2 * Copyright (c) 2007-2014 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
31 #include <linux/rcupdate.h>
32 #include <linux/cpumask.h>
33 #include <linux/if_arp.h>
35 #include <linux/ipv6.h>
36 #include <linux/mpls.h>
37 #include <linux/sctp.h>
38 #include <linux/smp.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/icmpv6.h>
43 #include <linux/rculist.h>
45 #include <net/ip_tunnels.h>
48 #include <net/ndisc.h>
51 #include "conntrack.h"
54 #include "flow_netlink.h"
57 u64
ovs_flow_used_time(unsigned long flow_jiffies
)
59 struct timespec cur_ts
;
62 ktime_get_ts(&cur_ts
);
63 idle_ms
= jiffies_to_msecs(jiffies
- flow_jiffies
);
64 cur_ms
= (u64
)cur_ts
.tv_sec
* MSEC_PER_SEC
+
65 cur_ts
.tv_nsec
/ NSEC_PER_MSEC
;
67 return cur_ms
- idle_ms
;
70 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
72 void ovs_flow_stats_update(struct sw_flow
*flow
, __be16 tcp_flags
,
73 const struct sk_buff
*skb
)
75 struct flow_stats
*stats
;
76 unsigned int cpu
= smp_processor_id();
77 int len
= skb
->len
+ (skb_vlan_tag_present(skb
) ? VLAN_HLEN
: 0);
79 stats
= rcu_dereference(flow
->stats
[cpu
]);
81 /* Check if already have CPU-specific stats. */
83 spin_lock(&stats
->lock
);
84 /* Mark if we write on the pre-allocated stats. */
85 if (cpu
== 0 && unlikely(flow
->stats_last_writer
!= cpu
))
86 flow
->stats_last_writer
= cpu
;
88 stats
= rcu_dereference(flow
->stats
[0]); /* Pre-allocated. */
89 spin_lock(&stats
->lock
);
91 /* If the current CPU is the only writer on the
92 * pre-allocated stats keep using them.
94 if (unlikely(flow
->stats_last_writer
!= cpu
)) {
95 /* A previous locker may have already allocated the
96 * stats, so we need to check again. If CPU-specific
97 * stats were already allocated, we update the pre-
98 * allocated stats as we have already locked them.
100 if (likely(flow
->stats_last_writer
!= -1) &&
101 likely(!rcu_access_pointer(flow
->stats
[cpu
]))) {
102 /* Try to allocate CPU-specific stats. */
103 struct flow_stats
*new_stats
;
106 kmem_cache_alloc_node(flow_stats_cache
,
112 if (likely(new_stats
)) {
113 new_stats
->used
= jiffies
;
114 new_stats
->packet_count
= 1;
115 new_stats
->byte_count
= len
;
116 new_stats
->tcp_flags
= tcp_flags
;
117 spin_lock_init(&new_stats
->lock
);
119 rcu_assign_pointer(flow
->stats
[cpu
],
121 cpumask_set_cpu(cpu
, &flow
->cpu_used_mask
);
125 flow
->stats_last_writer
= cpu
;
129 stats
->used
= jiffies
;
130 stats
->packet_count
++;
131 stats
->byte_count
+= len
;
132 stats
->tcp_flags
|= tcp_flags
;
134 spin_unlock(&stats
->lock
);
137 /* Must be called with rcu_read_lock or ovs_mutex. */
138 void ovs_flow_stats_get(const struct sw_flow
*flow
,
139 struct ovs_flow_stats
*ovs_stats
,
140 unsigned long *used
, __be16
*tcp_flags
)
146 memset(ovs_stats
, 0, sizeof(*ovs_stats
));
148 /* We open code this to make sure cpu 0 is always considered */
149 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
= cpumask_next(cpu
, &flow
->cpu_used_mask
)) {
150 struct flow_stats
*stats
= rcu_dereference_ovsl(flow
->stats
[cpu
]);
153 /* Local CPU may write on non-local stats, so we must
154 * block bottom-halves here.
