mm, oom: reduce dependency on tasklist_lock
[linux/fpc-iii.git] / mm / memcontrol.c
blob77a29cea5d76cb8998fdab136da638c74b557542
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
56 #include <asm/uaccess.h>
58 #include <trace/events/vmscan.h>
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 static struct mem_cgroup *root_mem_cgroup __read_mostly;
64 #ifdef CONFIG_MEMCG_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
68 /* for remember boot option*/
69 #ifdef CONFIG_MEMCG_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
75 #else
76 #define do_swap_account 0
77 #endif
81 * Statistics for memory cgroup.
83 enum mem_cgroup_stat_index {
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_NSTATS,
94 static const char * const mem_cgroup_stat_names[] = {
95 "cache",
96 "rss",
97 "mapped_file",
98 "swap",
101 enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS,
109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
122 enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT,
125 MEM_CGROUP_TARGET_NUMAINFO,
126 MEM_CGROUP_NTARGETS,
128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET 1024
132 struct mem_cgroup_stat_cpu {
133 long count[MEM_CGROUP_STAT_NSTATS];
134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135 unsigned long nr_page_events;
136 unsigned long targets[MEM_CGROUP_NTARGETS];
139 struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */
141 int position;
142 /* scan generation, increased every round-trip */
143 unsigned int generation;
147 * per-zone information in memory controller.
149 struct mem_cgroup_per_zone {
150 struct lruvec lruvec;
151 unsigned long lru_size[NR_LRU_LISTS];
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/
158 bool on_tree;
159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
160 /* use container_of */
163 struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
167 struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
176 struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root;
178 spinlock_t lock;
181 struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185 struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
191 struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd;
193 u64 threshold;
196 /* For threshold */
197 struct mem_cgroup_threshold_ary {
198 /* An array index points to threshold just below or equal to usage. */
199 int current_threshold;
200 /* Size of entries[] */
201 unsigned int size;
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0];
206 struct mem_cgroup_thresholds {
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary;
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
214 struct mem_cgroup_threshold_ary *spare;
217 /* for OOM */
218 struct mem_cgroup_eventfd_list {
219 struct list_head list;
220 struct eventfd_ctx *eventfd;
223 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
237 struct mem_cgroup {
238 struct cgroup_subsys_state css;
240 * the counter to account for memory usage
242 struct res_counter res;
244 union {
246 * the counter to account for mem+swap usage.
248 struct res_counter memsw;
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
259 struct rcu_head rcu_freeing;
261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use.
264 struct work_struct work_freeing;
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
271 struct mem_cgroup_lru_info info;
272 int last_scanned_node;
273 #if MAX_NUMNODES > 1
274 nodemask_t scan_nodes;
275 atomic_t numainfo_events;
276 atomic_t numainfo_updating;
277 #endif
279 * Should the accounting and control be hierarchical, per subtree?
281 bool use_hierarchy;
283 bool oom_lock;
284 atomic_t under_oom;
286 atomic_t refcnt;
288 int swappiness;
289 /* OOM-Killer disable */
290 int oom_kill_disable;
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum;
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
298 /* thresholds for memory usage. RCU-protected */
299 struct mem_cgroup_thresholds thresholds;
301 /* thresholds for mem+swap usage. RCU-protected */
302 struct mem_cgroup_thresholds memsw_thresholds;
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
311 unsigned long move_charge_at_immigrate;
313 * set > 0 if pages under this cgroup are moving to other cgroup.
315 atomic_t moving_account;
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock;
319 * percpu counter.
321 struct mem_cgroup_stat_cpu __percpu *stat;
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock;
329 #ifdef CONFIG_INET
330 struct tcp_memcontrol tcp_mem;
331 #endif
334 /* Stuffs for move charges at task migration. */
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
339 enum move_type {
340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
342 NR_MOVE_TYPE,
345 /* "mc" and its members are protected by cgroup_mutex */
346 static struct move_charge_struct {
347 spinlock_t lock; /* for from, to */
348 struct mem_cgroup *from;
349 struct mem_cgroup *to;
350 unsigned long precharge;
351 unsigned long moved_charge;
352 unsigned long moved_swap;
353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */
355 } mc = {
356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
360 static bool move_anon(void)
362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate);
366 static bool move_file(void)
368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate);
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
376 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
379 enum charge_type {
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381 MEM_CGROUP_CHARGE_TYPE_ANON,
382 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
385 NR_CHARGE_TYPE,
388 /* for encoding cft->private value on file */
389 #define _MEM (0)
390 #define _MEMSWAP (1)
391 #define _OOM_TYPE (2)
392 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
394 #define MEMFILE_ATTR(val) ((val) & 0xffff)
395 /* Used for OOM nofiier */
396 #define OOM_CONTROL (0)
399 * Reclaim flags for mem_cgroup_hierarchical_reclaim
401 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
406 static void mem_cgroup_get(struct mem_cgroup *memcg);
407 static void mem_cgroup_put(struct mem_cgroup *memcg);
409 /* Writing them here to avoid exposing memcg's inner layout */
410 #ifdef CONFIG_MEMCG_KMEM
411 #include <net/sock.h>
412 #include <net/ip.h>
414 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
415 void sock_update_memcg(struct sock *sk)
417 if (mem_cgroup_sockets_enabled) {
418 struct mem_cgroup *memcg;
419 struct cg_proto *cg_proto;
421 BUG_ON(!sk->sk_prot->proto_cgroup);
423 /* Socket cloning can throw us here with sk_cgrp already
424 * filled. It won't however, necessarily happen from
425 * process context. So the test for root memcg given
426 * the current task's memcg won't help us in this case.
428 * Respecting the original socket's memcg is a better
429 * decision in this case.
431 if (sk->sk_cgrp) {
432 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
433 mem_cgroup_get(sk->sk_cgrp->memcg);
434 return;
437 rcu_read_lock();
438 memcg = mem_cgroup_from_task(current);
439 cg_proto = sk->sk_prot->proto_cgroup(memcg);
440 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
441 mem_cgroup_get(memcg);
442 sk->sk_cgrp = cg_proto;
444 rcu_read_unlock();
447 EXPORT_SYMBOL(sock_update_memcg);
449 void sock_release_memcg(struct sock *sk)
451 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
452 struct mem_cgroup *memcg;
453 WARN_ON(!sk->sk_cgrp->memcg);
454 memcg = sk->sk_cgrp->memcg;
455 mem_cgroup_put(memcg);
459 #ifdef CONFIG_INET
460 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
462 if (!memcg || mem_cgroup_is_root(memcg))
463 return NULL;
465 return &memcg->tcp_mem.cg_proto;
467 EXPORT_SYMBOL(tcp_proto_cgroup);
468 #endif /* CONFIG_INET */
469 #endif /* CONFIG_MEMCG_KMEM */
471 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
472 static void disarm_sock_keys(struct mem_cgroup *memcg)
474 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
475 return;
476 static_key_slow_dec(&memcg_socket_limit_enabled);
478 #else
479 static void disarm_sock_keys(struct mem_cgroup *memcg)
482 #endif
484 static void drain_all_stock_async(struct mem_cgroup *memcg);
486 static struct mem_cgroup_per_zone *
487 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
489 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
492 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
494 return &memcg->css;
497 static struct mem_cgroup_per_zone *
498 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
500 int nid = page_to_nid(page);
501 int zid = page_zonenum(page);
503 return mem_cgroup_zoneinfo(memcg, nid, zid);
506 static struct mem_cgroup_tree_per_zone *
507 soft_limit_tree_node_zone(int nid, int zid)
509 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
512 static struct mem_cgroup_tree_per_zone *
513 soft_limit_tree_from_page(struct page *page)
515 int nid = page_to_nid(page);
516 int zid = page_zonenum(page);
518 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
521 static void
522 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
523 struct mem_cgroup_per_zone *mz,
524 struct mem_cgroup_tree_per_zone *mctz,
525 unsigned long long new_usage_in_excess)
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
529 struct mem_cgroup_per_zone *mz_node;
531 if (mz->on_tree)
532 return;
534 mz->usage_in_excess = new_usage_in_excess;
535 if (!mz->usage_in_excess)
536 return;
537 while (*p) {
538 parent = *p;
539 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
540 tree_node);
541 if (mz->usage_in_excess < mz_node->usage_in_excess)
542 p = &(*p)->rb_left;
544 * We can't avoid mem cgroups that are over their soft
545 * limit by the same amount
547 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
548 p = &(*p)->rb_right;
550 rb_link_node(&mz->tree_node, parent, p);
551 rb_insert_color(&mz->tree_node, &mctz->rb_root);
552 mz->on_tree = true;
555 static void
556 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
557 struct mem_cgroup_per_zone *mz,
558 struct mem_cgroup_tree_per_zone *mctz)
560 if (!mz->on_tree)
561 return;
562 rb_erase(&mz->tree_node, &mctz->rb_root);
563 mz->on_tree = false;
566 static void
567 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
568 struct mem_cgroup_per_zone *mz,
569 struct mem_cgroup_tree_per_zone *mctz)
571 spin_lock(&mctz->lock);
572 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 spin_unlock(&mctz->lock);
577 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
579 unsigned long long excess;
580 struct mem_cgroup_per_zone *mz;
581 struct mem_cgroup_tree_per_zone *mctz;
582 int nid = page_to_nid(page);
583 int zid = page_zonenum(page);
584 mctz = soft_limit_tree_from_page(page);
587 * Necessary to update all ancestors when hierarchy is used.
588 * because their event counter is not touched.
590 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
591 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
592 excess = res_counter_soft_limit_excess(&memcg->res);
594 * We have to update the tree if mz is on RB-tree or
595 * mem is over its softlimit.
597 if (excess || mz->on_tree) {
598 spin_lock(&mctz->lock);
599 /* if on-tree, remove it */
600 if (mz->on_tree)
601 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
603 * Insert again. mz->usage_in_excess will be updated.
604 * If excess is 0, no tree ops.
606 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
607 spin_unlock(&mctz->lock);
612 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
614 int node, zone;
615 struct mem_cgroup_per_zone *mz;
616 struct mem_cgroup_tree_per_zone *mctz;
618 for_each_node(node) {
619 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
620 mz = mem_cgroup_zoneinfo(memcg, node, zone);
621 mctz = soft_limit_tree_node_zone(node, zone);
622 mem_cgroup_remove_exceeded(memcg, mz, mctz);
627 static struct mem_cgroup_per_zone *
628 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
630 struct rb_node *rightmost = NULL;
631 struct mem_cgroup_per_zone *mz;
633 retry:
634 mz = NULL;
635 rightmost = rb_last(&mctz->rb_root);
636 if (!rightmost)
637 goto done; /* Nothing to reclaim from */
639 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
641 * Remove the node now but someone else can add it back,
642 * we will to add it back at the end of reclaim to its correct
643 * position in the tree.
645 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
646 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
647 !css_tryget(&mz->memcg->css))
648 goto retry;
649 done:
650 return mz;
653 static struct mem_cgroup_per_zone *
654 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
656 struct mem_cgroup_per_zone *mz;
658 spin_lock(&mctz->lock);
659 mz = __mem_cgroup_largest_soft_limit_node(mctz);
660 spin_unlock(&mctz->lock);
661 return mz;
665 * Implementation Note: reading percpu statistics for memcg.
667 * Both of vmstat[] and percpu_counter has threshold and do periodic
668 * synchronization to implement "quick" read. There are trade-off between
669 * reading cost and precision of value. Then, we may have a chance to implement
670 * a periodic synchronizion of counter in memcg's counter.
672 * But this _read() function is used for user interface now. The user accounts
673 * memory usage by memory cgroup and he _always_ requires exact value because
674 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
675 * have to visit all online cpus and make sum. So, for now, unnecessary
676 * synchronization is not implemented. (just implemented for cpu hotplug)
678 * If there are kernel internal actions which can make use of some not-exact
679 * value, and reading all cpu value can be performance bottleneck in some
680 * common workload, threashold and synchonization as vmstat[] should be
681 * implemented.
683 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
684 enum mem_cgroup_stat_index idx)
686 long val = 0;
687 int cpu;
689 get_online_cpus();
690 for_each_online_cpu(cpu)
691 val += per_cpu(memcg->stat->count[idx], cpu);
692 #ifdef CONFIG_HOTPLUG_CPU
693 spin_lock(&memcg->pcp_counter_lock);
694 val += memcg->nocpu_base.count[idx];
695 spin_unlock(&memcg->pcp_counter_lock);
696 #endif
697 put_online_cpus();
698 return val;
701 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
702 bool charge)
704 int val = (charge) ? 1 : -1;
705 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
708 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
709 enum mem_cgroup_events_index idx)
711 unsigned long val = 0;
712 int cpu;
714 for_each_online_cpu(cpu)
715 val += per_cpu(memcg->stat->events[idx], cpu);
716 #ifdef CONFIG_HOTPLUG_CPU
717 spin_lock(&memcg->pcp_counter_lock);
718 val += memcg->nocpu_base.events[idx];
719 spin_unlock(&memcg->pcp_counter_lock);
720 #endif
721 return val;
724 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
725 bool anon, int nr_pages)
727 preempt_disable();
730 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
731 * counted as CACHE even if it's on ANON LRU.
733 if (anon)
734 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
735 nr_pages);
736 else
737 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
738 nr_pages);
740 /* pagein of a big page is an event. So, ignore page size */
741 if (nr_pages > 0)
742 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
743 else {
744 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
745 nr_pages = -nr_pages; /* for event */
748 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
750 preempt_enable();
753 unsigned long
754 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
756 struct mem_cgroup_per_zone *mz;
758 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
759 return mz->lru_size[lru];
762 static unsigned long
763 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
764 unsigned int lru_mask)
766 struct mem_cgroup_per_zone *mz;
767 enum lru_list lru;
768 unsigned long ret = 0;
770 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
772 for_each_lru(lru) {
773 if (BIT(lru) & lru_mask)
774 ret += mz->lru_size[lru];
776 return ret;
779 static unsigned long
780 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
781 int nid, unsigned int lru_mask)
783 u64 total = 0;
784 int zid;
786 for (zid = 0; zid < MAX_NR_ZONES; zid++)
787 total += mem_cgroup_zone_nr_lru_pages(memcg,
788 nid, zid, lru_mask);
790 return total;
793 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
794 unsigned int lru_mask)
796 int nid;
797 u64 total = 0;
799 for_each_node_state(nid, N_HIGH_MEMORY)
800 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
801 return total;
804 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
805 enum mem_cgroup_events_target target)
807 unsigned long val, next;
809 val = __this_cpu_read(memcg->stat->nr_page_events);
810 next = __this_cpu_read(memcg->stat->targets[target]);
811 /* from time_after() in jiffies.h */
812 if ((long)next - (long)val < 0) {
813 switch (target) {
814 case MEM_CGROUP_TARGET_THRESH:
815 next = val + THRESHOLDS_EVENTS_TARGET;
816 break;
817 case MEM_CGROUP_TARGET_SOFTLIMIT:
818 next = val + SOFTLIMIT_EVENTS_TARGET;
819 break;
820 case MEM_CGROUP_TARGET_NUMAINFO:
821 next = val + NUMAINFO_EVENTS_TARGET;
822 break;
823 default:
824 break;
826 __this_cpu_write(memcg->stat->targets[target], next);
827 return true;
829 return false;
833 * Check events in order.
836 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
838 preempt_disable();
839 /* threshold event is triggered in finer grain than soft limit */
840 if (unlikely(mem_cgroup_event_ratelimit(memcg,
841 MEM_CGROUP_TARGET_THRESH))) {
842 bool do_softlimit;
843 bool do_numainfo __maybe_unused;
845 do_softlimit = mem_cgroup_event_ratelimit(memcg,
846 MEM_CGROUP_TARGET_SOFTLIMIT);
847 #if MAX_NUMNODES > 1
848 do_numainfo = mem_cgroup_event_ratelimit(memcg,
849 MEM_CGROUP_TARGET_NUMAINFO);
850 #endif
851 preempt_enable();
853 mem_cgroup_threshold(memcg);
854 if (unlikely(do_softlimit))
855 mem_cgroup_update_tree(memcg, page);
856 #if MAX_NUMNODES > 1
857 if (unlikely(do_numainfo))
858 atomic_inc(&memcg->numainfo_events);
859 #endif
860 } else
861 preempt_enable();
864 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
866 return container_of(cgroup_subsys_state(cont,
867 mem_cgroup_subsys_id), struct mem_cgroup,
868 css);
871 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
874 * mm_update_next_owner() may clear mm->owner to NULL
875 * if it races with swapoff, page migration, etc.
876 * So this can be called with p == NULL.
878 if (unlikely(!p))
879 return NULL;
881 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
882 struct mem_cgroup, css);
885 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
887 struct mem_cgroup *memcg = NULL;
889 if (!mm)
890 return NULL;
892 * Because we have no locks, mm->owner's may be being moved to other
893 * cgroup. We use css_tryget() here even if this looks
894 * pessimistic (rather than adding locks here).
896 rcu_read_lock();
897 do {
898 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
899 if (unlikely(!memcg))
900 break;
901 } while (!css_tryget(&memcg->css));
902 rcu_read_unlock();
903 return memcg;
907 * mem_cgroup_iter - iterate over memory cgroup hierarchy
908 * @root: hierarchy root
909 * @prev: previously returned memcg, NULL on first invocation
910 * @reclaim: cookie for shared reclaim walks, NULL for full walks
912 * Returns references to children of the hierarchy below @root, or
913 * @root itself, or %NULL after a full round-trip.
