 if (do_swap_account
)
4152 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
4156 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
4159 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
4161 for_each_mem_cgroup_tree(mi
, memcg
)
4162 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
4163 seq_printf(m
, "total_%s %lld\n", mem_cgroup_stat_names
[i
], val
);
4166 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
4167 unsigned long long val
= 0;
4169 for_each_mem_cgroup_tree(mi
, memcg
)
4170 val
+= mem_cgroup_read_events(mi
, i
);
4171 seq_printf(m
, "total_%s %llu\n",
4172 mem_cgroup_events_names
[i
], val
);
4175 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
4176 unsigned long long val
= 0;
4178 for_each_mem_cgroup_tree(mi
, memcg
)
4179 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
4180 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
4183 #ifdef CONFIG_DEBUG_VM
4186 struct mem_cgroup_per_zone
*mz
;
4187 struct zone_reclaim_stat
*rstat
;
4188 unsigned long recent_rotated
[2] = {0, 0};
4189 unsigned long recent_scanned
[2] = {0, 0};
4191 for_each_online_node(nid
)
4192 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4193 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
4194 rstat
= &mz
->lruvec
.reclaim_stat
;
4196 recent_rotated
[0] += rstat
->recent_rotated
[0];
4197 recent_rotated
[1] += rstat
->recent_rotated
[1];
4198 recent_scanned
[0] += rstat
->recent_scanned
[0];
4199 recent_scanned
[1] += rstat
->recent_scanned
[1];
4201 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
4202 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
4203 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
4204 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
4211 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4213 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4215 return mem_cgroup_swappiness(memcg
);
4218 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
4221 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4222 struct mem_cgroup
*parent
;
4227 if (cgrp
->parent
== NULL
)
4230 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4234 /* If under hierarchy, only empty-root can set this value */
4235 if ((parent
->use_hierarchy
) ||
4236 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4241 memcg
->swappiness
= val
;
4248 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
4250 struct mem_cgroup_threshold_ary
*t
;
4256 t
= rcu_dereference(memcg
->thresholds
.primary
);
4258 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
4263 usage
= mem_cgroup_usage(memcg
, swap
);
4266 * current_threshold points to threshold just below or equal to usage.
4267 * If it's not true, a threshold was crossed after last
4268 * call of __mem_cgroup_threshold().
4270 i
= t
->current_threshold
;
4273 * Iterate backward over array of thresholds starting from
4274 * current_threshold and check if a threshold is crossed.
4275 * If none of thresholds below usage is crossed, we read
4276 * only one element of the array here.
4278 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
4279 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4281 /* i = current_threshold + 1 */
4285 * Iterate forward over array of thresholds starting from
4286 * current_threshold+1 and check if a threshold is crossed.
4287 * If none of thresholds above usage is crossed, we read
4288 * only one element of the array here.
4290 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
4291 eventfd_signal(t
->entries
[i
].eventfd
, 1);
4293 /* Update current_threshold */
4294 t
->current_threshold
= i
- 1;
4299 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
4302 __mem_cgroup_threshold(memcg
, false);
4303 if (do_swap_account
)
4304 __mem_cgroup_threshold(memcg
, true);
4306 memcg
= parent_mem_cgroup(memcg
);
4310 static int compare_thresholds(const void *a
, const void *b
)
4312 const struct mem_cgroup_threshold
*_a
= a
;
4313 const struct mem_cgroup_threshold
*_b
= b
;
4315 return _a
->threshold
- _b
->threshold
;
4318 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
4320 struct mem_cgroup_eventfd_list
*ev
;
4322 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
4323 eventfd_signal(ev
->eventfd
, 1);
4327 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
4329 struct mem_cgroup
*iter
;
4331 for_each_mem_cgroup_tree(iter
, memcg
)
4332 mem_cgroup_oom_notify_cb(iter
);
4335 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