156 spin_lock_bh(&stats
->lock
);
157 if (!*used
|| time_after(stats
->used
, *used
))
159 *tcp_flags
|= stats
->tcp_flags
;
160 ovs_stats
->n_packets
+= stats
->packet_count
;
161 ovs_stats
->n_bytes
+= stats
->byte_count
;
162 spin_unlock_bh(&stats
->lock
);
167 /* Called with ovs_mutex. */
168 void ovs_flow_stats_clear(struct sw_flow
*flow
)
172 /* We open code this to make sure cpu 0 is always considered */
173 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
= cpumask_next(cpu
, &flow
->cpu_used_mask
)) {
174 struct flow_stats
*stats
= ovsl_dereference(flow
->stats
[cpu
]);
177 spin_lock_bh(&stats
->lock
);
179 stats
->packet_count
= 0;
180 stats
->byte_count
= 0;
181 stats
->tcp_flags
= 0;
182 spin_unlock_bh(&stats
->lock
);
187 static int check_header(struct sk_buff
*skb
, int len
)
189 if (unlikely(skb
->len
< len
))
191 if (unlikely(!pskb_may_pull(skb
, len
)))
196 static bool arphdr_ok(struct sk_buff
*skb
)
198 return pskb_may_pull(skb
, skb_network_offset(skb
) +
199 sizeof(struct arp_eth_header
));
202 static int check_iphdr(struct sk_buff
*skb
)
204 unsigned int nh_ofs
= skb_network_offset(skb
);
208 err
= check_header(skb
, nh_ofs
+ sizeof(struct iphdr
));
212 ip_len
= ip_hdrlen(skb
);
213 if (unlikely(ip_len
< sizeof(struct iphdr
) ||
214 skb
->len
< nh_ofs
+ ip_len
))
217 skb_set_transport_header(skb
, nh_ofs
+ ip_len
);
221 static bool tcphdr_ok(struct sk_buff
*skb
)
223 int th_ofs
= skb_transport_offset(skb
);
226 if (unlikely(!pskb_may_pull(skb
, th_ofs
+ sizeof(struct tcphdr
))))
229 tcp_len
= tcp_hdrlen(skb
);
230 if (unlikely(tcp_len
< sizeof(struct tcphdr
) ||
231 skb
->len
< th_ofs
+ tcp_len
))
237 static bool udphdr_ok(struct sk_buff
*skb
)
239 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
240 sizeof(struct udphdr
));
243 static bool sctphdr_ok(struct sk_buff
*skb
)
245 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
246 sizeof(struct sctphdr
));
249 static bool icmphdr_ok(struct sk_buff
*skb
)
251 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
252 sizeof(struct icmphdr
));
255 static int parse_ipv6hdr(struct sk_buff
*skb
, struct sw_flow_key
*key
)
257 unsigned int nh_ofs
= skb_network_offset(skb
);
265 err
= check_header(skb
, nh_ofs
+ sizeof(*nh
));
270 nexthdr
= nh
->nexthdr
;
271 payload_ofs
= (u8
*)(nh
+ 1) - skb
->data
;
273 key
->ip
.proto
= NEXTHDR_NONE
;
274 key
->ip
.tos
= ipv6_get_dsfield(nh
);
275 key
->ip
.ttl
= nh
->hop_limit
;
276 key
->ipv6
.label
= *(__be32
*)nh
& htonl(IPV6_FLOWINFO_FLOWLABEL
);
277 key
->ipv6
.addr
.src
= nh
->saddr
;
278 key
->ipv6
.addr
.dst
= nh
->daddr
;
280 payload_ofs
= ipv6_skip_exthdr(skb
, payload_ofs
, &nexthdr
, &frag_off
);
283 if (frag_off
& htons(~0x7))
284 key
->ip
.frag
= OVS_FRAG_TYPE_LATER
;
286 key
->ip
.frag
= OVS_FRAG_TYPE_FIRST
;
288 key
->ip
.frag
= OVS_FRAG_TYPE_NONE
;
291 /* Delayed handling of error in ipv6_skip_exthdr() as it
292 * always sets frag_off to a valid value which may be
293 * used to set key->ip.frag above.