915 * Caller must pass the return value in @prev on subsequent
916 * invocations for reference counting, or use mem_cgroup_iter_break()
917 * to cancel a hierarchy walk before the round-trip is complete.
919 * Reclaimers can specify a zone and a priority level in @reclaim to
920 * divide up the memcgs in the hierarchy among all concurrent
921 * reclaimers operating on the same zone and priority.
923 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
924 struct mem_cgroup *prev,
925 struct mem_cgroup_reclaim_cookie *reclaim)
927 struct mem_cgroup *memcg = NULL;
928 int id = 0;
930 if (mem_cgroup_disabled())
931 return NULL;
933 if (!root)
934 root = root_mem_cgroup;
936 if (prev && !reclaim)
937 id = css_id(&prev->css);
939 if (prev && prev != root)
940 css_put(&prev->css);
942 if (!root->use_hierarchy && root != root_mem_cgroup) {
943 if (prev)
944 return NULL;
945 return root;
948 while (!memcg) {
949 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
950 struct cgroup_subsys_state *css;
952 if (reclaim) {
953 int nid = zone_to_nid(reclaim->zone);
954 int zid = zone_idx(reclaim->zone);
955 struct mem_cgroup_per_zone *mz;
957 mz = mem_cgroup_zoneinfo(root, nid, zid);
958 iter = &mz->reclaim_iter[reclaim->priority];
959 if (prev && reclaim->generation != iter->generation)
960 return NULL;
961 id = iter->position;
964 rcu_read_lock();
965 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
966 if (css) {
967 if (css == &root->css || css_tryget(css))
968 memcg = container_of(css,
969 struct mem_cgroup, css);
970 } else
971 id = 0;
972 rcu_read_unlock();
974 if (reclaim) {
975 iter->position = id;
976 if (!css)
977 iter->generation++;
978 else if (!prev && memcg)
979 reclaim->generation = iter->generation;
982 if (prev && !css)
983 return NULL;
985 return memcg;
989 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
990 * @root: hierarchy root
991 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
993 void mem_cgroup_iter_break(struct mem_cgroup *root,
994 struct mem_cgroup *prev)
996 if (!root)
997 root = root_mem_cgroup;
998 if (prev && prev != root)
999 css_put(&prev->css);
1003 * Iteration constructs for visiting all cgroups (under a tree). If
1004 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1005 * be used for reference counting.
1007 #define for_each_mem_cgroup_tree(iter, root) \
1008 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1009 iter != NULL; \
1010 iter = mem_cgroup_iter(root, iter, NULL))
1012 #define for_each_mem_cgroup(iter) \
1013 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1014 iter != NULL; \
1015 iter = mem_cgroup_iter(NULL, iter, NULL))
1017 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1019 return (memcg == root_mem_cgroup);
1022 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1024 struct mem_cgroup *memcg;
1026 if (!mm)
1027 return;
1029 rcu_read_lock();
1030 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1031 if (unlikely(!memcg))
1032 goto out;
1034 switch (idx) {
1035 case PGFAULT:
1036 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1037 break;
1038 case PGMAJFAULT:
1039 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1040 break;
1041 default:
1042 BUG();
1044 out:
1045 rcu_read_unlock();
1047 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1050 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1051 * @zone: zone of the wanted lruvec
1052 * @memcg: memcg of the wanted lruvec
1054 * Returns the lru list vector holding pages for the given @zone and
1055 * @mem. This can be the global zone lruvec, if the memory controller
1056 * is disabled.
1058 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1059 struct mem_cgroup *memcg)
1061 struct mem_cgroup_per_zone *mz;
1063 if (mem_cgroup_disabled())
1064 return &zone->lruvec;
1066 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1067 return &mz->lruvec;
1071 * Following LRU functions are allowed to be used without PCG_LOCK.
1072 * Operations are called by routine of global LRU independently from memcg.
1073 * What we have to take care of here is validness of pc->mem_cgroup.
1075 * Changes to pc->mem_cgroup happens when
1076 * 1. charge
1077 * 2. moving account
1078 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1079 * It is added to LRU before charge.
1080 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1081 * When moving account, the page is not on LRU. It's isolated.
1085 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1086 * @page: the page
1087 * @zone: zone of the page
1089 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1091 struct mem_cgroup_per_zone *mz;
1092 struct mem_cgroup *memcg;
1093 struct page_cgroup *pc;
1095 if (mem_cgroup_disabled())
1096 return &zone->lruvec;
1098 pc = lookup_page_cgroup(page);
1099 memcg = pc->mem_cgroup;
1102 * Surreptitiously switch any uncharged offlist page to root:
1103 * an uncharged page off lru does nothing to secure
1104 * its former mem_cgroup from sudden removal.
1106 * Our caller holds lru_lock, and PageCgroupUsed is updated
1107 * under page_cgroup lock: between them, they make all uses
1108 * of pc->mem_cgroup safe.
1110 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1111 pc->mem_cgroup = memcg = root_mem_cgroup;
1113 mz = page_cgroup_zoneinfo(memcg, page);
1114 return &mz->lruvec;
1118 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1119 * @lruvec: mem_cgroup per zone lru vector
1120 * @lru: index of lru list the page is sitting on
1121 * @nr_pages: positive when adding or negative when removing
1123 * This function must be called when a page is added to or removed from an
1124 * lru list.
1126 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1127 int nr_pages)
1129 struct mem_cgroup_per_zone *mz;
1130 unsigned long *lru_size;
1132 if (mem_cgroup_disabled())
1133 return;
1135 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1136 lru_size = mz->lru_size + lru;
1137 *lru_size += nr_pages;
1138 VM_BUG_ON((long)(*lru_size) < 0);
1142 * Checks whether given mem is same or in the root_mem_cgroup's
1143 * hierarchy subtree
1145 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1146 struct mem_cgroup *memcg)
1148 if (root_memcg == memcg)
1149 return true;
1150 if (!root_memcg->use_hierarchy || !memcg)
1151 return false;
1152 return css_is_ancestor(&memcg->css, &root_memcg->css);
1155 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1156 struct mem_cgroup *memcg)
1158 bool ret;
1160 rcu_read_lock();
1161 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1162 rcu_read_unlock();
1163 return ret;
1166 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1168 int ret;
1169 struct mem_cgroup *curr = NULL;
1170 struct task_struct *p;
1172 p = find_lock_task_mm(task);
1173 if (p) {
1174 curr = try_get_mem_cgroup_from_mm(p->mm);
1175 task_unlock(p);
1176 } else {
1178 * All threads may have already detached their mm's, but the oom
1179 * killer still needs to detect if they have already been oom
1180 * killed to prevent needlessly killing additional tasks.
1182 task_lock(task);
1183 curr = mem_cgroup_from_task(task);
1184 if (curr)
1185 css_get(&curr->css);
1186 task_unlock(task);
1188 if (!curr)
1189 return 0;
1191 * We should check use_hierarchy of "memcg" not "curr". Because checking
1192 * use_hierarchy of "curr" here make this function true if hierarchy is
1193 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1194 * hierarchy(even if use_hierarchy is disabled in "memcg").
1196 ret = mem_cgroup_same_or_subtree(memcg, curr);
1197 css_put(&curr->css);
1198 return ret;
1201 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1203 unsigned long inactive_ratio;
1204 unsigned long inactive;
1205 unsigned long active;
1206 unsigned long gb;
1208 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1209 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1211 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1212 if (gb)
1213 inactive_ratio = int_sqrt(10 * gb);
1214 else
1215 inactive_ratio = 1;
1217 return inactive * inactive_ratio < active;
1220 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1222 unsigned long active;
1223 unsigned long inactive;
1225 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1226 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1228 return (active > inactive);
1231 #define mem_cgroup_from_res_counter(counter, member) \
1232 container_of(counter, struct mem_cgroup, member)
1235 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1236 * @memcg: the memory cgroup
1238 * Returns the maximum amount of memory @mem can be charged with, in
1239 * pages.
1241 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1243 unsigned long long margin;
1245 margin = res_counter_margin(&memcg->res);
1246 if (do_swap_account)
1247 margin = min(margin, res_counter_margin(&memcg->memsw));
1248 return margin >> PAGE_SHIFT;
1251 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1253 struct cgroup *cgrp = memcg->css.cgroup;
1255 /* root ? */
1256 if (cgrp->parent == NULL)
1257 return vm_swappiness;
1259 return memcg->swappiness;
1263 * memcg->moving_account is used for checking possibility that some thread is
1264 * calling move_account(). When a thread on CPU-A starts moving pages under
1265 * a memcg, other threads should check memcg->moving_account under
1266 * rcu_read_lock(), like this:
1268 * CPU-A CPU-B
1269 * rcu_read_lock()
1270 * memcg->moving_account+1 if (memcg->mocing_account)
1271 * take heavy locks.
1272 * synchronize_rcu() update something.
1273 * rcu_read_unlock()
1274 * start move here.
1277 /* for quick checking without looking up memcg */
1278 atomic_t memcg_moving __read_mostly;
1280 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1282 atomic_inc(&memcg_moving);
1283 atomic_inc(&memcg->moving_account);
1284 synchronize_rcu();
1287 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1290 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1291 * We check NULL in callee rather than caller.
1293 if (memcg) {
1294 atomic_dec(&memcg_moving);
1295 atomic_dec(&memcg->moving_account);
1300 * 2 routines for checking "mem" is under move_account() or not.
1302 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1303 * is used for avoiding races in accounting. If true,
1304 * pc->mem_cgroup may be overwritten.
1306 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1307 * under hierarchy of moving cgroups. This is for
1308 * waiting at hith-memory prressure caused by "move".
1311 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1313 VM_BUG_ON(!rcu_read_lock_held());
1314 return atomic_read(&memcg->moving_account) > 0;
1317 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1319 struct mem_cgroup *from;
1320 struct mem_cgroup *to;
1321 bool ret = false;
1323 * Unlike task_move routines, we access mc.to, mc.from not under
1324 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1326 spin_lock(&mc.lock);
1327 from = mc.from;
1328 to = mc.to;
1329 if (!from)
1330 goto unlock;
1332 ret = mem_cgroup_same_or_subtree(memcg, from)
1333 || mem_cgroup_same_or_subtree(memcg, to);
1334 unlock:
1335 spin_unlock(&mc.lock);
1336 return ret;
1339 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1341 if (mc.moving_task && current != mc.moving_task) {
1342 if (mem_cgroup_under_move(memcg)) {
1343 DEFINE_WAIT(wait);
1344 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1345 /* moving charge context might have finished. */
1346 if (mc.moving_task)
1347 schedule();
1348 finish_wait(&mc.waitq, &wait);
1349 return true;
1352 return false;
1356 * Take this lock when
1357 * - a code tries to modify page's memcg while it's USED.
1358 * - a code tries to modify page state accounting in a memcg.
1359 * see mem_cgroup_stolen(), too.
1361 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1362 unsigned long *flags)
1364 spin_lock_irqsave(&memcg->move_lock, *flags);
1367 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1368 unsigned long *flags)
1370 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1374 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1375 * @memcg: The memory cgroup that went over limit
1376 * @p: Task that is going to be killed
1378 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1379 * enabled
1381 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1383 struct cgroup *task_cgrp;
1384 struct cgroup *mem_cgrp;
1386 * Need a buffer in BSS, can't rely on allocations. The code relies
1387 * on the assumption that OOM is serialized for memory controller.
1388 * If this assumption is broken, revisit this code.
1390 static char memcg_name[PATH_MAX];
1391 int ret;
1393 if (!memcg || !p)
1394 return;
1396 rcu_read_lock();
1398 mem_cgrp = memcg->css.cgroup;
1399 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1401 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1402 if (ret < 0) {
1404 * Unfortunately, we are unable to convert to a useful name
1405 * But we'll still print out the usage information
1407 rcu_read_unlock();
1408 goto done;
1410 rcu_read_unlock();
1412 printk(KERN_INFO "Task in %s killed", memcg_name);
1414 rcu_read_lock();
1415 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1416 if (ret < 0) {
1417 rcu_read_unlock();
1418 goto done;
1420 rcu_read_unlock();
1423 * Continues from above, so we don't need an KERN_ level
1425 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1426 done:
1428 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1429 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1430 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1431 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1432 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1433 "failcnt %llu\n",
1434 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1435 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1436 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1440 * This function returns the number of memcg under hierarchy tree. Returns
1441 * 1(self count) if no children.
1443 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1445 int num = 0;
1446 struct mem_cgroup *iter;
1448 for_each_mem_cgroup_tree(iter, memcg)
1449 num++;
1450 return num;
1454 * Return the memory (and swap, if configured) limit for a memcg.
1456 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1458 u64 limit;
1459 u64 memsw;
1461 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1462 limit += total_swap_pages << PAGE_SHIFT;
1464 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1466 * If memsw is finite and limits the amount of swap space available
1467 * to this memcg, return that limit.
1469 return min(limit, memsw);
1472 void __mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1473 int order)
1475 struct mem_cgroup *iter;
1476 unsigned long chosen_points = 0;
1477 unsigned long totalpages;
1478 unsigned int points = 0;
1479 struct task_struct *chosen = NULL;
1481 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1482 for_each_mem_cgroup_tree(iter, memcg) {
1483 struct cgroup *cgroup = iter->css.cgroup;
1484 struct cgroup_iter it;
1485 struct task_struct *task;
1487 cgroup_iter_start(cgroup, &it);
1488 while ((task = cgroup_iter_next(cgroup, &it))) {
1489 switch (oom_scan_process_thread(task, totalpages, NULL,
1490 false)) {
1491 case OOM_SCAN_SELECT:
1492 if (chosen)
1493 put_task_struct(chosen);
1494 chosen = task;
1495 chosen_points = ULONG_MAX;
1496 get_task_struct(chosen);
1497 /* fall through */
1498 case OOM_SCAN_CONTINUE:
1499 continue;
1500 case OOM_SCAN_ABORT:
1501 cgroup_iter_end(cgroup, &it);
1502 mem_cgroup_iter_break(memcg, iter);
1503 if (chosen)
1504 put_task_struct(chosen);
1505 return;
1506 case OOM_SCAN_OK:
1507 break;
1509 points = oom_badness(task, memcg, NULL, totalpages);
1510 if (points > chosen_points) {
1511 if (chosen)
1512 put_task_struct(chosen);
1513 chosen = task;
1514 chosen_points = points;
1515 get_task_struct(chosen);
1518 cgroup_iter_end(cgroup, &it);
1521 if (!chosen)
1522 return;
1523 points = chosen_points * 1000 / totalpages;
1524 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1525 NULL, "Memory cgroup out of memory");
1528 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1529 gfp_t gfp_mask,
1530 unsigned long flags)
1532 unsigned long total = 0;
1533 bool noswap = false;
1534 int loop;
1536 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1537 noswap = true;
1538 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1539 noswap = true;
1541 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1542 if (loop)
1543 drain_all_stock_async(memcg);
1544 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1546 * Allow limit shrinkers, which are triggered directly
1547 * by userspace, to catch signals and stop reclaim
1548 * after minimal progress, regardless of the margin.
1550 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1551 break;
1552 if (mem_cgroup_margin(memcg))
1553 break;
1555 * If nothing was reclaimed after two attempts, there
1556 * may be no reclaimable pages in this hierarchy.
1558 if (loop && !total)
1559 break;
1561 return total;
1565 * test_mem_cgroup_node_reclaimable
1566 * @memcg: the target memcg
1567 * @nid: the node ID to be checked.
1568 * @noswap : specify true here if the user wants flle only information.
1570 * This function returns whether the specified memcg contains any
1571 * reclaimable pages on a node. Returns true if there are any reclaimable
1572 * pages in the node.
1574 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1575 int nid, bool noswap)
1577 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1578 return true;
1579 if (noswap || !total_swap_pages)
1580 return false;
1581 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1582 return true;
1583 return false;
1586 #if MAX_NUMNODES > 1
1589 * Always updating the nodemask is not very good - even if we have an empty
1590 * list or the wrong list here, we can start from some node and traverse all
1591 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1594 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1596 int nid;
1598 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1599 * pagein/pageout changes since the last update.
1601 if (!atomic_read(&memcg->numainfo_events))
1602 return;
1603 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1604 return;
1606 /* make a nodemask where this memcg uses memory from */
1607 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1609 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1611 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1612 node_clear(nid, memcg->scan_nodes);
1615 atomic_set(&memcg->numainfo_events, 0);
1616 atomic_set(&memcg->numainfo_updating, 0);
1620 * Selecting a node where we start reclaim from. Because what we need is just
1621 * reducing usage counter, start from anywhere is O,K. Considering
1622 * memory reclaim from current node, there are pros. and cons.
1624 * Freeing memory from current node means freeing memory from a node which
1625 * we'll use or we've used. So, it may make LRU bad. And if several threads
1626 * hit limits, it will see a contention on a node. But freeing from remote
1627 * node means more costs for memory reclaim because of memory latency.
1629 * Now, we use round-robin. Better algorithm is welcomed.
1631 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1633 int node;
1635 mem_cgroup_may_update_nodemask(memcg);
1636 node = memcg->last_scanned_node;
1638 node = next_node(node, memcg->scan_nodes);
1639 if (node == MAX_NUMNODES)
1640 node = first_node(memcg->scan_nodes);
1642 * We call this when we hit limit, not when pages are added to LRU.
1643 * No LRU may hold pages because all pages are UNEVICTABLE or
1644 * memcg is too small and all pages are not on LRU. In that case,
1645 * we use curret node.
1647 if (unlikely(node == MAX_NUMNODES))
1648 node = numa_node_id();
1650 memcg->last_scanned_node = node;
1651 return node;
1655 * Check all nodes whether it contains reclaimable pages or not.