4336 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4338 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4339 struct mem_cgroup_thresholds
*thresholds
;
4340 struct mem_cgroup_threshold_ary
*new;
4341 int type
= MEMFILE_TYPE(cft
->private);
4342 u64 threshold
, usage
;
4345 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
4349 mutex_lock(&memcg
->thresholds_lock
);
4352 thresholds
= &memcg
->thresholds
;
4353 else if (type
== _MEMSWAP
)
4354 thresholds
= &memcg
->memsw_thresholds
;
4358 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4360 /* Check if a threshold crossed before adding a new one */
4361 if (thresholds
->primary
)
4362 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4364 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
4366 /* Allocate memory for new array of thresholds */
4367 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
4375 /* Copy thresholds (if any) to new array */
4376 if (thresholds
->primary
) {
4377 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
4378 sizeof(struct mem_cgroup_threshold
));
4381 /* Add new threshold */
4382 new->entries
[size
- 1].eventfd
= eventfd
;
4383 new->entries
[size
- 1].threshold
= threshold
;
4385 /* Sort thresholds. Registering of new threshold isn't time-critical */
4386 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4387 compare_thresholds
, NULL
);
4389 /* Find current threshold */
4390 new->current_threshold
= -1;
4391 for (i
= 0; i
< size
; i
++) {
4392 if (new->entries
[i
].threshold
<= usage
) {
4394 * new->current_threshold will not be used until
4395 * rcu_assign_pointer(), so it's safe to increment
4398 ++new->current_threshold
;
4403 /* Free old spare buffer and save old primary buffer as spare */
4404 kfree(thresholds
->spare
);
4405 thresholds
->spare
= thresholds
->primary
;
4407 rcu_assign_pointer(thresholds
->primary
, new);
4409 /* To be sure that nobody uses thresholds */
4413 mutex_unlock(&memcg
->thresholds_lock
);
4418 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
4419 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4421 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4422 struct mem_cgroup_thresholds
*thresholds
;
4423 struct mem_cgroup_threshold_ary
*new;
4424 int type
= MEMFILE_TYPE(cft
->private);
4428 mutex_lock(&memcg
->thresholds_lock
);
4430 thresholds
= &memcg
->thresholds
;
4431 else if (type
== _MEMSWAP
)
4432 thresholds
= &memcg
->memsw_thresholds
;
4436 if (!thresholds
->primary
)
4439 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4441 /* Check if a threshold crossed before removing */
4442 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4444 /* Calculate new number of threshold */
4446 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4447 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4451 new = thresholds
->spare
;
4453 /* Set thresholds array to NULL if we don't have thresholds */
4462 /* Copy thresholds and find current threshold */
4463 new->current_threshold
= -1;
4464 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4465 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4468 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4469 if (new->entries
[j
].threshold
<= usage
) {
4471 * new->current_threshold will not be used
4472 * until rcu_assign_pointer(), so it's safe to increment
4475 ++new->current_threshold
;
4481 /* Swap primary and spare array */
4482 thresholds
->spare
= thresholds
->primary
;
4483 /* If all events are unregistered, free the spare array */
4485 kfree(thresholds
->spare
);
4486 thresholds
->spare
= NULL
;
4489 rcu_assign_pointer(thresholds
->primary
, new);
4491 /* To be sure that nobody uses thresholds */
4494 mutex_unlock(&memcg
->thresholds_lock
);
4497 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4498 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4500 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4501 struct mem_cgroup_eventfd_list
*event
;
4502 int type
= MEMFILE_TYPE(cft
->private);
4504 BUG_ON(type
!= _OOM_TYPE
);
4505 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4509 spin_lock(&memcg_oom_lock
);
4511 event
->eventfd
= eventfd
;
4512 list_add(&event
->list
, &memcg
->oom_notify
);
4514 /* already in OOM ? */
4515 if (atomic_read(&memcg
->under_oom
))
4516 eventfd_signal(eventfd
, 1);
4517 spin_unlock(&memcg_oom_lock
);
4522 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4523 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4525 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4526 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4527 int type