295 if (unlikely(payload_ofs
< 0))
298 nh_len
= payload_ofs
- nh_ofs
;
299 skb_set_transport_header(skb
, nh_ofs
+ nh_len
);
300 key
->ip
.proto
= nexthdr
;
304 static bool icmp6hdr_ok(struct sk_buff
*skb
)
306 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
307 sizeof(struct icmp6hdr
));
311 * Parse vlan tag from vlan header.
312 * Returns ERROR on memory error.
313 * Returns 0 if it encounters a non-vlan or incomplete packet.
314 * Returns 1 after successfully parsing vlan tag.
316 static int parse_vlan_tag(struct sk_buff
*skb
, struct vlan_head
*key_vh
,
319 struct vlan_head
*vh
= (struct vlan_head
*)skb
->data
;
321 if (likely(!eth_type_vlan(vh
->tpid
)))
324 if (unlikely(skb
->len
< sizeof(struct vlan_head
) + sizeof(__be16
)))
327 if (unlikely(!pskb_may_pull(skb
, sizeof(struct vlan_head
) +
331 vh
= (struct vlan_head
*)skb
->data
;
332 key_vh
->tci
= vh
->tci
| htons(VLAN_TAG_PRESENT
);
333 key_vh
->tpid
= vh
->tpid
;
335 if (unlikely(untag_vlan
)) {
336 int offset
= skb
->data
- skb_mac_header(skb
);
340 __skb_push(skb
, offset
);
341 err
= __skb_vlan_pop(skb
, &tci
);
342 __skb_pull(skb
, offset
);
345 __vlan_hwaccel_put_tag(skb
, key_vh
->tpid
, tci
);
347 __skb_pull(skb
, sizeof(struct vlan_head
));
352 static void clear_vlan(struct sw_flow_key
*key
)
354 key
->eth
.vlan
.tci
= 0;
355 key
->eth
.vlan
.tpid
= 0;
356 key
->eth
.cvlan
.tci
= 0;
357 key
->eth
.cvlan
.tpid
= 0;
360 static int parse_vlan(struct sk_buff
*skb
, struct sw_flow_key
*key
)
364 if (skb_vlan_tag_present(skb
)) {
365 key
->eth
.vlan
.tci
= htons(skb
->vlan_tci
);
366 key
->eth
.vlan
.tpid
= skb
->vlan_proto
;
368 /* Parse outer vlan tag in the non-accelerated case. */
369 res
= parse_vlan_tag(skb
, &key
->eth
.vlan
, true);
374 /* Parse inner vlan tag. */
375 res
= parse_vlan_tag(skb
, &key
->eth
.cvlan
, false);
382 static __be16
parse_ethertype(struct sk_buff
*skb
)
384 struct llc_snap_hdr
{
385 u8 dsap
; /* Always 0xAA */
386 u8 ssap
; /* Always 0xAA */
391 struct llc_snap_hdr
*llc
;
394 proto
= *(__be16
*) skb
->data
;
395 __skb_pull(skb
, sizeof(__be16
));
397 if (eth_proto_is_802_3(proto
))
400 if (skb
->len
< sizeof(struct llc_snap_hdr
))
401 return htons(ETH_P_802_2
);
403 if (unlikely(!pskb_may_pull(skb
, sizeof(struct llc_snap_hdr
))))
406 llc
= (struct llc_snap_hdr
*) skb
->data
;
407 if (llc
->dsap
!= LLC_SAP_SNAP
||
408 llc
->ssap
!= LLC_SAP_SNAP
||
409 (llc
->oui
[0] | llc
->oui
[1] | llc
->oui
[2]) != 0)
410 return htons(ETH_P_802_2
);
412 __skb_pull(skb
, sizeof(struct llc_snap_hdr
));
414 if (eth_proto_is_802_3(llc
->ethertype
))
415 return llc
->ethertype
;
417 return htons(ETH_P_802_2
);
420 static int parse_icmpv6(struct sk_buff
*skb
, struct sw_flow_key
*key
,
423 struct icmp6hdr
*icmp
= icmp6_hdr(skb
);
425 /* The ICMPv6 type and code fields use the 16-bit transport port
426 * fields, so we need to store them in 16-bit network byte order.