1656 * For quick scan, we make use of scan_nodes. This will allow us to skip
1657 * unused nodes. But scan_nodes is lazily updated and may not cotain
1658 * enough new information. We need to do double check.
1660 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1662 int nid;
1665 * quick check...making use of scan_node.
1666 * We can skip unused nodes.
1668 if (!nodes_empty(memcg->scan_nodes)) {
1669 for (nid = first_node(memcg->scan_nodes);
1670 nid < MAX_NUMNODES;
1671 nid = next_node(nid, memcg->scan_nodes)) {
1673 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1674 return true;
1678 * Check rest of nodes.
1680 for_each_node_state(nid, N_HIGH_MEMORY) {
1681 if (node_isset(nid, memcg->scan_nodes))
1682 continue;
1683 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1684 return true;
1686 return false;
1689 #else
1690 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1692 return 0;
1695 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1697 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1699 #endif
1701 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1702 struct zone *zone,
1703 gfp_t gfp_mask,
1704 unsigned long *total_scanned)
1706 struct mem_cgroup *victim = NULL;
1707 int total = 0;
1708 int loop = 0;
1709 unsigned long excess;
1710 unsigned long nr_scanned;
1711 struct mem_cgroup_reclaim_cookie reclaim = {
1712 .zone = zone,
1713 .priority = 0,
1716 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1718 while (1) {
1719 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1720 if (!victim) {
1721 loop++;
1722 if (loop >= 2) {
1724 * If we have not been able to reclaim
1725 * anything, it might because there are
1726 * no reclaimable pages under this hierarchy
1728 if (!total)
1729 break;
1731 * We want to do more targeted reclaim.
1732 * excess >> 2 is not to excessive so as to
1733 * reclaim too much, nor too less that we keep
1734 * coming back to reclaim from this cgroup
1736 if (total >= (excess >> 2) ||
1737 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1738 break;
1740 continue;
1742 if (!mem_cgroup_reclaimable(victim, false))
1743 continue;
1744 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1745 zone, &nr_scanned);
1746 *total_scanned += nr_scanned;
1747 if (!res_counter_soft_limit_excess(&root_memcg->res))
1748 break;
1750 mem_cgroup_iter_break(root_memcg, victim);
1751 return total;
1755 * Check OOM-Killer is already running under our hierarchy.
1756 * If someone is running, return false.
1757 * Has to be called with memcg_oom_lock
1759 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1761 struct mem_cgroup *iter, *failed = NULL;
1763 for_each_mem_cgroup_tree(iter, memcg) {
1764 if (iter->oom_lock) {
1766 * this subtree of our hierarchy is already locked
1767 * so we cannot give a lock.
1769 failed = iter;
1770 mem_cgroup_iter_break(memcg, iter);
1771 break;
1772 } else
1773 iter->oom_lock = true;
1776 if (!failed)
1777 return true;
1780 * OK, we failed to lock the whole subtree so we have to clean up
1781 * what we set up to the failing subtree
1783 for_each_mem_cgroup_tree(iter, memcg) {
1784 if (iter == failed) {
1785 mem_cgroup_iter_break(memcg, iter);
1786 break;
1788 iter->oom_lock = false;
1790 return false;
1794 * Has to be called with memcg_oom_lock
1796 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1798 struct mem_cgroup *iter;
1800 for_each_mem_cgroup_tree(iter, memcg)
1801 iter->oom_lock = false;
1802 return 0;
1805 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1807 struct mem_cgroup *iter;
1809 for_each_mem_cgroup_tree(iter, memcg)
1810 atomic_inc(&iter->under_oom);
1813 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1815 struct mem_cgroup *iter;
1818 * When a new child is created while the hierarchy is under oom,
1819 * mem_cgroup_oom_lock() may not be called. We have to use
1820 * atomic_add_unless() here.
1822 for_each_mem_cgroup_tree(iter, memcg)
1823 atomic_add_unless(&iter->under_oom, -1, 0);
1826 static DEFINE_SPINLOCK(memcg_oom_lock);
1827 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1829 struct oom_wait_info {
1830 struct mem_cgroup *memcg;
1831 wait_queue_t wait;
1834 static int memcg_oom_wake_function(wait_queue_t *wait,
1835 unsigned mode, int sync, void *arg)
1837 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1838 struct mem_cgroup *oom_wait_memcg;
1839 struct oom_wait_info *oom_wait_info;
1841 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1842 oom_wait_memcg = oom_wait_info->memcg;
1845 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1846 * Then we can use css_is_ancestor without taking care of RCU.
1848 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1849 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1850 return 0;
1851 return autoremove_wake_function(wait, mode, sync, arg);
1854 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1856 /* for filtering, pass "memcg" as argument. */
1857 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1860 static void memcg_oom_recover(struct mem_cgroup *memcg)
1862 if (memcg && atomic_read(&memcg->under_oom))
1863 memcg_wakeup_oom(memcg);
1867 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1869 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1870 int order)
1872 struct oom_wait_info owait;
1873 bool locked, need_to_kill;
1875 owait.memcg = memcg;
1876 owait.wait.flags = 0;
1877 owait.wait.func = memcg_oom_wake_function;
1878 owait.wait.private = current;
1879 INIT_LIST_HEAD(&owait.wait.task_list);
1880 need_to_kill = true;
1881 mem_cgroup_mark_under_oom(memcg);
1883 /* At first, try to OOM lock hierarchy under memcg.*/
1884 spin_lock(&memcg_oom_lock);
1885 locked = mem_cgroup_oom_lock(memcg);
1887 * Even if signal_pending(), we can't quit charge() loop without
1888 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1889 * under OOM is always welcomed, use TASK_KILLABLE here.
1891 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1892 if (!locked || memcg->oom_kill_disable)
1893 need_to_kill = false;
1894 if (locked)
1895 mem_cgroup_oom_notify(memcg);
1896 spin_unlock(&memcg_oom_lock);
1898 if (need_to_kill) {
1899 finish_wait(&memcg_oom_waitq, &owait.wait);
1900 mem_cgroup_out_of_memory(memcg, mask, order);
1901 } else {
1902 schedule();
1903 finish_wait(&memcg_oom_waitq, &owait.wait);
1905 spin_lock(&memcg_oom_lock);
1906 if (locked)
1907 mem_cgroup_oom_unlock(memcg);
1908 memcg_wakeup_oom(memcg);
1909 spin_unlock(&memcg_oom_lock);
1911 mem_cgroup_unmark_under_oom(memcg);
1913 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1914 return false;
1915 /* Give chance to dying process */
1916 schedule_timeout_uninterruptible(1);
1917 return true;
1921 * Currently used to update mapped file statistics, but the routine can be
1922 * generalized to update other statistics as well.
1924 * Notes: Race condition
1926 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1927 * it tends to be costly. But considering some conditions, we doesn't need
1928 * to do so _always_.
1930 * Considering "charge", lock_page_cgroup() is not required because all
1931 * file-stat operations happen after a page is attached to radix-tree. There
1932 * are no race with "charge".
1934 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1935 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1936 * if there are race with "uncharge". Statistics itself is properly handled
1937 * by flags.
1939 * Considering "move", this is an only case we see a race. To make the race
1940 * small, we check mm->moving_account and detect there are possibility of race
1941 * If there is, we take a lock.
1944 void __mem_cgroup_begin_update_page_stat(struct page *page,
1945 bool *locked, unsigned long *flags)
1947 struct mem_cgroup *memcg;
1948 struct page_cgroup *pc;
1950 pc = lookup_page_cgroup(page);
1951 again:
1952 memcg = pc->mem_cgroup;
1953 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1954 return;
1956 * If this memory cgroup is not under account moving, we don't
1957 * need to take move_lock_mem_cgroup(). Because we already hold
1958 * rcu_read_lock(), any calls to move_account will be delayed until
1959 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1961 if (!mem_cgroup_stolen(memcg))
1962 return;
1964 move_lock_mem_cgroup(memcg, flags);
1965 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1966 move_unlock_mem_cgroup(memcg, flags);
1967 goto again;
1969 *locked = true;
1972 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1974 struct page_cgroup *pc = lookup_page_cgroup(page);
1977 * It's guaranteed that pc->mem_cgroup never changes while
1978 * lock is held because a routine modifies pc->mem_cgroup
1979 * should take move_lock_mem_cgroup().
1981 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1984 void mem_cgroup_update_page_stat(struct page *page,
1985 enum mem_cgroup_page_stat_item idx, int val)
1987 struct mem_cgroup *memcg;
1988 struct page_cgroup *pc = lookup_page_cgroup(page);
1989 unsigned long uninitialized_var(flags);
1991 if (mem_cgroup_disabled())
1992 return;
1994 memcg = pc->mem_cgroup;
1995 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1996 return;
1998 switch (idx) {
1999 case MEMCG_NR_FILE_MAPPED:
2000 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2001 break;
2002 default:
2003 BUG();
2006 this_cpu_add(memcg->stat->count[idx], val);
2010 * size of first charge trial. "32" comes from vmscan.c's magic value.
2011 * TODO: maybe necessary to use big numbers in big irons.
2013 #define CHARGE_BATCH 32U
2014 struct memcg_stock_pcp {
2015 struct mem_cgroup *cached; /* this never be root cgroup */
2016 unsigned int nr_pages;
2017 struct work_struct work;
2018 unsigned long flags;
2019 #define FLUSHING_CACHED_CHARGE 0
2021 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2022 static DEFINE_MUTEX(percpu_charge_mutex);
2025 * Try to consume stocked charge on this cpu. If success, one page is consumed
2026 * from local stock and true is returned. If the stock is 0 or charges from a
2027 * cgroup which is not current target, returns false. This stock will be
2028 * refilled.
2030 static bool consume_stock(struct mem_cgroup *memcg)
2032 struct memcg_stock_pcp *stock;
2033 bool ret = true;
2035 stock = &get_cpu_var(memcg_stock);
2036 if (memcg == stock->cached && stock->nr_pages)
2037 stock->nr_pages--;
2038 else /* need to call res_counter_charge */
2039 ret = false;
2040 put_cpu_var(memcg_stock);
2041 return ret;
2045 * Returns stocks cached in percpu to res_counter and reset cached information.
2047 static void drain_stock(struct memcg_stock_pcp *stock)
2049 struct mem_cgroup *old = stock->cached;
2051 if (stock->nr_pages) {
2052 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2054 res_counter_uncharge(&old->res, bytes);
2055 if (do_swap_account)
2056 res_counter_uncharge(&old->memsw, bytes);
2057 stock->nr_pages = 0;
2059 stock->cached = NULL;
2063 * This must be called under preempt disabled or must be called by
2064 * a thread which is pinned to local cpu.
2066 static void drain_local_stock(struct work_struct *dummy)
2068 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2069 drain_stock(stock);
2070 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2074 * Cache charges(val) which is from res_counter, to local per_cpu area.
2075 * This will be consumed by consume_stock() function, later.
2077 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2079 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2081 if (stock->cached != memcg) { /* reset if necessary */
2082 drain_stock(stock);
2083 stock->cached = memcg;
2085 stock->nr_pages += nr_pages;
2086 put_cpu_var(memcg_stock);
2090 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2091 * of the hierarchy under it. sync flag says whether we should block
2092 * until the work is done.
2094 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2096 int cpu, curcpu;
2098 /* Notify other cpus that system-wide "drain" is running */
2099 get_online_cpus();
2100 curcpu = get_cpu();
2101 for_each_online_cpu(cpu) {
2102 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2103 struct mem_cgroup *memcg;
2105 memcg = stock->cached;
2106 if (!memcg || !stock->nr_pages)
2107 continue;
2108 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2109 continue;
2110 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2111 if (cpu == curcpu)
2112 drain_local_stock(&stock->work);
2113 else
2114 schedule_work_on(cpu, &stock->work);
2117 put_cpu();
2119 if (!sync)
2120 goto out;
2122 for_each_online_cpu(cpu) {
2123 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2124 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2125 flush_work(&stock->work);
2127 out:
2128 put_online_cpus();
2132 * Tries to drain stocked charges in other cpus. This function is asynchronous
2133 * and just put a work per cpu for draining localy on each cpu. Caller can
2134 * expects some charges will be back to res_counter later but cannot wait for
2135 * it.
2137 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2140 * If someone calls draining, avoid adding more kworker runs.
2142 if (!mutex_trylock(&percpu_charge_mutex))
2143 return;
2144 drain_all_stock(root_memcg, false);
2145 mutex_unlock(&percpu_charge_mutex);
2148 /* This is a synchronous drain interface. */
2149 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2151 /* called when force_empty is called */
2152 mutex_lock(&percpu_charge_mutex);
2153 drain_all_stock(root_memcg, true);
2154 mutex_unlock(&percpu_charge_mutex);
2158 * This function drains percpu counter value from DEAD cpu and
2159 * move it to local cpu. Note that this function can be preempted.
2161 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2163 int i;
2165 spin_lock(&memcg->pcp_counter_lock);
2166 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2167 long x = per_cpu(memcg->stat->count[i], cpu);
2169 per_cpu(memcg->stat->count[i], cpu) = 0;
2170 memcg->nocpu_base.count[i] += x;
2172 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2173 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2175 per_cpu(memcg->stat->events[i], cpu) = 0;
2176 memcg->nocpu_base.events[i] += x;
2178 spin_unlock(&memcg->pcp_counter_lock);
2181 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2182 unsigned long action,
2183 void *hcpu)
2185 int cpu = (unsigned long)hcpu;
2186 struct memcg_stock_pcp *stock;
2187 struct mem_cgroup *iter;
2189 if (action == CPU_ONLINE)
2190 return NOTIFY_OK;
2192 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2193 return NOTIFY_OK;
2195 for_each_mem_cgroup(iter)
2196 mem_cgroup_drain_pcp_counter(iter, cpu);
2198 stock = &per_cpu(memcg_stock, cpu);
2199 drain_stock(stock);
2200 return NOTIFY_OK;
2204 /* See __mem_cgroup_try_charge() for details */
2205 enum {
2206 CHARGE_OK, /* success */
2207 CHARGE_RETRY, /* need to retry but retry is not bad */
2208 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2209 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2210 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2213 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2214 unsigned int nr_pages, bool oom_check)
2216 unsigned long csize = nr_pages * PAGE_SIZE;
2217 struct mem_cgroup *mem_over_limit;
2218 struct res_counter *fail_res;
2219 unsigned long flags = 0;
2220 int ret;
2222 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2224 if (likely(!ret)) {
2225 if (!do_swap_account)
2226 return CHARGE_OK;
2227 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2228 if (likely(!ret))
2229 return CHARGE_OK;
2231 res_counter_uncharge(&memcg->res, csize);
2232 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2233 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2234 } else
2235 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2237 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2238 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2240 * Never reclaim on behalf of optional batching, retry with a
2241 * single page instead.
2243 if (nr_pages == CHARGE_BATCH)
2244 return CHARGE_RETRY;
2246 if (!(gfp_mask & __GFP_WAIT))
2247 return CHARGE_WOULDBLOCK;
2249 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2250 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2251 return CHARGE_RETRY;
2253 * Even though the limit is exceeded at this point, reclaim
2254 * may have been able to free some pages. Retry the charge
2255 * before killing the task.
2257 * Only for regular pages, though: huge pages are rather
2258 * unlikely to succeed so close to the limit, and we fall back
2259 * to regular pages anyway in case of failure.
2261 if (nr_pages == 1 && ret)
2262 return CHARGE_RETRY;
2265 * At task move, charge accounts can be doubly counted. So, it's
2266 * better to wait until the end of task_move if something is going on.
2268 if (mem_cgroup_wait_acct_move(mem_over_limit))
2269 return CHARGE_RETRY;
2271 /* If we don't need to call oom-killer at el, return immediately */
2272 if (!oom_check)
2273 return CHARGE_NOMEM;
2274 /* check OOM */
2275 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2276 return CHARGE_OOM_DIE;
2278 return CHARGE_RETRY;
2282 * __mem_cgroup_try_charge() does
2283 * 1. detect memcg to be charged against from passed *mm and *ptr,
2284 * 2. update res_counter
2285 * 3. call memory reclaim if necessary.
2287 * In some special case, if the task is fatal, fatal_signal_pending() or
2288 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2289 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2290 * as possible without any hazards. 2: all pages should have a valid
2291 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2292 * pointer, that is treated as a charge to root_mem_cgroup.
2294 * So __mem_cgroup_try_charge() will return
2295 * 0 ... on success, filling *ptr with a valid memcg pointer.
2296 * -ENOMEM ... charge failure because of resource limits.
2297 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2299 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2300 * the oom-killer can be invoked.
2302 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2303 gfp_t gfp_mask,
2304 unsigned int nr_pages,
2305 struct mem_cgroup **ptr,
2306 bool oom)
2308 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2309 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2310 struct mem_cgroup *memcg = NULL;
2311 int ret;
2314 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2315 * in system level. So, allow to go ahead dying process in addition to
2316 * MEMDIE process.
2318 if (unlikely(test_thread_flag(TIF_MEMDIE)
2319 || fatal_signal_pending(current)))
2320 goto bypass;
2323 * We always charge the cgroup the mm_struct belongs to.
2324 * The mm_struct's mem_cgroup changes on task migration if the
2325 * thread group leader migrates. It's possible that mm is not
2326 * set, if so charge the init_mm (happens for pagecache usage).
2328 if (!*ptr && !mm)
2329 *ptr = root_mem_cgroup;
2330 again:
2331 if (*ptr) { /* css should be a valid one */
2332 memcg = *ptr;
2333 VM_BUG_ON(css_is_removed(&memcg->css));
2334 if (mem_cgroup_is_root(memcg))
2335 goto done;
2336 if (nr_pages == 1 && consume_stock(memcg))
2337 goto done;
2338 css_get(&memcg->css);
2339 } else {
2340 struct task_struct *p;
2342 rcu_read_lock();
2343 p = rcu_dereference(mm->owner);
2345 * Because we don't have task_lock(), "p" can exit.
