2 * mm/percpu-vm.c - vmalloc area based chunk allocation
4 * Copyright (C) 2010 SUSE Linux Products GmbH
5 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * Chunks are mapped into vmalloc areas and populated page by page.
10 * This is the default chunk allocator.
13 static struct page
*pcpu_chunk_page(struct pcpu_chunk
*chunk
,
14 unsigned int cpu
, int page_idx
)
16 /* must not be used on pre-mapped chunk */
17 WARN_ON(chunk
->immutable
);
19 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk
, cpu
, page_idx
));
23 * pcpu_get_pages - get temp pages array
25 * Returns pointer to array of pointers to struct page which can be indexed
26 * with pcpu_page_idx(). Note that there is only one array and accesses
27 * should be serialized by pcpu_alloc_mutex.
30 * Pointer to temp pages array on success.
32 static struct page
**pcpu_get_pages(void)
34 static struct page
**pages
;
35 size_t pages_size
= pcpu_nr_units
* pcpu_unit_pages
* sizeof(pages
[0]);
37 lockdep_assert_held(&pcpu_alloc_mutex
);
40 pages
= pcpu_mem_zalloc(pages_size
);
45 * pcpu_free_pages - free pages which were allocated for @chunk
46 * @chunk: chunk pages were allocated for
47 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
48 * @page_start: page index of the first page to be freed
49 * @page_end: page index of the last page to be freed + 1
51 * Free pages [@page_start and @page_end) in @pages for all units.
52 * The pages were allocated for @chunk.
54 static void pcpu_free_pages(struct pcpu_chunk
*chunk
,
55 struct page
**pages
, int page_start
, int page_end
)
60 for_each_possible_cpu(cpu
) {
61 for (i
= page_start
; i
< page_end
; i
++) {
62 struct page
*page
= pages
[pcpu_page_idx(cpu
, i
)];
71 * pcpu_alloc_pages - allocates pages for @chunk
72 * @chunk: target chunk
73 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
74 * @page_start: page index of the first page to be allocated
75 * @page_end: page index of the last page to be allocated + 1
77 * Allocate pages [@page_start,@page_end) into @pages for all units.
78 * The allocation is for @chunk. Percpu core doesn't care about the
79 * content of @pages and will pass it verbatim to pcpu_map_pages().
81 static int pcpu_alloc_pages(struct pcpu_chunk
*chunk
,
82 struct page
**pages
, int page_start
, int page_end
)
84 const gfp_t gfp
= GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_COLD
;
85 unsigned int cpu
, tcpu
;
88 for_each_possible_cpu(cpu
) {
89 for (i
= page_start
; i
< page_end
; i
++) {
90 struct page
**pagep
= &pages
[pcpu_page_idx(cpu
, i
)];
92 *pagep
= alloc_pages_node(cpu_to_node(cpu
), gfp
, 0);
100 while (--i
>= page_start
)
101 __free_page(pages
[pcpu_page_idx(cpu
, i
)]);
103 for_each_possible_cpu(tcpu
) {
106 for (i
= page_start
; i
< page_end
; i
++)
107 __free_page(pages
[pcpu_page_idx(tcpu
, i
)]);
113 * pcpu_pre_unmap_flush - flush cache prior to unmapping
114 * @chunk: chunk the regions to be flushed belongs to
115 * @page_start: page index of the first page to be flushed
116 * @page_end: page index of the last page to be flushed + 1
118 * Pages in [@page_start,@page_end) of @chunk are about to be
119 * unmapped. Flush cache. As each flushing trial can be very
120 * expensive, issue flush on the whole region at once rather than
121 * doing it for each cpu. This could be an overkill but is more
124 static void pcpu_pre_unmap_flush(struct pcpu_chunk
*chunk
,
125 int page_start
, int page_end
)
128 pcpu_chunk_addr(chunk
, pcpu_low_unit_cpu
, page_start
),
129 pcpu_chunk_addr(chunk
, pcpu_high_unit_cpu
, page_end
));
132 static void __pcpu_unmap_pages(unsigned long addr
, int nr_pages
)
134 unmap_kernel_range_noflush(addr
, nr_pages
<< PAGE_SHIFT
);
138 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
139 * @chunk: chunk of interest
140 * @pages: pages array which can be used to pass information to free
141 * @page_start: page index of the first page to unmap
142 * @page_end: page index of the last page to unmap + 1
144 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
145 * Corresponding elements in @pages were cleared by the caller and can
146 * be used to carry information to pcpu_free_pages() which will be
147 * called after all unmaps are finished. The caller should call
148 * proper pre/post flush functions.
150 static void pcpu_unmap_pages(struct pcpu_chunk
*chunk
,
151 struct page
**pages
, int page_start
, int page_end
)
156 for_each_possible_cpu(cpu
) {
157 for (i
= page_start
; i
< page_end
; i
++) {
160 page
= pcpu_chunk_page(chunk
, cpu
, i
);
162 pages
[pcpu_page_idx(cpu
, i
)] = page
;
164 __pcpu_unmap_pages(pcpu_chunk_addr(chunk
, cpu
, page_start
),
165 page_end
- page_start
);
170 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
171 * @chunk: pcpu_chunk the regions to be flushed belong to
172 * @page_start: page index of the first page to be flushed
173 * @page_end: page index of the last page to be flushed + 1
175 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
176 * TLB for the regions. This can be skipped if the area is to be
177 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
179 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
180 * for the whole region.