428 key
->tp
.src
= htons(icmp
->icmp6_type
);
429 key
->tp
.dst
= htons(icmp
->icmp6_code
);
430 memset(&key
->ipv6
.nd
, 0, sizeof(key
->ipv6
.nd
));
432 if (icmp
->icmp6_code
== 0 &&
433 (icmp
->icmp6_type
== NDISC_NEIGHBOUR_SOLICITATION
||
434 icmp
->icmp6_type
== NDISC_NEIGHBOUR_ADVERTISEMENT
)) {
435 int icmp_len
= skb
->len
- skb_transport_offset(skb
);
439 /* In order to process neighbor discovery options, we need the
442 if (unlikely(icmp_len
< sizeof(*nd
)))
445 if (unlikely(skb_linearize(skb
)))
448 nd
= (struct nd_msg
*)skb_transport_header(skb
);
449 key
->ipv6
.nd
.target
= nd
->target
;
451 icmp_len
-= sizeof(*nd
);
453 while (icmp_len
>= 8) {
454 struct nd_opt_hdr
*nd_opt
=
455 (struct nd_opt_hdr
*)(nd
->opt
+ offset
);
456 int opt_len
= nd_opt
->nd_opt_len
* 8;
458 if (unlikely(!opt_len
|| opt_len
> icmp_len
))
461 /* Store the link layer address if the appropriate
462 * option is provided. It is considered an error if
463 * the same link layer option is specified twice.
465 if (nd_opt
->nd_opt_type
== ND_OPT_SOURCE_LL_ADDR
467 if (unlikely(!is_zero_ether_addr(key
->ipv6
.nd
.sll
)))
469 ether_addr_copy(key
->ipv6
.nd
.sll
,
470 &nd
->opt
[offset
+sizeof(*nd_opt
)]);
471 } else if (nd_opt
->nd_opt_type
== ND_OPT_TARGET_LL_ADDR
473 if (unlikely(!is_zero_ether_addr(key
->ipv6
.nd
.tll
)))
475 ether_addr_copy(key
->ipv6
.nd
.tll
,
476 &nd
->opt
[offset
+sizeof(*nd_opt
)]);
487 memset(&key
->ipv6
.nd
.target
, 0, sizeof(key
->ipv6
.nd
.target
));
488 memset(key
->ipv6
.nd
.sll
, 0, sizeof(key
->ipv6
.nd
.sll
));
489 memset(key
->ipv6
.nd
.tll
, 0, sizeof(key
->ipv6
.nd
.tll
));
494 static int parse_nsh(struct sk_buff
*skb
, struct sw_flow_key
*key
)
497 unsigned int nh_ofs
= skb_network_offset(skb
);
501 err
= check_header(skb
, nh_ofs
+ NSH_BASE_HDR_LEN
);
506 version
= nsh_get_ver(nh
);
507 length
= nsh_hdr_len(nh
);
512 err
= check_header(skb
, nh_ofs
+ length
);
517 key
->nsh
.base
.flags
= nsh_get_flags(nh
);
518 key
->nsh
.base
.ttl
= nsh_get_ttl(nh
);
519 key
->nsh
.base
.mdtype
= nh
->mdtype
;
520 key
->nsh
.base
.np
= nh
->np
;
521 key
->nsh
.base
.path_hdr
= nh
->path_hdr
;
522 switch (key
->nsh
.base
.mdtype
) {
524 if (length
!= NSH_M_TYPE1_LEN
)
526 memcpy(key
->nsh
.context
, nh
->md1
.context
,
530 memset(key
->nsh
.context
, 0,
541 * key_extract - extracts a flow key from an Ethernet frame.
542 * @skb: sk_buff that contains the frame, with skb->data pointing to the
544 * @key: output flow key
546 * The caller must ensure that skb->len >= ETH_HLEN.
548 * Returns 0 if successful, otherwise a negative errno value.
550 * Initializes @skb header fields as follows:
552 * - skb->mac_header: the L2 header.
554 * - skb->network_header: just past the L2 header, or just past the
555 * VLAN header, to the first byte of the L2 payload.
557 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
558 * on output, then just past the IP header, if one is present and
559 * of a correct length, otherwise the same as skb->network_header.