= MEMFILE_TYPE(cft
->private);
4529 BUG_ON(type
!= _OOM_TYPE
);
4531 spin_lock(&memcg_oom_lock
);
4533 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
4534 if (ev
->eventfd
== eventfd
) {
4535 list_del(&ev
->list
);
4540 spin_unlock(&memcg_oom_lock
);
4543 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4544 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4546 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4548 cb
->fill(cb
, "oom_kill_disable", memcg
->oom_kill_disable
);
4550 if (atomic_read(&memcg
->under_oom
))
4551 cb
->fill(cb
, "under_oom", 1);
4553 cb
->fill(cb
, "under_oom", 0);
4557 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4558 struct cftype
*cft
, u64 val
)
4560 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4561 struct mem_cgroup
*parent
;
4563 /* cannot set to root cgroup and only 0 and 1 are allowed */
4564 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4567 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4570 /* oom-kill-disable is a flag for subhierarchy. */
4571 if ((parent
->use_hierarchy
) ||
4572 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4576 memcg
->oom_kill_disable
= val
;
4578 memcg_oom_recover(memcg
);
4583 #ifdef CONFIG_MEMCG_KMEM
4584 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
4586 return mem_cgroup_sockets_init(memcg
, ss
);
4589 static void kmem_cgroup_destroy(struct mem_cgroup
*memcg
)
4591 mem_cgroup_sockets_destroy(memcg
);
4594 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
4599 static void kmem_cgroup_destroy(struct mem_cgroup
*memcg
)
4604 static struct cftype mem_cgroup_files
[] = {
4606 .name
= "usage_in_bytes",
4607 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4608 .read
= mem_cgroup_read
,
4609 .register_event
= mem_cgroup_usage_register_event
,
4610 .unregister_event
= mem_cgroup_usage_unregister_event
,
4613 .name
= "max_usage_in_bytes",
4614 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4615 .trigger
= mem_cgroup_reset
,
4616 .read
= mem_cgroup_read
,
4619 .name
= "limit_in_bytes",
4620 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4621 .write_string
= mem_cgroup_write
,
4622 .read
= mem_cgroup_read
,
4625 .name
= "soft_limit_in_bytes",
4626 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4627 .write_string
= mem_cgroup_write
,
4628 .read
= mem_cgroup_read
,
4632 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4633 .trigger
= mem_cgroup_reset
,
4634 .read
= mem_cgroup_read
,
4638 .read_seq_string
= memcg_stat_show
,
4641 .name
= "force_empty",
4642 .trigger
= mem_cgroup_force_empty_write
,
4645 .name
= "use_hierarchy",
4646 .write_u64
= mem_cgroup_hierarchy_write
,
4647 .read_u64
= mem_cgroup_hierarchy_read
,
4650 .name
= "swappiness",
4651 .read_u64
= mem_cgroup_swappiness_read
,
4652 .write_u64
= mem_cgroup_swappiness_write
,
4655 .name
= "move_charge_at_immigrate",
4656 .read_u64
= mem_cgroup_move_charge_read
,
4657 .write_u64
= mem_cgroup_move_charge_write
,
4660 .name
= "oom_control",
4661 .read_map
= mem_cgroup_oom_control_read
,
4662 .write_u64
= mem_cgroup_oom_control_write
,
4663 .register_event
= mem_cgroup_oom_register_event
,
4664 .unregister_event
= mem_cgroup_oom_unregister_event
,
4665 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4669 .name
= "numa_stat",
4670 .read_seq_string
= memcg_numa_stat_show
,
4673 #ifdef CONFIG_MEMCG_SWAP
4675 .name
= "memsw.usage_in_bytes",
4676 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4677 .read
= mem_cgroup_read
,
4678 .register_event
= mem_cgroup_usage_register_event
,
4679 .unregister_event
= mem_cgroup_usage_unregister_event
,
4682 .name
= "memsw.max_usage_in_bytes",
4683 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4684 .trigger
= mem_cgroup_reset
,
4685 .read
= mem_cgroup_read
,
4688 .name
= "memsw.limit_in_bytes",
4689 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4690 .write_string
= mem_cgroup_write
,
4691 .read
= mem_cgroup_read
,
4694 .name
= "memsw.failcnt",
4695 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4696 .trigger
= mem_cgroup_reset
,
4697 .read
= mem_cgroup_read
,
4700 { }, /* terminate */
4703 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4705 struct mem_cgroup_per_node
*pn
;
4706 struct mem_cgroup_per_zone
*mz
;
4707 int zone
, tmp
= node
;
4709 * This routine is called against possible nodes.
4710 * But it's BUG to call kmalloc() against offline node.