2346 * In that case, "memcg" can point to root or p can be NULL with
2347 * race with swapoff. Then, we have small risk of mis-accouning.
2348 * But such kind of mis-account by race always happens because
2349 * we don't have cgroup_mutex(). It's overkill and we allo that
2350 * small race, here.
2351 * (*) swapoff at el will charge against mm-struct not against
2352 * task-struct. So, mm->owner can be NULL.
2354 memcg = mem_cgroup_from_task(p);
2355 if (!memcg)
2356 memcg = root_mem_cgroup;
2357 if (mem_cgroup_is_root(memcg)) {
2358 rcu_read_unlock();
2359 goto done;
2361 if (nr_pages == 1 && consume_stock(memcg)) {
2363 * It seems dagerous to access memcg without css_get().
2364 * But considering how consume_stok works, it's not
2365 * necessary. If consume_stock success, some charges
2366 * from this memcg are cached on this cpu. So, we
2367 * don't need to call css_get()/css_tryget() before
2368 * calling consume_stock().
2370 rcu_read_unlock();
2371 goto done;
2373 /* after here, we may be blocked. we need to get refcnt */
2374 if (!css_tryget(&memcg->css)) {
2375 rcu_read_unlock();
2376 goto again;
2378 rcu_read_unlock();
2381 do {
2382 bool oom_check;
2384 /* If killed, bypass charge */
2385 if (fatal_signal_pending(current)) {
2386 css_put(&memcg->css);
2387 goto bypass;
2390 oom_check = false;
2391 if (oom && !nr_oom_retries) {
2392 oom_check = true;
2393 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2396 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2397 switch (ret) {
2398 case CHARGE_OK:
2399 break;
2400 case CHARGE_RETRY: /* not in OOM situation but retry */
2401 batch = nr_pages;
2402 css_put(&memcg->css);
2403 memcg = NULL;
2404 goto again;
2405 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2406 css_put(&memcg->css);
2407 goto nomem;
2408 case CHARGE_NOMEM: /* OOM routine works */
2409 if (!oom) {
2410 css_put(&memcg->css);
2411 goto nomem;
2413 /* If oom, we never return -ENOMEM */
2414 nr_oom_retries--;
2415 break;
2416 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2417 css_put(&memcg->css);
2418 goto bypass;
2420 } while (ret != CHARGE_OK);
2422 if (batch > nr_pages)
2423 refill_stock(memcg, batch - nr_pages);
2424 css_put(&memcg->css);
2425 done:
2426 *ptr = memcg;
2427 return 0;
2428 nomem:
2429 *ptr = NULL;
2430 return -ENOMEM;
2431 bypass:
2432 *ptr = root_mem_cgroup;
2433 return -EINTR;
2437 * Somemtimes we have to undo a charge we got by try_charge().
2438 * This function is for that and do uncharge, put css's refcnt.
2439 * gotten by try_charge().
2441 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2442 unsigned int nr_pages)
2444 if (!mem_cgroup_is_root(memcg)) {
2445 unsigned long bytes = nr_pages * PAGE_SIZE;
2447 res_counter_uncharge(&memcg->res, bytes);
2448 if (do_swap_account)
2449 res_counter_uncharge(&memcg->memsw, bytes);
2454 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2455 * This is useful when moving usage to parent cgroup.
2457 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2458 unsigned int nr_pages)
2460 unsigned long bytes = nr_pages * PAGE_SIZE;
2462 if (mem_cgroup_is_root(memcg))
2463 return;
2465 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2466 if (do_swap_account)
2467 res_counter_uncharge_until(&memcg->memsw,
2468 memcg->memsw.parent, bytes);
2472 * A helper function to get mem_cgroup from ID. must be called under
2473 * rcu_read_lock(). The caller must check css_is_removed() or some if
2474 * it's concern. (dropping refcnt from swap can be called against removed
2475 * memcg.)
2477 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2479 struct cgroup_subsys_state *css;
2481 /* ID 0 is unused ID */
2482 if (!id)
2483 return NULL;
2484 css = css_lookup(&mem_cgroup_subsys, id);
2485 if (!css)
2486 return NULL;
2487 return container_of(css, struct mem_cgroup, css);
2490 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2492 struct mem_cgroup *memcg = NULL;
2493 struct page_cgroup *pc;
2494 unsigned short id;
2495 swp_entry_t ent;
2497 VM_BUG_ON(!PageLocked(page));
2499 pc = lookup_page_cgroup(page);
2500 lock_page_cgroup(pc);
2501 if (PageCgroupUsed(pc)) {
2502 memcg = pc->mem_cgroup;
2503 if (memcg && !css_tryget(&memcg->css))
2504 memcg = NULL;
2505 } else if (PageSwapCache(page)) {
2506 ent.val = page_private(page);
2507 id = lookup_swap_cgroup_id(ent);
2508 rcu_read_lock();
2509 memcg = mem_cgroup_lookup(id);
2510 if (memcg && !css_tryget(&memcg->css))
2511 memcg = NULL;
2512 rcu_read_unlock();
2514 unlock_page_cgroup(pc);
2515 return memcg;
2518 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2519 struct page *page,
2520 unsigned int nr_pages,
2521 enum charge_type ctype,
2522 bool lrucare)
2524 struct page_cgroup *pc = lookup_page_cgroup(page);
2525 struct zone *uninitialized_var(zone);
2526 struct lruvec *lruvec;
2527 bool was_on_lru = false;
2528 bool anon;
2530 lock_page_cgroup(pc);
2531 if (unlikely(PageCgroupUsed(pc))) {
2532 unlock_page_cgroup(pc);
2533 __mem_cgroup_cancel_charge(memcg, nr_pages);
2534 return;
2537 * we don't need page_cgroup_lock about tail pages, becase they are not
2538 * accessed by any other context at this point.
2542 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2543 * may already be on some other mem_cgroup's LRU. Take care of it.
2545 if (lrucare) {
2546 zone = page_zone(page);
2547 spin_lock_irq(&zone->lru_lock);
2548 if (PageLRU(page)) {
2549 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2550 ClearPageLRU(page);
2551 del_page_from_lru_list(page, lruvec, page_lru(page));
2552 was_on_lru = true;
2556 pc->mem_cgroup = memcg;
2558 * We access a page_cgroup asynchronously without lock_page_cgroup().
2559 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2560 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2561 * before USED bit, we need memory barrier here.
2562 * See mem_cgroup_add_lru_list(), etc.
2564 smp_wmb();
2565 SetPageCgroupUsed(pc);
2567 if (lrucare) {
2568 if (was_on_lru) {
2569 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2570 VM_BUG_ON(PageLRU(page));
2571 SetPageLRU(page);
2572 add_page_to_lru_list(page, lruvec, page_lru(page));
2574 spin_unlock_irq(&zone->lru_lock);
2577 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2578 anon = true;
2579 else
2580 anon = false;
2582 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2583 unlock_page_cgroup(pc);
2586 * "charge_statistics" updated event counter. Then, check it.
2587 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2588 * if they exceeds softlimit.
2590 memcg_check_events(memcg, page);
2593 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2595 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2597 * Because tail pages are not marked as "used", set it. We're under
2598 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2599 * charge/uncharge will be never happen and move_account() is done under
2600 * compound_lock(), so we don't have to take care of races.
2602 void mem_cgroup_split_huge_fixup(struct page *head)
2604 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2605 struct page_cgroup *pc;
2606 int i;
2608 if (mem_cgroup_disabled())
2609 return;
2610 for (i = 1; i < HPAGE_PMD_NR; i++) {
2611 pc = head_pc + i;
2612 pc->mem_cgroup = head_pc->mem_cgroup;
2613 smp_wmb();/* see __commit_charge() */
2614 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2617 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2620 * mem_cgroup_move_account - move account of the page
2621 * @page: the page
2622 * @nr_pages: number of regular pages (>1 for huge pages)
2623 * @pc: page_cgroup of the page.
2624 * @from: mem_cgroup which the page is moved from.
2625 * @to: mem_cgroup which the page is moved to. @from != @to.
2627 * The caller must confirm following.
2628 * - page is not on LRU (isolate_page() is useful.)
2629 * - compound_lock is held when nr_pages > 1
2631 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2632 * from old cgroup.
2634 static int mem_cgroup_move_account(struct page *page,
2635 unsigned int nr_pages,
2636 struct page_cgroup *pc,
2637 struct mem_cgroup *from,
2638 struct mem_cgroup *to)
2640 unsigned long flags;
2641 int ret;
2642 bool anon = PageAnon(page);
2644 VM_BUG_ON(from == to);
2645 VM_BUG_ON(PageLRU(page));
2647 * The page is isolated from LRU. So, collapse function
2648 * will not handle this page. But page splitting can happen.
2649 * Do this check under compound_page_lock(). The caller should
2650 * hold it.
2652 ret = -EBUSY;
2653 if (nr_pages > 1 && !PageTransHuge(page))
2654 goto out;
2656 lock_page_cgroup(pc);
2658 ret = -EINVAL;
2659 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2660 goto unlock;
2662 move_lock_mem_cgroup(from, &flags);
2664 if (!anon && page_mapped(page)) {
2665 /* Update mapped_file data for mem_cgroup */
2666 preempt_disable();
2667 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2668 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2669 preempt_enable();
2671 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2673 /* caller should have done css_get */
2674 pc->mem_cgroup = to;
2675 mem_cgroup_charge_statistics(to, anon, nr_pages);
2677 * We charges against "to" which may not have any tasks. Then, "to"
2678 * can be under rmdir(). But in current implementation, caller of
2679 * this function is just force_empty() and move charge, so it's
2680 * guaranteed that "to" is never removed. So, we don't check rmdir
2681 * status here.
2683 move_unlock_mem_cgroup(from, &flags);
2684 ret = 0;
2685 unlock:
2686 unlock_page_cgroup(pc);
2688 * check events
2690 memcg_check_events(to, page);
2691 memcg_check_events(from, page);
2692 out:
2693 return ret;
2697 * move charges to its parent.
2700 static int mem_cgroup_move_parent(struct page *page,
2701 struct page_cgroup *pc,
2702 struct mem_cgroup *child)
2704 struct mem_cgroup *parent;
2705 unsigned int nr_pages;
2706 unsigned long uninitialized_var(flags);
2707 int ret;
2709 /* Is ROOT ? */
2710 if (mem_cgroup_is_root(child))
2711 return -EINVAL;
2713 ret = -EBUSY;
2714 if (!get_page_unless_zero(page))
2715 goto out;
2716 if (isolate_lru_page(page))
2717 goto put;
2719 nr_pages = hpage_nr_pages(page);
2721 parent = parent_mem_cgroup(child);
2723 * If no parent, move charges to root cgroup.
2725 if (!parent)
2726 parent = root_mem_cgroup;
2728 if (nr_pages > 1)
2729 flags = compound_lock_irqsave(page);
2731 ret = mem_cgroup_move_account(page, nr_pages,
2732 pc, child, parent);
2733 if (!ret)
2734 __mem_cgroup_cancel_local_charge(child, nr_pages);
2736 if (nr_pages > 1)
2737 compound_unlock_irqrestore(page, flags);
2738 putback_lru_page(page);
2739 put:
2740 put_page(page);
2741 out:
2742 return ret;
2746 * Charge the memory controller for page usage.
2747 * Return
2748 * 0 if the charge was successful
2749 * < 0 if the cgroup is over its limit
2751 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2752 gfp_t gfp_mask, enum charge_type ctype)
2754 struct mem_cgroup *memcg = NULL;
2755 unsigned int nr_pages = 1;
2756 bool oom = true;
2757 int ret;
2759 if (PageTransHuge(page)) {
2760 nr_pages <<= compound_order(page);
2761 VM_BUG_ON(!PageTransHuge(page));
2763 * Never OOM-kill a process for a huge page. The
2764 * fault handler will fall back to regular pages.
2766 oom = false;
2769 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2770 if (ret == -ENOMEM)
2771 return ret;
2772 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2773 return 0;
2776 int mem_cgroup_newpage_charge(struct page *page,
2777 struct mm_struct *mm, gfp_t gfp_mask)
2779 if (mem_cgroup_disabled())
2780 return 0;
2781 VM_BUG_ON(page_mapped(page));
2782 VM_BUG_ON(page->mapping && !PageAnon(page));
2783 VM_BUG_ON(!mm);
2784 return mem_cgroup_charge_common(page, mm, gfp_mask,
2785 MEM_CGROUP_CHARGE_TYPE_ANON);
2788 static void
2789 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2790 enum charge_type ctype);
2792 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2793 gfp_t gfp_mask)
2795 struct mem_cgroup *memcg = NULL;
2796 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2797 int ret;
2799 if (mem_cgroup_disabled())
2800 return 0;
2801 if (PageCompound(page))
2802 return 0;
2804 if (unlikely(!mm))
2805 mm = &init_mm;
2806 if (!page_is_file_cache(page))
2807 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2809 if (!PageSwapCache(page))
2810 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2811 else { /* page is swapcache/shmem */
2812 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2813 if (!ret)
2814 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2816 return ret;
2820 * While swap-in, try_charge -> commit or cancel, the page is locked.
2821 * And when try_charge() successfully returns, one refcnt to memcg without
2822 * struct page_cgroup is acquired. This refcnt will be consumed by
2823 * "commit()" or removed by "cancel()"
2825 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2826 struct page *page,
2827 gfp_t mask, struct mem_cgroup **memcgp)
2829 struct mem_cgroup *memcg;
2830 int ret;
2832 *memcgp = NULL;
2834 if (mem_cgroup_disabled())
2835 return 0;
2837 if (!do_swap_account)
2838 goto charge_cur_mm;
2840 * A racing thread's fault, or swapoff, may have already updated
2841 * the pte, and even removed page from swap cache: in those cases
2842 * do_swap_page()'s pte_same() test will fail; but there's also a
2843 * KSM case which does need to charge the page.
2845 if (!PageSwapCache(page))
2846 goto charge_cur_mm;
2847 memcg = try_get_mem_cgroup_from_page(page);
2848 if (!memcg)
2849 goto charge_cur_mm;
2850 *memcgp = memcg;
2851 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2852 css_put(&memcg->css);
2853 if (ret == -EINTR)
2854 ret = 0;
2855 return ret;
2856 charge_cur_mm:
2857 if (unlikely(!mm))
2858 mm = &init_mm;
2859 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2860 if (ret == -EINTR)
2861 ret = 0;
2862 return ret;
2865 static void
2866 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2867 enum charge_type ctype)
2869 if (mem_cgroup_disabled())
2870 return;
2871 if (!memcg)
2872 return;
2873 cgroup_exclude_rmdir(&memcg->css);
2875 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2877 * Now swap is on-memory. This means this page may be
2878 * counted both as mem and swap....double count.
2879 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2880 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2881 * may call delete_from_swap_cache() before reach here.
2883 if (do_swap_account && PageSwapCache(page)) {
2884 swp_entry_t ent = {.val = page_private(page)};
2885 mem_cgroup_uncharge_swap(ent);
2888 * At swapin, we may charge account against cgroup which has no tasks.
2889 * So, rmdir()->pre_destroy() can be called while we do this charge.
2890 * In that case, we need to call pre_destroy() again. check it here.
2892 cgroup_release_and_wakeup_rmdir(&memcg->css);
2895 void mem_cgroup_commit_charge_swapin(struct page *page,
2896 struct mem_cgroup *memcg)
2898 __mem_cgroup_commit_charge_swapin(page, memcg,
2899 MEM_CGROUP_CHARGE_TYPE_ANON);
2902 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2904 if (mem_cgroup_disabled())
2905 return;
2906 if (!memcg)
2907 return;
2908 __mem_cgroup_cancel_charge(memcg, 1);
2911 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2912 unsigned int nr_pages,
2913 const enum charge_type ctype)
2915 struct memcg_batch_info *batch = NULL;
2916 bool uncharge_memsw = true;
2918 /* If swapout, usage of swap doesn't decrease */
2919 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2920 uncharge_memsw = false;
2922 batch = &current->memcg_batch;
2924 * In usual, we do css_get() when we remember memcg pointer.
2925 * But in this case, we keep res->usage until end of a series of
2926 * uncharges. Then, it's ok to ignore memcg's refcnt.
2928 if (!batch->memcg)
2929 batch->memcg = memcg;
2931 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2932 * In those cases, all pages freed continuously can be expected to be in
2933 * the same cgroup and we have chance to coalesce uncharges.
2934 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2935 * because we want to do uncharge as soon as possible.
2938 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2939 goto direct_uncharge;
2941 if (nr_pages > 1)
2942 goto direct_uncharge;
2945 * In typical case, batch->memcg == mem. This means we can
2946 * merge a series of uncharges to an uncharge of res_counter.
2947 * If not, we uncharge res_counter ony by one.