560 * For other key->eth.type values it is left untouched.
562 * - skb->protocol: the type of the data starting at skb->network_header.
563 * Equals to key->eth.type.
565 static int key_extract(struct sk_buff
*skb
, struct sw_flow_key
*key
)
570 /* Flags are always used as part of stats */
573 skb_reset_mac_header(skb
);
577 if (ovs_key_mac_proto(key
) == MAC_PROTO_NONE
) {
578 if (unlikely(eth_type_vlan(skb
->protocol
)))
581 skb_reset_network_header(skb
);
582 key
->eth
.type
= skb
->protocol
;
585 ether_addr_copy(key
->eth
.src
, eth
->h_source
);
586 ether_addr_copy(key
->eth
.dst
, eth
->h_dest
);
588 __skb_pull(skb
, 2 * ETH_ALEN
);
589 /* We are going to push all headers that we pull, so no need to
590 * update skb->csum here.
593 if (unlikely(parse_vlan(skb
, key
)))
596 key
->eth
.type
= parse_ethertype(skb
);
597 if (unlikely(key
->eth
.type
== htons(0)))
600 /* Multiple tagged packets need to retain TPID to satisfy
601 * skb_vlan_pop(), which will later shift the ethertype into
604 if (key
->eth
.cvlan
.tci
& htons(VLAN_TAG_PRESENT
))
605 skb
->protocol
= key
->eth
.cvlan
.tpid
;
607 skb
->protocol
= key
->eth
.type
;
609 skb_reset_network_header(skb
);
610 __skb_push(skb
, skb
->data
- skb_mac_header(skb
));
612 skb_reset_mac_len(skb
);
615 if (key
->eth
.type
== htons(ETH_P_IP
)) {
619 error
= check_iphdr(skb
);
620 if (unlikely(error
)) {
621 memset(&key
->ip
, 0, sizeof(key
->ip
));
622 memset(&key
->ipv4
, 0, sizeof(key
->ipv4
));
623 if (error
== -EINVAL
) {
624 skb
->transport_header
= skb
->network_header
;
631 key
->ipv4
.addr
.src
= nh
->saddr
;
632 key
->ipv4
.addr
.dst
= nh
->daddr
;
634 key
->ip
.proto
= nh
->protocol
;
635 key
->ip
.tos
= nh
->tos
;
636 key
->ip
.ttl
= nh
->ttl
;
638 offset
= nh
->frag_off
& htons(IP_OFFSET
);
640 key
->ip
.frag
= OVS_FRAG_TYPE_LATER
;
643 if (nh
->frag_off
& htons(IP_MF
) ||
644 skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP
)
645 key
->ip
.frag
= OVS_FRAG_TYPE_FIRST
;
647 key
->ip
.frag
= OVS_FRAG_TYPE_NONE
;
649 /* Transport layer. */
650 if (key
->ip
.proto
== IPPROTO_TCP
) {
651 if (tcphdr_ok(skb
)) {
652 struct tcphdr
*tcp
= tcp_hdr(skb
);
653 key
->tp
.src
= tcp
->source
;
654 key
->tp
.dst
= tcp
->dest
;
655 key
->tp
.flags
= TCP_FLAGS_BE16(tcp
);
657 memset(&key
->tp
, 0, sizeof(key
->tp
));
660 } else if (key
->ip
.proto
== IPPROTO_UDP
) {
661 if (udphdr_ok(skb
)) {
662 struct udphdr
*udp
= udp_hdr(skb
);
663 key
->tp
.src
= udp
->source
;
664 key
->tp
.dst
= udp
->dest
;
666 memset(&key
->tp
, 0, sizeof(key
->tp
));
668 } else if (key
->ip
.proto
== IPPROTO_SCTP
) {
669 if (sctphdr_ok(skb
)) {
670 struct sctphdr
*sctp
= sctp_hdr(skb
);
671 key
->tp
.src
= sctp
->source
;
672 key
->tp
.dst
= sctp
->dest
;
674 memset(&key
->tp
, 0, sizeof(key
->tp
));
676 } else if (key
->ip
.proto
== IPPROTO_ICMP
) {
677 if (icmphdr_ok(skb
)) {
678 struct icmphdr
*icmp
= icmp_hdr(skb