4712 * TODO: this routine can waste much memory for nodes which will
4713 * never be onlined. It's better to use memory hotplug callback
4716 if (!node_state(node
, N_NORMAL_MEMORY
))
4718 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4722 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4723 mz
= &pn
->zoneinfo
[zone
];
4724 lruvec_init(&mz
->lruvec
, &NODE_DATA(node
)->node_zones
[zone
]);
4725 mz
->usage_in_excess
= 0;
4726 mz
->on_tree
= false;
4729 memcg
->info
.nodeinfo
[node
] = pn
;
4733 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4735 kfree(memcg
->info
.nodeinfo
[node
]);
4738 static struct mem_cgroup
*mem_cgroup_alloc(void)
4740 struct mem_cgroup
*memcg
;
4741 int size
= sizeof(struct mem_cgroup
);
4743 /* Can be very big if MAX_NUMNODES is very big */
4744 if (size
< PAGE_SIZE
)
4745 memcg
= kzalloc(size
, GFP_KERNEL
);
4747 memcg
= vzalloc(size
);
4752 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4755 spin_lock_init(&memcg
->pcp_counter_lock
);
4759 if (size
< PAGE_SIZE
)
4767 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4768 * but in process context. The work_freeing structure is overlaid
4769 * on the rcu_freeing structure, which itself is overlaid on memsw.
4771 static void free_work(struct work_struct
*work
)
4773 struct mem_cgroup
*memcg
;
4774 int size
= sizeof(struct mem_cgroup
);
4776 memcg
= container_of(work
, struct mem_cgroup
, work_freeing
);
4778 * We need to make sure that (at least for now), the jump label
4779 * destruction code runs outside of the cgroup lock. This is because
4780 * get_online_cpus(), which is called from the static_branch update,
4781 * can't be called inside the cgroup_lock. cpusets are the ones
4782 * enforcing this dependency, so if they ever change, we might as well.
4784 * schedule_work() will guarantee this happens. Be careful if you need
4785 * to move this code around, and make sure it is outside
4788 disarm_sock_keys(memcg
);
4789 if (size
< PAGE_SIZE
)
4795 static void free_rcu(struct rcu_head
*rcu_head
)
4797 struct mem_cgroup
*memcg
;
4799 memcg
= container_of(rcu_head
, struct mem_cgroup
, rcu_freeing
);
4800 INIT_WORK(&memcg
->work_freeing
, free_work
);
4801 schedule_work(&memcg
->work_freeing
);
4805 * At destroying mem_cgroup, references from swap_cgroup can remain.
4806 * (scanning all at force_empty is too costly...)
4808 * Instead of clearing all references at force_empty, we remember
4809 * the number of reference from swap_cgroup and free mem_cgroup when
4810 * it goes down to 0.
4812 * Removal of cgroup itself succeeds regardless of refs from swap.
4815 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4819 mem_cgroup_remove_from_trees(memcg
);
4820 free_css_id(&mem_cgroup_subsys
, &memcg
->css
);
4823 free_mem_cgroup_per_zone_info(memcg
, node
);
4825 free_percpu(memcg
->stat
);
4826 call_rcu(&memcg
->rcu_freeing
, free_rcu
);
4829 static void mem_cgroup_get(struct mem_cgroup
*memcg
)
4831 atomic_inc(&memcg
->refcnt
);
4834 static void __mem_cgroup_put(struct mem_cgroup
*memcg
, int count
)
4836 if (atomic_sub_and_test(count
, &memcg
->refcnt
)) {
4837 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
4838 __mem_cgroup_free(memcg
);
4840 mem_cgroup_put(parent
);
4844 static void mem_cgroup_put(struct mem_cgroup
*memcg
)
4846 __mem_cgroup_put(memcg
, 1);
4850 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4852 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
4854 if (!memcg
->res
.parent
)
4856 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
4858 EXPORT_SYMBOL(parent_mem_cgroup
);
4860 #ifdef CONFIG_MEMCG_SWAP
4861 static void __init
enable_swap_cgroup(void)
4863 if (!mem_cgroup_disabled() && really_do_swap_account
)
4864 do_swap_account
= 1;
4867 static void __init
enable_swap_cgroup(void)
4872 static int mem_cgroup_soft_limit_tree_init(void)
4874 struct mem_cgroup_tree_per_node
*rtpn
;
4875 struct mem_cgroup_tree_per_zone
*rtpz
;
4876 int tmp
, node
, zone
;
4878 for_each_node(node
) {
4880 if (!node_state(node
, N_NORMAL_MEMORY
))
4882 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4886 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4888 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4889 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4890 rtpz
->rb_root
= RB_ROOT
;
4891 spin_lock_init(&rtpz
->lock
);
4897 for_each_node(node
) {
4898 if (!soft_limit_tree
.rb_tree_per_node
[node
])
4900 kfree(soft_limit_tree
.rb_tree_per_node
[node
]);
4901 soft_limit_tree
.rb_tree_per_node
[node
] = NULL
;
4907 static struct cgroup_subsys_state
* __ref
4908 mem_cgroup_create(struct cgroup
*cont
)
4910 struct mem_cgroup
*memcg
, *parent
;
4911 long error
= -ENOMEM
;
4914 memcg
= mem_cgroup_alloc();
4916 return ERR_PTR(error
);
4919 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
4923 if (cont
->parent
== NULL
) {
4925 enable_swap_cgroup();
4927 if (mem_cgroup_soft_limit_tree_init())
4929 root_mem_cgroup
= memcg
;
4930 for_each_possible_cpu(cpu
) {
4931 struct memcg_stock_pcp
*stock
=
4932 &per_cpu(memcg_stock
, cpu
);
4933 INIT_WORK(&stock
->work
, drain_local_stock
);
4935 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
4937 parent
= mem_cgroup_from_cont(cont
->parent
);
4938 memcg
->use_hierarchy
= parent
->use_hierarchy
;
4939 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4942 if (parent
&& parent
->use_hierarchy
) {
4943 res_counter_init(&memcg
->res
, &parent
->res
);
4944 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
4946 * We increment refcnt of the parent to ensure that we can
4947 * safely access it on res_counter_charge/uncharge.