2949 if (batch->memcg != memcg)
2950 goto direct_uncharge;
2951 /* remember freed charge and uncharge it later */
2952 batch->nr_pages++;
2953 if (uncharge_memsw)
2954 batch->memsw_nr_pages++;
2955 return;
2956 direct_uncharge:
2957 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2958 if (uncharge_memsw)
2959 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2960 if (unlikely(batch->memcg != memcg))
2961 memcg_oom_recover(memcg);
2965 * uncharge if !page_mapped(page)
2967 static struct mem_cgroup *
2968 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2970 struct mem_cgroup *memcg = NULL;
2971 unsigned int nr_pages = 1;
2972 struct page_cgroup *pc;
2973 bool anon;
2975 if (mem_cgroup_disabled())
2976 return NULL;
2978 if (PageSwapCache(page))
2979 return NULL;
2981 if (PageTransHuge(page)) {
2982 nr_pages <<= compound_order(page);
2983 VM_BUG_ON(!PageTransHuge(page));
2986 * Check if our page_cgroup is valid
2988 pc = lookup_page_cgroup(page);
2989 if (unlikely(!PageCgroupUsed(pc)))
2990 return NULL;
2992 lock_page_cgroup(pc);
2994 memcg = pc->mem_cgroup;
2996 if (!PageCgroupUsed(pc))
2997 goto unlock_out;
2999 anon = PageAnon(page);
3001 switch (ctype) {
3002 case MEM_CGROUP_CHARGE_TYPE_ANON:
3004 * Generally PageAnon tells if it's the anon statistics to be
3005 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3006 * used before page reached the stage of being marked PageAnon.
3008 anon = true;
3009 /* fallthrough */
3010 case MEM_CGROUP_CHARGE_TYPE_DROP:
3011 /* See mem_cgroup_prepare_migration() */
3012 if (page_mapped(page) || PageCgroupMigration(pc))
3013 goto unlock_out;
3014 break;
3015 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3016 if (!PageAnon(page)) { /* Shared memory */
3017 if (page->mapping && !page_is_file_cache(page))
3018 goto unlock_out;
3019 } else if (page_mapped(page)) /* Anon */
3020 goto unlock_out;
3021 break;
3022 default:
3023 break;
3026 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3028 ClearPageCgroupUsed(pc);
3030 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3031 * freed from LRU. This is safe because uncharged page is expected not
3032 * to be reused (freed soon). Exception is SwapCache, it's handled by
3033 * special functions.
3036 unlock_page_cgroup(pc);
3038 * even after unlock, we have memcg->res.usage here and this memcg
3039 * will never be freed.
3041 memcg_check_events(memcg, page);
3042 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3043 mem_cgroup_swap_statistics(memcg, true);
3044 mem_cgroup_get(memcg);
3046 if (!mem_cgroup_is_root(memcg))
3047 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3049 return memcg;
3051 unlock_out:
3052 unlock_page_cgroup(pc);
3053 return NULL;
3056 void mem_cgroup_uncharge_page(struct page *page)
3058 /* early check. */
3059 if (page_mapped(page))
3060 return;
3061 VM_BUG_ON(page->mapping && !PageAnon(page));
3062 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON);
3065 void mem_cgroup_uncharge_cache_page(struct page *page)
3067 VM_BUG_ON(page_mapped(page));
3068 VM_BUG_ON(page->mapping);
3069 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3073 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3074 * In that cases, pages are freed continuously and we can expect pages
3075 * are in the same memcg. All these calls itself limits the number of
3076 * pages freed at once, then uncharge_start/end() is called properly.
3077 * This may be called prural(2) times in a context,
3080 void mem_cgroup_uncharge_start(void)
3082 current->memcg_batch.do_batch++;
3083 /* We can do nest. */
3084 if (current->memcg_batch.do_batch == 1) {
3085 current->memcg_batch.memcg = NULL;
3086 current->memcg_batch.nr_pages = 0;
3087 current->memcg_batch.memsw_nr_pages = 0;
3091 void mem_cgroup_uncharge_end(void)
3093 struct memcg_batch_info *batch = &current->memcg_batch;
3095 if (!batch->do_batch)
3096 return;
3098 batch->do_batch--;
3099 if (batch->do_batch) /* If stacked, do nothing. */
3100 return;
3102 if (!batch->memcg)
3103 return;
3105 * This "batch->memcg" is valid without any css_get/put etc...
3106 * bacause we hide charges behind us.
3108 if (batch->nr_pages)
3109 res_counter_uncharge(&batch->memcg->res,
3110 batch->nr_pages * PAGE_SIZE);
3111 if (batch->memsw_nr_pages)
3112 res_counter_uncharge(&batch->memcg->memsw,
3113 batch->memsw_nr_pages * PAGE_SIZE);
3114 memcg_oom_recover(batch->memcg);
3115 /* forget this pointer (for sanity check) */
3116 batch->memcg = NULL;
3119 #ifdef CONFIG_SWAP
3121 * called after __delete_from_swap_cache() and drop "page" account.
3122 * memcg information is recorded to swap_cgroup of "ent"
3124 void
3125 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3127 struct mem_cgroup *memcg;
3128 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3130 if (!swapout) /* this was a swap cache but the swap is unused ! */
3131 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3133 memcg = __mem_cgroup_uncharge_common(page, ctype);
3136 * record memcg information, if swapout && memcg != NULL,
3137 * mem_cgroup_get() was called in uncharge().
3139 if (do_swap_account && swapout && memcg)
3140 swap_cgroup_record(ent, css_id(&memcg->css));
3142 #endif
3144 #ifdef CONFIG_MEMCG_SWAP
3146 * called from swap_entry_free(). remove record in swap_cgroup and
3147 * uncharge "memsw" account.
3149 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3151 struct mem_cgroup *memcg;
3152 unsigned short id;
3154 if (!do_swap_account)
3155 return;
3157 id = swap_cgroup_record(ent, 0);
3158 rcu_read_lock();
3159 memcg = mem_cgroup_lookup(id);
3160 if (memcg) {
3162 * We uncharge this because swap is freed.
3163 * This memcg can be obsolete one. We avoid calling css_tryget
3165 if (!mem_cgroup_is_root(memcg))
3166 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3167 mem_cgroup_swap_statistics(memcg, false);
3168 mem_cgroup_put(memcg);
3170 rcu_read_unlock();
3174 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3175 * @entry: swap entry to be moved
3176 * @from: mem_cgroup which the entry is moved from
3177 * @to: mem_cgroup which the entry is moved to
3179 * It succeeds only when the swap_cgroup's record for this entry is the same
3180 * as the mem_cgroup's id of @from.
3182 * Returns 0 on success, -EINVAL on failure.
3184 * The caller must have charged to @to, IOW, called res_counter_charge() about
3185 * both res and memsw, and called css_get().
3187 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3188 struct mem_cgroup *from, struct mem_cgroup *to)
3190 unsigned short old_id, new_id;
3192 old_id = css_id(&from->css);
3193 new_id = css_id(&to->css);
3195 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3196 mem_cgroup_swap_statistics(from, false);
3197 mem_cgroup_swap_statistics(to, true);
3199 * This function is only called from task migration context now.
3200 * It postpones res_counter and refcount handling till the end
3201 * of task migration(mem_cgroup_clear_mc()) for performance
3202 * improvement. But we cannot postpone mem_cgroup_get(to)
3203 * because if the process that has been moved to @to does
3204 * swap-in, the refcount of @to might be decreased to 0.
3206 mem_cgroup_get(to);
3207 return 0;
3209 return -EINVAL;
3211 #else
3212 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3213 struct mem_cgroup *from, struct mem_cgroup *to)
3215 return -EINVAL;
3217 #endif
3220 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3221 * page belongs to.
3223 int mem_cgroup_prepare_migration(struct page *page,
3224 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3226 struct mem_cgroup *memcg = NULL;
3227 struct page_cgroup *pc;
3228 enum charge_type ctype;
3229 int ret = 0;
3231 *memcgp = NULL;
3233 VM_BUG_ON(PageTransHuge(page));
3234 if (mem_cgroup_disabled())
3235 return 0;
3237 pc = lookup_page_cgroup(page);
3238 lock_page_cgroup(pc);
3239 if (PageCgroupUsed(pc)) {
3240 memcg = pc->mem_cgroup;
3241 css_get(&memcg->css);
3243 * At migrating an anonymous page, its mapcount goes down
3244 * to 0 and uncharge() will be called. But, even if it's fully
3245 * unmapped, migration may fail and this page has to be
3246 * charged again. We set MIGRATION flag here and delay uncharge
3247 * until end_migration() is called
3249 * Corner Case Thinking
3250 * A)
3251 * When the old page was mapped as Anon and it's unmap-and-freed
3252 * while migration was ongoing.
3253 * If unmap finds the old page, uncharge() of it will be delayed
3254 * until end_migration(). If unmap finds a new page, it's
3255 * uncharged when it make mapcount to be 1->0. If unmap code
3256 * finds swap_migration_entry, the new page will not be mapped
3257 * and end_migration() will find it(mapcount==0).
3259 * B)
3260 * When the old page was mapped but migraion fails, the kernel
3261 * remaps it. A charge for it is kept by MIGRATION flag even
3262 * if mapcount goes down to 0. We can do remap successfully
3263 * without charging it again.
3265 * C)
3266 * The "old" page is under lock_page() until the end of
3267 * migration, so, the old page itself will not be swapped-out.
3268 * If the new page is swapped out before end_migraton, our
3269 * hook to usual swap-out path will catch the event.
3271 if (PageAnon(page))
3272 SetPageCgroupMigration(pc);
3274 unlock_page_cgroup(pc);
3276 * If the page is not charged at this point,
3277 * we return here.
3279 if (!memcg)
3280 return 0;
3282 *memcgp = memcg;
3283 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3284 css_put(&memcg->css);/* drop extra refcnt */
3285 if (ret) {
3286 if (PageAnon(page)) {
3287 lock_page_cgroup(pc);
3288 ClearPageCgroupMigration(pc);
3289 unlock_page_cgroup(pc);
3291 * The old page may be fully unmapped while we kept it.
3293 mem_cgroup_uncharge_page(page);
3295 /* we'll need to revisit this error code (we have -EINTR) */
3296 return -ENOMEM;
3299 * We charge new page before it's used/mapped. So, even if unlock_page()
3300 * is called before end_migration, we can catch all events on this new
3301 * page. In the case new page is migrated but not remapped, new page's
3302 * mapcount will be finally 0 and we call uncharge in end_migration().
3304 if (PageAnon(page))
3305 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3306 else if (page_is_file_cache(page))
3307 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3308 else
3309 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3310 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3311 return ret;
3314 /* remove redundant charge if migration failed*/
3315 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3316 struct page *oldpage, struct page *newpage, bool migration_ok)
3318 struct page *used, *unused;
3319 struct page_cgroup *pc;
3320 bool anon;
3322 if (!memcg)
3323 return;
3324 /* blocks rmdir() */
3325 cgroup_exclude_rmdir(&memcg->css);
3326 if (!migration_ok) {
3327 used = oldpage;
3328 unused = newpage;
3329 } else {
3330 used = newpage;
3331 unused = oldpage;
3334 * We disallowed uncharge of pages under migration because mapcount
3335 * of the page goes down to zero, temporarly.
3336 * Clear the flag and check the page should be charged.
3338 pc = lookup_page_cgroup(oldpage);
3339 lock_page_cgroup(pc);
3340 ClearPageCgroupMigration(pc);
3341 unlock_page_cgroup(pc);
3342 anon = PageAnon(used);
3343 __mem_cgroup_uncharge_common(unused,
3344 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3345 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3348 * If a page is a file cache, radix-tree replacement is very atomic
3349 * and we can skip this check. When it was an Anon page, its mapcount
3350 * goes down to 0. But because we added MIGRATION flage, it's not
3351 * uncharged yet. There are several case but page->mapcount check
3352 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3353 * check. (see prepare_charge() also)
3355 if (anon)
3356 mem_cgroup_uncharge_page(used);
3358 * At migration, we may charge account against cgroup which has no
3359 * tasks.
3360 * So, rmdir()->pre_destroy() can be called while we do this charge.
3361 * In that case, we need to call pre_destroy() again. check it here.
3363 cgroup_release_and_wakeup_rmdir(&memcg->css);
3367 * At replace page cache, newpage is not under any memcg but it's on
3368 * LRU. So, this function doesn't touch res_counter but handles LRU
3369 * in correct way. Both pages are locked so we cannot race with uncharge.
3371 void mem_cgroup_replace_page_cache(struct page *oldpage,
3372 struct page *newpage)
3374 struct mem_cgroup *memcg = NULL;
3375 struct page_cgroup *pc;
3376 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3378 if (mem_cgroup_disabled())
3379 return;
3381 pc = lookup_page_cgroup(oldpage);
3382 /* fix accounting on old pages */
3383 lock_page_cgroup(pc);
3384 if (PageCgroupUsed(pc)) {
3385 memcg = pc->mem_cgroup;
3386 mem_cgroup_charge_statistics(memcg, false, -1);
3387 ClearPageCgroupUsed(pc);
3389 unlock_page_cgroup(pc);
3392 * When called from shmem_replace_page(), in some cases the
3393 * oldpage has already been charged, and in some cases not.
3395 if (!memcg)
3396 return;
3398 if (PageSwapBacked(oldpage))
3399 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3402 * Even if newpage->mapping was NULL before starting replacement,
3403 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3404 * LRU while we overwrite pc->mem_cgroup.
3406 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3409 #ifdef CONFIG_DEBUG_VM
3410 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3412 struct page_cgroup *pc;
3414 pc = lookup_page_cgroup(page);
3416 * Can be NULL while feeding pages into the page allocator for
3417 * the first time, i.e. during boot or memory hotplug;
3418 * or when mem_cgroup_disabled().
3420 if (likely(pc) && PageCgroupUsed(pc))
3421 return pc;
3422 return NULL;
3425 bool mem_cgroup_bad_page_check(struct page *page)
3427 if (mem_cgroup_disabled())
3428 return false;
3430 return lookup_page_cgroup_used(page) != NULL;
3433 void mem_cgroup_print_bad_page(struct page *page)
3435 struct page_cgroup *pc;
3437 pc = lookup_page_cgroup_used(page);
3438 if (pc) {
3439 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3440 pc, pc->flags, pc->mem_cgroup);
3443 #endif
3445 static DEFINE_MUTEX(set_limit_mutex);
3447 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3448 unsigned long long val)
3450 int retry_count;
3451 u64 memswlimit, memlimit;
3452 int ret = 0;
3453 int children = mem_cgroup_count_children(memcg);
3454 u64 curusage, oldusage;
3455 int enlarge;
3458 * For keeping hierarchical_reclaim simple, how long we should retry
3459 * is depends on callers. We set our retry-count to be function
3460 * of # of children which we should visit in this loop.
3462 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3464 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3466 enlarge = 0;
3467 while (retry_count) {
3468 if (signal_pending(current)) {
3469 ret = -EINTR;
3470 break;
3473 * Rather than hide all in some function, I do this in
3474 * open coded manner. You see what this really does.
3475 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3477 mutex_lock(&set_limit_mutex);
3478 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3479 if (memswlimit < val) {
3480 ret = -EINVAL;
3481 mutex_unlock(&set_limit_mutex);
3482 break;
3485 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3486 if (memlimit < val)
3487 enlarge = 1;
3489 ret = res_counter_set_limit(&memcg->res, val);
3490 if (!ret) {
3491 if (memswlimit == val)
3492 memcg->memsw_is_minimum = true;
3493 else
3494 memcg->memsw_is_minimum = false;
3496 mutex_unlock(&set_limit_mutex);
3498 if (!ret)
3499 break;
3501 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3502 MEM_CGROUP_RECLAIM_SHRINK);
3503 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3504 /* Usage is reduced ? */
3505 if (curusage >= oldusage)
3506 retry_count--;
3507 else
3508 oldusage = curusage;
3510 if (!ret && enlarge)
3511 memcg_oom_recover(memcg);
3513 return ret;
3516 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3517 unsigned long long val)
3519 int retry_count;
3520 u64 memlimit, memswlimit, oldusage, curusage;
3521 int children = mem_cgroup_count_children(memcg);
3522 int ret = -EBUSY;
3523 int enlarge = 0;
3525 /* see mem_cgroup_resize_res_limit */
3526 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3527 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3528 while (retry_count) {
3529 if (signal_pending(current)) {
3530 ret = -EINTR;
3531 break;
3534 * Rather than hide all in some function, I do this in
3535 * open coded manner. You see what this really does.
3536 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3538 mutex_lock(&set_limit_mutex);
3539 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3540 if (memlimit > val) {
3541 ret = -EINVAL;
3542 mutex_unlock(&set_limit_mutex);
3543 break;
3545 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3546 if (memswlimit < val)
3547 enlarge = 1;
3548 ret = res_counter_set_limit(&memcg->memsw, val);
3549 if (!ret) {
3550 if (memlimit == val)
3551 memcg->memsw_is_minimum = true;
3552 else
3553 memcg->memsw_is_minimum = false;
3555 mutex_unlock(&set_limit_mutex);
3557 if (!ret)
3558 break;
3560 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3561 MEM_CGROUP_RECLAIM_NOSWAP |
3562 MEM_CGROUP_RECLAIM_SHRINK);
3563 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3564 /* Usage is reduced ? */
3565 if (curusage >= oldusage)
3566 retry_count--;
3567 else
3568 oldusage = curusage;
3570 if (!ret && enlarge)
3571 memcg_oom_recover(memcg);
3572 return ret;
3575 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3576 gfp_t gfp_mask,
3577 unsigned long *total_scanned)
3579 unsigned long nr_reclaimed = 0;
3580 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3581 unsigned long reclaimed;
3582 int loop = 0;
3583 struct mem_cgroup_tree_per_zone *mctz;
3584 unsigned long long excess;
3585 unsigned long nr_scanned;
3587 if (order > 0)
3588 return 0;
3590 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3592 * This loop can run a while, specially if mem_cgroup's continuously
3593 * keep exceeding their soft limit and putting the system under
3594 * pressure
3596 do {
3597 if (next_mz)
3598 mz = next_mz;
3599 else
3600 mz = mem_cgroup_largest_soft_limit_node(mctz);
3601 if (!mz)
3602 break;
3604 nr_scanned = 0;
3605 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3606 gfp_mask, &nr_scanned);
3607 nr_reclaimed += reclaimed;
3608 *total_scanned += nr_scanned;
3609 spin_lock(&mctz->lock);
3612 * If we failed to reclaim anything from this memory cgroup
3613 * it is time to move on to the next cgroup
3615 next_mz = NULL;
3616 if (!reclaimed) {
3617 do {
3619 * Loop until we find yet another one.