);
679 /* The ICMP type and code fields use the 16-bit
680 * transport port fields, so we need to store
681 * them in 16-bit network byte order. */
682 key
->tp
.src
= htons(icmp
->type
);
683 key
->tp
.dst
= htons(icmp
->code
);
685 memset(&key
->tp
, 0, sizeof(key
->tp
));
689 } else if (key
->eth
.type
== htons(ETH_P_ARP
) ||
690 key
->eth
.type
== htons(ETH_P_RARP
)) {
691 struct arp_eth_header
*arp
;
692 bool arp_available
= arphdr_ok(skb
);
694 arp
= (struct arp_eth_header
*)skb_network_header(skb
);
697 arp
->ar_hrd
== htons(ARPHRD_ETHER
) &&
698 arp
->ar_pro
== htons(ETH_P_IP
) &&
699 arp
->ar_hln
== ETH_ALEN
&&
702 /* We only match on the lower 8 bits of the opcode. */
703 if (ntohs(arp
->ar_op
) <= 0xff)
704 key
->ip
.proto
= ntohs(arp
->ar_op
);
708 memcpy(&key
->ipv4
.addr
.src
, arp
->ar_sip
, sizeof(key
->ipv4
.addr
.src
));
709 memcpy(&key
->ipv4
.addr
.dst
, arp
->ar_tip
, sizeof(key
->ipv4
.addr
.dst
));
710 ether_addr_copy(key
->ipv4
.arp
.sha
, arp
->ar_sha
);
711 ether_addr_copy(key
->ipv4
.arp
.tha
, arp
->ar_tha
);
713 memset(&key
->ip
, 0, sizeof(key
->ip
));
714 memset(&key
->ipv4
, 0, sizeof(key
->ipv4
));
716 } else if (eth_p_mpls(key
->eth
.type
)) {
717 size_t stack_len
= MPLS_HLEN
;
719 skb_set_inner_network_header(skb
, skb
->mac_len
);
723 error
= check_header(skb
, skb
->mac_len
+ stack_len
);
727 memcpy(&lse
, skb_inner_network_header(skb
), MPLS_HLEN
);
729 if (stack_len
== MPLS_HLEN
)
730 memcpy(&key
->mpls
.top_lse
, &lse
, MPLS_HLEN
);
732 skb_set_inner_network_header(skb
, skb
->mac_len
+ stack_len
);
733 if (lse
& htonl(MPLS_LS_S_MASK
))
736 stack_len
+= MPLS_HLEN
;
738 } else if (key
->eth
.type
== htons(ETH_P_IPV6
)) {
739 int nh_len
; /* IPv6 Header + Extensions */
741 nh_len
= parse_ipv6hdr(skb
, key
);
742 if (unlikely(nh_len
< 0)) {
745 memset(&key
->ip
, 0, sizeof(key
->ip
));
746 memset(&key
->ipv6
.addr
, 0, sizeof(key
->ipv6
.addr
));
749 skb
->transport_header
= skb
->network_header
;
758 if (key
->ip
.frag
== OVS_FRAG_TYPE_LATER
)
760 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP
)
761 key
->ip
.frag
= OVS_FRAG_TYPE_FIRST
;
763 /* Transport layer. */
764 if (key
->ip
.proto
== NEXTHDR_TCP
) {
765 if (tcphdr_ok(skb
)) {
766 struct tcphdr
*tcp
= tcp_hdr(skb
);
767 key
->tp
.src
= tcp
->source
;
768 key
->tp
.dst
= tcp
->dest
;
769 key
->tp
.flags
= TCP_FLAGS_BE16(tcp
);
771 memset(&key
->tp
, 0, sizeof(key
->tp
));
773 } else if (key
->ip
.proto
== NEXTHDR_UDP
) {
774 if (udphdr_ok(skb
)) {
775 struct udphdr
*udp
= udp_hdr(skb
);
776 key
->tp
.src
= udp
->source
;
777 key
->tp
.dst
= udp
->dest
;
779 memset(&key
->tp
, 0, sizeof(key
->tp
));
781 } else if (key
->ip
.proto
== NEXTHDR_SCTP
) {
782 if (sctphdr_ok(skb
)) {
783 struct sctphdr
*sctp
= sctp_hdr(skb
);
784 key
->tp
.src
= sctp
->source
;
785 key
->tp
.dst
= sctp
->dest
;
787 memset(&key
->tp
, 0, sizeof(key
->tp
));