4948 * This refcnt will be decremented when freeing this
4949 * mem_cgroup(see mem_cgroup_put).
4951 mem_cgroup_get(parent
);
4953 res_counter_init(&memcg
->res
, NULL
);
4954 res_counter_init(&memcg
->memsw
, NULL
);
4956 memcg
->last_scanned_node
= MAX_NUMNODES
;
4957 INIT_LIST_HEAD(&memcg
->oom_notify
);
4960 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4961 atomic_set(&memcg
->refcnt
, 1);
4962 memcg
->move_charge_at_immigrate
= 0;
4963 mutex_init(&memcg
->thresholds_lock
);
4964 spin_lock_init(&memcg
->move_lock
);
4966 error
= memcg_init_kmem(memcg
, &mem_cgroup_subsys
);
4969 * We call put now because our (and parent's) refcnts
4970 * are already in place. mem_cgroup_put() will internally
4971 * call __mem_cgroup_free, so return directly
4973 mem_cgroup_put(memcg
);
4974 return ERR_PTR(error
);
4978 __mem_cgroup_free(memcg
);
4979 return ERR_PTR(error
);
4982 static int mem_cgroup_pre_destroy(struct cgroup
*cont
)
4984 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4986 return mem_cgroup_force_empty(memcg
, false);
4989 static void mem_cgroup_destroy(struct cgroup
*cont
)
4991 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
4993 kmem_cgroup_destroy(memcg
);
4995 mem_cgroup_put(memcg
);
4999 /* Handlers for move charge at task migration. */
5000 #define PRECHARGE_COUNT_AT_ONCE 256
5001 static int mem_cgroup_do_precharge(unsigned long count
)
5004 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5005 struct mem_cgroup
*memcg
= mc
.to
;
5007 if (mem_cgroup_is_root(memcg
)) {
5008 mc
.precharge
+= count
;
5009 /* we don't need css_get for root */
5012 /* try to charge at once */
5014 struct res_counter
*dummy
;
5016 * "memcg" cannot be under rmdir() because we've already checked
5017 * by cgroup_lock_live_cgroup() that it is not removed and we
5018 * are still under the same cgroup_mutex. So we can postpone
5021 if (res_counter_charge(&memcg
->res
, PAGE_SIZE
* count
, &dummy
))
5023 if (do_swap_account
&& res_counter_charge(&memcg
->memsw
,
5024 PAGE_SIZE
* count
, &dummy
)) {
5025 res_counter_uncharge(&memcg
->res
, PAGE_SIZE
* count
);
5028 mc
.precharge
+= count
;
5032 /* fall back to one by one charge */
5034 if (signal_pending(current
)) {
5038 if (!batch_count
--) {
5039 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
5042 ret
= __mem_cgroup_try_charge(NULL
,
5043 GFP_KERNEL
, 1, &memcg
, false);
5045 /* mem_cgroup_clear_mc() will do uncharge later */
5053 * get_mctgt_type - get target type of moving charge
5054 * @vma: the vma the pte to be checked belongs
5055 * @addr: the address corresponding to the pte to be checked
5056 * @ptent: the pte to be checked
5057 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5060 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5061 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5062 * move charge. if @target is not NULL, the page is stored in target->page
5063 * with extra refcnt got(Callers should handle it).