3621 * By the time we get the soft_limit lock
3622 * again, someone might have aded the
3623 * group back on the RB tree. Iterate to
3624 * make sure we get a different mem.
3625 * mem_cgroup_largest_soft_limit_node returns
3626 * NULL if no other cgroup is present on
3627 * the tree
3629 next_mz =
3630 __mem_cgroup_largest_soft_limit_node(mctz);
3631 if (next_mz == mz)
3632 css_put(&next_mz->memcg->css);
3633 else /* next_mz == NULL or other memcg */
3634 break;
3635 } while (1);
3637 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3638 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3640 * One school of thought says that we should not add
3641 * back the node to the tree if reclaim returns 0.
3642 * But our reclaim could return 0, simply because due
3643 * to priority we are exposing a smaller subset of
3644 * memory to reclaim from. Consider this as a longer
3645 * term TODO.
3647 /* If excess == 0, no tree ops */
3648 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3649 spin_unlock(&mctz->lock);
3650 css_put(&mz->memcg->css);
3651 loop++;
3653 * Could not reclaim anything and there are no more
3654 * mem cgroups to try or we seem to be looping without
3655 * reclaiming anything.
3657 if (!nr_reclaimed &&
3658 (next_mz == NULL ||
3659 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3660 break;
3661 } while (!nr_reclaimed);
3662 if (next_mz)
3663 css_put(&next_mz->memcg->css);
3664 return nr_reclaimed;
3668 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3669 * reclaim the pages page themselves - it just removes the page_cgroups.
3670 * Returns true if some page_cgroups were not freed, indicating that the caller
3671 * must retry this operation.
3673 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3674 int node, int zid, enum lru_list lru)
3676 struct mem_cgroup_per_zone *mz;
3677 unsigned long flags, loop;
3678 struct list_head *list;
3679 struct page *busy;
3680 struct zone *zone;
3682 zone = &NODE_DATA(node)->node_zones[zid];
3683 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3684 list = &mz->lruvec.lists[lru];
3686 loop = mz->lru_size[lru];
3687 /* give some margin against EBUSY etc...*/
3688 loop += 256;
3689 busy = NULL;
3690 while (loop--) {
3691 struct page_cgroup *pc;
3692 struct page *page;
3694 spin_lock_irqsave(&zone->lru_lock, flags);
3695 if (list_empty(list)) {
3696 spin_unlock_irqrestore(&zone->lru_lock, flags);
3697 break;
3699 page = list_entry(list->prev, struct page, lru);
3700 if (busy == page) {
3701 list_move(&page->lru, list);
3702 busy = NULL;
3703 spin_unlock_irqrestore(&zone->lru_lock, flags);
3704 continue;
3706 spin_unlock_irqrestore(&zone->lru_lock, flags);
3708 pc = lookup_page_cgroup(page);
3710 if (mem_cgroup_move_parent(page, pc, memcg)) {
3711 /* found lock contention or "pc" is obsolete. */
3712 busy = page;
3713 cond_resched();
3714 } else
3715 busy = NULL;
3717 return !list_empty(list);
3721 * make mem_cgroup's charge to be 0 if there is no task.
3722 * This enables deleting this mem_cgroup.
3724 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3726 int ret;
3727 int node, zid, shrink;
3728 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3729 struct cgroup *cgrp = memcg->css.cgroup;
3731 css_get(&memcg->css);
3733 shrink = 0;
3734 /* should free all ? */
3735 if (free_all)
3736 goto try_to_free;
3737 move_account:
3738 do {
3739 ret = -EBUSY;
3740 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3741 goto out;
3742 /* This is for making all *used* pages to be on LRU. */
3743 lru_add_drain_all();
3744 drain_all_stock_sync(memcg);
3745 ret = 0;
3746 mem_cgroup_start_move(memcg);
3747 for_each_node_state(node, N_HIGH_MEMORY) {
3748 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3749 enum lru_list lru;
3750 for_each_lru(lru) {
3751 ret = mem_cgroup_force_empty_list(memcg,
3752 node, zid, lru);
3753 if (ret)
3754 break;
3757 if (ret)
3758 break;
3760 mem_cgroup_end_move(memcg);
3761 memcg_oom_recover(memcg);
3762 cond_resched();
3763 /* "ret" should also be checked to ensure all lists are empty. */
3764 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3765 out:
3766 css_put(&memcg->css);
3767 return ret;
3769 try_to_free:
3770 /* returns EBUSY if there is a task or if we come here twice. */
3771 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3772 ret = -EBUSY;
3773 goto out;
3775 /* we call try-to-free pages for make this cgroup empty */
3776 lru_add_drain_all();
3777 /* try to free all pages in this cgroup */
3778 shrink = 1;
3779 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3780 int progress;
3782 if (signal_pending(current)) {
3783 ret = -EINTR;
3784 goto out;
3786 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3787 false);
3788 if (!progress) {
3789 nr_retries--;
3790 /* maybe some writeback is necessary */
3791 congestion_wait(BLK_RW_ASYNC, HZ/10);
3795 lru_add_drain();
3796 /* try move_account...there may be some *locked* pages. */
3797 goto move_account;
3800 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3802 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3806 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3808 return mem_cgroup_from_cont(cont)->use_hierarchy;
3811 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3812 u64 val)
3814 int retval = 0;
3815 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3816 struct cgroup *parent = cont->parent;
3817 struct mem_cgroup *parent_memcg = NULL;
3819 if (parent)
3820 parent_memcg = mem_cgroup_from_cont(parent);
3822 cgroup_lock();
3824 if (memcg->use_hierarchy == val)
3825 goto out;
3828 * If parent's use_hierarchy is set, we can't make any modifications
3829 * in the child subtrees. If it is unset, then the change can
3830 * occur, provided the current cgroup has no children.
3832 * For the root cgroup, parent_mem is NULL, we allow value to be
3833 * set if there are no children.
3835 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3836 (val == 1 || val == 0)) {
3837 if (list_empty(&cont->children))
3838 memcg->use_hierarchy = val;
3839 else
3840 retval = -EBUSY;
3841 } else
3842 retval = -EINVAL;
3844 out:
3845 cgroup_unlock();
3847 return retval;
3851 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3852 enum mem_cgroup_stat_index idx)
3854 struct mem_cgroup *iter;
3855 long val = 0;
3857 /* Per-cpu values can be negative, use a signed accumulator */
3858 for_each_mem_cgroup_tree(iter, memcg)
3859 val += mem_cgroup_read_stat(iter, idx);
3861 if (val < 0) /* race ? */
3862 val = 0;
3863 return val;
3866 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3868 u64 val;
3870 if (!mem_cgroup_is_root(memcg)) {
3871 if (!swap)
3872 return res_counter_read_u64(&memcg->res, RES_USAGE);
3873 else
3874 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3877 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3878 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3880 if (swap)
3881 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3883 return val << PAGE_SHIFT;
3886 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3887 struct file *file, char __user *buf,
3888 size_t nbytes, loff_t *ppos)
3890 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3891 char str[64];
3892 u64 val;
3893 int type, name, len;
3895 type = MEMFILE_TYPE(cft->private);
3896 name = MEMFILE_ATTR(cft->private);
3898 if (!do_swap_account && type == _MEMSWAP)
3899 return -EOPNOTSUPP;
3901 switch (type) {
3902 case _MEM:
3903 if (name == RES_USAGE)
3904 val = mem_cgroup_usage(memcg, false);
3905 else
3906 val = res_counter_read_u64(&memcg->res, name);
3907 break;
3908 case _MEMSWAP:
3909 if (name == RES_USAGE)
3910 val = mem_cgroup_usage(memcg, true);
3911 else
3912 val = res_counter_read_u64(&memcg->memsw, name);
3913 break;
3914 default:
3915 BUG();
3918 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3919 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3922 * The user of this function is...
3923 * RES_LIMIT.
3925 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3926 const char *buffer)
3928 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3929 int type, name;
3930 unsigned long long val;
3931 int ret;
3933 type = MEMFILE_TYPE(cft->private);
3934 name = MEMFILE_ATTR(cft->private);
3936 if (!do_swap_account && type == _MEMSWAP)
3937 return -EOPNOTSUPP;
3939 switch (name) {
3940 case RES_LIMIT:
3941 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3942 ret = -EINVAL;
3943 break;
3945 /* This function does all necessary parse...reuse it */
3946 ret = res_counter_memparse_write_strategy(buffer, &val);
3947 if (ret)
3948 break;
3949 if (type == _MEM)
3950 ret = mem_cgroup_resize_limit(memcg, val);
3951 else
3952 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3953 break;
3954 case RES_SOFT_LIMIT:
3955 ret = res_counter_memparse_write_strategy(buffer, &val);
3956 if (ret)
3957 break;
3959 * For memsw, soft limits are hard to implement in terms
3960 * of semantics, for now, we support soft limits for
3961 * control without swap
3963 if (type == _MEM)
3964 ret = res_counter_set_soft_limit(&memcg->res, val);
3965 else
3966 ret = -EINVAL;
3967 break;
3968 default:
3969 ret = -EINVAL; /* should be BUG() ? */
3970 break;
3972 return ret;
3975 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3976 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3978 struct cgroup *cgroup;
3979 unsigned long long min_limit, min_memsw_limit, tmp;
3981 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3982 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3983 cgroup = memcg->css.cgroup;
3984 if (!memcg->use_hierarchy)
3985 goto out;
3987 while (cgroup->parent) {
3988 cgroup = cgroup->parent;
3989 memcg = mem_cgroup_from_cont(cgroup);
3990 if (!memcg->use_hierarchy)
3991 break;
3992 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3993 min_limit = min(min_limit, tmp);
3994 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3995 min_memsw_limit = min(min_memsw_limit, tmp);
3997 out:
3998 *mem_limit = min_limit;
3999 *memsw_limit = min_memsw_limit;
4002 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4004 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4005 int type, name;
4007 type = MEMFILE_TYPE(event);
4008 name = MEMFILE_ATTR(event);
4010 if (!do_swap_account && type == _MEMSWAP)
4011 return -EOPNOTSUPP;
4013 switch (name) {
4014 case RES_MAX_USAGE:
4015 if (type == _MEM)
4016 res_counter_reset_max(&memcg->res);
4017 else
4018 res_counter_reset_max(&memcg->memsw);
4019 break;
4020 case RES_FAILCNT:
4021 if (type == _MEM)
4022 res_counter_reset_failcnt(&memcg->res);
4023 else
4024 res_counter_reset_failcnt(&memcg->memsw);
4025 break;
4028 return 0;
4031 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4032 struct cftype *cft)
4034 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4037 #ifdef CONFIG_MMU
4038 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4039 struct cftype *cft, u64 val)
4041 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4043 if (val >= (1 << NR_MOVE_TYPE))
4044 return -EINVAL;
4046 * We check this value several times in both in can_attach() and
4047 * attach(), so we need cgroup lock to prevent this value from being
4048 * inconsistent.
4050 cgroup_lock();
4051 memcg->move_charge_at_immigrate = val;
4052 cgroup_unlock();
4054 return 0;
4056 #else
4057 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4058 struct cftype *cft, u64 val)
4060 return -ENOSYS;
4062 #endif
4064 #ifdef CONFIG_NUMA
4065 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4066 struct seq_file *m)
4068 int nid;
4069 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4070 unsigned long node_nr;
4071 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4073 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4074 seq_printf(m, "total=%lu", total_nr);
4075 for_each_node_state(nid, N_HIGH_MEMORY) {
4076 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4077 seq_printf(m, " N%d=%lu", nid, node_nr);
4079 seq_putc(m, '\n');
4081 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4082 seq_printf(m, "file=%lu", file_nr);
4083 for_each_node_state(nid, N_HIGH_MEMORY) {
4084 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4085 LRU_ALL_FILE);
4086 seq_printf(m, " N%d=%lu", nid, node_nr);
4088 seq_putc(m, '\n');
4090 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4091 seq_printf(m, "anon=%lu", anon_nr);
4092 for_each_node_state(nid, N_HIGH_MEMORY) {
4093 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4094 LRU_ALL_ANON);
4095 seq_printf(m, " N%d=%lu", nid, node_nr);
4097 seq_putc(m, '\n');
4099 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4100 seq_printf(m, "unevictable=%lu", unevictable_nr);
4101 for_each_node_state(nid, N_HIGH_MEMORY) {
4102 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4103 BIT(LRU_UNEVICTABLE));
4104 seq_printf(m, " N%d=%lu", nid, node_nr);
4106 seq_putc(m, '\n');
4107 return 0;
4109 #endif /* CONFIG_NUMA */
4111 static const char * const mem_cgroup_lru_names[] = {
4112 "inactive_anon",
4113 "active_anon",
4114 "inactive_file",
4115 "active_file",
4116 "unevictable",
4119 static inline void mem_cgroup_lru_names_not_uptodate(void)
4121 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4124 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4125 struct seq_file *m)
4127 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4128 struct mem_cgroup *mi;
4129 unsigned int i;
4131 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4132 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4133 continue;
4134 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4135 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4138 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4139 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4140 mem_cgroup_read_events(memcg, i));
4142 for (i = 0; i < NR_LRU_LISTS; i++)
4143 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4144 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4146 /* Hierarchical information */
4148 unsigned long long limit, memsw_limit;
4149 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4150 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4151 if (do_swap_account)
4152 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4153 memsw_limit);
4156 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4157 long long val = 0;
4159 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4160 continue;
4161 for_each_mem_cgroup_tree(mi, memcg)
4162 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4163 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4166 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4167 unsigned long long val = 0;
4169 for_each_mem_cgroup_tree(mi, memcg)
4170 val += mem_cgroup_read_events(mi, i);
4171 seq_printf(m, "total_%s %llu\n",
4172 mem_cgroup_events_names[i], val);
4175 for (i = 0; i < NR_LRU_LISTS; i++) {
4176 unsigned long long val = 0;
4178 for_each_mem_cgroup_tree(mi, memcg)
4179 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4180 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4183 #ifdef CONFIG_DEBUG_VM
4185 int nid, zid;
4186 struct mem_cgroup_per_zone *mz;
4187 struct zone_reclaim_stat *rstat;
4188 unsigned long recent_rotated[2] = {0, 0};
4189 unsigned long recent_scanned[2] = {0, 0};
4191 for_each_online_node(nid)
4192 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4193 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4194 rstat = &mz->lruvec.reclaim_stat;
4196 recent_rotated[0] += rstat->recent_rotated[0];
4197 recent_rotated[1] += rstat->recent_rotated[1];
4198 recent_scanned[0] += rstat->recent_scanned[0];
4199 recent_scanned[1] += rstat->recent_scanned[1];
4201 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4202 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4203 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4204 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4206 #endif
4208 return 0;
4211 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4213 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4215 return mem_cgroup_swappiness(memcg);
4218 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4219 u64 val)
4221 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4222 struct mem_cgroup *parent;
4224 if (val > 100)
4225 return -EINVAL;
4227 if (cgrp->parent == NULL)
4228 return -EINVAL;
4230 parent = mem_cgroup_from_cont(cgrp->parent);
4232 cgroup_lock();
4234 /* If under hierarchy, only empty-root can set this value */
4235 if ((parent->use_hierarchy) ||
4236 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4237 cgroup_unlock();
4238 return -EINVAL;
4241 memcg->swappiness = val;
4243 cgroup_unlock();
4245 return 0;
4248 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4250 struct mem_cgroup_threshold_ary *t;
4251 u64 usage;
4252 int i;
4254 rcu_read_lock();
4255 if (!swap)
4256 t = rcu_dereference(memcg->thresholds.primary);
4257 else
4258 t = rcu_dereference(memcg->memsw_thresholds.primary);
4260 if (!t)
4261 goto unlock;
4263 usage = mem_cgroup_usage(memcg, swap);
4266 * current_threshold points to threshold just below or equal to usage.
4267 * If it's not true, a threshold was crossed after last
4268 * call of __mem_cgroup_threshold().
4270 i = t->current_threshold;
4273 * Iterate backward over array of thresholds starting from
4274 * current_threshold and check if a threshold is crossed.
4275 * If none of thresholds below usage is crossed, we read
4276 * only one element of the array here.
4278 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4279 eventfd_signal(t->entries[i].eventfd, 1);
4281 /* i = current_threshold + 1 */
4282 i++;
4285 * Iterate forward over array of thresholds starting from
4286 * current_threshold+1 and check if a threshold is crossed.
4287 * If none of thresholds above usage is crossed, we read
4288 * only one element of the array here.