789 } else if (key
->ip
.proto
== NEXTHDR_ICMP
) {
790 if (icmp6hdr_ok(skb
)) {
791 error
= parse_icmpv6(skb
, key
, nh_len
);
795 memset(&key
->tp
, 0, sizeof(key
->tp
));
798 } else if (key
->eth
.type
== htons(ETH_P_NSH
)) {
799 error
= parse_nsh(skb
, key
);
806 int ovs_flow_key_update(struct sk_buff
*skb
, struct sw_flow_key
*key
)
810 res
= key_extract(skb
, key
);
812 key
->mac_proto
&= ~SW_FLOW_KEY_INVALID
;
817 static int key_extract_mac_proto(struct sk_buff
*skb
)
819 switch (skb
->dev
->type
) {
821 return MAC_PROTO_ETHERNET
;
823 if (skb
->protocol
== htons(ETH_P_TEB
))
824 return MAC_PROTO_ETHERNET
;
825 return MAC_PROTO_NONE
;
831 int ovs_flow_key_extract(const struct ip_tunnel_info
*tun_info
,
832 struct sk_buff
*skb
, struct sw_flow_key
*key
)
836 /* Extract metadata from packet. */
838 key
->tun_proto
= ip_tunnel_info_af(tun_info
);
839 memcpy(&key
->tun_key
, &tun_info
->key
, sizeof(key
->tun_key
));
841 if (tun_info
->options_len
) {
842 BUILD_BUG_ON((1 << (sizeof(tun_info
->options_len
) *
844 > sizeof(key
->tun_opts
));
846 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key
, tun_info
->options_len
),
848 key
->tun_opts_len
= tun_info
->options_len
;
850 key
->tun_opts_len
= 0;
854 key
->tun_opts_len
= 0;
855 memset(&key
->tun_key
, 0, sizeof(key
->tun_key
));
858 key
->phy
.priority
= skb
->priority
;
859 key
->phy
.in_port
= OVS_CB(skb
)->input_vport
->port_no
;
860 key
->phy
.skb_mark
= skb
->mark
;
861 key
->ovs_flow_hash
= 0;
862 res
= key_extract_mac_proto(skb
);
865 key
->mac_proto
= res
;
868 err
= key_extract(skb
, key
);
870 ovs_ct_fill_key(skb
, key
); /* Must be after key_extract(). */
874 int ovs_flow_key_extract_userspace(struct net
*net
, const struct nlattr
*attr
,
876 struct sw_flow_key
*key
, bool log
)
878 const struct nlattr
*a
[OVS_KEY_ATTR_MAX
+ 1];
882 err
= parse_flow_nlattrs(attr
, a
, &attrs
, log
);
886 /* Extract metadata from netlink attributes. */
887 err
= ovs_nla_get_flow_metadata(net
, a
, attrs
, key
, log
);
891 /* key_extract assumes that skb->protocol is set-up for
892 * layer 3 packets which is the case for other callers,
893 * in particular packets received from the network stack.
894 * Here the correct value can be set from the metadata
896 * For L2 packet key eth type would be zero. skb protocol
897 * would be set to correct value later during key-extact.
900 skb
->protocol
= key
->eth
.type
;
901 err
= key_extract(skb
, key
);
905 /* Check that we have conntrack original direction tuple metadata only
906 * for packets for which it makes sense. Otherwise the key may be
907 * corrupted due to overlapping key fields.
909 if (attrs
& (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4
) &&
910 key
->eth
.type
!= htons(ETH_P_IP
))
912 if (attrs
& (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6
) &&
913 (key
->eth
.type
!= htons(ETH_P_IPV6
) ||
914 sw_flow_key_is_nd(key
)))