182 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk
*chunk
,
183 int page_start
, int page_end
)
185 flush_tlb_kernel_range(
186 pcpu_chunk_addr(chunk
, pcpu_low_unit_cpu
, page_start
),
187 pcpu_chunk_addr(chunk
, pcpu_high_unit_cpu
, page_end
));
190 static int __pcpu_map_pages(unsigned long addr
, struct page
**pages
,
193 return map_kernel_range_noflush(addr
, nr_pages
<< PAGE_SHIFT
,
198 * pcpu_map_pages - map pages into a pcpu_chunk
199 * @chunk: chunk of interest
200 * @pages: pages array containing pages to be mapped
201 * @page_start: page index of the first page to map
202 * @page_end: page index of the last page to map + 1
204 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
205 * caller is responsible for calling pcpu_post_map_flush() after all
206 * mappings are complete.
208 * This function is responsible for setting up whatever is necessary for
209 * reverse lookup (addr -> chunk).
211 static int pcpu_map_pages(struct pcpu_chunk
*chunk
,
212 struct page
**pages
, int page_start
, int page_end
)
214 unsigned int cpu
, tcpu
;
217 for_each_possible_cpu(cpu
) {
218 err
= __pcpu_map_pages(pcpu_chunk_addr(chunk
, cpu
, page_start
),
219 &pages
[pcpu_page_idx(cpu
, page_start
)],
220 page_end
- page_start
);
224 for (i
= page_start
; i
< page_end
; i
++)
225 pcpu_set_page_chunk(pages
[pcpu_page_idx(cpu
, i
)],
230 for_each_possible_cpu(tcpu
) {
233 __pcpu_unmap_pages(pcpu_chunk_addr(chunk
, tcpu
, page_start
),
234 page_end
- page_start
);
236 pcpu_post_unmap_tlb_flush(chunk
, page_start
, page_end
);
241 * pcpu_post_map_flush - flush cache after mapping
242 * @chunk: pcpu_chunk the regions to be flushed belong to
243 * @page_start: page index of the first page to be flushed
244 * @page_end: page index of the last page to be flushed + 1
246 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
249 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
250 * for the whole region.
252 static void pcpu_post_map_flush(struct pcpu_chunk
*chunk
,
253 int page_start
, int page_end
)
256 pcpu_chunk_addr(chunk
, pcpu_low_unit_cpu
, page_start
),
257 pcpu_chunk_addr(chunk
, pcpu_high_unit_cpu
, page_end
));
261 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
262 * @chunk: chunk of interest
263 * @page_start: the start page
264 * @page_end: the end page
266 * For each cpu, populate and map pages [@page_start,@page_end) into
270 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
272 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
,
273 int page_start
, int page_end
)
277 pages
= pcpu_get_pages();
281 if (pcpu_alloc_pages(chunk
, pages
, page_start
, page_end
))
284 if (pcpu_map_pages(chunk
, pages
, page_start
, page_end
)) {
285 pcpu_free_pages(chunk
, pages
, page_start
, page_end
);
288 pcpu_post_map_flush(chunk
, page_start
, page_end
);
294 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
295 * @chunk: chunk to depopulate
296 * @page_start: the start page
297 * @page_end: the end page
299 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
305 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
,
306 int page_start
, int page_end
)
311 * If control reaches here, there must have been at least one
312 * successful population attempt so the temp pages array must
315 pages
= pcpu_get_pages();
319 pcpu_pre_unmap_flush(chunk
, page_start
, page_end
);
321 pcpu_unmap_pages(chunk
, pages
, page_start
, page_end
);
323 /* no need to flush tlb, vmalloc will handle it lazily */
325 pcpu_free_pages(chunk
, pages
, page_start
, page_end
);
328 static struct pcpu_chunk
*pcpu_create_chunk(void)
330 struct pcpu_chunk
*chunk
;
331 struct vm_struct
**vms
;
333 chunk
= pcpu_alloc_chunk();
337 vms
= pcpu_get_vm_areas(pcpu_group_offsets
, pcpu_group_sizes
,
338 pcpu_nr_groups
, pcpu_atom_size
);
340 pcpu_free_chunk(chunk
);
345 chunk
->base_addr
= vms
[0]->addr
- pcpu_group_offsets
[0];
349 static void pcpu_destroy_chunk(struct pcpu_chunk
*chunk
)
351 if (chunk
&& chunk
->data
)
352 pcpu_free_vm_areas(chunk
->data
, pcpu_nr_groups
);
353 pcpu_free_chunk(chunk
);
356 static struct page
*pcpu_addr_to_page(void *addr
)
358 return vmalloc_to_page(addr
);
361 static int __init
pcpu_verify_alloc_info(const struct pcpu_alloc_info
*ai
)
363 /* no extra restriction */