5064 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5065 * target for charge migration. if @target is not NULL, the entry is stored
5068 * Called with pte lock held.
5075 enum mc_target_type
{
5081 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
5082 unsigned long addr
, pte_t ptent
)
5084 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
5086 if (!page
|| !page_mapped(page
))
5088 if (PageAnon(page
)) {
5089 /* we don't move shared anon */
5092 } else if (!move_file())
5093 /* we ignore mapcount for file pages */
5095 if (!get_page_unless_zero(page
))
5102 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5103 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5105 struct page
*page
= NULL
;
5106 swp_entry_t ent
= pte_to_swp_entry(ptent
);
5108 if (!move_anon() || non_swap_entry(ent
))
5111 * Because lookup_swap_cache() updates some statistics counter,
5112 * we call find_get_page() with swapper_space directly.
5114 page
= find_get_page(&swapper_space
, ent
.val
);
5115 if (do_swap_account
)
5116 entry
->val
= ent
.val
;
5121 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
5122 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5128 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
5129 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
5131 struct page
*page
= NULL
;
5132 struct address_space
*mapping
;
5135 if (!vma
->vm_file
) /* anonymous vma */
5140 mapping
= vma
->vm_file
->f_mapping
;
5141 if (pte_none(ptent
))
5142 pgoff
= linear_page_index(vma
, addr
);
5143 else /* pte_file(ptent) is true */
5144 pgoff
= pte_to_pgoff(ptent
);
5146 /* page is moved even if it's not RSS of this task(page-faulted). */
5147 page
= find_get_page(mapping
, pgoff
);
5150 /* shmem/tmpfs may report page out on swap: account for that too. */
5151 if (radix_tree_exceptional_entry(page
)) {
5152 swp_entry_t swap
= radix_to_swp_entry(page
);
5153 if (do_swap_account
)
5155 page
= find_get_page(&swapper_space
, swap
.val
);
5161 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
5162 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
5164 struct page
*page
= NULL
;
5165 struct page_cgroup
*pc
;
5166 enum mc_target_type ret
= MC_TARGET_NONE
;
5167 swp_entry_t ent
= { .val
= 0 };
5169 if (pte_present(ptent
))
5170 page
= mc_handle_present_pte(vma
, addr
, ptent
);
5171 else if (is_swap_pte(ptent
))
5172 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
5173 else if (pte_none(ptent
) || pte_file(ptent
))
5174 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
5176 if (!page
&& !ent
.val
)
5179 pc
= lookup_page_cgroup(page
);
5181 * Do only loose check w/o page_cgroup lock.
5182 * mem_cgroup_move_account() checks the pc is valid or not under
5185 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5186 ret
= MC_TARGET_PAGE
;
5188 target
->page
= page
;
5190 if (!ret
|| !target
)
5193 /* There is a swap entry and a page doesn't exist or isn't charged */
5194 if (ent
.val
&& !ret
&&
5195 css_id(&mc
.from
->css
) == lookup_swap_cgroup_id(ent
)) {
5196 ret
= MC_TARGET_SWAP
;
5203 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5205 * We don't consider swapping or file mapped pages because THP does not
5206 * support them for now.
5207 * Caller should make sure that pmd_trans_huge(pmd) is true.