4290 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4291 eventfd_signal(t->entries[i].eventfd, 1);
4293 /* Update current_threshold */
4294 t->current_threshold = i - 1;
4295 unlock:
4296 rcu_read_unlock();
4299 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4301 while (memcg) {
4302 __mem_cgroup_threshold(memcg, false);
4303 if (do_swap_account)
4304 __mem_cgroup_threshold(memcg, true);
4306 memcg = parent_mem_cgroup(memcg);
4310 static int compare_thresholds(const void *a, const void *b)
4312 const struct mem_cgroup_threshold *_a = a;
4313 const struct mem_cgroup_threshold *_b = b;
4315 return _a->threshold - _b->threshold;
4318 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4320 struct mem_cgroup_eventfd_list *ev;
4322 list_for_each_entry(ev, &memcg->oom_notify, list)
4323 eventfd_signal(ev->eventfd, 1);
4324 return 0;
4327 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4329 struct mem_cgroup *iter;
4331 for_each_mem_cgroup_tree(iter, memcg)
4332 mem_cgroup_oom_notify_cb(iter);
4335 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4336 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4338 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4339 struct mem_cgroup_thresholds *thresholds;
4340 struct mem_cgroup_threshold_ary *new;
4341 int type = MEMFILE_TYPE(cft->private);
4342 u64 threshold, usage;
4343 int i, size, ret;
4345 ret = res_counter_memparse_write_strategy(args, &threshold);
4346 if (ret)
4347 return ret;
4349 mutex_lock(&memcg->thresholds_lock);
4351 if (type == _MEM)
4352 thresholds = &memcg->thresholds;
4353 else if (type == _MEMSWAP)
4354 thresholds = &memcg->memsw_thresholds;
4355 else
4356 BUG();
4358 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4360 /* Check if a threshold crossed before adding a new one */
4361 if (thresholds->primary)
4362 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4364 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4366 /* Allocate memory for new array of thresholds */
4367 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4368 GFP_KERNEL);
4369 if (!new) {
4370 ret = -ENOMEM;
4371 goto unlock;
4373 new->size = size;
4375 /* Copy thresholds (if any) to new array */
4376 if (thresholds->primary) {
4377 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4378 sizeof(struct mem_cgroup_threshold));
4381 /* Add new threshold */
4382 new->entries[size - 1].eventfd = eventfd;
4383 new->entries[size - 1].threshold = threshold;
4385 /* Sort thresholds. Registering of new threshold isn't time-critical */
4386 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4387 compare_thresholds, NULL);
4389 /* Find current threshold */
4390 new->current_threshold = -1;
4391 for (i = 0; i < size; i++) {
4392 if (new->entries[i].threshold <= usage) {
4394 * new->current_threshold will not be used until
4395 * rcu_assign_pointer(), so it's safe to increment
4396 * it here.
4398 ++new->current_threshold;
4399 } else
4400 break;
4403 /* Free old spare buffer and save old primary buffer as spare */
4404 kfree(thresholds->spare);
4405 thresholds->spare = thresholds->primary;
4407 rcu_assign_pointer(thresholds->primary, new);
4409 /* To be sure that nobody uses thresholds */
4410 synchronize_rcu();
4412 unlock:
4413 mutex_unlock(&memcg->thresholds_lock);
4415 return ret;
4418 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4419 struct cftype *cft, struct eventfd_ctx *eventfd)
4421 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4422 struct mem_cgroup_thresholds *thresholds;
4423 struct mem_cgroup_threshold_ary *new;
4424 int type = MEMFILE_TYPE(cft->private);
4425 u64 usage;
4426 int i, j, size;
4428 mutex_lock(&memcg->thresholds_lock);
4429 if (type == _MEM)
4430 thresholds = &memcg->thresholds;
4431 else if (type == _MEMSWAP)
4432 thresholds = &memcg->memsw_thresholds;
4433 else
4434 BUG();
4436 if (!thresholds->primary)
4437 goto unlock;
4439 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4441 /* Check if a threshold crossed before removing */
4442 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4444 /* Calculate new number of threshold */
4445 size = 0;
4446 for (i = 0; i < thresholds->primary->size; i++) {
4447 if (thresholds->primary->entries[i].eventfd != eventfd)
4448 size++;
4451 new = thresholds->spare;
4453 /* Set thresholds array to NULL if we don't have thresholds */
4454 if (!size) {
4455 kfree(new);
4456 new = NULL;
4457 goto swap_buffers;
4460 new->size = size;
4462 /* Copy thresholds and find current threshold */
4463 new->current_threshold = -1;
4464 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4465 if (thresholds->primary->entries[i].eventfd == eventfd)
4466 continue;
4468 new->entries[j] = thresholds->primary->entries[i];
4469 if (new->entries[j].threshold <= usage) {
4471 * new->current_threshold will not be used
4472 * until rcu_assign_pointer(), so it's safe to increment
4473 * it here.
4475 ++new->current_threshold;
4477 j++;
4480 swap_buffers:
4481 /* Swap primary and spare array */
4482 thresholds->spare = thresholds->primary;
4483 /* If all events are unregistered, free the spare array */
4484 if (!new) {
4485 kfree(thresholds->spare);
4486 thresholds->spare = NULL;
4489 rcu_assign_pointer(thresholds->primary, new);
4491 /* To be sure that nobody uses thresholds */
4492 synchronize_rcu();
4493 unlock:
4494 mutex_unlock(&memcg->thresholds_lock);
4497 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4498 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4500 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4501 struct mem_cgroup_eventfd_list *event;
4502 int type = MEMFILE_TYPE(cft->private);
4504 BUG_ON(type != _OOM_TYPE);
4505 event = kmalloc(sizeof(*event), GFP_KERNEL);
4506 if (!event)
4507 return -ENOMEM;
4509 spin_lock(&memcg_oom_lock);
4511 event->eventfd = eventfd;
4512 list_add(&event->list, &memcg->oom_notify);
4514 /* already in OOM ? */
4515 if (atomic_read(&memcg->under_oom))
4516 eventfd_signal(eventfd, 1);
4517 spin_unlock(&memcg_oom_lock);
4519 return 0;
4522 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4523 struct cftype *cft, struct eventfd_ctx *eventfd)
4525 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4526 struct mem_cgroup_eventfd_list *ev, *tmp;
4527 int type = MEMFILE_TYPE(cft->private);
4529 BUG_ON(type != _OOM_TYPE);
4531 spin_lock(&memcg_oom_lock);
4533 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4534 if (ev->eventfd == eventfd) {
4535 list_del(&ev->list);
4536 kfree(ev);
4540 spin_unlock(&memcg_oom_lock);
4543 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4544 struct cftype *cft, struct cgroup_map_cb *cb)
4546 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4548 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4550 if (atomic_read(&memcg->under_oom))
4551 cb->fill(cb, "under_oom", 1);
4552 else
4553 cb->fill(cb, "under_oom", 0);
4554 return 0;
4557 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4558 struct cftype *cft, u64 val)
4560 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4561 struct mem_cgroup *parent;
4563 /* cannot set to root cgroup and only 0 and 1 are allowed */
4564 if (!cgrp->parent || !((val == 0) || (val == 1)))
4565 return -EINVAL;
4567 parent = mem_cgroup_from_cont(cgrp->parent);
4569 cgroup_lock();
4570 /* oom-kill-disable is a flag for subhierarchy. */
4571 if ((parent->use_hierarchy) ||
4572 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4573 cgroup_unlock();
4574 return -EINVAL;
4576 memcg->oom_kill_disable = val;
4577 if (!val)
4578 memcg_oom_recover(memcg);
4579 cgroup_unlock();
4580 return 0;
4583 #ifdef CONFIG_MEMCG_KMEM
4584 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4586 return mem_cgroup_sockets_init(memcg, ss);
4589 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4591 mem_cgroup_sockets_destroy(memcg);
4593 #else
4594 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4596 return 0;
4599 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4602 #endif
4604 static struct cftype mem_cgroup_files[] = {
4606 .name = "usage_in_bytes",
4607 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4608 .read = mem_cgroup_read,
4609 .register_event = mem_cgroup_usage_register_event,
4610 .unregister_event = mem_cgroup_usage_unregister_event,
4613 .name = "max_usage_in_bytes",
4614 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4615 .trigger = mem_cgroup_reset,
4616 .read = mem_cgroup_read,
4619 .name = "limit_in_bytes",
4620 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4621 .write_string = mem_cgroup_write,
4622 .read = mem_cgroup_read,
4625 .name = "soft_limit_in_bytes",
4626 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4627 .write_string = mem_cgroup_write,
4628 .read = mem_cgroup_read,
4631 .name = "failcnt",
4632 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4633 .trigger = mem_cgroup_reset,
4634 .read = mem_cgroup_read,
4637 .name = "stat",
4638 .read_seq_string = memcg_stat_show,
4641 .name = "force_empty",
4642 .trigger = mem_cgroup_force_empty_write,
4645 .name = "use_hierarchy",
4646 .write_u64 = mem_cgroup_hierarchy_write,
4647 .read_u64 = mem_cgroup_hierarchy_read,
4650 .name = "swappiness",
4651 .read_u64 = mem_cgroup_swappiness_read,
4652 .write_u64 = mem_cgroup_swappiness_write,
4655 .name = "move_charge_at_immigrate",
4656 .read_u64 = mem_cgroup_move_charge_read,
4657 .write_u64 = mem_cgroup_move_charge_write,
4660 .name = "oom_control",
4661 .read_map = mem_cgroup_oom_control_read,
4662 .write_u64 = mem_cgroup_oom_control_write,
4663 .register_event = mem_cgroup_oom_register_event,
4664 .unregister_event = mem_cgroup_oom_unregister_event,
4665 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4667 #ifdef CONFIG_NUMA
4669 .name = "numa_stat",
4670 .read_seq_string = memcg_numa_stat_show,
4672 #endif
4673 #ifdef CONFIG_MEMCG_SWAP
4675 .name = "memsw.usage_in_bytes",
4676 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4677 .read = mem_cgroup_read,
4678 .register_event = mem_cgroup_usage_register_event,
4679 .unregister_event = mem_cgroup_usage_unregister_event,
4682 .name = "memsw.max_usage_in_bytes",
4683 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4684 .trigger = mem_cgroup_reset,
4685 .read = mem_cgroup_read,
4688 .name = "memsw.limit_in_bytes",
4689 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4690 .write_string = mem_cgroup_write,
4691 .read = mem_cgroup_read,
4694 .name = "memsw.failcnt",
4695 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4696 .trigger = mem_cgroup_reset,
4697 .read = mem_cgroup_read,
4699 #endif
4700 { }, /* terminate */
4703 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4705 struct mem_cgroup_per_node *pn;
4706 struct mem_cgroup_per_zone *mz;
4707 int zone, tmp = node;
4709 * This routine is called against possible nodes.
4710 * But it's BUG to call kmalloc() against offline node.
4712 * TODO: this routine can waste much memory for nodes which will
4713 * never be onlined. It's better to use memory hotplug callback
4714 * function.
4716 if (!node_state(node, N_NORMAL_MEMORY))
4717 tmp = -1;
4718 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4719 if (!pn)
4720 return 1;
4722 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4723 mz = &pn->zoneinfo[zone];
4724 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4725 mz->usage_in_excess = 0;
4726 mz->on_tree = false;
4727 mz->memcg = memcg;
4729 memcg->info.nodeinfo[node] = pn;
4730 return 0;
4733 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4735 kfree(memcg->info.nodeinfo[node]);
4738 static struct mem_cgroup *mem_cgroup_alloc(void)
4740 struct mem_cgroup *memcg;
4741 int size = sizeof(struct mem_cgroup);
4743 /* Can be very big if MAX_NUMNODES is very big */
4744 if (size < PAGE_SIZE)
4745 memcg = kzalloc(size, GFP_KERNEL);
4746 else
4747 memcg = vzalloc(size);
4749 if (!memcg)
4750 return NULL;
4752 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4753 if (!memcg->stat)
4754 goto out_free;
4755 spin_lock_init(&memcg->pcp_counter_lock);
4756 return memcg;
4758 out_free:
4759 if (size < PAGE_SIZE)
4760 kfree(memcg);
4761 else
4762 vfree(memcg);
4763 return NULL;
4767 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4768 * but in process context. The work_freeing structure is overlaid
4769 * on the rcu_freeing structure, which itself is overlaid on memsw.
4771 static void free_work(struct work_struct *work)
4773 struct mem_cgroup *memcg;
4774 int size = sizeof(struct mem_cgroup);
4776 memcg = container_of(work, struct mem_cgroup, work_freeing);
4778 * We need to make sure that (at least for now), the jump label
4779 * destruction code runs outside of the cgroup lock. This is because
4780 * get_online_cpus(), which is called from the static_branch update,
4781 * can't be called inside the cgroup_lock. cpusets are the ones
4782 * enforcing this dependency, so if they ever change, we might as well.
4784 * schedule_work() will guarantee this happens. Be careful if you need
4785 * to move this code around, and make sure it is outside
4786 * the cgroup_lock.
4788 disarm_sock_keys(memcg);
4789 if (size < PAGE_SIZE)
4790 kfree(memcg);
4791 else
4792 vfree(memcg);
4795 static void free_rcu(struct rcu_head *rcu_head)
4797 struct mem_cgroup *memcg;
4799 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4800 INIT_WORK(&memcg->work_freeing, free_work);
4801 schedule_work(&memcg->work_freeing);
4805 * At destroying mem_cgroup, references from swap_cgroup can remain.
4806 * (scanning all at force_empty is too costly...)
4808 * Instead of clearing all references at force_empty, we remember
4809 * the number of reference from swap_cgroup and free mem_cgroup when
4810 * it goes down to 0.
4812 * Removal of cgroup itself succeeds regardless of refs from swap.
4815 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4817 int node;
4819 mem_cgroup_remove_from_trees(memcg);
4820 free_css_id(&mem_cgroup_subsys, &memcg->css);
4822 for_each_node(node)
4823 free_mem_cgroup_per_zone_info(memcg, node);
4825 free_percpu(memcg->stat);
4826 call_rcu(&memcg->rcu_freeing, free_rcu);
4829 static void mem_cgroup_get(struct mem_cgroup *memcg)
4831 atomic_inc(&memcg->refcnt);
4834 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4836 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4837 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4838 __mem_cgroup_free(memcg);
4839 if (parent)
4840 mem_cgroup_put(parent);
4844 static void mem_cgroup_put(struct mem_cgroup *memcg)
4846 __mem_cgroup_put(memcg, 1);
4850 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4852 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4854 if (!memcg->res.parent)
4855 return NULL;
4856 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4858 EXPORT_SYMBOL(parent_mem_cgroup);
4860 #ifdef CONFIG_MEMCG_SWAP
4861 static void __init enable_swap_cgroup(void)
4863 if (!mem_cgroup_disabled() && really_do_swap_account)
4864 do_swap_account = 1;
4866 #else
4867 static void __init enable_swap_cgroup(void)
4870 #endif
4872 static int mem_cgroup_soft_limit_tree_init(void)
4874 struct mem_cgroup_tree_per_node *rtpn;
4875 struct mem_cgroup_tree_per_zone *rtpz;
4876 int tmp, node, zone;
4878 for_each_node(node) {
4879 tmp = node;
4880 if (!node_state(node, N_NORMAL_MEMORY))
4881 tmp = -1;
4882 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4883 if (!rtpn)
4884 goto err_cleanup;
4886 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4888 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4889 rtpz = &rtpn->rb_tree_per_zone[zone];
4890 rtpz->rb_root = RB_ROOT;
4891 spin_lock_init(&rtpz->lock);
4894 return 0;
4896 err_cleanup:
4897 for_each_node(node) {
4898 if (!soft_limit_tree.rb_tree_per_node[node])
4899 break;
4900 kfree(soft_limit_tree.rb_tree_per_node[node]);
4901 soft_limit_tree.rb_tree_per_node[node] = NULL;
4903 return 1;
4907 static struct cgroup_subsys_state * __ref
4908 mem_cgroup_create(struct cgroup *cont)
4910 struct mem_cgroup *memcg, *parent;
4911 long error = -ENOMEM;
4912 int node;
4914 memcg = mem_cgroup_alloc();
4915 if (!memcg)
4916 return ERR_PTR(error);
4918 for_each_node(node)
4919 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4920 goto free_out;
4922 /* root ? */
4923 if (cont->parent == NULL) {
4924 int cpu;
4925 enable_swap_cgroup();
4926 parent = NULL;
4927 if (mem_cgroup_soft_limit_tree_init())
4928 goto free_out;
4929 root_mem_cgroup = memcg;
4930 for_each_possible_cpu(cpu) {
4931 struct memcg_stock_pcp *stock =
4932 &per_cpu(memcg_stock, cpu);
4933 INIT_WORK(&stock->work, drain_local_stock);
4935 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4936 } else {
4937 parent = mem_cgroup_from_cont(cont->parent);
4938 memcg->use_hierarchy = parent->use_hierarchy;
4939 memcg->oom_kill_disable = parent->oom_kill_disable;
4942 if (parent && parent->use_hierarchy) {
4943 res_counter_init(&memcg->res, &parent->res);
4944 res_counter_init(&memcg->memsw, &parent->memsw);
4946 * We increment refcnt of the parent to ensure that we can
4947 * safely access it on res_counter_charge/uncharge.
4948 * This refcnt will be decremented when freeing this
4949 * mem_cgroup(see mem_cgroup_put).