5209 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5210 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5212 struct page
*page
= NULL
;
5213 struct page_cgroup
*pc
;
5214 enum mc_target_type ret
= MC_TARGET_NONE
;
5216 page
= pmd_page(pmd
);
5217 VM_BUG_ON(!page
|| !PageHead(page
));
5220 pc
= lookup_page_cgroup(page
);
5221 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
5222 ret
= MC_TARGET_PAGE
;
5225 target
->page
= page
;
5231 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
5232 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
5234 return MC_TARGET_NONE
;
5238 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
5239 unsigned long addr
, unsigned long end
,
5240 struct mm_walk
*walk
)
5242 struct vm_area_struct
*vma
= walk
->private;
5246 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
5247 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
5248 mc
.precharge
+= HPAGE_PMD_NR
;
5249 spin_unlock(&vma
->vm_mm
->page_table_lock
);
5253 if (pmd_trans_unstable(pmd
))
5255 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5256 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
5257 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
5258 mc
.precharge
++; /* increment precharge temporarily */
5259 pte_unmap_unlock(pte
- 1, ptl
);
5265 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
5267 unsigned long precharge
;
5268 struct vm_area_struct
*vma
;
5270 down_read(&mm
->mmap_sem
);
5271 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5272 struct mm_walk mem_cgroup_count_precharge_walk
= {
5273 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
5277 if (is_vm_hugetlb_page(vma
))
5279 walk_page_range(vma
->vm_start
, vma
->vm_end
,
5280 &mem_cgroup_count_precharge_walk
);
5282 up_read(&mm
->mmap_sem
);
5284 precharge
= mc
.precharge
;
5290 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
5292 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
5294 VM_BUG_ON(mc
.moving_task
);
5295 mc
.moving_task
= current
;
5296 return mem_cgroup_do_precharge(precharge
);
5299 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5300 static void __mem_cgroup_clear_mc(void)
5302 struct mem_cgroup
*from
= mc
.from
;
5303 struct mem_cgroup
*to
= mc
.to
;
5305 /* we must uncharge all the leftover precharges from mc.to */
5307 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
5311 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5312 * we must uncharge here.
5314 if (mc
.moved_charge
) {
5315 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
5316 mc
.moved_charge
= 0;
5318 /* we must fixup refcnts and charges */
5319 if (mc
.moved_swap
) {
5320 /* uncharge swap account from the old cgroup */
5321 if (!mem_cgroup_is_root(mc
.from
))
5322 res_counter_uncharge(&mc
.from
->memsw
,
5323 PAGE_SIZE
* mc
.moved_swap
);
5324 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
5326 if (!mem_cgroup_is_root(mc
.to
)) {
5328 * we charged both to->res and to->memsw, so we should
5331 res_counter_uncharge(&mc
.to
->res
,
5332 PAGE_SIZE
* mc
.moved_swap
);
5334 /* we've already done mem_cgroup_get(mc.to) */
5337 memcg_oom_recover(from
);
5338 memcg_oom_recover(to
);
5339 wake_up_all(&mc
.waitq
);
5342 static void mem_cgroup_clear_mc(void)
5344 struct mem_cgroup
*from
= mc
.from
;
5347 * we must clear moving_task before waking up waiters at the end of
5350 mc
.moving_task
= NULL
;
5351 __mem_cgroup_clear_mc();
5352 spin_lock(&mc
.lock
);
5355 spin_unlock(&mc
.lock
);
5356 mem_cgroup_end_move(from
);
5359 static int mem_cgroup_can_attach(struct cgroup
*cgroup
,
5360 struct cgroup_taskset
*tset
)
5362 struct task_struct
*p
= cgroup_taskset_first(tset
);
5364 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgroup
);
5366 if (memcg
->move_charge_at_immigrate
) {
5367 struct mm_struct
*mm
;
5368 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
5370 VM_BUG_ON(from
== memcg
);
5372 mm
= get_task_mm(p
);
5375 /* We move charges only when we move a owner of the mm */
5376 if (mm
->owner
== p
) {
5379 VM_BUG_ON(mc
.precharge
);
5380 VM_BUG_ON(mc
.moved_charge
);
5381 VM_BUG_ON(mc
.moved_swap
);
5382 mem_cgroup_start_move(from
);
5383 spin_lock(&mc
.lock
);
5386 spin_unlock(&mc
.lock
);
5387 /* We set mc.moving_task later */
5389 ret
= mem_cgroup_precharge_mc(mm
);
5391 mem_cgroup_clear_mc();
5398 static void mem_cgroup_cancel_attach(struct cgroup
*cgroup
,
5399 struct cgroup_taskset
*tset
)
5401 mem_cgroup_clear_mc();
5404 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
5405 unsigned long addr
, unsigned long end
,
5406 struct mm_walk
*walk
)
5409 struct vm_area_struct
*vma
= walk
->private;
5412 enum mc_target_type target_type
;
5413 union mc_target target
;
5415 struct page_cgroup
*pc
;
5418 * We don't take compound_lock() here but no race with splitting thp
5420 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5421 * under splitting, which means there's no concurrent thp split,
5422 * - if another thread runs into split_huge_page() just after we
5423 * entered this if-block, the thread must wait for page table lock
5424 * to be unlocked in __split_huge_page_splitting(), where the main
5425 * part of thp split is not executed yet.
5427 if (pmd_trans_huge_lock(pmd
, vma
) == 1) {
5428 if (mc
.precharge
< HPAGE_PMD_NR
) {
5429 spin_unlock(&vma
->vm_mm
->page_table_lock
);
5432 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
5433 if (target_type
== MC_TARGET_PAGE
) {
5435 if (!isolate_lru_page(page
)) {
5436 pc
= lookup_page_cgroup(page
);
5437 if (!mem_cgroup_move_account(page
, HPAGE_PMD_NR
,
5438 pc
, mc
.from
, mc
.to
)) {
5439 mc
.precharge
-= HPAGE_PMD_NR
;
5440 mc
.moved_charge
+= HPAGE_PMD_NR
;
5442 putback_lru_page(page
);
5446 spin_unlock(&vma
->vm_mm
->page_table_lock
);
5450 if (pmd_trans_unstable(pmd
))
5453 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5454 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5455 pte_t ptent
= *(pte
++);
5461 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
5462 case MC_TARGET_PAGE
:
5464 if (isolate_lru_page(page
))
5466 pc
= lookup_page_cgroup(page
);
5467 if (!mem_cgroup_move_account(page
, 1, pc
,
5470 /* we uncharge from mc.from later. */
5473 putback_lru_page(page
);
5474 put
: /* get_mctgt_type() gets the page */
5477 case MC_TARGET_SWAP
:
5479 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
5481 /* we fixup refcnts and charges later. */
5489 pte_unmap_unlock(pte
- 1, ptl
);
5494 * We have consumed all precharges we got in can_attach().
5495 * We try charge one by one, but don't do any additional
5496 * charges to mc.to if we have failed in charge once in attach()
5499 ret
= mem_cgroup_do_precharge(1);
5507 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
5509 struct vm_area_struct
*vma
;
5511 lru_add_drain_all();
5513 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
5515 * Someone who are holding the mmap_sem might be waiting in
5516 * waitq. So we cancel all extra charges, wake up all waiters,
5517 * and retry. Because we cancel precharges, we might not be able
5518 * to move enough charges, but moving charge is a best-effort
5519 * feature anyway, so it wouldn't be a big problem.
5521 __mem_cgroup_clear_mc();
5525 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5527 struct mm_walk mem_cgroup_move_charge_walk
= {
5528 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5532 if (is_vm_hugetlb_page(vma
))
5534 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
5535 &mem_cgroup_move_charge_walk
);
5538 * means we have consumed all precharges and failed in
5539 * doing additional charge. Just abandon here.
5543 up_read(&mm
->mmap_sem
);
5546 static void mem_cgroup_move_task(struct cgroup
*cont
,
5547 struct cgroup_taskset
*tset
)
5549 struct task_struct
*p
= cgroup_taskset_first(tset
);
5550 struct mm_struct
*mm
= get_task_mm(p
);
5554 mem_cgroup_move_charge(mm
);
5558 mem_cgroup_clear_mc();
5560 #else /* !CONFIG_MMU */
5561 static int mem_cgroup_can_attach(struct cgroup
*cgroup
,
5562 struct cgroup_taskset
*tset
)
5566 static void mem_cgroup_cancel_attach(struct cgroup
*cgroup
,
5567 struct cgroup_taskset
*tset
)
5570 static void mem_cgroup_move_task(struct cgroup
*cont
,
5571 struct cgroup_taskset
*tset
)
5576 struct cgroup_subsys mem_cgroup_subsys
= {
5578 .subsys_id
= mem_cgroup_subsys_id
,
5579 .create
= mem_cgroup_create
,
5580 .pre_destroy
= mem_cgroup_pre_destroy
,
5581 .destroy
= mem_cgroup_destroy
,
5582 .can_attach
= mem_cgroup_can_attach
,
5583 .cancel_attach
= mem_cgroup_cancel_attach
,
5584 .attach
= mem_cgroup_move_task
,
5585 .base_cftypes
= mem_cgroup_files
,
5588 .__DEPRECATED_clear_css_refs
= true,
5591 #ifdef CONFIG_MEMCG_SWAP
5592 static int __init
enable_swap_account(char *s
)
5594 /* consider enabled if no parameter or 1 is given */
5595 if (!strcmp(s
, "1"))
5596 really_do_swap_account
= 1;
5597 else if (!strcmp(s
, "0"))
5598 really_do_swap_account
= 0;
5601 __setup("swapaccount=", enable_swap_account
);