4951 mem_cgroup_get(parent);
4952 } else {
4953 res_counter_init(&memcg->res, NULL);
4954 res_counter_init(&memcg->memsw, NULL);
4956 memcg->last_scanned_node = MAX_NUMNODES;
4957 INIT_LIST_HEAD(&memcg->oom_notify);
4959 if (parent)
4960 memcg->swappiness = mem_cgroup_swappiness(parent);
4961 atomic_set(&memcg->refcnt, 1);
4962 memcg->move_charge_at_immigrate = 0;
4963 mutex_init(&memcg->thresholds_lock);
4964 spin_lock_init(&memcg->move_lock);
4966 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4967 if (error) {
4969 * We call put now because our (and parent's) refcnts
4970 * are already in place. mem_cgroup_put() will internally
4971 * call __mem_cgroup_free, so return directly
4973 mem_cgroup_put(memcg);
4974 return ERR_PTR(error);
4976 return &memcg->css;
4977 free_out:
4978 __mem_cgroup_free(memcg);
4979 return ERR_PTR(error);
4982 static int mem_cgroup_pre_destroy(struct cgroup *cont)
4984 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4986 return mem_cgroup_force_empty(memcg, false);
4989 static void mem_cgroup_destroy(struct cgroup *cont)
4991 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4993 kmem_cgroup_destroy(memcg);
4995 mem_cgroup_put(memcg);
4998 #ifdef CONFIG_MMU
4999 /* Handlers for move charge at task migration. */
5000 #define PRECHARGE_COUNT_AT_ONCE 256
5001 static int mem_cgroup_do_precharge(unsigned long count)
5003 int ret = 0;
5004 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5005 struct mem_cgroup *memcg = mc.to;
5007 if (mem_cgroup_is_root(memcg)) {
5008 mc.precharge += count;
5009 /* we don't need css_get for root */
5010 return ret;
5012 /* try to charge at once */
5013 if (count > 1) {
5014 struct res_counter *dummy;
5016 * "memcg" cannot be under rmdir() because we've already checked
5017 * by cgroup_lock_live_cgroup() that it is not removed and we
5018 * are still under the same cgroup_mutex. So we can postpone
5019 * css_get().
5021 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5022 goto one_by_one;
5023 if (do_swap_account && res_counter_charge(&memcg->memsw,
5024 PAGE_SIZE * count, &dummy)) {
5025 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5026 goto one_by_one;
5028 mc.precharge += count;
5029 return ret;
5031 one_by_one:
5032 /* fall back to one by one charge */
5033 while (count--) {
5034 if (signal_pending(current)) {
5035 ret = -EINTR;
5036 break;
5038 if (!batch_count--) {
5039 batch_count = PRECHARGE_COUNT_AT_ONCE;
5040 cond_resched();
5042 ret = __mem_cgroup_try_charge(NULL,
5043 GFP_KERNEL, 1, &memcg, false);
5044 if (ret)
5045 /* mem_cgroup_clear_mc() will do uncharge later */
5046 return ret;
5047 mc.precharge++;
5049 return ret;
5053 * get_mctgt_type - get target type of moving charge
5054 * @vma: the vma the pte to be checked belongs
5055 * @addr: the address corresponding to the pte to be checked
5056 * @ptent: the pte to be checked
5057 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5059 * Returns
5060 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5061 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5062 * move charge. if @target is not NULL, the page is stored in target->page
5063 * with extra refcnt got(Callers should handle it).
5064 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5065 * target for charge migration. if @target is not NULL, the entry is stored
5066 * in target->ent.
5068 * Called with pte lock held.
5070 union mc_target {
5071 struct page *page;
5072 swp_entry_t ent;
5075 enum mc_target_type {
5076 MC_TARGET_NONE = 0,
5077 MC_TARGET_PAGE,
5078 MC_TARGET_SWAP,
5081 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5082 unsigned long addr, pte_t ptent)
5084 struct page *page = vm_normal_page(vma, addr, ptent);
5086 if (!page || !page_mapped(page))
5087 return NULL;
5088 if (PageAnon(page)) {
5089 /* we don't move shared anon */
5090 if (!move_anon())
5091 return NULL;
5092 } else if (!move_file())
5093 /* we ignore mapcount for file pages */
5094 return NULL;
5095 if (!get_page_unless_zero(page))
5096 return NULL;
5098 return page;
5101 #ifdef CONFIG_SWAP
5102 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5103 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5105 struct page *page = NULL;
5106 swp_entry_t ent = pte_to_swp_entry(ptent);
5108 if (!move_anon() || non_swap_entry(ent))
5109 return NULL;
5111 * Because lookup_swap_cache() updates some statistics counter,
5112 * we call find_get_page() with swapper_space directly.
5114 page = find_get_page(&swapper_space, ent.val);
5115 if (do_swap_account)
5116 entry->val = ent.val;
5118 return page;
5120 #else
5121 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5122 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5124 return NULL;
5126 #endif
5128 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5129 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5131 struct page *page = NULL;
5132 struct address_space *mapping;
5133 pgoff_t pgoff;
5135 if (!vma->vm_file) /* anonymous vma */
5136 return NULL;
5137 if (!move_file())
5138 return NULL;
5140 mapping = vma->vm_file->f_mapping;
5141 if (pte_none(ptent))
5142 pgoff = linear_page_index(vma, addr);
5143 else /* pte_file(ptent) is true */
5144 pgoff = pte_to_pgoff(ptent);
5146 /* page is moved even if it's not RSS of this task(page-faulted). */
5147 page = find_get_page(mapping, pgoff);
5149 #ifdef CONFIG_SWAP
5150 /* shmem/tmpfs may report page out on swap: account for that too. */
5151 if (radix_tree_exceptional_entry(page)) {
5152 swp_entry_t swap = radix_to_swp_entry(page);
5153 if (do_swap_account)
5154 *entry = swap;
5155 page = find_get_page(&swapper_space, swap.val);
5157 #endif
5158 return page;
5161 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5162 unsigned long addr, pte_t ptent, union mc_target *target)
5164 struct page *page = NULL;
5165 struct page_cgroup *pc;
5166 enum mc_target_type ret = MC_TARGET_NONE;
5167 swp_entry_t ent = { .val = 0 };
5169 if (pte_present(ptent))
5170 page = mc_handle_present_pte(vma, addr, ptent);
5171 else if (is_swap_pte(ptent))
5172 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5173 else if (pte_none(ptent) || pte_file(ptent))
5174 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5176 if (!page && !ent.val)
5177 return ret;
5178 if (page) {
5179 pc = lookup_page_cgroup(page);
5181 * Do only loose check w/o page_cgroup lock.
5182 * mem_cgroup_move_account() checks the pc is valid or not under
5183 * the lock.
5185 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5186 ret = MC_TARGET_PAGE;
5187 if (target)
5188 target->page = page;
5190 if (!ret || !target)
5191 put_page(page);
5193 /* There is a swap entry and a page doesn't exist or isn't charged */
5194 if (ent.val && !ret &&
5195 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5196 ret = MC_TARGET_SWAP;
5197 if (target)
5198 target->ent = ent;
5200 return ret;
5203 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5205 * We don't consider swapping or file mapped pages because THP does not
5206 * support them for now.
5207 * Caller should make sure that pmd_trans_huge(pmd) is true.
5209 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5210 unsigned long addr, pmd_t pmd, union mc_target *target)
5212 struct page *page = NULL;
5213 struct page_cgroup *pc;
5214 enum mc_target_type ret = MC_TARGET_NONE;
5216 page = pmd_page(pmd);
5217 VM_BUG_ON(!page || !PageHead(page));
5218 if (!move_anon())
5219 return ret;
5220 pc = lookup_page_cgroup(page);
5221 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5222 ret = MC_TARGET_PAGE;
5223 if (target) {
5224 get_page(page);
5225 target->page = page;
5228 return ret;
5230 #else
5231 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5232 unsigned long addr, pmd_t pmd, union mc_target *target)
5234 return MC_TARGET_NONE;
5236 #endif
5238 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5239 unsigned long addr, unsigned long end,
5240 struct mm_walk *walk)
5242 struct vm_area_struct *vma = walk->private;
5243 pte_t *pte;
5244 spinlock_t *ptl;
5246 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5247 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5248 mc.precharge += HPAGE_PMD_NR;
5249 spin_unlock(&vma->vm_mm->page_table_lock);
5250 return 0;
5253 if (pmd_trans_unstable(pmd))
5254 return 0;
5255 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5256 for (; addr != end; pte++, addr += PAGE_SIZE)
5257 if (get_mctgt_type(vma, addr, *pte, NULL))
5258 mc.precharge++; /* increment precharge temporarily */
5259 pte_unmap_unlock(pte - 1, ptl);
5260 cond_resched();
5262 return 0;
5265 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5267 unsigned long precharge;
5268 struct vm_area_struct *vma;
5270 down_read(&mm->mmap_sem);
5271 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5272 struct mm_walk mem_cgroup_count_precharge_walk = {
5273 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5274 .mm = mm,
5275 .private = vma,
5277 if (is_vm_hugetlb_page(vma))
5278 continue;
5279 walk_page_range(vma->vm_start, vma->vm_end,
5280 &mem_cgroup_count_precharge_walk);
5282 up_read(&mm->mmap_sem);
5284 precharge = mc.precharge;
5285 mc.precharge = 0;
5287 return precharge;
5290 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5292 unsigned long precharge = mem_cgroup_count_precharge(mm);
5294 VM_BUG_ON(mc.moving_task);
5295 mc.moving_task = current;
5296 return mem_cgroup_do_precharge(precharge);
5299 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5300 static void __mem_cgroup_clear_mc(void)
5302 struct mem_cgroup *from = mc.from;
5303 struct mem_cgroup *to = mc.to;
5305 /* we must uncharge all the leftover precharges from mc.to */
5306 if (mc.precharge) {
5307 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5308 mc.precharge = 0;
5311 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5312 * we must uncharge here.
5314 if (mc.moved_charge) {
5315 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5316 mc.moved_charge = 0;
5318 /* we must fixup refcnts and charges */
5319 if (mc.moved_swap) {
5320 /* uncharge swap account from the old cgroup */
5321 if (!mem_cgroup_is_root(mc.from))
5322 res_counter_uncharge(&mc.from->memsw,
5323 PAGE_SIZE * mc.moved_swap);
5324 __mem_cgroup_put(mc.from, mc.moved_swap);
5326 if (!mem_cgroup_is_root(mc.to)) {
5328 * we charged both to->res and to->memsw, so we should
5329 * uncharge to->res.
5331 res_counter_uncharge(&mc.to->res,
5332 PAGE_SIZE * mc.moved_swap);
5334 /* we've already done mem_cgroup_get(mc.to) */
5335 mc.moved_swap = 0;
5337 memcg_oom_recover(from);
5338 memcg_oom_recover(to);
5339 wake_up_all(&mc.waitq);
5342 static void mem_cgroup_clear_mc(void)
5344 struct mem_cgroup *from = mc.from;
5347 * we must clear moving_task before waking up waiters at the end of
5348 * task migration.
5350 mc.moving_task = NULL;
5351 __mem_cgroup_clear_mc();
5352 spin_lock(&mc.lock);
5353 mc.from = NULL;
5354 mc.to = NULL;
5355 spin_unlock(&mc.lock);
5356 mem_cgroup_end_move(from);
5359 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5360 struct cgroup_taskset *tset)
5362 struct task_struct *p = cgroup_taskset_first(tset);
5363 int ret = 0;
5364 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5366 if (memcg->move_charge_at_immigrate) {
5367 struct mm_struct *mm;
5368 struct mem_cgroup *from = mem_cgroup_from_task(p);
5370 VM_BUG_ON(from == memcg);
5372 mm = get_task_mm(p);
5373 if (!mm)
5374 return 0;
5375 /* We move charges only when we move a owner of the mm */
5376 if (mm->owner == p) {
5377 VM_BUG_ON(mc.from);
5378 VM_BUG_ON(mc.to);
5379 VM_BUG_ON(mc.precharge);
5380 VM_BUG_ON(mc.moved_charge);
5381 VM_BUG_ON(mc.moved_swap);
5382 mem_cgroup_start_move(from);
5383 spin_lock(&mc.lock);
5384 mc.from = from;
5385 mc.to = memcg;
5386 spin_unlock(&mc.lock);
5387 /* We set mc.moving_task later */
5389 ret = mem_cgroup_precharge_mc(mm);
5390 if (ret)
5391 mem_cgroup_clear_mc();
5393 mmput(mm);
5395 return ret;
5398 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5399 struct cgroup_taskset *tset)
5401 mem_cgroup_clear_mc();
5404 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5405 unsigned long addr, unsigned long end,
5406 struct mm_walk *walk)
5408 int ret = 0;
5409 struct vm_area_struct *vma = walk->private;
5410 pte_t *pte;
5411 spinlock_t *ptl;
5412 enum mc_target_type target_type;
5413 union mc_target target;
5414 struct page *page;
5415 struct page_cgroup *pc;
5418 * We don't take compound_lock() here but no race with splitting thp
5419 * happens because:
5420 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5421 * under splitting, which means there's no concurrent thp split,
5422 * - if another thread runs into split_huge_page() just after we
5423 * entered this if-block, the thread must wait for page table lock
5424 * to be unlocked in __split_huge_page_splitting(), where the main
5425 * part of thp split is not executed yet.
5427 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5428 if (mc.precharge < HPAGE_PMD_NR) {
5429 spin_unlock(&vma->vm_mm->page_table_lock);
5430 return 0;
5432 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5433 if (target_type == MC_TARGET_PAGE) {
5434 page = target.page;
5435 if (!isolate_lru_page(page)) {
5436 pc = lookup_page_cgroup(page);
5437 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5438 pc, mc.from, mc.to)) {
5439 mc.precharge -= HPAGE_PMD_NR;
5440 mc.moved_charge += HPAGE_PMD_NR;
5442 putback_lru_page(page);
5444 put_page(page);
5446 spin_unlock(&vma->vm_mm->page_table_lock);
5447 return 0;
5450 if (pmd_trans_unstable(pmd))
5451 return 0;
5452 retry:
5453 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5454 for (; addr != end; addr += PAGE_SIZE) {
5455 pte_t ptent = *(pte++);
5456 swp_entry_t ent;
5458 if (!mc.precharge)
5459 break;
5461 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5462 case MC_TARGET_PAGE:
5463 page = target.page;
5464 if (isolate_lru_page(page))
5465 goto put;
5466 pc = lookup_page_cgroup(page);
5467 if (!mem_cgroup_move_account(page, 1, pc,
5468 mc.from, mc.to)) {
5469 mc.precharge--;
5470 /* we uncharge from mc.from later. */
5471 mc.moved_charge++;
5473 putback_lru_page(page);
5474 put: /* get_mctgt_type() gets the page */
5475 put_page(page);
5476 break;
5477 case MC_TARGET_SWAP:
5478 ent = target.ent;
5479 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5480 mc.precharge--;
5481 /* we fixup refcnts and charges later. */
5482 mc.moved_swap++;
5484 break;
5485 default:
5486 break;
5489 pte_unmap_unlock(pte - 1, ptl);
5490 cond_resched();
5492 if (addr != end) {
5494 * We have consumed all precharges we got in can_attach().
5495 * We try charge one by one, but don't do any additional
5496 * charges to mc.to if we have failed in charge once in attach()
5497 * phase.
5499 ret = mem_cgroup_do_precharge(1);
5500 if (!ret)
5501 goto retry;
5504 return ret;
5507 static void mem_cgroup_move_charge(struct mm_struct *mm)
5509 struct vm_area_struct *vma;
5511 lru_add_drain_all();
5512 retry:
5513 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5515 * Someone who are holding the mmap_sem might be waiting in
5516 * waitq. So we cancel all extra charges, wake up all waiters,
5517 * and retry. Because we cancel precharges, we might not be able
5518 * to move enough charges, but moving charge is a best-effort
5519 * feature anyway, so it wouldn't be a big problem.
5521 __mem_cgroup_clear_mc();
5522 cond_resched();
5523 goto retry;
5525 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5526 int ret;
5527 struct mm_walk mem_cgroup_move_charge_walk = {
5528 .pmd_entry = mem_cgroup_move_charge_pte_range,
5529 .mm = mm,
5530 .private = vma,
5532 if (is_vm_hugetlb_page(vma))
5533 continue;
5534 ret = walk_page_range(vma->vm_start, vma->vm_end,
5535 &mem_cgroup_move_charge_walk);
5536 if (ret)
5538 * means we have consumed all precharges and failed in
5539 * doing additional charge. Just abandon here.
5541 break;
5543 up_read(&mm->mmap_sem);
5546 static void mem_cgroup_move_task(struct cgroup *cont,
5547 struct cgroup_taskset *tset)
5549 struct task_struct *p = cgroup_taskset_first(tset);
5550 struct mm_struct *mm = get_task_mm(p);
5552 if (mm) {
5553 if (mc.to)
5554 mem_cgroup_move_charge(mm);
5555 mmput(mm);
5557 if (mc.to)
5558 mem_cgroup_clear_mc();
5560 #else /* !CONFIG_MMU */
5561 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5562 struct cgroup_taskset *tset)
5564 return 0;
5566 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5567 struct cgroup_taskset *tset)
5570 static void mem_cgroup_move_task(struct cgroup *cont,
5571 struct cgroup_taskset *tset)
5574 #endif
5576 struct cgroup_subsys mem_cgroup_subsys = {
5577 .name = "memory",
5578 .subsys_id = mem_cgroup_subsys_id,
5579 .create = mem_cgroup_create,
5580 .pre_destroy = mem_cgroup_pre_destroy,
5581 .destroy = mem_cgroup_destroy,
5582 .can_attach = mem_cgroup_can_attach,
5583 .cancel_attach = mem_cgroup_cancel_attach,
5584 .attach = mem_cgroup_move_task,
5585 .base_cftypes = mem_cgroup_files,
5586 .early_init = 0,
5587 .use_id = 1,
5588 .__DEPRECATED_clear_css_refs = true,
5591 #ifdef CONFIG_MEMCG_SWAP
5592 static int __init enable_swap_account(char *s)
5594 /* consider enabled if no parameter or 1 is given */
5595 if (!strcmp(s, "1"))
5596 really_do_swap_account = 1;
5597 else if (!strcmp(s, "0"))
5598 really_do_swap_account = 0;
5599 return 1;
5601 __setup("swapaccount=", enable_swap_account);
5603 #endif